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Abstract: There are many diagnoses of the bad state of U.S. mathematics education, ranging 

from incoherent curricula to low quality teaching. In this chapter I will address a foundational 

reason for the many manifestations of failure—a systemic, cultural inattention to mathematical 

meaning and coherence. The result is teachers’ inability to teach for understanding and students’ 

inability to develop personal mathematical meanings that support interest, curiosity, and future 

learning. In developing this argument I discuss the subtle ways in which actual meanings with 

which teachers currently teach and actual meanings students currently develop in interaction with 

instruction contribute to dysfunctional mathematics education. I end by proposing a long-term 

strategy to address this situation.  

 

I hope to address the issue of meaning in mathematics education in a way that conveys its 

nature and importance and also that conveys ramifications of addressing this issue for teaching, 

learning, and research in mathematics education. One ramification is to become aware of how 

deeply meaningless mathematics teaching and learning are in the United States. We must be 

aware of the depth of the problem as a prelude to devising solutions for it. 

In this chapter I discuss meanings of “meaning”, the creation of meaning through 

teaching, and difficulties that students have in creating mathematical meanings. I hasten to note 

that an incoherent meaning is a meaning, so please do not read “creating meaning through 

teaching” as pointing only to rosy outcomes. 

I also share some consequences of systemic inattention to mathematical meaning in the 

United States and a positive outcome of one teacher’s attempt to help students build coherent 

meanings in algebra. My hope is that inspecting these examples will clarify ways that attending 

to issues of meaning allows us to see problems of mathematics learning as emergent from 

fundamental cultural orientations as much as from epistemological problems of learning 

sophisticated ideas. I end with a proposed agenda for how to move forward so that a focus on 

meaning is central to improving mathematics teaching and learning in the United States.  

Meanings of “Meaning” 

I have yet to find anyone who finds the phrase the meaning of “meaning” odd. They 

might ask, “What do you mean?” but they do not act as if I’ve spoken nonsense. What this points 

to is something that is innately human. Any time that we invoke the idea of meaning we invoke 

                                                 
1 Revised version of a talk given at the Senior Scholars in Mathematics Education Lecture Series, Brigham Young 

University, December 11, 2008. 
2 Preparation of this chapter was supported by National Science Foundation Grants No. EHR-0353470 and DUE-

1050595. Any conclusions or recommendations stated here are those of the author and do not necessarily reflect 
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the idea of meaning. The idea of meaning is so deeply recursive that when we talk about issues 

of meaning we are talking about an intellectual capacity that is unique to humans. The recursive 

nature of attempts to examine the nature of meaning suggests, in line with Dewey (1910, 1933), 

that reflection and abstraction are at its core. 

Philosophical disputes about the nature of meaning have centered historically around the 

referential relationship between language and reality. Ogden and Richards (1923/1989) offered 

their well-known semantic triangle (Figure 1), which places referents in the world, but the 

relationship between a symbol and a referent exists only by way of a person making the 

association. Putnam (1973, 1975) argued strongly that meanings cannot be characterized by 

individuals’ psychological states. “Meanings just ain’t in the head”, he famously said (Putnam, 

1975, p. 227). 

 
Figure 1. Ogden and Richards’ (1923/1989) semiotic triangle. 

A second perspective on meaning focuses on what people intend to convey via an 

utterance, and what people imagine being conveyed as they hear an utterance. Grice (1957) 

presented an entertaining analysis of this perspective. He first distinguished between natural 

meanings and nonnatural meanings. A natural meaning, in Grice’s usage, is an inference one 

makes from observing something-in-the-world (e.g., “red spots mean measles”). He was not 

much interested in this type of meaning, focusing instead on what he called nonnatural 

meanings—”meaningNN”—ideas and ways of thinking that someone intends to convey to 

someone else and uses signs or symbols to do so. Grice distinguished among three ways that 

meaningNN can be seen at play in typical uses of “to mean”: 

(1) “A meantNN something by x” is (roughly) equivalent to “A intended the utterance 

of x to produce some effect in an audience by means of the recognition of this intention”; 

and we may add that to ask what A meant is to ask for a specification of the intended 

effect (though, of course, it may not always be possible to get a straight answer involving 

a “that” clause, for example, “a belief that . . .”).  

(2) “x meant something” is (roughly) equivalent to “Somebody meantNN something 

by x.” Here again there will be cases where this will not quite work. I feel inclined to say 

that (as regards traffic lights) the change to red meantNN that the traffic was to stop; but it 

would be very unnatural to say, “Somebody (e.g., the Corporation) meantNN by the red-

light change that the traffic was to stop.” Nevertheless, there seems to be some sort of 

reference to somebody’s intentions. 
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(3) “x meansNN (timeless) that so-and-so” might as a first shot be equated with some 

statement or disjunction of statements about what “people” (vague) intend (with 

qualifications about “recognition”) to effect by x. (Grice, 1957, p. 385) 

The significance of Grice’s position for mathematics education is that the “mathematics on the 

page” cannot be the conveyor of meaning. Meanings reside in the minds of the person producing 

it and the person interpreting it. 

Walker Percy, in his famous Delta Factor (Percy, 1975a, 1975b), expressed the result of 

his years-long puzzlement over the nature of man through an analysis of Helen Keller learning 

the word “water”. He began from the perspective of Ogden and Richards’ triangle, but later 

abandoned that approach because of the difficulty he had arguing that Keller had access to a real-

world material called “water”. Percy realized that Keller’s connections were not between water 

and a sign. Rather, the connections were between experiences that she was having. Instead of the 

causal relations that Ogden and Richards posited between symbol and thought, Percy insisted 

that there was no causation at all—that the triangle was irreducible, and that the links in the 

triangle were all made by Helen. Percy called Keller’s irreducible construction an instance of 

The Delta Phenomenon. He reflected upon his attempt to use Ogden and Richards’ triangle to 

capture “what happened” when Keller learned the word “water”: 

The longer one thought about the irreducible triangle and its elements and relations, 

the queerer they got.  

Compare Delta Δ phenomenon with the pseudo triangle of Ogden and Richards: 

buzzer→dog→food. The latter is a pseudo triangle because one needn’t think of it as a 

triangle at all but can conceive the event quite easily as a series of energy exchanges 

beginning with buzzer and ending in the dog’s salivation and approaching food.  

But consider the Delta phenomenon in its simplest form. A boy has just come into 

the naming stage of language acquisition and one day points to a balloon and looks 

questioningly at his father. The father says, “That’s a balloon,” or perhaps just, 

“Balloon.”  

Here the Delta phenomenon is as simple as Helen’s breakthrough in the well-house, 

the main difference being that the boy is stretching out over months what Helen took by 

storm in a few hours.  

But consider.  

Unlike the buzzer-dog-salivation sequence, one runs immediately into difficulty 

when one tries to locate and specify the Delta elements—balloon (thing), balloon (word), 

boy (organism).  

In a word, my next discovery was bad news. It was the discovery of three 

mystifying negatives. In the Delta phenomenon it seems: The balloon is not the balloon 

out there. The word balloon is not the sound in the air. The boy is not the organism boy. 

(Percy, 1975a, Kindle Locations 661-673). 

 

In other words, Percy saw Keller’s construction of meaning as an epiphenomenon, an emergent 

unification created by Keller’s association of her tactile experience of what an observer would 

call water pouring over her hand and the tactile experience of what Anne Sullivan would have 

called signing into her hand. Keller made her experiences whole through an act of naming. It 

was Keller’s connecting these experiences that made Sullivan’s sign have a referent, and the 

meaning within Keller was irreducible. It had all three components simultaneously. 
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John Dewey (1910, 1933) considered meaning and understanding to be synonymous, and 

either to be the product of thinking. His idea of thinking was very special, however. His interest 

was in what he sometimes called reflective thinking. To Dewey, coherence is a characteristic 

outcome of thinking – thinking leads to “the organization of facts and conditions which, just as 

they stand, are isolated, fragmentary, and discrepant, the organization being effected through the 

introduction of connecting links, or middle terms” (Dewey, 1910, p. 79). Dewey also considered 

thinking to be the primary mechanism for the construction and refinement of meaning: “That 

thinking both employs and expands notions, conceptions, is then simply saying that in inference 

and judgment we use meanings, and that this use also corrects and widens them” (Dewey, 1910, 

p. 125). He also emphasized the role of meaning in human communication: 

 It is significant that one meaning of the term understood is something so 

thoroughly mastered, so completely agreed upon, as to be assumed; that is to say, taken 

as a matter of course without explicit statement. The familiar “goes without saying” 

means “it is understood.” If two persons can converse intelligently with each other, it is 

because common experience supplies a background of mutual understanding upon which 

their respective remarks are projected. To dig up and to formulate this common 

background would be imbecile; it is “understood”, that is, it is silently sup-plied and im-

plied as the taken-for-granted. 

If, however, the two persons find themselves at cross purposes, it is necessary to dig 

up and compare the presuppositions, the implied context, on the basis of which each is 

speaking. The im-plicit is ex-plicit; what was unconsciously assumed is exposed to the 

light of conscious day.” (Dewey, 1910, p. 214). 

 

Meaning and understanding were synonymous to Piaget, also. But he put it differently 

than Dewey. Though I know of no place where Piaget said this directly, I agree with Skemp 

(1961, 1962, 1979) that, to Piaget, “to understand” was synonymous with “to assimilate to a 

scheme”.  Of course, this is entirely unhelpful if we do not know what Piaget meant by a scheme.  

My understanding of what Piaget meant by “scheme” differs from that proposed by Cobb and 

Glaersfeld (1983) and by Glasersfeld (1995, 1998). They proposed that, to Piaget, a scheme was 

a three-part mental structure: a condition that would trigger a scheme, an action or system of 

actions, and an anticipation of what the action should produce. I believe what Cobb and 

Glasersfeld described fits better with Piaget called a schema of action (Piaget, 1968, p. 11; Piaget 

& Inhelder, 1969, p. 4). Piaget spoke of a child’s sucking schema, for example. I believe Piaget 

had larger organizations in mind when he spoke of schemes—organizations of operations, 

images, schemata, and schemes—that did not have easily identified entry points that might 

trigger action.3 I have spoken, for example, of a rate of change scheme (Thompson & Thompson, 

1996; Thompson, 1994a, 1994c; Thompson & Thompson, 1992) that entails a complex 

coordination of understandings of quantity, variation, relative change, accumulation, and 

proportionality. Luis Saldanha and I (2003) wrote about a coordination among understandings of 

quantity, measure, proportionality, multiplication, and division as comprising a fraction scheme. 

So, in Piaget’s system, to understand means to assimilate to a scheme, but this is still somewhat 

unsatisfactory because we need to understand Piaget’s meaning of assimilation.  

                                                 
3 The concept of scheme is recursive. A scheme can entail other schemes. 
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Standard meanings of “assimilate” all entail some sense of something being absorbed by 

something else. As Piaget famously said, “A rabbit that eats a cabbage doesn’t become cabbage; 

it is the cabbage that becomes rabbit—that’s assimilation. It’s the same thing at the 

psychological level. Whatever a stimulus is, it is integrated with internal structures” (Bringuier, 

1980, p. 42). Piaget’s use of “assimilate” is in a cognitive sense. It does not entail energy 

transfer. Rather, it emphasized absorption of information. A physical stimulation on a retina 

creates information that is processed by the nervous system. What looks like absorption is 

actually imbuement. Montangero and Maurice-Naville (1997, p. 72) quoted Piaget as saying,  

Assimilating an object to a scheme involves giving one or several meanings to this 

object, and it is this conferring of meanings that implies a more or less complete system 

of inferences, even when it is simply a question of verifying a fact. In short, we could say 

that an assimilation is an association accompanied by inference. (Johnckheere, 

Mandelbrot, & Piaget, 1958, p. 59) 

 

So, to understand is to assimilate to a scheme. But whence schemes? From assimilation. From a 

Piagetian viewpoint, to construct a meaning is to construct an understanding—a scheme, and to 

construct a scheme requires applying the same operations of thought repeatedly to understand 

situations being made meaningful by that scheme. “Assimilation… is the source of schemes.... 

Assimilation is the operation of integration of which the scheme is the result” (Piaget, 1977, p. 

70). Put another way, we construct stable understandings by repeatedly constructing them anew. 

Hiebert and Carpenter (Carpenter, 1986; Hiebert & Carpenter, 1992; Hiebert & Lefevre, 

1986) characterized mathematical understandings similarly to Piaget. They spoke of desirable 

understandings as rich networks of connections among concepts and procedures. Their 

characterization of concepts, however, is largely non-cognitive. They did not address how 

someone thinks to have them and their notion of meaning is static. I find Piaget’s ideas on 

understanding (meaning) to do more work for thinking about teaching and learning. As Piaget 

and Garcia (1991) made clear, their notion of meaning is implicative—meaning comes from an 

assimilation’s implications for further action. Moreover, Piaget’s genetic epistemology entails a 

rich conception of ways that understandings can be made and how they work in reasoning. 

Why Attending to Meaning Matters 

In one sense, the issue of meaning is irrelevant to mathematics education—if we accept 

the current state of mathematics education. It is rare for a mathematics teacher, at least one in the 

United States, to be concerned with meaning, either intended or conveyed. If we believe the 

results of TIMSS classroom studies (e.g., Hiebert, Stigler, Jacobs, Givvin, Garnier, Smith, 

Hillingsworth, Manaster, Wearne, & Gallimore, 2005; Schmidt, Houang, & Cogan, 2002; 

Schmidt, Wang, & McKnight, 2005; Stigler & Hiebert, 1999), the main goal of most U.S. 

mathematics teachers is that students learn to perform prescribed procedures. Issues of meaning 

are largely irrelevant. But if we intend that students develop mathematical understandings that 

will serve them as creative and spontaneous thinkers outside of school, then issues of meaning 

are paramount. 

I am therefore speaking to educators who are concerned about the conveyance of 

mathematical meaning. To convey meaning is one of the most important goals toward which 

teachers can strive. As we think about teaching and the conveyance of mathematical meaning, it 

will be productive to look for useful ways to imagine how “conveyance” happens. Is meaning on 
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a printed page? Written on a whiteboard? Does it appear on a computer screen? Is meaning 

conveyed to students by directing their attention to “real world” referents? Each of these stances 

puts meaning in the world, so that there are “correct” meanings to be had and any meanings that 

depart from them are incorrect. Simon et al. (2000) characterized this image of conveying 

mathematical meaning “perception-based” mathematics. They claimed that this is the 

predominant view of mathematics schoolteachers that teachers expect students to see in 

mathematical statements what they see. It is “there” for students to take up.  

I concur with Cobb (2007) in taking the stance that we should adopt theoretical 

perspectives only to the extent that they help us do our work. I maintain that any stance that puts 

meaning outside of individuals is less helpful for purposes of instructional and curricular design, 

teacher preparation, and professional development than a stance that puts meaning within 

individuals. This is because most of our efforts in working with students occur at a time when 

they do not possess mathematical meanings that we hope they will have eventually. Ogden and 

Richards’ triangle is of little use in this case. Their triangle offers no guidance. The meanings 

that matter at the moment of interacting with students are the meanings that students have, for it 

is their current meanings that constitute the framework within which they operate and it is their 

personal meanings that we hope students will transform. Our making explicit the meanings we 

intend that they have eventually is important, because they comprise our instructional and 

curricular goals. But those targeted meanings must come to exist within individual students—in 

the sense that Percy (1975a) described Helen Keller’s acquisition of “water”—for us to have 

succeeded. 

There is empirical evidence that the mathematical meanings a teacher possesses matter in 

regard to what students learn. For example, Branca (1980) studied the communication of 

semantic structure from teacher to student regarding the content of a unit on operational systems. 

He studied six high school mathematics teachers over the duration of the instructional unit. At 

the beginning of the unit there was little resemblance between what teachers meant and what 

students meant by key terms and phrases. By the end of the study, students’ meanings regarding 

operational systems very much resembled their teacher’s—including inappropriate meanings. 

Teachers’ and students’ meanings became aligned even about ideas that were not taught. So, 

even tacit meanings that teachers carry can be conveyed to students. (I address how this might 

happen in the next section.) Branca’s study, however, was tightly focused on definitions and 

theorems having to do with systems defined by operations on sets, so issues of meaning were 

central to the subject matter being taught. Examples given later in this chapter show that students 

develop understandings and ways of thinking about the mathematics they learn even when 

meaning is not central to the teachers’ subject matter. But the understandings that students 

develop in those settings are not propitious for later learning. 

Conveying Meaning Through Teaching 

If we maintain the stance that meanings are entirely within individuals, we face the 

immediate question of how people can appear to learn a meaning from someone else. How shall 

we explain the seemingly evident fact that teachers can convey meanings to students? I find two 

sources immensely helpful in conceptualizing human communication so that we can speak 

sensibly about the conveyance of meaning without violating our self-imposed stance that all 

meanings lay within individuals. The first is Piaget’s notion of intersubjectivity (Glasersfeld, 

1995; Piaget, 1995; Thompson, 2000) and the other is Pask’s conversation theory (Pask, 1975, 

1976; Scott, 2009). Piaget placed great emphasis on the idea of decentering, or attempting to 
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adopt a viewpoint that differs from your own. He used the term intersubjective operations to 

describe thoughts that are directed at another. As Glasersfeld (1995) put it, once a child starts to 

think that another person “thinks like me”, she can then also notice occasions where the person 

seems not to think like her. This is at the root of what Glasersfeld called “the construction of 

others” (Glasersfeld, 1995, Ch 6).  

Pask’s conversation theory attempted to explain how social interaction can lead to 

participants’ construction of knowledge. His theory was rather technical, but the important part 

for this chapter is his concept of a conversation. To Pask (1975, 1976), a conversation is more 

than face-to-face verbal exchanges confined to a specific place and time. Rather, a conversation 

involves all the actions entailed in conversants’ attempts to convey and discern meaning. So, a 

classroom conversation, in Pask’s sense, could include an exchange that involved the teacher 

introducing an idea, handing out a worksheet, and discussing how she expects students to use it. 

The teacher’s soliloquy can be considered part of an ongoing conversation, as can students 

asking questions about a worksheet or about what the teacher expects. It goes without saying that 

conversations are most productive when each participant is oriented to understand what others 

have in mind and is oriented to have others understand what he or she intends. 

What follows is an amalgam of Piaget’s notion of intersubjective operations and Pask’s 

conversation theory. The amalgam is necessary simply because neither Piaget nor Pask focused 

squarely on the construction of mathematical meaning. Pask’s theory was quite technical, and it 

was more interested in conversations than in participants. His interest in teaching expressed itself 

largely in the form of adaptive teaching machines that made decisions about problems that a 

student should work given the student’s performance on prior problems. He paid little attention 

to imagery and its role in meaning, and he did not consider specific mathematical meanings, such 

as what it might mean for someone to understand the idea of quantity. On the other hand, 

Piaget’s theory embraced imagery as a key component of cognitive development (see Thompson, 

1994a, 1996), but he was not interested in specific mathematical ideas. 

Figure 2 shows Persons A and B attempting to have a meaningful conversation. Person A 

intends to convey something to Person B. The intention is constituted by a thought that A holds 

that he wishes B to hold as well. The figure shows A not just considering how to express his 

thought, but considering how B might interpret A’s utterances and actions. It is worthwhile 

noting that A’s action towards B is not really towards B. A’s action towards B is towards A’s 

image of B. In a sophisticated conversation A’s action towards B is not just towards B, but it’s 

towards B with some understanding of how B might hear A. Likewise, B is doing the same thing. 

He assimilates A’s utterances, imbuing them with meanings that he would have were he to say 

the same thing. But B then colors those understandings with what he knows about A’s meanings 

and according to the extent to which A said something differently than B would have said it to 

mean what B thinks A means. B then formulates a response to A with the intent of conveying to 

A what B now has in mind, but B colors his intention with his model of how he thinks A might 

hear him, where the model is updated by anything he has just learned from attempting to 

understand A’s utterance. And so on. 
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Figure 2. Summary of intersubjective operations involved in the communication of meaning. 

The process of mutual interpretation and accommodation described above, which Steffe 

and I (2000) also called reciprocal assimilations, is what I understand Piaget to have meant by 

the negotiation of meaning. The negotiation is not sitting down and developing a contract, like 

negotiation of meaning is often portrayed. The negotiations that happen are rarely negotiated 

explicitly. The negotiations that happen involve each person monitoring the other’s responses, 

comparing them to the responses he anticipated, and then adjusting his model of the other to 

make better decisions about how to act and what to expect in the future. This, I believe, is what 

Bauersfeld (1980, 1988) meant by communication as interactions among mutually reflexive 

systems. Both A and B adjust their understandings of the other’s understanding, and possibly 

adjust their personal understandings in the process. In Piaget’s and Glasersfeld’s usage, A’s and 

B’s conversation enters a state of intersubjectivity when neither of them has a reason to believe 

that he has misunderstood the other. They may in fact have completely misunderstood each 

other, but they have not discerned any evidence of such. As Glasersfeld (1995) makes clear, a 

conversation being in a state of intersubjectivity has no implication for whether the participants’ 

meanings align. Rather, the nature of a conversation that is in a state of intersubjectivity is that 

neither participant has any reason to believe that he has misunderstood the other. It is important 

to note that it is a conversation that is in a state of intersubjectivity. It is a category error to say 

that the participants are in a state of intersubjectivity. 

The above description of conversation assumes that all participants really are 

participants—that they care to understand other participants. If, for some reason, B were to not 

care what A meant, then there is no conversation. This observation has important implications 

for teachers’ management of classroom conversations: students must intend to discern meaning 

in order to construct meaning from a conversation. The teacher’s guidance in creating an 

atmosphere where making meaning is valued and expected is central to students’ construction of 

meaning through conversations (Cobb, Boufi, McClain, & Whitenack, 1997). It is also important 

to distinguish between a conversation of equals and a classroom conversation. The teacher is a 

very special participant in classroom conversations. A teacher has power and trust in a 

conversation that students do not have. Teachers can manage conversations; students are rarely 

positioned to manage a conversation. Teachers can manage a conversation so that students do 

have power and trust, but it is teachers who allow and nurture those opportunities. 

Many people take the case of intersubjectivity in a two-participant conversation as being 

completely unlike a conversation that involves many participants. “It is impossible for each 

participant to have a model of every other participant’s understanding”, they might say. This 
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stance, however, misses the essential character of a conversation that is in a state of 

intersubjectivity. A conversation is in a state of intersubjectivity when it is in a state of 

equilibrium—when each participant takes for granted that that no one has misunderstood anyone 

else’s understanding. Disagreements do not necessarily puncture a conversation’s equilibrium. 

Two people can disagree with what they discern the other to mean, but if neither person feels that 

he has misunderstood the other, then the equilibrium persists. In a sense, each person has created 

an epistemic “other” to which he or she can attach a variety of ways of thinking about the 

conversation’s subject. 

We can return now to Branca’s (1980) study and the question of how teachers conveyed 

meaning to students. The teachers needn’t have said, “No, no, no, that meaning is wrong, I want 

you to have this meaning”. The teachers probably rarely said anything like this. Rather, by 

focusing their attention on their meaning of an operational system, students adapted their 

understandings to fit what they discerned the teacher to have in mind. This would account for 

students ending with meanings that were compatible with their teachers’ meanings even when 

those meanings were either normatively inappropriate or never discussed explicitly. 

The notion of intersubjectivity, as described above, can also give us insight into how 

miscommunication happens. The example given below illustrates a conversation that was in a 

state of intersubjectivity for a relatively long period of time even though the participants had 

misinterpreted each other quite severely. 

Mindi is a ninth-grader enrolled in Algebra I. Her teacher, Sheila, is a participant in a 

professional development project that emphasizes student-oriented instruction that focuses on 

supporting students’ creation of meaningful, coherent mathematics. Sheila’s review of arithmetic 

at the beginning of the year emphasized meanings and ways of thinking that underlie arithmetical 

operations (e.g., division as measuring or partitioning, multiplication as multiple copies or as 

dilation, fractions as a reciprocal relation of relative size, order of operations as a system of 

conventions that imposes structure on arithmetic and symbolic expressions, and so on). Prior to 

where this example starts, Sheila had drawn on these meanings of addition, subtraction, 

multiplication, division, and order of operations to help students build ways to think about 

expressions and equations. For example, instead of teaching “do the same to both sides” Sheila 

emphasized inferences one could make about numerical relationships that would allow you to 

see numerical relationships that were not directly stated. For instance, when discussing what 

value or values of x makes x/5 + 15 = 30 true, she guided students to reason about what the 

equation is saying: 

If x/5 + 15 is 30, then x/5 must be 15, because 15 + 15 is 30. Now x/5 means “one-fifth of 

the number represented by x”. If one-fifth of the number x is 15, and since there are five 

1/5ths of x in x, then x must contain five fifteens, and therefore must be five times as 

large as 15. 

 

Sheila used diagrams and illustrations to accompany her statements, and she consciously 

designed her instruction so that students would generate equation-solving methods as 

abstractions from their experiences of repeated reasoning.  

Many of Sheila’s students seemed to thrive in the context of her instruction; some did 

not. Sheila asked that I interview Mindi, a hardworking, bright girl who did well in class until the 

section on solving linear equations. Several excerpts of that interview follow. 
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Excerpt 1: Meaning of equations. P: Pat; M: Mindy 

1.  P: Before we start, could you tell me what pops into your head when you see an 

equation? 

2. M: Well, you are supposed to isolate the variable so that it equals a number or another 

expression. If it equals another expression, then you try again to isolate the 

variable so that it equals a number. 

 

In a sense, Mindi’s description of her meaning for equations seems quite standard. When you see 

an equation you think to solve it. Excerpt 2, however, reveals that Mindi did not interpret 

equations as stating numerical relationships. It reveals the depth of her procedural perspective. 

Excerpt 2: w/3 = 11. P: Pat; M: Mindy 

1.  P: I’m not asking you to solve this equation. Instead, just tell me what it says. 

2. M: It says that when you divide some number by 3, you get 11. 

3.  P: Okay. Now, can you tell me what this expression stands for (circles w/3)? 

4. M: It stands for a number. 

5.  P: Any idea what that number is? 

6. M: No. I’d have to solve for w. Then I could tell you what w slash three stands for.4 

 

Mindi revealed the same way of thinking when discussing 8m – 4 = 8 (I circled 8m – 4) and a/5 

+ 15 = 30 (I circled a/5 + 15). Thus, it seems safe to say that the meaning of an equation, for 

Mindi, was that it was a symbolic form that she was expected to act on to end with another form 

x = number. This was confirmed again when she actually solved the equation 8m- 4 = 8, getting 

m = 12/8 (“12 over 8, which reduces to 3 over 2”). I asked her whether the answer is “12 over 8” 

or “12 eighths”. She stated that she preferred saying “12 over 8” because it made more sense to 

her than “12 eighths.”  

I then asked Mindi to revisit the intermediate result 8m = 12 that she had written, and 

which appeared immediately above “m = 3/2”. I said, “This says that 12 is some number of times 

as large as 8. Twelve is how many times as large as 8?” No answer. “Is it 25% larger, 100% 

larger?” Mindi thought that 100% was too much. I then asked, “What is 150% of 8?” Mindi 

replied that she had difficulty finding 150% of a number. In other words, Mindi’s meaning for 

equations did not entail seeing them as an expression of numerical relationships. She did not see 

that her answer m = 3/2 meant that 12 is 3/2 times as large as 8. Her numerical reasoning did not 

support seeing equations that way. She could not imbue an equation with meanings drawn from 

numerical relationships. Her scheme for equations entailed actions for operating on them and 

little else. 

Excerpt 3, below, was about the equation a/5 + 15 = 30. It reveals more about Mindi’s 

schemes—not just her scheme for equations, but her schemes for engaging with classroom 

mathematical instruction. It picks up after I had led Mindi to the conclusion that a/5 had to be 15 

because 15 + 15 is 30. 

Excerpt 3: a/5 + 15 = 30. P: Pat; M: Mindy 

1. P: You said that a divided by 5 is 15. Can you interpret a/5 as a fraction? 

                                                 
4 Sheila’s expectation was that students would understand that, in the context of the equation w/3=11, that w/3 stood 

for the number 11. Though she expected this interpretation, she never stated it. 
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2. M: It is 1/5 of a. 

3. P: Can you draw a diagram to show 1/5 of a? 

4. M: (Draws the upper part of this diagram. Pat writes “1/5 a” below it.) 

5.   
6. P: Does this tell you anything about what a is? 

7. M: No. Not really. 

8. P: How many fifths of a are in a? 

9. M: Five. 

10. P: Can you draw them? (see below). 

11.   
12. [….] 

13. P: You figured out that 1/5 of a is 15, and therefore that 5 of those things make a.  

14. M: Yeah. 

15. P: Does that make sense? 

16. M: Yeah, kind of. 

17. P: What’s the “kind of” part? 

18. M: Well, I just would probably never do it that way, ‘cause // it’s kind of confusing. 

Like it kinda makes sense, but it’s still kinda confusing.  

19. P: Well, notice here (on a quiz she took the prior week) what you wrote. (Mindi had 

written a/5 = 45, and a = 45/5). So, even doing it your way there was something 

confusing about it. 

20. M: Yeah. 

21. P: So, let me ask you a question. You seem to be reluctant to figure things out, 

without a rule. Is that right? 

22. M: Yeah. 

23. P: Why is that? 

24. M: I don’t know. Well, whenever I do it this way (reasoning with numerical 

relationships) I feel like I’m doing it wrong. You know, like I mean, with a rule, 

I can be sure. Because a rule says to do this, I know what I’m supposed to do and 

I know I’m doing it right, but with this way there is too much room for error. I 

think. 

25. P: Okay. What about all these places where you used rules (pointing to errors she 

made on her quiz) and… 

26. M: Most of them are stupid mistakes. Like here I added 15 instead of subtracting 15. 

With that one (another error) // a stupid mistake.  

27. P: So, how can you avoid stupid mistakes? 

28. M: Just by practicing more. Studying more. 

29. P: Do you practice a lot? 

30. M: No, not really. But I never needed to! Because I’d always just got // done it, like 

perfect. 
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31. P: So it’s a little more complicated now? 

32. M: Yeah, but I’ll just practice more and I’m sure I’ll do okay. 

33. P: Okay. So you have more faith in practicing the rules than you do in practicing 

reasoning it through? 

34. M: Yes. 

35. [….] 

36. P: Well, this has been very useful for me. I hope it’s been useful for you. 

37. M: Yeah. 

38. P: Is there anything you would like to ask me? 

39. M: (Pause.) Ummm. Well, maybe just like // why do you want us to do it this way 

(reasoning) so much? 

 

It is clear from Excerpt 3 that Mindi had little faith that reasoning was a reliable problem solving 

technique and that she had much greater trust in using procedures that she had memorized.  

In answering Mindi’s last question I explained the benefits of reasoning—making fewer 

mistakes and catching mistakes when you make them. I also explained that by practicing 

reasoning students often found learning new ideas to be easier. I then asked Mindi about what 

she did when Sheila tried to teach her to reason about problems. It turned out that Mindi 

understood the reasoning that Sheila thought she was teaching as just the steps that Sheila 

wanted Mindi to remember. Mindi found the steps to be confusing—she couldn’t remember 

them. So Mindi waited until Sheila taught “the rule”. “The rule” from Sheila’s perspective was a 

generalization of the reasoning she thought she had taught, but from Mindi’s perspective it was 

the meat of the lesson, and Mindi could not understand why Sheila waited so long to tell it. 

To summarize, Mindi’s scheme for equations (apply procedures to isolate a variable) 

existed within a larger scheme that anticipated what she should get from instruction (rules) and 

how she should participate in lessons (remember the rule). Mindi saw her role as remembering 

steps; the teacher’s role was to provide steps. Successful participation, for Mindi, was that she 

had a clear idea of the rules she was supposed to use. This is the way Mindi assimilated Sheila’s 

actions and utterances—even though Sheila intended her actions and utterances to help students 

construct meanings. Mindi assimilated Sheila’s reasoning steps as “new rules”—rules that were 

harder for her to remember than the bottom-line rules that she eventually discerned. Despite its 

dysfunctional nature, the conversation constituted by Sheila-Mindi interactions was in a state of 

intersubjectivity until Sheila discerned that something was amiss with her understanding of 

Mindi’s understanding. 

Sheila was aghast as she listened to Mindi’s interview. She had no idea that Mindi was 

hearing her as she was. Sheila decided to find out whether other students had understood her 

instruction as Mindi did—as just providing steps they should memorize. She opened up 

classroom discussions to include several questions I’d asked in Mindi’s interview. As a result, 

she found that Mindi’s perspective was common, even among students who Sheila thought had 

been solving problems from a basis of meanings of equations and meanings of operations. 

I suspect that Mindi’s predominant experience in mathematics classrooms prior to 

entering Sheila’s had been such that understanding was equated with correct performance, and 

that classroom conversations, even when everyone thought they were about understanding, were 

actually about procedures. Once Mindi developed her way of thinking about what mathematics 

is, she then heard her teachers projecting that same way of thinking, and she found no occasion 

to believe otherwise. Similarly, her teachers thought that Mindi understood what they intended 
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because Mindi performed successfully, and the conversations in which Mindi participated were 

such that her teachers saw no occasion to believe otherwise. 

The final comment to be made here is about teachers’ expectations for students’ 

understanding. Branca’s (1980) study, mentioned earlier, suggests that teachers’ meanings create 

a space for students’ meanings. If a teacher’s image of what students are to learn entails weak 

meanings, or no meanings, then intersubjectivity can be attained with students collectively 

possessing a wide variety of meanings that fit the discourse, many of which we would identify as 

problematic. When a teacher’s image of what students should learn entails a strong system of 

meanings, then the space for possible student meanings is much smaller, assuming that teacher 

and students mutually adapt their understanding of the other. The teacher will find more 

occasions to discern that students’ meanings differ from what she intends, and students will find 

more occasions to discern that what the teacher has in mind differs from what they understand. If 

the classroom culture is such that participants expect that noticed differences in meaning should 

be resolved, then it is more likely that students will develop coherent systems of meaning that 

guide their mathematical performance. 

The discerning reader might object to the previous paragraph—Sheila had strong 

meanings and yet Mindi’s thinking seemed unconstrained by them. How is this possible? It is 

possible because the conversations that Sheila managed had strong overtones of “what should we 

do”, not “what should we mean”. Sheila told students what they should mean, and then too 

quickly moved the discussion to how to answer questions in the worksheets “meaningfully”. She 

demonstrated ways to answer questions using the meanings she had told them, but the 

conversation allowed students to think that she was simply showing them how to answer the 

questions. Students could safely ignore those occasions when Sheila asked them questions they 

couldn’t answer (e.g., “How does the meaning of division tell us to multiply both sides by 5?”). 

The conversation’s bottom line, in the students’ eyes, was that you should multiply both sides by 

5. 

What Happens in the Absence of Meaning? 

The case of Mindi illustrates how a well-meaning teacher who has a fairly strong system 

of meanings can nevertheless fail to influence a student in the way she intends. Another case, 

though, is when a teacher does not have a strong system of meanings regarding a particular body 

of ideas. A teacher with a weak system of meanings for an idea cannot help being vague or 

confusing when he speaks about ideas, and naturally avoids issues of meaning. However, even if 

he avoids speaking about ideas explicitly, his actions will be unconstrained by a strong system of 

meanings, and a conversation’s meaning-spaces will have a high probability of entailing many 

inappropriate possibilities. As Dewey (1910) said, vagueness of meaning is a source of 

misunderstanding, misapprehension and of mistaking. Confused meanings (i.e., undifferentiated, 

vague, confounded) are “too gelatinous” to support students’ productive analysis and reflection: 

“Vagueness disguises the unconscious mixing of different meanings, and facilitates the 

substitution of one for the other” (Dewey, 1910, p. 129ff). 

Dewey’s point is illustrated by a group of high school teachers who were working 

together in weekly Professional Learning Community (PLC) meetings that they used to discuss 

material that they taught in common. At the time of this meeting, January 20, 2006, they were in 

the midst of teaching a unit on trigonometry to tenth-graders. The current topics were angle and 

angle measure. 
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An outside facilitator met with the group in the role of a consultant. The teachers and 

facilitator were arranged in a semicircle. The camera was about 20 feet away, directly in front of 

them. Excerpt 4 begins with the facilitator asking, offhandedly, “What is an angle measure?”. 

Excerpt 4: Teachers discuss the meaning of angle measure. F: Facilitator; T: Teacher 

1. F: So, what is angle measure? You might raise this issue… 

2. T1: (Interrupting) What is angle measure? I think that is a good question.  

3. F: What is angle measure?  

4. T2: It is very different from measuring the length of a side // I had a couple of 

students who thought they could be the same thing.  

5. F: What did you say to them? 

6. T2: You can’t do that! They’re not the same thing! 

7. T1: So, how would you define it [angle measure]?  

8. T3: How do you // how do you define angle measure?  

9. T1: The ray sweeps // isn’t the angle created when the terminal ray sweeps from the 

initial side to the terminal side // so angle measure is defined as what?  

10. T3: Are you talking about, then you start getting into that thing of are you talking 

about arc length?  

11. T1: Well, I don’t know. How do you define angle measure?  

12. T4: The curvature. 

13. T3: (To T1) You mean your initial ray?  

14. F: How do you [say], “Angle measure means this.”  

15. T3: (Reading from a textbook.) “The measure of angle A is denoted by // The 

measure of an angle can be approximated with a protractor using units called 

degrees. For instance” // they don’t ever get into what is a degree.  

16. T1: (Reading) An angle consists of two different rays. 

17. T3: That’s just defining an angle. 

18. T1: It’s the portion of a complete rotation that you take out as the terminal side 

sweeps (stops). 

The teachers’ only meaning for angle measure was to lay a protractor down and read off a 

number. They realized, however, that reading off a number from a protractor does not explain 

what an angle measure is. The teachers’ meaning for angle measure (or lack thereof) had 

consequences for students’ learning. 

We asked the teachers to give this question to their students: “What are you measuring 

when we measure an angle?” Students’ responses are summarized in Table 1, which shows that 

93% of the students thought that an angle measure was measuring something between the sides, 

either a distance from one side to the other or an area bounded by the angle’s sides. Only one 

student said anything related to an arc, and even this answer seems to be oriented toward a 

distance. We should note that teachers never discussed with students what an angle measure is, 

or what one measures when measuring an angle. The answers students gave might have been 

preformed, in the sense that these are meanings that they created prior to their geometry class. 

However, even if their meanings existed prior to taking geometry, it seems that there was 

nothing in their experiences within their geometry class to alert them that their particular ways of 

thinking might be problematic. We must also entertain the possibility that students had never 

thought about what they were measuring when finding an angle measure. This interpretation 
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seems sensible if their only experience with measuring angles was simply to follow a procedure 

that employed a protractor. 

Table 1 

Students’ responses to “What are you measuring when you measure an angle?” (n = 110) 

Student Response Percentage 

Distance between sides 51% 

Distance between labeled points 2% 

Shape of the angle (directions of the rays) 3% 

Diameter of the angle 2% 

“Arc of the angle (how wide it is)” 1% 

Area of the angle 42% 

 

Independently of our question in Table 1, teachers created a set of geometry questions 

and an interview protocol as part of their PLC work, and they each interviewed three students 

from their respective class. One of the interview questions is given in Figure 3. The teachers 

were to ask students to solve the problem and then were to discuss the students’ solutions. 

 
Figure 3. Problem included in teachers’ student interview protocol. 

The interviews took place in mid-March, 2006 at the end of this particular instructional 

unit. In their March 26 PLC meeting they discussed students’ responses to the interview 

questions. Excerpt 5 presents the portion of that meeting in which they discussed students’ 

answers to the problem shown in Figure 3. 

Excerpt 5: Teachers discuss results of student interviews 

1. T4: I was really surprised at the interviews. Two of the three students I interviewed 

really mixed information. They mixed 180 degrees in a triangle // They confused 

180 with a side length. They subtracted 180-43 and got 137. Then they subtracted 

80 from 137 to get 57 for the other side length. 

2. T3: Triangles have to add up to 180. 

3. T2: My kids make no distinction between angles and sides. 

4. T5: My honors kids today were going to take 360 and subtract a length, and I told 

them you are mixing angles and lengths! You can’t do that!! 

 

I find it remarkable in Excerpt 5 that none of the teachers considered the possibility that the 

students’ confusions were rooted in the teachers’ teaching. Why should students not confuse 

(what we take as) angle measures and (what we take as) side lengths when, to the students, 

numbers rarely have any meaning? By the teachers’ own admission in Excerpt 4, they paid no 

attention to the meaning of an angle measure. Moreover, it is ironic that in the context of 

complaining that students cannot differentiate between angle measures and side lengths that T3 

uttered, “Triangles have to add up to 180.” I do not know what it means to add up triangles. If 

80

43

x

What is x?
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this is the level of precision T3 used in class, then it is no wonder that her students cannot 

distinguish between angle measures and side lengths. 

I suspect that, in the context of classroom instruction, the teachers’ students could easily 

succeed in the moment without paying any attention to the meanings of the numbers that 

appeared in problems. Within the context of the problems they were working in a particular 

section, students simply applied the procedure that was being taught at that moment. A number 

was a number was a number. When different numbers mean different things within the context of 

one situation, to distinguish between numbers that are side lengths and numbers that are angle 

measures students must have a system of meanings that keep them separate. 

An Example of a Teacher Attending to Meaning 

To construct a meaning requires repeatedly constructing and using the operations (ways 

of thinking) whose organizations constitutes that meaning. The most usable meanings are those 

that are richly connected with imagery action and that tie into other meanings. 

In 2006-2007 I had the pleasure of working with a ninth-grade Algebra I teacher, 

Augusta, who took seriously the matter of students learning mathematics meaningfully and 

coherently. She structured the subject over the year so that students would build ways of thinking 

that would constitute an understanding of algebra that had a clear trajectory for supporting their 

future learning of calculus. I share a sample drawn from her unit on polynomial functions to 

illustrate what I have said about constructing a meaning by repeatedly constructing and using the 

operations (ways of thinking) whose organizations constitutes that meaning. But to make this 

sample understandable, I must first describe how she prepared students to participate in the 

conversations about the idea of polynomial function that I will share. 

Augusta was conscientious about helping students build meanings that would lend 

coherence to their algebraic thinking and provide a foundation for later learning. She 

• Began with building variation as a way of thinking about quantities changing. Students 

could imagine a quantity changing continuously. Variables varied. Always. 

• Built covariation as a way of thinking about two quantities varying simultaneously. 

Time on a clock varies while a runner runs. The clock doesn’t cause a runner to run. 

We simply keep track of how far she has run in relation to how much time has elapsed 

on the clock. 

• Built the idea of function as an invariant relationship between the values of covarying 

quantities. The perimeter of a circle is always 2π times the length of its radius no 

matter how we change either (assuming that it remains a circle). 

• Built the idea of linear function as a function that has a constant rate of change. 

• Built the idea of a graph as having points, where the coordinates of each point tell us 

the value that each quantity has in relation to the other. Each point provides a 

“snapshot” of the quantities’ covariation. 

• Built an understanding of constant rate of change as a relationship between two 

quantities that are changing simultaneously such that all changes in the value of one 

quantity are proportional to changes in the value of the other. 

• Built an understanding of average rate of change. First, two quantities, A and B, need 

to change simultaneously, and each has a total change. The average rate of change of 

Quantity A with respect to Quantity B is that constant rate of change of A with respect 
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to B that would produce the same change in A in relation to the change in B that 

actually happened. 

 

Augusta also had an agenda with regard to symbolic facility and representational equivalence. To 

explain what she did in regard to symbol sense is not important for this example, though I will 

say more about it later. 

Augusta intended that students understand a polynomial function as a function that is the 

sum of monomial functions (Dugdale, Wagner, & Kibbey, 1992). That is, she wanted them to 

think of f (x) = 2x3 - x2 + 5x+ 2 as the sum of f1(x) = 2x3, f2(x) = -x2 , f3(x) = 5x , f4 (x) = 2 , 

and hence that f (x) = f1(x)+ f2(x)+ f3(x)+ f4 (x) . She aimed for this understanding so that 

students could anticipate the behavior of a polynomial function, expressed in standard form, by 

examining its addends. To develop this way of thinking about polynomial functions, Augusta 

needed to help students understand the meaning of a sum of two functions. This is the focus of 

the example I share below—Augusta is introducing the idea of a function that is the sum of two 

functions. 

The sum of two functions f and g is often defined as f + g( )(x) = f (x)+ g(x).5 which 

emphasizes how you would calculate the value of a sum for a given value of x. Augusta’s aim 

was that students could also imagine the sum of two functions in a way that was non-symbolic, 

yet true to the definition. She wanted her students to have a way of thinking about making a 

function that is a sum. 

The example enters a lesson at the time that Augusta is displaying the graphs of two 

functions within the same coordinate system. A special feature of her display is that she has not 

included any numbers and she designed the functions so that their graphs were unlike anything 

the students might recognize and be able to name. Her reason for doing this is that she had 

discovered in the past that when she placed numbers on the axes, students tried to estimate 

points’ coordinates and add them numerically to get a value of the sum function. They then used 

that number to plot a point, again with great concern for accuracy. When she included numbered 

axes, students became bogged down trying to be highly accurate and they also often made 

addition errors. In the process of all this focus on accuracy, they lost the image of combining the 

values of two functions to get the value of a third.  

To draw students’ attention away from numbers and accurate placement of points, 

Augusta gave students blank straightedges (rulers with no markings). She showed them how to 

use the rulers to estimate the functions’ values simply as magnitudes, and to imagine the value of 

the sum as putting one magnitude on top of the other. Excerpt 6 picks up Augusta’s lesson after 

she has estimated the value of the sum function at several places along the horizontal axis. 

Students have a copy of the displayed graph and are attempting to replicate Augusta’s placement 

of points on the sum’s graph. 

                                                 
5 The “+” in “(f + g)” does not mean the same thing as “+” in “f(x) + g(x)”. The first instance of “+” is part of the 

function’s name; the second instance is the arithmetic operation of addition. 
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Excerpt 6: Augusta attempts to convey meaning of “sum of two functions”. A: Augusta; S: 

Student 

1.  A: Let’s go forward some more. I don’t know how much more, but go forward some 

more (see Figure 4a). Uhhhhhm. Again, you can use your ruler to help you 

estimate. How positive is function A?  

2. Ss: It’s positive. 

3.  A: It’s positive. Is it very positive? 

4. Ss: A little bit. 

5. A: Yeah maybe. It depends on how you scale it. But, it’s about // we can pinch it that 

much positive (see Figure 4b). So you guys, on your scales, on your graphs can 

pinch off just how positive the A value, the A function is. (She waits for students 

to “pinch off” the value of A). What about the B function?  

6. S: It’s positive. 

7. A: It’s also positive. How can I show with my ruler how I’m going to add this to the 

value of the B function? 

8. A: So that’s how positive A is. Now I need to add that to the value of B. So how so? 

What do I want to do with this length? To show the sum? // How do you show 

adding with two lengths? 

9. S: Mark another one. 

10. A: How, next to it? 

11. S: No, down farther 

12. A: Yeah! Right on top of it! So, if this is how much positive my A function is, and 

that’s how positive the B function is, I’m going to take this and ... add it! You can 

literally think of stacking it. So here, that’s maybe how positive the value of A is. 

That’s perhaps how positive the value of B is. So their sum? How would you show 

it? 

13. S: It’s bigger. 

14. A: How much bigger? 

15. Ss: Add ‘em.  

16. A: That on top of that. Exactly! It’s that much bigger. So you’re stacking these 

magnitudes now, because they’re positive. You’re literally stacking the lengths 

that you’re estimating, because they’re positive. So you can still use your ruler to 

help you pinch, so that’s how positive A is, that’s how positive B is. So stack it, 

and you are actually up... about here (see Figure 4c). 

 

    
  (a) (b) (c) 

Figure 4. Augusta indicates (a) a value in the domain of both functions, (b) the value of one 

function, and (c) that value added to the value of the other function. 
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In Excerpt 6 we see Augusta employing covariation (“Let’s move forward a little bit”, Line 1) 

and thinking in magnitudes (“Pinch off just how much positive it is”, Line 5) and thinking of 

combining magnitudes (“you’re literally stacking the lengths”, Line 16).  

After Excerpt 6, Augusta turned responsibility over to the students to complete sketching 

the sum function’s graph. Her motive for asking students to complete the sketch was that they 

create the value of the sum function as the result of an action of combining. She wanted students 

to develop what Dubinsky and Harel (1992) called an action conception of a sum function—the 

image of actually combining the function’s values. Students’ action conception of a sum function 

prepared them to develop later what Dubinsky and Harel called a process conception of a sum 

function—the ability to envision the action of summing immediately, focusing on the outcome of 

the action.  

Excerpt 7 captures an interaction between Augusta and a student as he attempts to 

complete the sketch. Prior to this excerpt, Augusta and the student had a somewhat rambling 

conversation in which the student expressed his confusion about where to look for the functions’ 

values (“there aren’t any numbers”) and how to think about adding them.6 

Excerpt 7: Augusta discusses worksheet with student who is having difficulty 

1. A: Where are you looking? Maybe around here somewhere? 

2. S: Yeah, down here. 

3. A: Pinch off how negative the negative function is. 

4. S: That right there. 

5. A: That much. How much will the positive lift it? 

6. S: It will get lower, won’t it? (Appearing to look at the positive function.) Because ... 

less. 

7. A: It will get less negative (looking at the negative function). Yeah, exactly. Right 

now it is this negative. But since you are adding a positive to it, it will be less 

negative. How much less negative? 

8. S: This much (see Figure 5a). 

9. A: That much. So keep your finger where how negative it is. And then, lift with me, 

keep your finger on it, it will get lifted... that much. That much. I mean, this is 

estimation. 

10. S: So this (the value on the negative graph) goes up higher! 

11. A: Yeah! It used to be that negative, but it will get lifted that much. So take that 

negative value, and lift it... that much (see Figure 5b). 

12. S: Oh, I get it. 

 

                                                 
6 Part of Augusta’s management of this conversation was to anticipate the difficulties students would experience 

making sense of what she demonstrated during the whole-class discussion of combining function’s magnitudes. She 

anticipated that they would find it odd not to have numbers. Thus, she was not surprised at the student’s comment. 
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 (a) (b) 

Figure 5. Augusta and student discuss how to interpret “sum of functions” at a value of the 

domain. 

Augusta’s language and actions while speaking with this student emphasized building an 

image of “stacking” function values, the same way of thinking she attempted to convey during 

the immediately prior whole-class discussion. The payoff of Augusta’s emphasis on having 

students solidify the action of combining two functions came in subsequent lessons. She asked 

students to imagine the location of points on the graph of a sum of two functions whose graphs 

were displayed simultaneously as she steadily moved her finger along the horizontal axis. She 

asked students to imagine the sum’s graph “evolving” simultaneously with running through 

values in the addend functions’ domain.  Students’ eventual ability to rapidly anticipate a visual 

estimation of the sum functions’ values were expressions of their process conception of a sum 

function and gave them opportunities to solidify an understanding of a function that is the sum of 

two functions. It paid off further when Augusta came to polynomial functions, where she asked 

students to envision the behavior of the sum of two or more monomial functions given their prior 

knowledge of the monomials’ graphs. 

This example from Augusta’s class focused on her attempt to create a meaning for a 

function that is the sum of two functions. I should point out that Augusta’s lesson, which 

emphasized imagistic meaning, also reflects her year-long struggle with de-emphasizing talk 

about “what to do”. We often discussed the value of stepping back and talking with students 

about what she intended that they create and, once created, what they had created and what it 

meant.  

I would be remiss not to point out that the meaning of function sum was just one part of a 

larger scheme that Augusta intended that students build. That scheme entailed their prior work 

on understanding functions defined as a product of factors and an understanding of producing an 

equivalent representation by using the distributive property of multiplication over addition. Put 

more broadly, Augusta’s intent was that students see a function’s graph as invariant across 

representations of the function, and to build meaning within each representation by focusing on 

schemes for imagining a function’s behavior. Her long-term instructional design was attentive to 

what Lehrer and Schauble (2000) described as the inseparable, interrelated development of 

inscription and meaning. In the case of polynomial functions, she aimed to develop a scheme of 

meanings that entailed students’ abilities to transform one symbolic representation of a 

polynomial function into other symbolic representations, and that they take for granted that there 

was something called “the function” (a relationship expressed as a graph) that remained the 

same. Augusta’s approach to having one meaning be invariant across representations of a 

polynomial goes beyond the issue I raised in (Thompson, 1994b), where I questioned what was 

then called the “multiple representations” movement. 
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I believe that the idea of multiple representations, as currently construed, has not 

been carefully thought out, and the primary construct needing explication is the very idea 

of representation. Tables, graphs, and expressions might be multiple representations of 

functions to us, but I have seen no evidence that they are multiple representations of 

anything to students. In fact, I am now unconvinced that they are multiple representations 

even to us, but instead may be, as Moschkovich, Schoenfeld, and Arcavi (1993) have 

said,  areas of representational activity among which we have built rich and varied 

connections. It could well be a fiction that there is any interior to our network of 

connections, that our sense of “common referent” among tables, expressions, and graphs 

is just an expression of our sense, developed over many experiences, that we can move 

from one type of representational activity to another, keeping a current situation 

somehow intact. Put another way, the core concept of “function” is not represented by 

any of what are commonly called the multiple representations of function, but instead our 

making connections among representational activities produces a subjective sense of 

invariance. 

I do not make these statements idly, as I was one to jump on the multiple- 

representations bandwagon early on (Thompson, 1987, 1989), and I am now saying that I 

was mistaken. I agree with Kaput (1993) that it may be wrongheaded to focus on graphs, 

expressions, or tables as representations of function, but instead focus on them as 

representations of something that, from the students’ perspective, is representable, such 

as some aspect of a specific situation. The key issue then becomes twofold: (1) To find 

situations that are sufficiently propitious for engendering multitudes of representational 

activity and (2) Orient students to draw connections among their representational 

activities in regard to the situation that engendered them. (Thompson, 1994b, pp. 39-40) 

Augusta went beyond the concern I raised in 1994 by first addressing it squarely 

(developing students’ meanings for each form of expression in terms of ways to read it for 

information about joint variation) and then raising the question of how you could change to 

another form of expression while retaining the information students discerned originally. In this 

way, she helped students develop a “subjective sense of invariance” while moving from one 

representation of polynomial function to another, taking the graph of a function as the “most 

basic” representation of it.  

Lastly, Augusta supported her class conversations with specially designed didactic 

objects (Thompson, 2002)—displays, diagrams, graphs, mathematical expressions, or class 

activities that she designed conscientiously to support specific reflective conversations she 

intended to have with students. For example, the graphs that she used during the function-

stacking activity had blank axes and unfamiliar shapes. This design feature enabled Augusta to 

focus students’ attention on function’s magnitudes at a common value of their domains instead of 

on points’ coordinates. 

Absence of Meaning in Mathematics Education 

The preponderance of research on learning mathematics in the United States suggests that 

my examples of meaningless learning and teaching are far from uncommon and that meaningful 

instruction is rare. One study in particular stands out—the TIMSS eighth-grade video study 

(Stigler, Gonzales, Kawanaka, Knoll, & Serrano, 1999; Stigler & Hiebert, 1999). They formed 

nationally representative samples consisting of 81 U.S. classrooms, 50 Japanese classrooms, and 
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100 German classrooms. As part of this study a team of U.S. mathematicians and mathematics 

educators examined the lessons (which were blinded for national identity) with regard to the 

quality of the lessons: 

They based their judgments on a detailed written description of the content that was 

altered for each lesson to disguise the country of origin (deleting, for example, references 

to currency). They completed a number of in-depth analyses, the simplest of which 

involved making global judgments of the quality of each lesson’s content on a three-point 

scale (Low, Medium, High). Quality was judged according to several criteria, including 

the coherence of the mathematical concepts across different parts of the lesson, and the 

degree to which deductive reasoning was included. Whereas 39 percent of the Japanese 

lessons and 28 percent of the German ones received the highest rating, none of the U.S. 

lessons received the highest rating. Eighty-nine percent of U.S. lessons received the 

lowest rating, compared with 11 percent of Japanese lessons. (Stigler et al., 1999, p. iv) 

The rarity of meaningful, coherent mathematics instruction in the U.S.—instruction that aims to 

develop students’ mathematical thinking in the sense of Dewey—is very troubling. The rarity 

with which popular textbooks, both elementary and secondary, and both traditional and reform, 

attempt to develop mathematics as a coherent system of meanings is also troubling.  

What I find more troubling is the rarity of research in mathematics education that takes 

the issue of mathematical meaning seriously. Research that is ostensibly on knowing or 

understanding, whether the context is teaching or learning, too often examines performance 

instead of clarifying the meanings students or teachers have when they perform correctly or the 

meanings they are working from when they fail to perform correctly. Neither correct 

performance nor incorrect performance says anything about the nature of a person’s system of 

meanings that expresses itself therein. This is not to say that no research considers students’ or 

teachers’ meanings. Rather, it is too rare.  

Some publications fail to address the issue of meaning even when their titles say it is 

about meaning. The chapters in Kilpatrick, Hoyles, Skovsmose, and Valero (2005) discuss the 

many ways that “meaning” is used in mathematics education, but they do not explicate a 

meaning of “meaning” that does work for designing curriculum or instruction that will improve 

mathematics learning. Kieran’s (2007) review of research on learning and teaching algebra is a 

case in point. Its subtitle is, “Building meaning for symbols and their manipulation”. The article 

is an astonishing piece of scholarship in the scope of the research it reviews, but by the criteria 

I’ve set in this chapter, it fails to say what Kieran or any of the articles she reviews take 

“meaning” to mean, and the article gives few examples of anyone’s thinking that might 

constitute a meaning for symbols or their manipulation. Moreover, the article is devoid of 

references to research on quantitative reasoning as a source of meaning for arithmetic and 

algebra, and its review of research on function completely misses the research on ways of 

thinking that might constitute various understandings of function. Instead, it focuses on evidence 

that students find the concept of function, whatever it is, difficult. 

Research on calculus learning is another case in point. Research on students’ 

understanding of the derivative (e.g., Clark, Cordero, Cottril, Czarnocha, DeVries, St. John, 

Tolias, & Vidakovic, 1997; Ferrini-Mundy & Gauadard, 1992; Ferrini-Mundy & Graham, 1994; 

Heid, 1988; Machín, Rivero, & Santos-Trigo, 2010; Orton, 1983; Sofronos & DeFranco, 2010; 

White & Mitchelmore, 1996) takes “slope of secant” as a primary meaning of average rate of 

change (the other is the computation ∆y/∆x) and takes “slope of tangent” as a primary meaning 
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of instantaneous rate of change (the other is the limit of average rates of change, where average 

rate of change is defined as slope of a secant). I am puzzled by the approach of taking “slope of 

secant” and “slope of tangent” as fundamental meanings for average rate of change and 

instantaneous rate of change, respectively. Secants and tangents are lines. They are geometric 

objects. I can easily imagine a thoughtful student asking, for example, “What do lines have to do 

with speed?” Clearly, there is a complex system of meanings behind thinking of a secant as 

somehow embodying an average rate of change, and there is an even more complex system of 

meanings behind taking a tangent as somehow embodying an instantaneous rate of change. I 

outlined part of that system earlier, when I spoke of a rate of change scheme. However, none of 

these studies explicates such a system of meanings. Hence they do not investigate them. 

Unfortunately, when researchers treat meanings for slope (whose computation students 

often take as an index of “slantiness”), secant (which students often think of as a piece of wire 

that is laid across a graph), and tangent (which students often think of as a line that “just 

touches” a curve) as primary meanings, not as emergent meanings, they cannot understand the 

sources of students’ success or failure to learn. Hackworth (1994) drove this point home. She 

studied 90 first-semester calculus students’ understandings of rate of change. Her question was, 

“What have calculus students, after studying differentiation and derivatives, learned about rate of 

change?” By her measures, they learned nothing about rate of change. In some instances students 

understood more about rate of change before receiving instruction than they did after the course.  

Carla Stroud (2010), in a follow-up to Hackworth’s (1994) study, interviewed 15 students 

in Calculus 2 and Calculus 3 about their meaning of instantaneous speed. One question was this: 

When the Discovery space shuttle is launched, its speed increases continually 

until its booster engines separate from the shuttle. During the time it is continually 

speeding up, the shuttle is never moving at a constant speed. What, then, would it 

mean to say that at precisely 2.15823 seconds after launch the shuttle is traveling 

at precisely 183.8964 miles per hour? (Hackworth, 1994, p. 108)  

Consistent with Hackworth’s (1994) findings, the primary meaning held by students in Stroud’s 

study was that of a speedometer. The space shuttle’s instantaneous speed 2.15823 seconds after 

launch is whatever number its speedometer points at. There are two problems with this way of 

thinking: (1) the space shuttle doesn’t have a speedometer, and (2) even if it did, what about the 

speedometer’s design guarantees that it is pointing at the correct number? Some students had a 

backup way of thinking—you would take the limit of the space shuttle’s average speed over 

smaller and smaller intervals or you would simply differentiate the shuttle’s position function. 

Carla asked, “And how would you do that?” The students presumed that there was some function 

they could act upon symbolically—and the shuttle’s speed would pop out of that.   

The area of mathematics education research that is most wanting today regarding 

attention to meaning is research on teachers’ mathematical knowledge for teaching (MKT). First, 

the verb “to know” is used in this research as a primitive, undefined term. The question of what 

“to know” means in regard to knowing mathematics is unaddressed. Second, this area is quite 

taken with the idea that teachers’ knowledge, whatever that means, can be categorized (Ferrini-

Mundy, Floden, McCrory, Burrill, & Sandow, 2005; Hill, 2010; Hill, Blunk, Charalambous, 

Lewis, Phelps, Sleep, & Ball, 2008). I suspect that the desire to create instruments to assess 

teachers’ knowledge is the driving force behind this focus. Item specifications need categories. 

When you categorize a teacher’s knowledge based on an answer to an item, however, your 

attention is necessarily drawn away from the system of meanings by which the teacher was 
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operating. Assessments that do not address teachers’ meanings can be summative, but they 

cannot be diagnostic. I’ll illustrate this point with an example. 

Before I can share this example I must review the idea of continuous variation. Castillo-

Garsow (2010) identified two ways, in principle, that one can think about continuous variation, 

what he called “chunky” and “smooth”. A conception of continuous variation that is chunky is 

one where someone thinks of a variable varying in discretely-continuous amounts. By 

“discretely-continuous” I mean that they imagine that the variable varies, but they imagine 

“next” values and mentally connect the values. The variation comes in one chunk between 

current and next values. The value of x goes directly from initial to end without passing through 

the values in between. The values in between current and next values are “there”, but the person 

imagining the variation does not imagine passing through them. A conception of a variable 

varying smoothly is recursive. One might imagine a “next” value, but does so with the 

anticipation that the variable varies smoothly between current and next value by varying 

smoothly between values that exist between current and next (Thompson, 2011).  

A ninth-grade algebra teacher, Sandra, was in the midst of teaching a lesson on the point-

slope and point-point formulas. She was attempting to use a method that she had just learned 

which takes a rate-of-change approach to the point-slope formula. The method works like this: 

Suppose a function has a constant rate of change r. You start by assuring that students have an 

appropriate meaning of constant rate of change, such as “r is the constant rate of change of y 

with respect to x” means that however much x changes, y changes r times as much.7 With this 

meaning in hand, if you know that a function with a constant rate of change of 1.7 passes through 

the point (3, 9), then if you decrease the value of x by 3 (i.e., increase it by -3), the function’s 

value will change by 1.7 times -3. Thus, the value of the function at x = 0 is 9 + (1.7)(-3). The 

function’s definition is therefore y = 1.7x + 9 + 1.7( ) -3( )( ) . The two-point method follows as a 

corollary by determining the function’s average rate of change between two points and realizing 

that you now have a situation where a function has a known constant rate of change and its graph 

passes through a known point. Sandra was excited to try this method with her class. 

Sandra worked through several examples using this method to find a function definition 

when given one point and a rate of change. Things fell apart, though, when she moved to the 

case of having two points that the function’s graph passes through. Excerpt 8 picks up as she 

discusses the two-point case. 

Excerpt 8: Sandra discusses the two-point case 

1. S: (Plots the points (3,1) and (7,4) in a coordinate system on the board.) Now we’ll 

look at a something that is a little bit different. Now all we’re given is two points, 

and we’re supposed to find the equation for the line that goes through them. Any 

ideas? 

2.  (Silence) 

3. S: Well, let’s notice something. This function goes over 4 and up 3 (sketches 

segments). So if we do the same thing as before and move x back to 0 we’ll know 

what the y intercept is! So if we go 4 to the left (draws a horizontal segment of 

length 4 to the left from (3,1). See Figure 6.) 

                                                 
7 The phrase “assure that students have” can be misleading. It does not mean “teach this idea in the 5 minutes before 

the point-slope lesson.” Rather, it means to assure that this meaning of constant rate of change has been the target of 

instruction over a long period of time, long enough so that students have this meaning and all its entailments. 
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4. S: (Long pause) We’ll pick this up tomorrow. (Pause) Here are some practice 

problems. Do just the ones with one point. 

 

 
Figure 6. Sandra’s boardwork while working the two-point problem. 

Though Sandra’s difficulty actually began in Line 3, where she described the change as 

“over 4 and up 3”, her entire difficulty resided in her schemes for variation, slope, division, and 

rate of change.8 First, she saw the change in x as a chunk. This was unproblematic in the case of 

one point. However, her chunk in this problem did not place her at x = 0 as she wished. Second, 

her meaning for slope was “rise over run”, where rise and run were both chunks. Third, her 

computation of slope, not evident in this excerpt but made clear later, was of a procedure that 

produced a number that is an index of a line’s “slantiness”. Division did not produce a quotient 

that has the meaning that the dividend is so many times as large as the divisor—3/4 as a slope 

was not a number that gave a rate of change. It gave a “slantiness”. Fourth, her meaning for rate 

of change entailed neither smooth variation nor proportionality. It was more akin to her meaning 

of slope—two things changing in chunks. These meanings not only failed to provide Sandra a 

connection between her current setting (two points) and prior method, they led her down the 

dead-end path she followed. Had Sandra reasoned proportionally and with smooth continuous 

variation, she might have said “… over 3/4 of 4 and up 3/4 of 3”. That would have given her the 

graph’s y-intercept. 

I fail to see how categorizing Sandra’s knowledge would enhance our understanding of 

why her lesson fell apart. With our above understanding of what Sandra knew (i.e., the meanings 

from which she operated) we are positioned to help her improve. Putting her knowledge in 

categories like “curricular knowledge”, “common mathematical knowledge”, or “specialized 

mathematical knowledge” serves no practical purpose except to see whether her score on a test 

meets a benchmark. I feel strongly that assessments of MKT must be rooted in developmental 

theories of MKT. Otherwise, despite being ostensibly rooted in the work teachers do, the 

assessments will have little explanatory power with regard to why teachers do what they do and 

will have little usefulness in helping them improve what they do. 

                                                 
8 It is important to notice that I said schemes. Sandra’s meanings for variation, slope, division, and rate of change did 

not exist within a single scheme. They were unrelated. 
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I propose that we develop a new type of assessment, aimed at assessing teachers’ 

Mathematical Meanings for Teaching (MMT). The enterprise of developing such assessments 

might redirect the field’s attention to the subtle, yet foundational, role that meanings play in what 

teachers and students do. It might also redirect the field’s attention towards an emphasis on 

explicating desirable, powerful systems of meanings that we feel students should develop. Lest I 

be misinterpreted, I hasten to add that the issue of skill would still be paramount. But our 

conception of skilled performance would change. Our descriptions of students’ skilled 

performance would necessarily entail our intention that it be evidence that they have built 

powerful, rich, integrated systems of mathematical meanings.  

A focus on MMT would also foster the field’s conceptualization of bridges among what 

teachers know (as a system of meanings), how they teach (their orientation to high-quality 

conversations), what they teach (the meanings that an observer can reasonably imagine that 

students might construct, over time, from teachers’ actions), and what students learn (the 

meanings they construct). 

Assessments of MMT would be more diagnostic than current assessments of MKT. 

Information from them would be useful for teachers’ professional development. I imagine that 

such instruments would also be useful in designing professional development aimed at 

improving teachers’ ability to help their students learn. Sample items from an assessment of 

MMT might alert teachers to ways of understanding the ideas they teach that are expected of 

them and of their students. For example, can teachers explain a meaning of division that gives a 

meaning of quotient? Are they inclined to teach a meaning of division that gives a meaning of 

quotient? Can they explain that 8 divided by 5 equaling 1.6 means that 8 is 1.6 times as large as 

5? Do they think it is important for students to know this? Do they have a coherent system of 

meanings of multiplication, division, and fractions that allows them to explain that 43 * 18 = 774 

means, at once, that 774 is 18 times as large as 43, that 774 is 43 times as large as 18, that 43 is 

1/18 of 774, and that 18 is 1/43 of 774? Are they inclined to explain those meanings? Do they 

think these are important meanings for students to have? Are they inclined to ask students 

questions that force those connections? 

An Agenda for Change 

My intention in this chapter was to convey the nature of meaning as it relates to 

mathematics education and the importance of taking meaning as a foundational consideration in 

mathematics learning, teaching, and instructional design.9 How, though, might we as a nation 

bring about changes that resolve the lack of meaningful mathematics in schools and colleges? I 

draw inspiration from Tucker (2011) to answer how we might move forward with such an 

agenda for change. Tucker examined the educational policies of Ontario, Finland, Japan, 

Shanghai, and Singapore to see what policies they either have in place to sustain an excellent 

educational system or put in place to pull themselves to a level of internationally elite 

educational systems. He pointed to five areas of policy that are central to elite systems attaining 

                                                 
9 I did not emphasize issues of curriculum. I agree whole-heartedly with Carlson et al. (2010), who argued 

convincingly that a well-designed curriculum will play a central role in supporting teachers’ reconceptualization of 

the mathematics they teach and will be an essential component in efforts to make meaning central to teaching and 

learning. It is my experience, however, that teachers’ meanings trump curriculum, so I have emphasized teachers’ 

meanings for the purposes of this chapter. On the other hand, there is a large intersection between issues of 

instructional design and issues of curriculum, so I have not ignored curricular issues entirely. 
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and sustaining excellence, and he turned each into a set of recommendations to be implemented 

at the state level. His recommendations are as follows: Benchmark the best, design for quality, 

design for equity, design for productivity, design for coherence. These categories serve well as 

organizers for thinking about how to make meaning central to mathematics education. 

Benchmark the best 

Tucker pointed out that prior to World War II, the U.S. borrowed ideas and practices 

from other countries at a rapid rate, but after World War II we seemed to think that no one had 

anything to offer. Recently, there have been several efforts to benchmark international standards 

(e.g., National Mathematics Advisory Panel, 2008). However, benchmarking standards is like 

surveying a landscape from 50,000 feet. You might see broad outlines, but you have no sense of 

the details by which things are made to happen. Elsewhere (Thompson, 2008a), I stated that the 

National Mathematics Panel Report recommendations read like a table of contents. The Panel did 

not attend to what it might mean to understand the things in their lists. By that I meant that they 

paid little heed to how other countries actually implemented their standards and that the Panel 

ignored the idea that attending carefully to issues of meaning was one way that elite countries 

attained excellence in mathematics education.   

Funding agencies should commission studies to benchmark the systems of mathematical 

meanings toward which elite systems strive. They should also document how those meanings are 

achieved and the consequences of achieving them. For example,  

• Singapore elementary education targets a deep understanding of speed as rate of 

change in grades 1-5 (as does Russia). This deep understanding entails ideas of 

variation, covariation, and proportionality. The Singapore curriculum outline does not 

state this specifically, but if you examine their texts and instructional guides it leaps at 

you. Their early attention to speed is later leveraged in developing students’ 

understanding of variable and linear function. What other meanings does Singapore 

target, how does it build them, and how does it leverage those meanings in students’ 

later learning? 

• Japanese elementary education emphasizes whole-number numeration as a systematic 

way to represent numerical value—to a far great extent than in the United States. In 

Japan, numerical algorithms arise out of a system of meanings that constitute an 

understanding of place value. They are not taught as meaningless, memorized 

notational procedures. What other meanings does Japan target, how does it build them, 

and how does it leverage those meanings in students’ later learning? 

• Russian elementary education emphasizes quantity and measurement (as, to a lesser 

extent, do Singapore and Japan). A deep understanding of measurement entails 

understanding ratio and proportion. Russians leverage this early learning by 

intermingling it with the idea of generalization, which necessitates ideas of 

representation and representational equivalence. What other meanings does Russia 

target, how does it build them, and how does it leverage those meanings in students’ 

later learning? 

Design for Quality 

Tucker’s (2011) first bullet in this section is, “Get your goals clear, and get public and 

professional consensus on them” (p. 5). This feat will not be easily accomplished with regard to 

targeted systems of mathematical meanings, but it is essential. National funding agencies will 
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play an essential role in the effort to clarify systems of meanings, and how they might be 

expressed skillfully, that mathematics education should take as its primary goals. 

The clarification of goals will also address the matter of coherence in the mathematics 

curriculum. A number of studies have stated boldly that the typical judgment of U.S. 

mathematics curricula at all levels is that they are conceptually incoherent (Cai, 2010; Oehrtman, 

Carlson, & Thompson, 2008; Schmidt et al., 2002; Schmidt et al., 2005; Thompson, 2008b; 

Thompson, Carlson, & Silverman, 2007). A focus on developing coherent meanings will not 

guarantee coherent curricula, but it surely will increase the likelihood that a curriculum designed 

to support students’ development of a coherent system of meanings will be coherent. 

Another aspect of designing for quality is that targeted meanings must be worth having. 

We must be able to argue that having them will pay off in important ways, either in preparation 

for life or preparation for future learning. The arguments must be specific in regard to how 

having them will be important. Research will play an essential role in the quest to design for 

quality, because we often realize the intricacies of a targeted meaning’s “payoff”, or lack thereof, 

only in attempting to help students develop it. Research will also play an essential role in 

identifying and characterizing important meanings that students and teachers should have, and 

conveying those meanings to parties who can use that information. (Please understand that I use 

“convey” in the sense that I’ve described repeatedly in this chapter.) 

Design for Equity 

Tucker’s (2011) emphasis on equity is largely in regard to allocation of resources. He 

argues that school systems and students should get resources according to their need. Hardest-to-

educate students should receive sufficient resources necessary to enable them to attain the high 

standards set in the quest for quality already described.  

With regard to issues of meaning, hardest-to-educate students will be those who are 

farthest from developing the meanings that we decide are essential. Designing for equity with 

regard to meaning requires that we identify ways of thinking and systems of meaning that are 

highly obstructive for constructing the meanings we intend, and then investigating means of 

support to effect change most efficiently. Just as we do not give steak to someone who is 

malnourished, we cannot expect someone who reasons additively to participate productively in 

instruction on making multiplicative comparisons as a foundation for reasoning proportionally. 

Design for Productivity 

Tucker (2011) characterized designing for productivity in terms of making frequent and 

timely checks for quality. With regard to a focus on meanings, this translates into helping 

teachers attend to the meanings that students are actually constructing and adjust instruction 

appropriately. Research will play a central role in identifying effective ways that teachers can do 

this and effective ways to help teachers do this. I am not speaking of grand assessment strategies 

or high-stakes tests, though I anticipate that we will continue to have them—and that their 

character will change. Rather, the road to students building powerful, coherent, and useful 

systems of mathematical meaning will be built upon teachers’ ability to conduct constant, 

formative assessments of students’ learning. 

Design for Coherence 

The coherence Tucker (2011) had in mind was that efforts to address the prior four areas 

cohere, that they complement and draw from each other. The same is surely true for mathematics 

education. In regard to the issue of moving the field towards making meaning a primary concern, 
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I see several additional ways in which we must design for coherence. The obvious one is 

designing coherent systems of meanings that we target for student learning. We also must 

coordinate efforts in instructional design, teacher preparation, and professional development 

around those meanings. We not only want school students to develop coherent meanings for 

arithmetic operations, we want future teachers to be prepared to convey and assess them and 

professional development programs that support continued teacher growth. 

It is on the criterion of coherence that Tucker found the greatest strength in elite systems 

and the greatest fault in the U.S. system. Culture surely plays a large role in both cases. Cultures 

change over time, but they rarely change abruptly. They continually regenerate themselves 

through intersubjective operations among their participants. An educational system is slow to 

change for the same reasons—entering teachers have images of mathematical teaching and 

learning that they formed as students. Lortie (1975) noted this when explaining why U.S. 

instruction seemed to change so little—adults who choose to enter teaching developed a deep 

resonance with their experience of schooling as students. We can leverage Lortie’s observation 

to gain insight into different educational systems’ clear differences in teachers’ and textbooks’ 

orientations to meaning. Ma (1999) observed Chinese elementary school teachers with the 

equivalent of high school education displaying what she called profound understandings of the 

mathematics they taught. U.S. elementary teachers in her study, with college degrees, displayed 

superficial and fragmented understandings of the mathematics they taught. Why the difference? 

Because, I suspect, the Chinese teachers developed meanings while school students that they 

later refined as prospective and practicing teachers, while the U.S. teachers developed 

unproductive meanings while students—meanings that served them poorly as a foundation for 

conveying coherent mathematical understandings to their students. Coherence, and incoherence, 

is inherited as much as it is produced. 

Tucker (2011) ended his report by noting that each of these elite educational systems took 

from 30 to 100 years to transform themselves and that the U.S. should not expect less. Also, he 

noted that each reform effort involved a high degree of experimentation within its policy 

frameworks without losing sight of its goals. We must take Tucker’s observation to heart—

expect that it will take 30 to 100 years of concerted, purposeful effort to transform the U.S. 

educational system so that coherent meanings are at the core of mathematics teaching, learning, 

and curriculum. At the same time, we cannot expect to succeed without striving to develop a 

clear vision of what we mean that meaning be at the core of mathematics teaching, learning, and 

curriculum. 
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