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Abstract
Researchers have been interested in students’ transition to calculus since the early 1900s. One line of inquiry highlights 
students’ understandings of high school mathematics as impeding or supporting their successful transition to university math-
ematics. This paper addresses an underlying question in this line of inquiry: does school mathematics provide opportunities 
for students to develop productive meanings for calculus? This article reports on U.S. calculus students’ responses to items 
that assessed students’ variational reasoning, meanings for average rate of change, and representational use of notation—ideas 
ostensibly addressed in school mathematics. To make sense of students’ difficulty on these items we sought to understand 
the opportunities students had to reason with these ideas prior to calculus. We use two data sources to understand the likeli-
hood that students have opportunities to construct productive meanings for function notation, variation, and average rate of 
change in their secondary mathematics education: meanings for these ideas supported by precalculus textbooks and meanings 
secondary teachers demonstrated. Our analysis revealed a disconnect between meanings productive for learning calculus and 
the meanings conveyed by textbooks and held by U.S. high school teachers. We include a comparison of meanings held by 
U.S. and Korean teachers to highlight that these meanings are culturally embedded in the U.S. educational system.

Keywords Transition to calculus · Mathematical meanings for teaching · International comparisons · Precalculus textbook 
analysis

1 Introduction

Mathematics educators have attended to students’ transitions 
from school to university mathematics since the early 1900s; 
Felix Klein diagnosed the problem of transitions from high 
school to university and from university back to the class-
room as resulting from a double discontinuity in high school 
teachers’ mathematical education. The first discontinuity 
was an abrupt change in mathematical rigor and content 
from school to university. The second was teachers’ lack 
of connection between their university mathematics educa-
tion and the content of secondary mathematics they were 
to teach. Klein’s solution to the double discontinuity was 
to bring students’ school mathematics and their university 
mathematics into closer alignment by improving teachers’ 
understandings of the deep mathematical roots of the sec-
ondary curriculum (Kilpatrick, 2019; Klein, 1932).

Others, since Klein, examined students’ difficulties in 
transitioning from school to university. Some approached 
the problem generally as a matter of affect or identity (Cas-
sidy & Trew, 2001; Parker et al., 2004). Others looked at 
students’ mathematical preparation in light of broad cultural 
movements (Hoyles, Newman and Noss, 2001). A third line 
of inquiry highlights students’ understandings of high school 
mathematics as impeding or supporting their successful tran-
sition to university mathematics. Stewart and Reeder (2017) 
argue that algebraic skills developed in high school impede 
students’ ability to participate fully in calculus and higher 
courses in university.

In this article, instead of examining the broad issue of 
transitioning from high school to university mathematics, we 
focus on transition from pre-calculus mathematics to calcu-
lus wherever it happens in students’ mathematical education. 
In the U.S. students take a course called “precalculus” the 
year before taking calculus. While precalculus is a capstone 
in U.S. students’ preparation for calculus, our position is that 
students’ readiness to develop conceptual understandings of 
key ideas in calculus depends significantly on their devel-
opment of important meanings in their earlier schooling. 
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Thus, investigating students’ calculus experiences should 
also include investigation into their prior schooling.

In this article we illustrate the need to investigate stu-
dents’ prior schooling in order to understand their difficulties 
in calculus. We provide three sources of data to illustrate our 
concern about students’ opportunities to construct produc-
tive meanings throughout their prior schooling. We use U.S. 
calculus students’ responses to a Calculus 1 Concept Inven-
tory to shed light on university calculus students’ meanings 
and examine those for indications of problematic meanings 
these students developed in their prior schooling. We focus 
on students’ variational reasoning, meanings for average rate 
of change, and representational use of function notation. We 
examined secondary math teachers’ meanings for these same 
ideas because ways teachers understand a mathematical idea 
contribute to the mathematical understandings students actu-
ally construct (Copur-Gencturk, 2015; Thompson, 2013). 
Thus, understanding teachers’ meanings provides insights 
into the opportunities their students have to construct pro-
ductive meanings. Finally, we examined the treatment of 
these ideas in precalculus textbooks under the assumption 
that the meanings conveyed in curricular materials inform 
students’ meanings both through students’ interactions with 
the text as well as through a teacher’s use of the text to 
inform their instructional decisions. Through this data we 
illustrate what seem to be limited opportunities for students 
to construct meanings necessary to be conceptually prepared 
for calculus and argue that this is a problem requiring further 
examination.

2  Students’ opportunities to be 
conceptually prepared for calculus

We follow Thompson in our broad meaning of “meaning” 
(see Thompson, 2013, 2016 for details). An understanding 
is a cognitive state resulting from an assimilation. A mean-
ing is the space of implications of an understanding. Even 
ritualized performance can be a student’s meaning for what 
is commonly characterized as “acting with meaningless 
symbols” in the moment of enacting it.

The meanings a student constructs throughout their prior 
schooling have the potential to provide a coherent platform 
that supports the student in developing conceptual under-
standings of key ideas in calculus—we classify such mean-
ings as productive. This implies that the targeted understand-
ing informs what constitutes a productive meaning from 
one’s prior schooling. As an example, the idea of quotient as 
a measure of relative size is a productive meaning that sup-
ports a conceptual understanding of difference quotients in 
calculus (Byerley, 2019; Mkhastwha, 2020). Alternatively, 
a meaning students construct throughout their schooling, 
such as part-whole meanings for fractions or quotient as 

just the result of division, can be unproductive and inhibit 
their understanding of key ideas in subsequent courses. Our 
examination of students’ meanings for key ideas in calculus 
revealed that students’ difficulties were often not specific 
to the calculus concept but instead rooted in meanings they 
likely developed in their prior schooling.

We illustrate these problematic meanings with data from 
the Calculus 1 Concept Inventory (C1CI).1 This instrument 
was administered to 356 calculus students2 at a large U.S. 
public university. We examined the meanings students dem-
onstrated on the instrument for indications of problematic 
meanings and ways of thinking these students developed in 
prior schooling. In this paper we illustrate the problematic 
nature of students’ variational reasoning, students’ meanings 
for average rate of change, and students’ usage of function 
notation.

To understand the root cause of these problematic mean-
ings and ways of thinking we considered the mathematics 
instruction students experience in high school. We define 
mathematics instruction as the conveyance of mathematical 
meaning where the student constructs meaning by trying to 
understand what a textbook said or in trying to understand 
what their teacher said or did (Thompson, 2013; 2016). Con-
veyed meanings are therefore foundational for what students 
learn from classroom instruction. We recognize that a thor-
ough investigation of the root cause of students’ meanings 
requires a longitudinal study to trace the development of stu-
dents’ meanings and how these meanings are constructed in 
light of their educational experiences. This paper is intended 
to illustrate the need for such a study by examining how 
mathematical meanings conveyed in classroom instruction, 
either by a teacher or curricular materials, might impact stu-
dents’ opportunities to construct meanings productive for 
classroom learning.

2.1  Data on teachers’ meanings

While we recognize the variety of sources that influence 
students’ meanings such as their interactions with peers, 
their existing meanings, and online resources, we highlight 
teachers’ meanings because we suspect teachers’ meanings 

1 The C1CI was developed within Project DIRACC (Developing 
and Investigating a Rigorous Approach to Conceptual Calculus, NSF 
Grant DUE-1625678, http://patth ompso n.net/Thoom psonC alc.) This 
instrument consists of 43 multiple choice items designed to reveal 
students’ meanings for function, function notation, rate of change, 
accumulation, and the fundamental theorem of calculus.
2 Students were volunteers and recruited from students currently 
enrolled in calculus 1 or calculus 2 at a large U.S. public university. 
There were two iterations of this instrument. Questions that were on 
both versions were seen by 356 students while questions that were 
modified between versions were seen by 224 students in the second 
iteration.

http://patthompson.net/ThoompsonCalc
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have a large impact on students’ meanings. We theorize that 
a student will adjust what they say and do based on how they 
assimilate a teacher’s words and actions, and these words 
and actions are informed by the teacher’s own mathematical 
meanings. We recognize that a teacher’s instructional deci-
sions may not always reflect their most robust mathematical 
meanings, but it is unlikely students will construct meanings 
more productive than meanings their teacher holds.

To understand potential meanings teachers convey we 
used data from the Mathematical Meanings for Teaching 
secondary mathematics instrument (MMTsm; Thompson, 
2016) to characterize teachers’ mathematical meanings. 
This instrument was designed to reveal aspects of teachers’ 
mathematical meanings whether productive or unproduc-
tive for student learning. The instrument consists of both 
open ended and multiple-choice questions; clinical inter-
views were conducted to validate that a teacher’s response 
provided insights into their mathematical meanings.3 The 
project team conducted an international comparison between 
U.S. and South Korean teachers to see if U.S. and Korean 
teachers demonstrate different meanings. If they do, it sug-
gests teachers’ meanings reflect obstacles or affordances 
within the different educational systems for teachers to have 
developed productive mathematical meanings for ideas they 
encountered in their schooling. In selecting a country for the 
comparison the project team was constrained to languages 
for which they had native speakers and prioritized a country 
that performed highly on international math comparisons 
(PISA or TIMSS). Thus, they selected South Korea. The 
MMTsm was administered to 253 U.S. high school teach-
ers participating in NSF-funded professional development 
projects in the Midwest and Southwest U.S. and 366 South 
Korean teachers (102 middle and 264 high school) partici-
pating in a qualification training program required for teach-
ers to earn their “1st class” teaching certificate.

2.2  Textbook analysis

Textbooks can contribute to a student’s opportunities to con-
struct mathematical meanings either through the student’s 
own interactions with the text or as their teacher uses the 
text as a resource to inform their instructional decisions. 
Textbooks have the potential to be a critical resource for 
teachers and students by reinforcing their existing meanings, 
providing new interpretations they were not aware of, or con-
veying meanings that cause the teacher/student to experience 
cognitive conflict and perhaps make a modification to their 
existing meanings.

We considered ten textbooks sorted into four categories: 
commercially published textbooks marketed for the high 
school market, commercially published textbooks for the 
college market, textbooks whose development was funded 
by the National Science Foundation, and open-source text-
books. When initially selecting texts we considered the 
market share of secondary textbooks4 and then prioritized 
texts that we thought were most likely to support students 
in constructing meanings necessary to develop a concep-
tual understanding of calculus. We eliminated all texts that 
treated precalculus as a miscellaneous topics course includ-
ing topics such as complex numbers, vectors, matrices, 
and parametric functions. Finally, we selected texts whose 
authors also wrote Calculus texts with the expectation that 
these authors would be more likely to convey meanings that 
would support students in being successful in calculus. The 
selected textbooks are Glencoe Precalculus (Carter, Cue-
vas, Day & Malloy, 2011), Precalculus (Sullivan & Sullivan, 
2013), Functions Modeling Change (Connally, Hughes-Hal-
let & Gleason, 2019), and OpenStax Precalculus (OpenStax 
College, 2017).

We used textbooks indexes to identify sections that 
focused on the topics relevant to our analyses (e.g., aver-
age rate of change). We analyzed the textbooks’ definitions, 
explanations, examples, and homework problems. We also 
examined the previous and subsequent sections to see how 
the authors built a foundation for an idea or built upon an 
idea. Finally, we analyzed homework solutions in the teach-
er’s edition of the text to understand the authors’ expecta-
tions for students’ reasoning.

3  Variational Reasoning

Variational reasoning is an essential way of thinking in order 
to construct and reason about rate of change functions and 
accumulation functions—the building blocks of calculus. 
Variational reasoning is not unique to calculus; productive 
meanings for constant rate of change are built upon images 
of constrained variation and covariation (Thompson, 1994). 
For example, to construct an image of a car traveling at a 
constant speed requires one first construct two varying 
quantities: distance traveled and time elapsed. Each quantity 

3 Thompson (2016) elaborates on instrument development and vali-
dation.

4 Houghton Mifflin Harcourt, Pearson, and McGraw-Hill account 
for a combined 83% of secondary math market share Fulkerson, W. 
O., Campbell, K., & Hudson, S. B. (2013). 2012 National survey of 
science and mathematics education: Compendium of tables.. These 
three publishers have seven programs available in the secondary mar-
ket: Saxon Math, AGA, Integrated Math, Envision, CME Project, 
Illustrative Math, and Glencoe. Out of these seven series only one, 
Glencoe Math by McGraw-Hill, offers a precalculus textbook. All 
other series offer a three course sequence: Algebra I, Geometry, and 
Algebra II.
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varies by accumulating bits of change to an already accu-
mulated amount of distance (or time). We do not need to 
attend to the already accumulated amount beyond assum-
ing that there is one. After constructing such images of two 
varying quantities one can then construct the relative size of 
the increments of accumulation—the bits of change—and 
anticipate that as the quantities continue to vary the relative 
size of the increments remains constant.

In this section we focus on constant rate of change as a 
context to analyze opportunities for students to develop vari-
ational reasoning in school mathematics. We should expect 
to see evidence that teachers spontaneously employ con-
tinuous variational reasoning when reasoning about constant 
rate of change and we should expect precalculus texts to 
attend to quantities’ continuously varying values, increments 
of change, and constrained variation in their discussion of 
constant rate of change. As we illustrate in this section, U.S. 
teachers experienced difficulty differentiating between a 
quantity’s value and changes in the quantity’s value and they 
demonstrated thinking of discrete changes instead of think-
ing of changes happening continuously. Also, precalculus 
texts were no more likely than teachers to support students’ 
variational reasoning—they too discussed variation as hap-
pening in completed chunks.

3.1  Calculus students’ variational reasoning

When we consider students’ variational reasoning we are 
interested both in ways they imagine quantities varying as 
well as their ability to construct an invariant relationship 
between changes-in-progress. One’s variational reasoning 
can be classified by whether they are engaged in chunky 
thinking which involves reasoning about quantities vary-
ing in discrete amounts or imagining smooth change which 
involves reasoning about change in progress (Castillo-Gar-
sow, 2010; 2012).

To illustrate students’ difficulty maintaining an invariant 
relationship in a dynamic situation consider U.S. calculus 
students responses to the task shown in Fig. 1. To success-
fully complete the task students needed to reason that a con-
stant rate of change implies dy

dx
 remains constant as the val-

ues of dx and dy vary. Approximately 35% of students saw 
the diagram as implying varying values of x and y (answer 
choices b, c, and e) and nearly 50% of students saw the dia-
gram as implying a varying value of dy

dx
 (answer choices b, 

d, and e). Only 34.7% understood the diagram as implying 
fixed values of x and y and varying values of dx, dy, and 
∆y (answer choice a). These results suggest students were 
unprepared to interpret dy

dx
 as expressing the invariant relative 

size of increments of change. This suggests to us these cal-
culus students did not have sufficient opportunities in their 
prior schooling to differentiate and coordinate fixed and 
varying quantities in the context of linear approximation.

3.2  Teachers’ variational reasoning

We highlight high school teachers’ variational reasoning 
because of its importance to students’ understanding of vari-
ation and rate of change in calculus. How teachers under-
stand a mathematical idea shapes the ways they talk about 
and enact it, which in turn contributes to the mathematical 
understandings students construct (Copur-Gencturk, 2015; 
Thompson, 2013). One difficulty students experience with 
variation is to conflate change with amount. The follow-
ing item suggests many U.S. high school teachers make the 
same conflation. It is unlikely these teachers design instruc-
tion with the intent of supporting their students in reasoning 
about change in progress and constrained variation—ideas 
foundational to productive meanings for constant rate of 
change.

3.2.1  Teachers’ constructions of increments of change

Reasoning productively about a quantity’s variation requires 
one to construct two quantities: the quantity that is varying 
and the change in that quantity. Figure 2 shows an MMTsm 
item5 that asked teachers to use the graph of y = f(x) to 
describe the behavior of the changes in the dependent varia-
ble over an interval of the domain. 45.6% of U.S. high school 
teachers correctly identified that the values of the changes in 
the dependent variable were negative and only 15.2% of U.S 
high school teachers correctly identified that these negative 
changes were increasing.

Over 50% of U.S. high school teachers selected option 
(b), describing the behavior of the function’s value (posi-
tive and decreasing) as opposed to describing the behavior 

Fig. 1  Linear Approximation 
Task from Calculus 1 Concept 
Inventory

The graph depicts the linear approximation of f near the given 
point P. Which of the following will vary as the value of dx
varies in this context? 

a.
b.
c.
d.
e.

n=2225

students 
a b c d e 

count 77 23 35 66 21 
percent 34.7 10.4 15.8 29.7 9.5 

5 This item was not scored for Korean teachers because of a mis-
translation from English to Korean.
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of changes in the function’s value (negative and increasing). 
Surprisingly, U.S. calculus teachers focused on the behav-
ior of the dependent variable at essentially the same rate as 
U.S. pre-calculus teachers. Teachers’ focus on the behav-
ior of the function’s values, as opposed to the behavior of 
changes in the function’s values, suggests they are unlikely 
to provide opportunities for students to reason about con-
stant rate of change as an invariant proportional relationship 
between changes in quantities’ values.

3.2.2  Teachers’ variational reasoning in the context 
of slope

The task in Fig. 3 was designed to probe meanings of slope 
teachers intend their students to develop. Because text-
books commonly portray slope as a change in y for an inte-
ger change in x, we were interested in the extent to which 
teachers would display this as their default meaning (Part I). 
Part II, on a separate page, probed implications, to teachers, 
of their default meanings of slope by explicitly raising the 
possibility of a non-unit change in x, opening them to think 
about continuous changes in x. We include Korean data on 
this item to show that the meaning of measured slope among 
teachers in the U.S. is specific to the U.S., suggesting it is not 
necessary for teachers to think of slope in the ways common 
in the U.S.

Korean high school and middle school teachers responded 
similarly to both Parts I and II as did U.S. pre-calculus and 
calculus teachers. We therefore aggregated results by coun-
try to highlight relationships between teachers’ responses by 
country. Teachers’ responses to Part I were coded based on 

what the response suggested the teacher intended students 
understand about 3.04:

– 3.04 as implying a continuous relationship between ∆y 
and ∆x

– 3.04 as coordinating discrete changes in x and y: as x 
changes by 1 (or 2.7) y changes by 3.04 (or 8.2)—a 
chunky way of thinking

– 3.04 means “over (by 1) and up (by 3.04)”—a chunky 
way of thinking

– 3.04 is the “average rate” without saying what they meant 
by average rate

– The response could not be categorized such as “it is the 
value of x and y”

Figure 4 gives the level of teachers’ responses organized 
by country.

In analyzing results from Part II, we were interested in 
whether the teacher could form an image of continuous 
change even though their default way of speaking was in 
terms of coordinating discrete changes. Of the 119 U.S. 
teachers who demonstrated a chunky way of thinking in 

Fig. 2  MMTsm item that probes 
teachers’ meanings for changes 
in quantities’ values

The graph below is of a function f over the interval [0,5] 

For small equal increases of the value of x starting at x = 1 
and ending at x = 2, the corresponding changes in the value 
of f are… 

a. positive and increasing 
b. positive and decreasing 
c. negative and increasing 
d. negative and deceasing 
e. I cannot tell 

a b c d e total

US <calc 4 92 21 59 0 176 

2.3% 52.3% 11.9% 33.5% 0% 100%

US ≥calc 2 37 17 17 1 74 

2.7% 50.0% 23.0% 23.0% 1.4%

Total US 6 129 38 76 1 250 

 2.4% 51.6% 15.2% 30.4% 0.4%  

Fig. 3  MMTsm item "Mrs. 
Samber" probes teachers’ mean-
ings of a computed slope

Part I: 

Mrs. Samber taught an introductory lesson on slope. In the 
lesson she divided 8.2 by 2.7 to calculate the slope of a line, 
getting 3.04.  
Convey to Mrs. Samber’s students what 3.04 means. 

Part II (on the page following Part I): 

A student explained the meaning of 3.04 by saying, “It means 
that every time x changes by 1, y changes by 3.04.” Mrs. 
Samber asked, “What would 3.04 mean if x changes by 
something other than 1?”  
What would be a good answer to Mrs. Samber’s question? 

 Chunky Thinking    
Continuous 
Relationship 

Discrete 
Changes 

Over 
and Up 

Average 
Rate 

Not 
categorized total 

Korea  7 119 31 195 10 362 

1.9% 32.8% 8.6% 53.9% 2.8% 

US 3 41 78 28 4 1547

1.9% 26.6% 50.6 % 18.2% 2.6% 

Fig. 4  Teachers’ responses to Part I of “Mrs. Samber”
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Part I (77% of all U.S. teachers) 60 conveyed a continu-
ous relationship between ∆y and ∆x in Part II. In contrast 
120 of the 150 Korean teachers who demonstrated a chunky 
way of thinking in Part I conveyed a continuous relationship 
between ∆y and ∆x in Part II. Moreover, of the 195 Korean 
teachers who, in Part I, said “average rate”, 151 (77% of 
195) responded to Part II in a way that suggested continu-
ous variation.

In Part I both U.S. and Korean teachers expressed 
default ways of speaking about the meaning of a calculated 
slope that were based in images of discrete change (either 
chunky thinking or average rates of change). However, their 
responses in Part II suggest that U.S. and Korean teachers 
had different meanings behind their default ways of speak-
ing. Most U.S. teachers (53%) really meant what they said, 
expressing discrete images in both Part I and Part II. Korean 
teachers had a way of speaking which suggests discrete 
changes, but for 78% of these teachers this discrete way of 
speaking was grounded in images of a proportional relation-
ship between continuous changes.

3.3  Textbook’s discussions of variation 
within constant rate of change

In this section we document the meanings four precalculus 
texts convey about constant rate of change and theorize how 
these conveyed meanings might support students’ and teach-
ers’ development of continuous variational reasoning.

3.3.1  Textbook fails to promote images of variation

Carter et al. (2011) assume precalculus students are profi-
cient with constant rate of change, saying: “In algebra, you 
learned that the slope between any two points on the graph 
of a linear function represents a constant rate of change” (p. 
38; italics in original). The authors repeat this statement two 
other times (pp. 82, 757) prior to connecting average rate 
of change to instantaneous rate of change via limits (p. 82) 
and prior to connecting the slope of the tangent line to the 
instantaneous rate of change (p. 757). In all three instances 
the authors focus on the numerical computation of slope and 
do not provide contextual interpretations for slope.

In no instance do authors convey an image of variation. 
It seems they assume implicitly that students have compat-
ible meanings for slope and constant rate of change. While 
an expert can conceptualize slope as a ratio that measures 
the constant rate of change of one quantity with respect to 
another, many students conceptualize slope as an index of 
steepness of a line and thus experience difficulty interpret-
ing slope as a constant rate of change. For example, Lobato 
and Thanheiser (2001) report on an Algebra I student who 
“conceives of slope only as a number, not as a measure of 
the dripping rate of the faucet” (p. 162). Zaslavsky, Sela and 

Leron (2002) introduce the constructs of ‘visual slope’ and 
‘analytic slope’ to explain students’ difficulty coordinating 
their meanings for slope and constant rate of change. They 
explain that the ‘visual slope’ is a geometric entity and prop-
erty of the line “but this [visual slope] has no relation what-
soever (except perhaps in sign) to the ‘analytic slope’, that is, 
the rate of change (or ‘slope’) of the function represented by 
this line” (p. 137). This suggests students who conceptualize 
slope as a ‘visual slope’—the steepness of the line—will 
experience difficulty coordinating their understanding of 
slope and constant rate of change. This body of work sug-
gests that using constant rate of change as a synonym for 
slope does not support students in constructing productive 
meanings for constant rate of change.

3.3.2  Textbook conveys discrete images of change

Sullivan and Sullivan (2013) and Connally et al. (2019) also 
define constant rate of change as slope and provide interpre-
tations for the slope which convey discrete images of change. 
For example, Connally et al. (2013) provide the following 
interpretation of a slope of 0.05: “For each minute the phone 
is used, it costs an additional $0.05” (Sect. 1.3). This expla-
nation does not challenge students to account for partial 
minutes and thus supports students’ natural inclinations to 
think of rate of change as involving quantities that change 
in discrete chunks. This chunky reasoning was supported by 
the examples and homework in this section: these problems 
asked students to compute the constant rate of change over 
an integer change in the independent variable.

Sullivan and Sullivan consistently convey discrete images 
of change when interpreting slope. For example, they say:

“The slope m of the line containing the points (1,2) and 
(5, − 3) may be computed as m =

−3−2

5−1
=

−5

4
= −

5

4
 or as 

m =
2−(−3)

1−5
=

5

−4
= −

5

4
 . For every 4-unit change in x, y will 

change by – 5 units. That is, if x increases by 4 units, then y 
will decrease by 5 units” (Sullivan & Sullivan, 2013, p. 30).

Even if the computation results in a quotient that can be 
reduced and expressed in lowest terms (e.g., 2/6 = 1/3), a 
student with this interpretation will understand slope as a 
comparison between an integer change in the independent 
variable and an integer change in the dependent variable. A 
student with this meaning is not prepared to reason about 
slope when the independent variable changes by an amount 
different from the denominator (e.g., m = -5/4 and ∆x = 3). 
Nor could students envision a non-integer change, such as 
∆x = 0.36, or continuous changes in the independent vari-
able. In other words, the interpretation provided by Sulli-
van and Sullivan supports students in thinking of -5/4 as 
meaning “over 4 and down 5”; it does not support students 
in thinking about an invariant proportional relationship 
between any change in the independent variable and the 
corresponding change in the dependent variable.
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3.3.3  Textbook conveys incoherent meaning for constant 
rate of change

An exhaustive search of OpenStax College (2014) for the 
phase “constant rate of change” produced four instances con-
veying a meaning for constant rate of change:

• “A constant rate of change, such as the growth cycle of 
this bamboo plant, is a linear function” (p. 125).

• “Recall that a rate of change is a measure of how quickly 
the dependent variable changes with respect to the inde-
pendent variable. The rate of change for this example is 
constant, which means that it is the same for each input 
value” (p. 126).

• “When exploring linear growth, we observed a constant 
rate of change—a constant number by which the output 
increased for each unit increase in input” (p. 328).

• “The common difference (of the arithmetic sequence) 
is the constant rate of change, or the slope of the linear 
function” (p. 955).

From our perspective, these four statements convey inco-
herent meanings for constant rate of change. In particular, 
for a pre-calculus student without a robust meaning for lim-
its, the second and third statements convey incompatible 
meanings for constant rate of change. More specifically, the 
second and fourth statements convey that the constant rate 
of change is associated with individual values of a func-
tion’s independent variable. The third statement, however, 
conveys the constant rate of change is associated with a 
unit increase in the independent variable. While ideas of 
instantaneous rates of change based on understandings of 
limits allow mathematicians to see these statements as syn-
onymous, without an understanding of limits students have 
no basis to interpret a rate of change without an interval 
over which two quantities change. As we illustrated above, 
chunky thinking can be problematic for students reasoning 
about invariant relationships in dynamic situations. Taken 
together, we conjecture that students who attempt to under-
stand the OpenStax text will develop fragmented meanings 
for constant rate of change and little opportunity to reason 
about continuous variation.

The analysis above reveals few opportunities for students 
to engage in continuous variational reasoning in the context 
of reasoning about constant rate of change. The textbooks 
did not support students in anticipating that, as the quantities 
continue to accumulate, the relative size of the increments 
remains constant. Instead, the texts seem to support students 
in understanding constant rate of change as a visual property 
of the graph—an understanding that many researchers have 
documented to be problematic. Relative to variational rea-
soning, both the U.S. texts and U.S. teachers conveyed dis-
crete ways of thinking about slope by comparing the change 

in the dependent variable for unit or integer changes in the 
independent variable.

4  Average rate of change

In thinking about students’ preparation to understand deriva-
tives, we identified three essential components to calculus 
students’ meaning for average rate of change. Suppose we 
are considering the average rate of change of the function f 
on the interval from x1 to x2.

– The function’s average rate of change over the interval 
[x1, x2] is the constant rate of change that produces the 
same net change in f(x) as x varies from x1 to x2. (Thomp-
son, 1994)

– A differentiable function’s behavior over a sufficiently 
small interval resembles a function with a constant rate 
of change over that interval. The constant rate of change 
is the function’s average rate of change over that interval.

– The average rate of change over a sufficiently small inter-
val quantifies a relationship between respective changes 
in values of two quantities.

A calculus student’s ability to construct this meaning is 
largely dependent on the meaning for average rate of change 
they construct prior to calculus. At the precalculus level, a 
productive meaning for average rate of change would entail 
interpreting the average rate of change as the constant rate 
of change needed to produce the same net change in the 
dependent variable for a specified change in the independ-
ent variable. We would also expect to see average rates of 
change computed and interpreted over small intervals in 
order to describe the rate of change of f(x) with respect to x. 
However, we question whether students have opportunities 
to construct these precalculus level understandings. Data 
from the MMTsm suggests many teachers did not have these 
meanings and the four texts we analyzed did not attend to 
these ideas. In this section we characterize U.S. calculus 
students’ problematic meanings for average rate of change. 
We also characterize U.S. high school mathematics’ teachers 
meanings for average rate of change to reveal similarities 
between teachers’ and students’ meanings. Finally, we docu-
ment the meanings the four texts potentially convey about 
average rate of change and illustrate why this is problematic 
for the teaching and learning of calculus.

4.1  U.S. calculus students’ meanings for average 
rate of change

Few calculus students responding to the C1CI demonstrated 
a productive meaning for average rate of change. Consider, 
for example, the rate of change item in Fig. 5.
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To select answer choice (d) one must consider the car’s 
number of miles from San Diego as a function of elapsed 
time since leaving—as say f(x). The value of 71 is then com-
puted by (f (4.003) − f (4))∕0.003 . Out of the 356 U.S. calcu-
lus students who completed this item only 14.3% chose 71 
mph suggesting these students understood that the rate of 
change of one quantity with respect to another is a property 
of respective changes in quantities’ values. Students’ choices 
(a), (b), or (c) (25.8%, 18.5%, 25.8%, respectively) suggests 
students included 52 mph, the car’s average speed over the 
first 4 h in their thinking. They seem to have believed that to 
measure the rate of change from San Diego they needed to 
account for all time since they left San Diego and thus did 
not conceptualize rate of change as relating corresponding 
increments in distance from San Diego and elapsed time 
from start. In other words, they did not express a way of 
thinking about the rate of change 4 h after leaving San Diego 
that did not entail the entire 4-h interval.

One obstacle students encounter in constructing produc-
tive meanings for average rate of change is their meaning 
of average. Dorko and Weber (2013) explain: “While aver-
age rate of change has a specific mathematical meaning 
in calculus, the word average may have lexical ambiguity 
because of its use in statistics and everyday language” (p. 
386). While these students could correctly identify the alge-
braic computation for computing an average rate of change, 
their interpretations of the computed value were unproduc-
tive for constructing a quantitative interpretation of average 
rate of change as an estimate for the rate of change of f(x) 
with respect to x. Although there is little research on stu-
dents’ meanings for average rate of change, existing research 
(Ärlebäck et al., 2013) does suggest U.S. students’ meanings 
for average rate of change are incompatible with the idea of 

derivative as a linear approximation of a function’s behavior 
over an interval.

4.2  U.S. high school teachers’ meanings for average 
rate of change

Like calculus students, many U.S. high school teachers’ 
meanings for average rate of change are based on their mean-
ings for average as an arithmetic mean. Figure 6 shows an 
MMTsm item that asked teachers to articulate the meaning 
they want students to hold for “the car’s average speed was 
62 mi/hr”. This item was administered to 487 teachers (366 
Korean, 121 U.S.).

Teacher responses were categorized into five levels:

– The teacher conveyed that average rate of change is the 
constant speed a car would travel in order to travel the 
same distance in the same amount of time.

– The teacher conveyed an algebraic equivalent of distance/
time.

– The teacher conveyed that the average speed tells the dis-
tance traveled in one hour.

– The teacher conveyed that average speed is an arithmetic 
mean, or provided circular reasoning (“The car averaged 
62 miles for each hour.”)

– The response could not be categorized (e.g. “the speed 
as a rate involving mi/hr”).

A meaning consistent with arithmetic mean was the most 
common response amongst all teachers (43.5%) and also 
the most common within each country (35.5% U.S. teachers 
and 46.2% of Korean teachers). This response is consistent 
with many calculus student meanings for average rate of 

Fig. 5  Calculus 1 Concept 
Inventory Item "San Diego to 
New York"

A car left from San Diego heading to New York. The average 
speed for the first 4 hours of the trip was 52 mph. In the next 
0.003 hours, the car had an average speed of 71 mph. Which 
is the best estimate of how fast the car’s distance from San 
Diego was changing at 4 hours after leaving San Diego?  

a. 52 mph 
b. 52.014 mph 
c. 61.5 mph 
d. 71 mph 
e. Cannot be determined. 

n=356 students a b c d e 
Count 92 66 92 51 55 

percent 25.8 18.5 25.8 14.3 15.4 

Fig. 6  MMTsm item “Meaning 
of Average” that probes teach-
ers’ meanings for average rate 
of change

Task: A car went from 
Phoenix to Tucson. The car’s 
average speed was 62 mi/hr. 
What would you like your 
students to mean by the 
phrase, “the car’s average 
speed was 62 mi/hr”?  

Constant 
Rate of 
Change 

Distance 
traveled 
in one 
hour 

Arithmetic 
mean or 
circular 
reasoning 

Not 
categorized total 

Korea  8 77 82 169 30 366 

2.19% 21.0% 22.4% 46.2% 8.2% 

US 0 23 36 43 19 121 

0.0% 19.0% 29.8% 35.5% 15.7% 

total 8 100 118 212 49 487 

1.6% 20.5% 24.2% 43.5% 10.1% 
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change (Dorko & Weber, 2013). The second most common 
response was the chunky way of thinking that the average 
speed gives the distance traveled in one hour. In fact only 
1.6% of all teachers expressed a meaning for average rate of 
change that aligns with the productive meaning we identified 
for learning calculus.

Since a teacher’s conveyed meanings in the classroom are 
likely to be more calculational and less conceptual than the 
meanings the teacher conveys independent of their instruc-
tion (Nagle & Moore-Russo, 2013), we conjecture it is 
unlikely that U.S. teachers convey meanings for average rate 
of change that support students in coordinating their mean-
ings for average rate of change and constant rate of change.

Other data suggests we must interpret the Korean data 
on Meaning of Average cautiously. One question involved 
weighted averages: A car traveled one way with an average 
speed of 40 mi/hr and returned by the same route. Its overall 
average speed was 60 mi/hr. What was its average speed 
back? Forty-seven percent (47%) of U.S. teachers answered 
80 mi/hr, the solution to (40 + x)∕2 = 60 . Only 7% of 
Korean high school teachers solved an arithmetic mean and 
89.4% understood the problem as traveling the same distance 
twice at constant speeds and twice the one-way distance at 
a constant speed.

4.3  Textbook analysis of potential conveyed 
meanings for average rate of change

We analyzed four precalculus texts’ potential conveyed 
meanings for average rate of change. In this section we 
document the meanings conveyed by each text and discuss 
potential implications for both teachers’ instruction and stu-
dents’ learning.

4.3.1  Text conveys geometric meaning for average rate 
of change

Sullivan & Sullivan (2013) and Carter et al. (2011) convey 
geometric meanings for average rate of change. Sullivan and 
Sullivan (2013) explain:

“The average rate of change has an important geomet-
ric interpretation. The average rate of change of a func-
tion f from a to b equals the slope of the secant line 
containing the two points (a, f(a)) and (b, f(b)) on its 
graph” (pp. 87–88).

Carter et al. (2011) convey a similar meaning: “The aver-
age rate of change between any two points on the graph of 
f is the slope of the line through those points” (p. 38). They 
provide no alternate meaning for rate of change nor do they 
support students in connecting their meaning for slope with 
their meaning of average rate of change of one quantity with 
respect to another.

4.3.1.1 Implications for  students’ learning and  teachers’ 
instruction of average rate of change If learners understand 
average rate of change as stated in these textbooks they 
will have understood average rate of change as a property 
of a line connecting two points on the function’s graph. 
Numerous researchers illustrated students’ difficulty coor-
dinating meanings for slope and rate of change (Lobato & 
Thanheiser, 2001; Teuscher et al., 2010). This suggests that 
the meaning conveyed by these texts does not support stu-
dents in constructing a coherent meaning for average rate 
of change.

While these texts define average rate of change as slope, 
the worked examples and homework problems focus on 
computing the average rate of change with an algebraic rule. 
We found no problems asking students to provide a contex-
tual interpretation of average rate of change. Additionally, 
textbook problems consistently ask students to compute the 
average rate of change over intervals of integer width (e.g., 
∆x = 3). This type of task can be easily assimilated into 
teachers’ and students’ chunky variation schemes.

In summary, these two texts convey a meaning for average 
rate of change that focuses on geometric properties of a line 
connecting two points on a curve and a procedure for com-
puting a number called “average rate”. This meaning does 
not support students in interpreting average rate of change 
as the constant rate of change needed to produce the same 
net change in the dependent variable over a specified interval 
in the independent variable. Thus, we claim that these texts 
do not provide opportunities for teachers, and thus students, 
to construct meanings for average rate of change that will 
be productive for understanding rate of change in calculus.

4.3.2  Text conveys average rate of change is an arithmetic 
mean or “smoothed out” change

Both Connally et al. (2019) and OpenStax College (2017) 
convey meanings for average rate of change that leverage a 
reader’s colloquial meaning for “average”. Connally et al. 
(2019) state:

“The average rate of change of the function Q = f(t) 
over an interval tells us how much Q changes, on aver-
age, for each unit change in t within that interval. On 
some parts of the interval, Q may be changing rapidly, 
while on other parts Q may be changing slowly. The 
average rate of change evens out these variations.” 
(Sect. 1.2).

Here, the authors do not say what they mean by “aver-
age”. Instead, they state that the “average rate of change 
evens out these variations”. This language supports students 
in thinking about a leveling out perspective consistent with 
the arithmetic mean.
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OpenStax College (2017) defines average rate of 
change computationally, stating “the average rate of 
change between two input values is the total change of the 
function values (output values) divided by the change in 
the input values” (p. 38). They provide examples of this 
computation:

“Over 7 years, the average rate of change was.
Δy

Δx
=

$1.37

7years
≈ 0.196 dollars per year.

On average, the price of gas increased by about 19.6 
cents each year.” (OpenStax College, p. 37).

This interpretation leverages a colloquial use of the word 
average as meaning “smoothed”, and since no meaning is 
given for the phrase “on average”, this interpretation of 
0.196 provides a circular meaning of average rate of change.

4.3.2.1 Implications on  students’ learning and  teachers’ 
instruction of average rate of change The notion of aver-
age rate of change as an arithmetic mean or a smoothed-
out change is consistent with the meanings demonstrated 
in earlier examples by both U.S. calculus students and U.S. 
high school mathematics teachers. However, these mean-
ings are problematic for understanding calculus. These 
texts support interpretations for average rate of change that 
are not quantitative. Additionally, their emphasis on large 
intervals does not support thinking about average rate of 
change over very small intervals, which gives meaning to 
the rate of change of f(x) with respect to x at a value of x.

5  Representational Use of Function 
Notation

Function notation is ubiquitous in calculus because of its 
representational power to define a relationship in a concise 
way. We identified two essential components to students’ 
meanings for function notation:

– The notation f(x) is shorthand way to simultane-
ously describe the relationship between a value in the 
domain, x, and the corresponding value in the range, 
f(x), as well as the name of the invariant relationship 
between the domain and range.

– “f(x)” can be used representationally—it can be used to 
describe relationships without specifying or repeating a 
rule of association.

In this section we characterize U.S. calculus students’ 
meanings for function notation in order to highlight students’ 
lack of preparation to use function notation representation-
ally. We then characterize U.S. high school mathematics’ 
teachers’ meanings for function notation to conjecture impli-
cations for the meanings they convey in their classroom 
instruction. Finally, we examine the ways in which four pre-
calculus texts support students in constructing this two part 
meaning for function notation and illustrate how students 
and teachers likely internalize the textbooks’ presentations 
in ways problematic for teaching and learning calculus.

5.1  Students’ meanings for function notation

To illustrate calculus students’ difficulty with function nota-
tion consider students’ responses to the C1CI item in Fig. 7. 
While 51.3% of calculus students successfully completed 
the item, students experienced difficulty in both using func-
tion notation representationally and seeing function nota-
tion as more than a four-character name for a computational 
rule. More specifically, 25.9% of students selected answer 
choice (c) where the x-coordinate matches the independ-
ent variable to the function. This suggests these students 
think of function notation as an idiom (the letter inside the 
parentheses is part of a function name). On the other hand, 
19.2% of students selected the answer choice (a). In addition 
to conflating the name of the point and the y-coordinate of 
the point, students who selected answer choice (a) rejected 
all answers that involved function notation. These students 
seem to experience difficulty using function notation rep-
resentationally and we conjecture these students might see 
function notation as a command to evaluate as opposed to 
representing a value of a dependent variable for a specified 
value of the independent variable.

5.2  Teachers’ meanings for function notation

We see teachers’ meanings as an indicator of the meanings 
they convey in their instruction and thus the opportunities 
they create for students to construct productive meanings for 
function notation. In this section we examine U.S. teachers’ 

Fig. 7  Calculus 1 Concept 
Inventory item that assesses 
students’ meaning for function 
notation

Consider the graph displaying the function f and point P in 
the xy-plane. 
Express the coordinates of point P. 

a. (c, P) 
b. (c, f(b)) 
c. (c, f(c)) 
d. (P, f(b)) 
e. (P, f(c)) 

n=224 students a b c d e 
count 43 115 58 2 6 
percent 19.2 51.3 25.9 0.89 2.68 
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meanings for function notation. We present data from two 
MMTsm items to illustrate teachers’ difficulty both using 
function notation representationally and understanding func-
tion notation as more than an idiom.

5.2.1  Teachers’ understanding of function notation 
idiomatically

The item shown in Fig. 8 was designed to reveal the extent 
to which teachers understand function notation as a four-
character idiom, where the letter inside the parentheses is 
part of the function name. This item was administered to 
619 teachers (253 U.S. and 366 Korean). Teacher responses 
were categorized based on the variables used to complete 
the definition of c. A teacher who uses the variables t and 
s as arguments of q and w in the definition of c likely sees 
function notation idiomatically—as a four-character name 
for the rule on the right side. We include Korean data on 
this item to show that idiomatic meanings for function nota-
tion expressed by U.S. teachers are not shared with Korean 
teachers.

While over 73% of Korean teachers used v throughout the 
function definition for c, only 33% of U.S. teachers did. U.S. 
high school teachers who had never taught calculus were 
most likely to demonstrate an idiomatic understanding of 
function notation. These teachers saw the function names 

as “w(t)” and “q(s)” as opposed to “w” and “q”. We empha-
size that while 39% of all U.S. teachers expressly showed 
an idiomatic understanding of function notation, only 5% 
of Korean teachers did. This suggests thinking of function 
notation idiomatically is a way of thinking that is culturally 
embedded in the U.S. educational system; it is not necessary 
for teachers to think about function notation in this way.

5.2.2  Teachers’ representational use of function notation

The item shown in Fig. 9 was designed to reveal the extent 
to which teachers use function notation representationally—
meaning a teacher would take “f(x)”, by itself, as naming a 
relationship (“f”) between values of one quantity (labeled 
“x”) and values of another quantity (labeled “f(x)”) without 
the need to write a defining formula.

We considered teachers as having used function notation 
representationally only if they used it to represent the radius 
length as a function of time—if they used function notation 
on the right side (as in A(t) = π(r(t))2).We did not count using 
function notation only on the left side as evidence of using 
function notation representationally since this response does 
not differentiate between a teacher who understands f(t) as 
the name of a rule as opposed to representing a relation-
ship between values of two quantities. Teachers who did 

Fig. 8  MMTsm item to probe 
teachers’ meanings for function 
notation Here are two function definitions:  

( ) = sin( ) if
( ) = if

Here is a third function c, defined in two 
parts, whose definition refers to w and q. 
Place the correct letter in each blank so that 
the function c is properly defined.  

( )
(_____) if

(_____) if

v through-
out 

Mix of 
s,t,v s,t 

Not 
categorized8 Total 

Korea MS 65 0 6 31 102 

63.7% 0.00% 5.88% 30.4%

Korea HS  203 1 14 46 264 

 76.9% 0.38% 5.30% 17.4%  

US<calc 53 7 74 45 179 

 29.6% 3.91% 41.30% 25.1%  

US calc 32 5 25 12 74 

 43.2% 6.76% 33.8% 16.2%  

total 353 13 119 134 619 

57.0% 2.10% 19.2% 21.6% 

Fig. 9  MMTsm item that probes 
teacher’s understanding of the 
representational power of func-
tion notation

Hari dropped a rock into a pond creating 
a circular ripple that spread outward. The 
ripple’s radius increases at a non-constant 
speed with the number of seconds since 
Hari dropped the rock. Use function 
notation to express the area inside the 
ripple as a function of elapsed time. 

Function 
notation 
represent-
ationally 

Function 
notation 
left hand 
side only 

Inconsistent 
use of 
variables 

Not 
categorized Total 

Korea MS 39 16 5 42 102 

38.2% 15.7% 4.90% 41.2% 

Korea HS  163 20 10 71 264 

 61.7% 7.58% 3.79% 26.89%  

US<calc 31 58 24 54 167 

 18.6% 34.7% 14.4% 32.3%  

US calc 25 27 7 15 74 

 33.8% 36.5% 9.46% 20.3%  

total 258 121 46 182 607 

42.5% 19.9% 7.58% 30.0% 
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not use or attempt to use function notation, such as writing 
A = π(r2)t, were classified as “not categorized”.

Responses from 607 teachers (366 Korean and 241 U.S.) 
are shown in Fig. 9. The percentage of Korean teachers who 
used function notation representationally was nearly twice 
as large as the percentage of U.S. teachers. U.S. teachers 
used function notation on the left side only at three times 
the rate of Korean teachers. This suggests that many U.S. 
teachers interpreted the prompt “use function notation” to 
mean “write f(x) instead of y”. The difference in U.S. and 
Korean teachers’ responses suggests there are aspects of the 
U.S. educational system that likely contribute to teachers’ 
limited use of function notation representationally. U.S. 
teachers’ responses to the items in Fig. 8 and Fig. 9 suggest 
it is unlikely that they support students in using function 
notation representationally.

5.3  Textbook analysis of potential conveyed 
meanings for function notation

Since teachers do not plan their instruction in isolation, it is 
possible that the curricular materials could support teach-
ers in conveying a meaning other than the one they dem-
onstrated in these items. In this section we document the 
meanings for function notation conveyed by four precalculus 
texts and discuss potential implications for both teachers’ 
instruction and students’ learning.

5.3.1  Text conveys function notation as a command 
to operate

Carter et al. (2011) conveyed a meaning consistent with 
that of U.S. high school teachers: function notation is an 
idiom—a four character symbol to name the function. The 
text states: “In function notation, the symbol f(x) is read f of 
x and interpreted as the value of the function f at x. Because 
f(x) corresponds to the y-value of f for a given x-value, you 
can write y = f(x)” (p. 7). This excerpt supports the reader in 
understanding f(x) as a single symbol as opposed to a rela-
tionship between three mathematical entities. To understand 
the extent to which this text supports representational use of 
function notation we examined the homework set associated 
with the function notation lesson and found 27 problems that 
asked students to “find each function value” given the alge-
braic presentation of the function. We found no instances of 
the text using function notation in the absence of a defining 
rule. There was no evidence that the text supports students 
in thinking about function notation as something other than 
an alternative to y that goes on the left side of the function 
definition.

Sullivan and Sullivan (2013) also focus on function nota-
tion as a command to operate. The authors do not attempt 
to provide a conceptual meaning for function notation and 

instead introduce function notation (p. 61) under the title 
“find the value of a function” (p.61) and the correspond-
ing homework set includes 45 problems that ask students to 
evaluate an algebraic rule at specific values of the independ-
ent variable.

5.3.1.1 Implications for  students’ learning and  teachers’ 
instruction of function notation To illustrate the problem-
atic nature of understanding function notation as a com-
mand to operate, consider the symbolic presentation of the 
difference quotient: f (x+h)−f (x)

h
 . For a student who under-

stands function notation as stating a relationship between 
mathematical entities, this expression represents the relative 
size of a change in the dependent variable with respect to a 
change in the independent variable. However, for a student 
who understands function notation as a command to oper-
ate, this notation means to compute three values in a specific 
order: f(x + h), f(x), and then: f (x+h)−f (x)

h
 . In fact, Carter et al. 

(2011) explicitly supports this computational understanding 
of the difference quotient in their homework exercises by 
having students evaluate f(a), f(a + h) and f (a+h)−f (a)

h
 for 12 

function definitions (p. 11).
We see it as essential for students’ learning of calculus 

that students understand function notation as more than a 
command to operate. If students conceptualize the difference 
quotient as an expression of relative size then they have an 
opportunity to coordinate their meaning for the difference 
quotient with their meanings for constant and average rate 
of change. This coordination of meanings would support 
the student in understanding the derivative as resulting from 
a linear approximation of the function’s behavior over an 
interval.

Since teachers also engage with the text, perhaps more 
so than students, we also focused on how teachers might 
implement their meaning for function notation in instruction. 
Since the texts focus on function notation as meaning a com-
putation, we anticipate that these texts do not provide oppor-
tunities for teachers, and thus students, to construct more 
robust and productive meanings for function notation that 
will be productive for understanding many ideas in calculus.

5.3.2  Text conveys relational meaning for function 
notation

Both OpenStax College (2017) and Connally et al. (2019) 
differentiate between the function name, independent vari-
able (“input”), and dependent variable (“output”) when 
introducing function notation. For example, OpenStax Col-
lege (2017) states:

“To represent ‘height is a function of age,’ we start by 
identifying the descriptive variables h for height and 
a for age.



561School students’ preparation for calculus in the United States  

1 3

h is f of a We name the function f; height is a function 
of age.
h = f(a) We use parentheses to indicate the function 
input.
f(a) We name the function f; the expression is read as 
‘f of a’” (p. 4).

However, after introducing this meaning for function 
notation the authors focus on the skill of interpreting func-
tion notation as a command to evaluate. The homework sec-
tion associated with this lesson includes 27 problems on 
function notation and 23 of these problems ask students to 
evaluate f(x) for a specified value of x given a function pre-
sented graphically or algebraically. Only four problems ask 
students to interpret the meaning of, for example f(2) = 300, 
in a contextual situation.

Similarly, Connally et al. (2019) states:

“To indicate that a quantity Q is a function of a quan-
tity t, we abbreviate using function notation and write 
Q = f(t). Thus, applying the rule f to the input value, 
t, gives the output value, f(t), which is a value of Q” 
(Sect. 1.1).

While the authors include some homework items that 
focus on interpreting function notation in context over 70% 
of the function notation problems focus on the skill of evalu-
ating a function given a graphical or algebraic presentation 
of the function.

5.3.2.1 Implications for  students’ learning and  teachers’ 
instruction of function notation Given that a large percent-
age of textbooks’ function notation exercises focus on using 
a function’s rule to calculate a value, we anticipate teachers 
and students who already see mathematics as about calcula-
tions are reinforced by the textbooks’ heavy focus on cal-
culating “outputs” from “inputs”. Thus, it seems unlikely 
that these texts provide sufficient motivation for teachers 
to highlight representational power of function notation in 
ways that will be productive for students in calculus.

6  Conclusion

The analyses presented here suggest that U.S. students have 
limited opportunities to construct mathematical meanings 
productive for understanding calculus. We argue there is 
evidence of a large disconnect between meanings conveyed 
by textbooks and held by teachers and meanings that would 
be productive for students’ understanding of major ideas in 
calculus.

We documented similarities among U.S. calculus stu-
dents’ meanings, U.S. high school teachers’ meanings, and 
textbooks’ presentations. These similarities highlight an 
ecology of unproductive meanings in U.S. mathematics 
education. The data suggests U.S. teachers and students 
share many meanings for slope, average rate of change, 
and function notation and these meanings are unproductive 
for understanding calculus. As stressed by Thompson and 
colleagues (Thompson, 2013, 2016; Thompson & Milner, 
2019), it seems U.S. teachers’ university mathematics and 
professional training have little influence on the mathemat-
ical meanings they developed in high school. A majority of 
U.S. teachers in our sample appear to have experienced a 
continuity of meanings as they progressed from their high 
school education through their university experiences and 
back into the high school classroom as teachers.

That teachers experience this continuity of meanings 
suggests that attempting to support students in recon-
structing their meanings in calculus is too late. Students 
are able to assimilate much of calculus with their exist-
ing meanings – meanings that worked in school because 
they were consistent with textbook authors’ and teachers’ 
meanings. Thus, we conjecture that if we limit our con-
ception of calculus reform to the teaching and learning of 
calculus we are too late. Instead, as we consider calculus 
reform we must give serious attention to middle school and 
high school curricula as well as professional development 
opportunities for middle school and high school teachers.

We are optimistic that such reforms are possible in the 
U.S. since U.S. and Korean teachers demonstrated signifi-
cantly different meanings for slope, average rate of change, 
and function notation. We take this as evidence that the 
meanings prevalent among U.S. high school teachers are 
culturally embedded in the U.S. educational system; teach-
ers do not experience occasions where they are prompted 
to rethink their meanings for slope, function notation, and 
average rate of change. This suggests that calculus reform 
efforts in the U.S. must support both school teachers and 
school students to overcome what Artigue (1992) called 
obstacles of a didactic nature: “obstacles linked to the 
choices and characteristics of the educational system” (p. 
110). In other words, the system of meanings embedded in 
U.S. school mathematics is culturally embedded and these 
meanings are deeply rooted as teachers carry their mean-
ings with them through university mathematics. Thus, it 
will take carefully designed experiences to support stu-
dents and teachers in reconstructing their mathematical 
meanings.
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