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Abstract
Existing literature reviews of calculus learning made an important contribution to our understanding of the development of 
mathematics education research in this area, particularly their documentation of how research transitioned from studying 
students’ misconceptions to investigating students’ understanding and ways of thinking per se. This paper has three main 
goals relative to this contribution. The first goal is to offer a conceptual analysis of how students’ difficulties surveyed in 
three major literature review publications originate in the mathematical meanings and ways of thinking students develop 
in elementary, middle and early high school. The second goal is to highlight a contribution to an important aspect that the 
articles in this issue make but was overshadowed by other aspects addressed in existing literature reviews: the nature of the 
mathematics students experience under the name “calculus” in various nations or regions around the world, and the rela-
tion of this mathematics to ways ideas foundational to it are developed over the grades. The third goal is to outline research 
questions entailed from these articles for future research regarding each of them.

Our article makes two contributions: first, it builds from sur-
veys of calculus research to address an issue not addressed 
by any: the impact of mathematical understandings students 
develop in early grades on their learning of calculus. We 
examine research on students’ early learning of algebra both 
in terms of what it says about what students do and do not 
learn about ideas foundational to calculus. We then provide 
conceptual analyses of these same ideas with an idea of how 
they might be fostered in early grades so students’ under-
standings of them are relevant to learning calculus.

The second contribution is to introduce the articles in this 
issue. Some of them address issues related to our first part; 
some do not. That is understandable—our call for papers 
simply requested that articles attend to the case of calculus 
in their country or region. Our hope was, as a collection, 
the issue would provide a picture of calculus learning and 
teaching around the world.

1  Surveys of research on calculus learning 
and teaching

Inquiries into calculus learning, teaching, and curricula 
have happened for decades. Smith (1970) gave an anecdotal 
report of a calculus curriculum designed around computer 
usage and students’ responses to it. Tall and Vinner (1981) 
employed Vinner’s ideas of concept image and concept 
definition to delve into students’ difficulties with limits and 
continuity. Orton (1983a, 1983b, 1984) produced a series of 
landmark studies of students’ understandings of differentia-
tion, integration, and rate of change. These studies were just 
the first of many investigations of students’ understandings 
of ideas of calculus and reports of different approaches to 
the reform of calculus curricula and calculus instruction.

Rasmussen et al. (2014) edited a special issue of ZDM 
Mathematics aimed at “taking stock” of calculus research. 
They identified four trends in the calculus research literature: 
studies identifying misconceptions; studies investigating 
the processes by which students learn particular concepts; 
studies dealing with instructional treatments, and studies in 
teacher knowledge, beliefs, and practices.

Bressoud et al. (2016) produced an ICME topical survey 
on calculus research. Their explanation of the survey’s pur-
pose was that it.
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… aims to give a view of some of the main evolu-
tions of the research in the field of learning and teach-
ing Calculus, with a particular focus on established 
research topics associated to limit, derivative and inte-
gral. These evolutions are approached with regard to 
the main trends in the field of mathematics education 
such as cognitive development or task design. (p. 1)

Bressoud et al. also (2016) highlighted various theoretical 
frameworks within which studies were conducted and their 
influence on the natures of reported research.

Larson et al. (2017) surveyed research on learning and 
teaching calculus and also surveyed recent reform attempts 
in calculus curricula that take research into account. It would 
be at least redundant for us to survey the same literature as 
these three collectively did. Our strategy instead will be to 
summarize them and add a dimension unaddressed by all 
three—research on ideas foundational to students’ calculus 
learning and possible links to students’ difficulties reported 
in research already surveyed.

Our first section will summarize the surveys by Bres-
soud et al. (2016), Larsen et al. (2017), and Rasmussen et al. 
(2014). The second section will provide a conceptual analy-
sis of variation, covariation, accumulation, and constant and 
average rate of change. We will use this conceptual analysis 
as context for discussing research on learning and teaching 
the same at grade levels prior to when students first meet 
calculus. The third section will introduce the articles in this 
issue.

1.1  Research surveyed by Bressoud et al., Larsen 
et al., and Rasmussen et al.

All three surveys addressed the question of what fundamen-
tal concepts and ways of thinking are crucial to students’ 
understanding of calculus. Each of them identified the con-
cepts of limit, derivative, and integral as fundamental cal-
culus concepts.

Bressoud et al. (2016), as well as Larsen et al. (2017), 
cited Cornu (1981, 1983, 1991) as finding that everyday 
meanings of terms involved the mathematical definition of 
limits impacts students’ conceptualization of limit. As an 
example, they discuss students’ interpretation of the term 
“approaching” as getting progressively closer to an unreach-
able value, while the term “limit” as boundary not to be 
surpassed. Bressoud et al. and Larsen et al. indicate both 
interpretations are akin to the notion of limit as a process 
rather than as process encapsulated into a number (Cottrill 
et al., 1996; Tall & Vinner, 1981), which is the conceptual-
ization consistent with the formal definition of limit.

As to ways of thinking impacting students’ understanding 
of the concept of limit, Larsen et al. (2017) cite Szydlik’s 
(2000) finding that students who view calculus as a set of 

procedures and facts to be memorized possessed increased 
misconceptions of limit as an unreachable value or a bound-
ary, whereas students who view calculus as a body of mean-
ingful knowledge they are capable of figuring out were more 
likely to demonstrate understanding of limit consistent with 
the formal definition.

Both Bressoud et al. (2016) and Larsen et al. (2017) dis-
cuss Oehrtman’s (2009) typology of metaphors, or concept 
images, governing students’ conceptualization of limit, the 
most useful in supporting students’ reasoning involves the 
image, which can be expressed as follows: the measures of 
two quantities, A and B, are in a state of a rule-governed 
covariation proceeding reflexively in the following manner: 
a change in the measure of A brings about a change in the 
accumulation of the measure of B; and as the accrual’s incre-
ments to a particular measure of A progressively diminish 
to zero, B reaches the measure corresponding to f(B) in the 
covariation.

Larsen et al. (2017) found Oehrtman’s classification of 
limit as approximation as highly useful, most notably in the 
interpretation of Taylor series and Riemann Sum. Rasmus-
sen et al. (2014) cite Kouropatov and Dreyfus (2014) obser-
vation regarding students’ ability to leverage such images of 
approximation, in combination with the notion of accumula-
tion, to develop a perceptual understanding of the integral 
as a foundational background for learning the Fundamental 
Theorem of Calculus.

Other common concept images students construct for the 
concept of limit identified by Oehrtman (2009) include the 
proximity image (as x gets closer to y, f(x) gets closer f(y)), 
infinity-is-a-very-big-number image, and physical limita-
tion image (a smallest positive number exists). Collectively, 
researchers have concluded that these images—whether they 
are the effect of narrow instruction or of cultural and lin-
guistic references—are a source of students’ difficulties with 
the formal concept definition of limit. Larsen et al.’s survey 
found that such images are hard for instruction to alter, let 
alone eradicate.

1.1.1  Derivative

Both Bressoud et al. (2016) and Larsen et al. (2017) cite 
Orton’s (1983a) article which showed that while students 
are capable of carrying out procedures to differentiate func-
tions, they do not understand the quantitative meaning of 
derivative in terms of average and instantaneous rate of 
change; nor do they understand differentiation symbolically 
as limit at a point, or graphically as the slope of a tangent 
line at a point. Students’ difficulties with the concept of rate 
of change as well with the concept of slope was found by 
Orton to be rooted in their impoverished understanding of 
the concept of ratio as a multiplicative relation—a concept 
students should have mastered in early grades.
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A less elementary source of students’ difficulties with 
the concept of derivative is their inability to coordinate 
between covariations—specifically, between the covariation 
expressed in the function being differentiated and the covari-
ation between the slopes of secant lines and the input points 
of the function, as the secant lines progressively approach 
the tangent line. Furthermore, according to Nemirovsky 
et al. (1991), students’ weak understanding of the underlying 
quantitative meaning of derivative was found to account for 
their rigid focus on superficial visual features common to a 
graph of function and the graph of its derivative, rather than 
attention to quantitative relations between the two graphs 
as covariations.

Both Bressoud et al. (2016) and Larsen et al. (2017) 
found a study by Bingolbali et al. (2007) revealing. The 
study explores the influence of the departmental affiliation 
of students on their conceptualization of derivative—while 
mechanical engineering students tend to focus on rate of 
change, mathematics students incline towards tangent-ori-
ented aspects.

Attention to rate of change is more consistent with under-
standing of a function as a covariation (as a process, using 
APOS theory terms) whereas tangent oriented view is more 
consistent with understanding a function as a static object. 
Larsen et al. (2017) surveyed the work by Confrey and Smith 
(1994) and Thompson (1994b) indicating that the latter 
understanding of function is a source of problems students 
have with the interpretation of derivatives. Thompson and 
Carlson (2017) documented the importance of covariational 
reasoning to the development of conceptual understanding 
of the derivative.

In sum, these surveys suggest that quantitative reason-
ing with functions expressed dynamically, analytically, and 
graphically; ratio as a multiplicative relation; and coordina-
tion among covariations, are underlying cognitive roots for 
meaningful understanding of derivative.

1.1.2  Integral

The research on students’ understandings of integrals sur-
veyed by Bressoud et al. and Larsen et al. makes a strong 
case that students’ understanding of integrals is largely 
procedural, lacking quantitative meanings of accumulated 
change. Furthermore, textbooks typically focus on definite 
integrals, and do so symbolically as Riemann sums and 
graphically as area under a curve. It is not surprising, then, 
that Sealey (2008, 2014) found that students can compute the 
area under a curve but are not able to relate their computa-
tions to a Riemann sum as an accumulation. Definite inte-
grals are a number. The upper limit must vary for an integral 
to be a function of one variable. But the upper limit does not 
vary in a definite integral, nor does the interval over which a 
Riemann sum approximates a definite integral.

According to Larsen et al.’s (2017)’ discussion of Jones’ 
(2013) article, the most successful conceptualizations for 
dealing with the integral involved identifying the integrand as 
the derivative of some function, and “adding up pieces”—the 
latter being closely related to the concept of accumulation. 
We note that Jones (2013) did not find students who under-
stood “derivative of some function” to mean “rate of change 
of some function”. Rather, students understood “derivative” 
as the result of operating symbolically on an antiderivative.

Larsen et al. (2017) pointed to Thompson’s and Silver-
man’s (2008) observation that even though the concept of 
accumulation is rooted bodily in students’ day-to-day expe-
rience, in calculus students experience difficulty concep-
tualizing integration as an accumulation of multiplicative 
measures created in the process of covarying two quantities. 
It is critical to emphasize that key to this observation is the 
ability to coordinate schemes for, multiplicative measures, 
accumulation, and covariation of the two quantities. Larsen 
et al. noted also that the multiplicative measures in Thomp-
son’s model are not static representative rectangles; rather, 
they are “bits” of accumulations, each involves an average 
rate of change over an interval, the accrual of which is the 
net accumulation from some reference point. Larsen et al. 
(2017) say in sum that it is this network of constructs and 
their coordination that are crucial to understanding the fun-
damental theorem of calculus operationally.

2  Conceptual analysis of ideas foundational 
to calculus

As noted by Larsen et al. (2017), early research on under-
standing ideas of calculus was on students’ “misconcep-
tions”—ways students’ behavior departed from what authors 
took as normative understandings of topics like derivative, 
integral, and limit. Later research focused on students’ 
understandings per se, understandings that expressed them-
selves in what prior observers classified as misconceptions. 
Larsen et al. then described several efforts to design entire 
courses taking into consideration ways students tend to 
understand ideas of calculus. We believe it will be profitable 
for the research community to take a new perspective on stu-
dents’ difficulties in calculus—that many student difficulties 
in calculus are due to the meanings and ways of thinking at 
the root of variable, function, and rate of change that stu-
dents develop in elementary, middle and early high school.

2.1  Meanings and ways of thinking foundational 
to understanding variables and functions 
in calculus

Our conceptual analyses focus on foundational meanings 
and ways of thinking for variable, function, rate of change, 
and accumulation in separate subsections. At the same time, 
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it is important we acknowledge that they form a web, each 
drawing on aspects of others. It is also important we say our 
conceptual analyses are founded in scheme theory, where 
by “scheme” we mean “an organization of actions, opera-
tions, images, or schemes—which can have many entry 
points that trigger action—and anticipations of outcomes 
of the organization’s activity” (Thompson et al., 2014, p. 
11). While this definition of scheme might seem circular, it 
is not. It is recursive. A person’s scheme for constant rate of 
change, for example, could call upon her schemes for varia-
tion, accumulation, and proportionality.

We also alert readers that while discussing schemes for 
variable, function, rate of change and accumulation that 
are productive for understanding ideas of calculus we will 
speak at greater length about variable than about the others. 
Our motive is twofold: (1) we claim the field’s understand-
ing of ways students do and should understand variables is 
underdeveloped; and (2) we will argue that it will be highly 
productive for calculus students’ learning of function, 
derivative, and integral were they to have particular ways of 
understanding variables.

2.1.1  Variable

Schoenfeld and Arcavi (1988) shared ten definitions of 
“variable”, each reflecting a different usage of symbols in 
mathematical statements—ranging in formality from a quan-
tity whose value varies to any symbol whose meaning is 
not determined. They go on to say, in line with Freudenthal 
(1983), “the dynamic aspects of the variable concept should 
be stressed whenever it is appropriate and feasible” (Schoe-
nfeld & Arcavi, 1988, p. 426). In other words, they promote 
the idea that values of variables vary. However, to say values 
of variables vay begs the question of what it means for a 
person to understand “vary”. One meaning is you can sub-
stitute one value for another: “Suppose the value of x is 2. 
Now let the value of x be 3.” This meaning does not entail an 
image of continuous variation that is critical for understand-
ing ideas of calculus.

Castillo-Garsow (2012) reported a teaching experiment 
in which high school students displayed different ways of 
envisioning continuous variation. The first he called “chunky 
variation”. The second he called “smooth variation”. A per-
son thinking with chunky variation envisions a variable’s 
value varying in “chunks”—the variable’s value goes from 
one value to another like measuring sticks being laid. Inter-
mediate values are there, but the person does not think of the 
variable attaining them. One student in Castillo-Garsow’s 
study repeatedly referred to a bank accounts balance grow-
ing each year, each month, and each day—but never spoke 
of the balance growing within a year, month, or day. This 
same student, after saying 65 miles per hour means you go 
65 miles in one hour, initially said “no” when asked, “Can 

you travel 65 miles per hour for one second?”, then hesitated 
and said you could if you changed one hour to seconds.

A person thinking with smooth variation envisions 
change in progress within intervals of change. Castillo-
Garsow described a second student who described a bank 
account’s value growing constantly.

Smooth thinking, in contrast, is inherently continuous 
… When Derek imagined change in progress from zero 
to one year, he could not imagine jumping directly to 
one year, because in order for time to get to one year, it 
has to pass through every moment of time before that 
year. (Castillo-Garsow, 2012, p. 62)

Castillo-Garsow et al. (2013) went on to describe smooth 
thinking more explicitly in terms of envisioning change in 
the flow of time.

Ongoing change is generated by conceptualizing a 
variable as always taking on values in the continuous, 
experiential flow of time. A smooth variable is always 
in flux. The change has a beginning point, but no end 
point. As soon as an endpoint is reached, the change 
is no longer in progress. (Castillo-Garsow et al., 2013, 
p. 34)

Consequences of students not thinking that variable’s 
values vary can be severe.1 White and Mitchelmore (1996) 
reported their effort to emphasize conceptual understanding 
of derivative as rate of change.

The number of students who could symbolize rates 
of change in noncomplex situations increased dra-
matically. However, there was almost no increase in 
the number who could symbolize rates of change in 
complex items or in items that required modeling a 
situation using algebraic variables. Detailed analy-
sis revealed three main categories of error, in all of 
which variables are treated as symbols to be manipu-
lated rather than as quantities to be related. (White & 
Mitchelmore, 1996, p. 79)

White and Mitchelmore’s statement that students saw 
symbols to be manipulated as distinct from representing 
quantities’ values points to students’ not reasoning quanti-
tatively about situations to be modeled. More to the point, 
however, students did not see symbols as representing val-
ues of quantities whose values varied, which was essential 
for them to think of quantities having a rate of change with 

1 We readily admit the power of using symbols to represent 
“unknowns”. For example, Schoenfeld (1988) posed this problem: 
Reverse the digits in 39 and 62. Then 39 × 62 = 93 × 26. Are there 
other pairs of numbers having this property? By representing digits’ 
place value you get (10a + b)(10c + d) = (10b + a) (10d + c), which 
reduces to ac = bd.
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respect to each other. In our judgment, White and Mitchel-
more’s observations point less to the ineffectiveness of their 
treatment and more to the effect of meanings for variable 
students developed in prior schooling.

While there is an abundance of research on the develop-
ment of elementary and middle school students’ concept of 
variable, there is little research on ways students envision 
variables’ values varying. One reason is that many research-
ers themselves presumed “varying” meant replacing one 
value by another (e.g., Ayalon et al., 2015; Bardini et al., 
2005; Duijzer et al., 2019; Graham & Thomas, 2000; Küche-
mann, 1978, 1981, 1984; Moss et al., 2019; Radford, 1996; 
Schliemann et al., 2003; e.g., Trigueros & Ursini, 1999; 
Weinberg et al., 2016).

Other researchers investigated the development of alge-
braic reasoning, but defined it as generalizing from opera-
tions on numbers—which most often were whole numbers 
(Blanton, 2008; Blanton et al., 2015, 2019; Brizuela & Ear-
nest, 2007; Carpenter et al., 2003; Carraher et al., 2000; 
Franke et al., 2007; e.g., Schifter et al., 2007), which leads 
naturally to students’ taking for granted that variables have 
natural number values (Van Hoof et al., 2014). Letters still 
stood for unknown or to-be- known numbers in students’ 
experience when generalizing from arithmetical operations 
on numbers. Other researchers investigated students’ alge-
braic reasoning, defining algebraic reasoning as using letters 
to represent numerical patterns. To researchers investigating 
children’s meanings of variables letters stood for replace-
able numbers—one number could be replaced by another 
in the general statement. We see early algebra researchers’ 
common use of “vary” to mean drawing from a replacement 
set as explaining the dearth of research on school students’ 
images of ways variables’ values vary.

What meaning for variable’s values would we have 
students develop in lower grades that would support later 
learning in calculus? Certainly, meanings that entail smooth 
variation. But even that would not be enough. If calculus stu-
dents are to understand something akin to instantaneous rate 
of change, they must envision that smooth variation happens 
in bits. Understanding the expression

as a quotient of variations requires students to first under-
stand the value of x as a variation from 0, the value of 
(x + h) − x as a variation from x to x + h , the value of f(x) as 
a variation from 0,2 the value of f (x + h) − f (x) as a variation 
from f (x) to f (x + h) , and the quotient to be a measure of 

f (x + h) − f (x)

(x + h) − x

the relative size of the two differences. But what should they 
understand actually varies? We cannot say that the value of 
x varies from x to x + h . We are forced to create a mental 
object which can have a value of x and have a value of x + h . 
Then the value of this mental object can vary from x to x + h 
and the value of another mental object can have a value that 
varies from f (x) to f (x + h) . We argue that students would be 
more successful in creating such mental objects if they had 
experiences in earlier grades thinking about and speaking of 
actual quantities with actual values that vary.

For example, if x represents the height of water in a tank 
in centimeters and f(x) represents the volume of water in the 
tank at height x centimeters, then (x + h) − x is the varia-
tion in the water’s height from x to x + h and f (x + h) − f (x) 
is a corresponding variation in the water’s volume as the 
height varies from x to x + h (Fig. 1). It is important to see 
in Fig. 1 that values and variations are represented on axes. 
This emphasizes that it is variation in quantities’ values that 
students must relate.

The value of h is the “bit” by which the value of the 
water’s height varies after varying from 0 by x centimeters. 
The value of f(x + h) – f(x) is the “bit” by which the water’s 
volume varies from f(x) to f(x + h) centimeters after varying 
from 0 by f(x) centimeters, and the water’s volume covaries 
(varies simultaneously) with its height as the height varies 
from x by h centimeters. Not only does the height’s value 
vary smoothly from x to x + h after varying from 0 by x 
centimeters, it varies smoothly by bits within any interval 
contained in x to x + h . This is the motive for Thompson and 
Carlson (2017) defining smooth continuous reasoning, the 
highest level of variational thinking, recursively:

[A person reasons with smooth continuous variation 
when] the person thinks of variation of a variable’s … 
value as increasing or decreasing … by intervals while 

Fig. 1  Variation in the value of x and the corresponding variation in 
the value of f(x)

2 Here we finesse the matter of function notation, which is notori-
ously confusing for students and teachers (Carlson, 1998; Even, 1990; 
Sajka, 2003).
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anticipating that within each interval the variable’s 
value varies smoothly and continuously. The person 
might think of same-size intervals of variation, but 
not necessarily. (Thompson & Carlson, 2017, p. 440; 
emphasis added)3

We see little evidence that students in lower grades are 
supported in building images of large variations in a vari-
able’s value happening in small amounts. The default change 
is + 1, which students can assimilate easily into a “replace-
ment” meaning of varying—x is 0, then 1, then 2, and so 
on. We suspect that textbook authors and teachers may feel 
that students need to actually calculate changes in order to 
reason about them. A practice of calculating all changes 
would interfere with students building an image of a vari-
able’s value varying from, say, 2 to 3 in 10,000 bits. A more 
natural approach might be for teachers to speak consistently 
about changes happening smoothly and to manage reflec-
tive discussions of animations used in problematic contexts 
showing small bits of variation as they make large variations 
(like grains of sand being poured into a cup). The teacher 
could pause the animation at several moments to discuss the 
accumulated variation and its measure.

2.1.2  Function

Students conceiving variation productively affords them 
the possibility to think of covariation productively. Carlson 
et al. (2002), Kruger (2019), Nemirovsky (1996), Oehrtman 
et al. (2008), Thompson (1994a), and Thompson and Carl-
son (2017) make a compelling case that understanding func-
tions covariationally—as an invariant relationship between 
two quantities’ values as they vary simultaneously—is the 
most important meaning of function for students learning 
calculus. But it is too much to ask students to develop this 
meaning for function in their study of calculus. It is entirely 
appropriate to emphasize covariation of quantities’ values 
in middle school and lower high school (Confrey & Smith, 
1995; Ellis et al., 2016; Smith & Confrey, 1994).

The science education research communities are seeing 
the importance of smooth continuous variational and covari-
ational reasoning in physics (Boudreaux et al., 2020; Brah-
mia et al., 2021; Carli et al., 2020; Christensen & Thomp-
son, 2012; Doughty et al., 2014; Fuad et al., 2019; Lucas & 
Lewis, 2019; McDermott et al., 1987; Sokolowski, 2020; 
Thompson, 2006), chemistry (Rabin et al., 2021; Rodriguez 
et al., 2018), biology (Bressoud, 2020; Lehrer et al., 2020; 

Roth & Temple, 2014), geosciences (González, 2021), and 
economics (Feudel & Biehler, 2020). This is not surprising 
to us. The ideas of variation in quantities’ values and covari-
ational relationships among quantities’ values are central 
to understanding ideas in science and economics. They are 
also central to students’ developing powerful understand-
ings of accumulation and rate of change—foundational ideas 
for students to recognize the utility of calculus in scientific 
fields. We discuss accumulation and rate of change in the 
next section.

2.1.3  Accumulation and rate of change

The importance of students conceiving integrals as accu-
mulation functions is gaining wide acceptance (Carlson 
et al., 2001; Doughty et al., 2014; Jones, 2013; Kouropatov 
& Dreyfus, 2013, 2014; Palha & Spandaw, 2019; Sealey, 
2014; Swidan, 2020; Swidan & Naftaliev, 2019; Thompson 
& Silverman, 2008; Thompson, 1994a). It is also clear from 
this same research that the idea of an accumulation function 
is nontrivial for students. Our reading of the literature is that 
students’ understandings of accumulation can break down at 
many points. First, they must be able to reason about vari-
ation of quantities’ values happening cumulatively, in bits, 
where the bits are at least chunky (Castillo-Garsow, 2012) as 
distinct from envisioning variation happening as if a rubber 
band is being stretched. With the latter image, nothing accu-
mulates even though the quantity’s value varies. Further, 
for students to conceptualize an accumulation of one quan-
tity to have a rate of change with respect to accumulation 
of another, students need to envision variations happening 
within bits—at least smoothly and at best smoothly and con-
tinuously (Byerley 2019).4 Jones (2013), Sealy (2014), and 
Thompson (1994a, 1994b) documented difficulties students 
have conceptualizing integrals as Riemann sums when they 
do not envision variations in variables’ values happening in 
bits and do not conceive the variations covariationally.

Our characterization of conceptualizing functions as 
covariational relationships between quantities’ values as they 
vary, and variations in quantities values as accumulations, 
highlights the strong connection between calculus mathe-
matically and calculus in scientific applications. Thompson 
and Ashbrook (2019) leveraged this connection by building 
approximate accumulation functions with reference point a 
as Riemann sums with variable upper limits. They then 
define exact accumulation functions asAf (a, x) =

x

∫
a

rf (t)dt , 

where rf  is a function whose values rf (x) are the rate of 

4 Two quantities conceived as having fixed values cannot be thought 
to have a rate of change. It would be like asking, “What is the rate of 
change of 5 with respect to 3?”.

3 Thompson and Carlson (2017) were careful to define “variable” 
as a symbol which represents the value of a quantity (concrete or 
abstract) whose value varies. They distinguished among using a sym-
bol as a variable, as a parameter, and as a constant, where the distinc-
tion resides in what the person intends to represent.
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change of a function f at each moment of its domain. The 
interpretation they offer students is, as explained by Ely (this 
volume), that 

x

∫
a

rf (t)dt means as the value of x varies, t varies 

smoothly from a to x, rf (t)dt calculates an infinitesimal bit 
of accumulation for each value of t, and the integral is the 
hyper-sum of the bits of accumulation.

For Thompson and Ashbrook (2019), values of the func-
tion f and x can be measures of any quantities that change in 
relation to each other. They treat area bounded by a curve 
as just a special case among many quantities, showing that 
f (x) is the rate of change of accumulated area as the value 
of x varies in rectangular coordinates, and that f (�)2∕2 is the 
rate of change of accumulated area as the value of θ varies 
in polar coordinates. Physical quantities are treated likewise. 
Density is a rate of change of mass with respect to volume, 
concentration is a rate of change of solute in relation to sol-
vent, force is the rate of change of momentum with respect 
to time, pressure is a rate of change of force with respect 
to area, and so on. This approach addresses the problem 
students in science courses have with understanding how 
integrals-as-areas apply in physical situations (Nguyen & 
Rebello, 2011).

In summary, research suggests many students have little 
opportunity to build meanings for variable, function, accu-
mulation and rate of change in early grades upon which they 
can build productively for understanding ideas in calculus. 
Our conceptual analyses suggest students will have a greater 
chance to conceive ideas in calculus productively when ideas 
of variation, covariation, function, accumulation, and rate of 
change are addressed thoughtfully in lower grades so their 
symbolic representations of them retain their imagistic foun-
dations. As Thompson (2008) insisted, “It takes 12 years 
to learn calculus”. We urge the calculus research field to 
consider this adage seriously and investigate the content of 
students’ learning in earlier grades in relation to their suc-
cesses and difficulties in calculus.

3  Articles in this special issue

Articles in this special issue address a broad range of con-
cerns related to calculus learning and teaching: students’ 
preparation for calculus; learning and teaching calculus per 
se; societal, political, and educational aspects of changes in 
high school and university calculus; and learning and teach-
ing multi-variable calculus.

3.1  Preparation for calculus

Frank and Thompson (this issue) delve into one aspect of 
issues we raised in our introduction. They illustrate ways 
curricula and instruction in the US pre-calculus curricula 

fail to support students’ understandings of important ideas 
foundational to the calculus. Toh (this issue) probes a dif-
ferent connection between students’ early mathematics and 
their study of calculus. He demonstrates that in Singapore, 
even with its vaunted international standing on TIMSS and 
PISA, the calculus curriculum is remarkably unconnected to 
its highly conceptual elementary and middle school math-
ematics curricula. Bressoud (this issue) wonders whether 
US students taking calculus in high school would be “bet-
ter served with more time spent on algebra and precalculus 
rather than studying calculus”.

Bressoud’s comment goes to the heart of the question, 
what does “knowing calculus” mean? He quotes the recom-
mendation by Steen and Dossey (1986) that calculus should 
not be taught in US high schools unless algebra had been 
taken in 8th grade. This recommendation can be and has 
been interpreted misguidedly, that what students require is 
the same algebra as normally taught, earlier. We suspect, as 
demonstrated by articles in this issue, that students need a 
different kind of algebra—one founded in generalizations of 
reasoning quantitatively—and a different calculus, one that 
builds on a new algebra. Harel (this issue) develops a strong 
argument that, even in multivariable calculus, for students 
to develop ideas meaningfully they must develop a strong 
foundation in reasoning quantitatively about covariation, rate 
of change, and accumulation. The articles by Frank et al., in 
our eyes, reveal the underlying issue in calculus curricula 
and instruction that seems common across nations. It is that 
derivatives and integrals, the major topics in calculus, even 
when developed “informally”, fail to engender an intellec-
tual need for them, where “intellectual need” is as described 
in (Harel, 2013).

We distinguish preparation for calculus from what oth-
ers have called preparation for university mathematics (e.g., 
Thomas et al., 2015). Ghedamsi and Lecorre (this issue) 
address the latter case. Their article includes analyses of (a) 
commonalities, not just discrepancies, between high school 
calculus and university calculus; (b) university instructors’ 
“calculus knowledge for teaching”, which includes both the 
content of high-school calculus as well as pedagogical con-
siderations employed by high-school teachers in teaching 
that content; and (c) possibilities for high school teachers to 
readjust their calculus teaching actions for advancing stu-
dents’ preparation for university calculus. The study shows 
that attention to theoretical foundations and deductive coher-
ence is a common feature to high-school calculus and uni-
versity calculus. However, despite this, high-school students 
enter university calculus with major shortcomings in dealing 
with formal definitions and theorems.

The distinction between preparation for calculus and 
preparation for university mathematics is needed when look-
ing across international borders; Ghedamsi and Lecorre’s  
study (this issue) is a case in point. In contrast, by “calculus” 
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we mean integral and differential calculus presuming the real 
continuum and presuming nearly-smooth functions (smooth 
except for a finite number of discontinuities). Students in 
many countries meet ideas of calculus in high school—some 
studying just differential calculus and some studying both 
differential and integral calculus. Analysis, the study of 
real numbers and real-valued functions, is commonly this 
group’s first mathematics course in university. As explained 
by Bressoud (this issue), a minority of US high school stu-
dents take either differential or differential + integral calcu-
lus in high school. Many of these students take the same 
content in university. For other students in the United States, 
university-level differential and integral calculus is their first 
contact with calculus.

3.2  Issues pertaining to calculus learning 
and teaching per se

Several articles in this special issue expand upon research 
surveyed in Rasmussen et al. (2014) and Bressoud et al. 
(2016) to focus on what students learn or what they might 
learn more productively. In this regard there is a difference 
of perspectives among authors from which they examined 
issues of learning and teaching calculus.

To say what students learn in calculus depends highly on 
what you assess. Tallman et al. (this issue) make a compel-
ling argument that US calculus instructors focus far more on 
what students are able to do and far less on the quality of stu-
dents’ understandings. Tallman et al.’s argument resonates 
with that of Frank and Thompson (this issue) in that focus-
ing on students’ retention of procedures and skills does not 
provide students with a repertoire of meanings and ways of 
thinking upon which they can build for future mathematics 
learning. On the other hand, the case of Singapore (Toh, this 
issue) also reminds us that solid preparation in pre-calculus 
mathematics does little to aid students in learning calculus if 
the calculus they are expected to learn is disconnected from 
that rich preparation.

Ely (this issue) describes the history and role of the idea 
of infinitesimal in calculus, including its replacement by 
ideas of limit and resurrection in Robinson’s (1966) devel-
opment of non-standard analysis. He argues that differen-
tials as infinitesimal quantities can be more meaningful to 
students in calculus than are ideas of limit. Ely also argues 
compellingly that the central issue is not just the relative effi-
cacy between a limit-based calculus and a differential-based 
calculus, but the relative efficacy between student-centered-
meaning-laden calculus and teacher-centered-procedure-
laden calculus.

Moreno (this issue) shares a personal story of teaching a 
course on calculus pedagogy that has general implications. 
His course is for teachers who teach calculus in high school 
and college. His approach, in our view, helps teachers gain 

a clearer distinction between calculus (as we defined it) and 
analysis. He does this by giving them grounded experience 
in the historical dilemmas in calculus that gave rise to analy-
sis, such as the need for rethinking ideas of rate of change 
and accumulation in calculus to accommodate differentia-
tion and integration of monster functions (borrowing this 
term from Lakatos) like those created by Dirichlet et al. 
Moreno’s approach is highly humanistic in that it focuses 
on the experience of teachers in his course so they can have 
a better understanding of what is properly the domain of 
calculus and what is properly the domain of analysis. In 
Harel’s terms, Moreno aims to establish intellectual need 
for ideas of analysis by having his teachers experience the 
dilemmas in calculus mathematicians faced that gave rise 
to it. Bressoud’s (2007) A Radical Approach to Analysis 
is a comprehensive implementation of a similar approach 
to undergraduate real analysis. Scucuglia et al. (this issue) 
take a humanistic approach to instruction of future calculus 
teachers similar to Moreno’s. They report their approach 
to engaging future teachers within a “humans with media” 
perspective. They focus not on “using computers in teach-
ing calculus”, but on the change in teachers’ thinking that 
happens in the learning process when computing technology 
becomes “ready at hand” (Winograd & Flores, 1986), when 
computing technology becomes an instrument of thinking 
for them (Artigue, 2002; Drijvers, 2002; Hickman, 1990; 
Vérillon & Rabardel, 1995).

Hitt (this issue) examines students’ performance in the 
reformed calculus curriculum in Quebec, Canada. A sig-
nificant element of this reform is an emphasis on mode-
ling activities involving kinematics problems as a source 
of and motivation for the generation of calculus concepts 
and ideas, on the one hand, and a deemphasis on symbolic 
manipulations on the other hand. The examinations centered 
around students’ representations as they attempted to model 
dynamic situations and the evolution of their representation 
as they work collaboratively. An important observation Hitt 
makes in his study is that while students experienced diffi-
culty constructing and articulating coherent representations 
for these problems when working individually, their collabo-
rative work effort led to convergent thinking that facilitated 
successful solutions of the problems.

Other articles in this issue worked from the perspective 
of interpreting students’ performance on common calculus 
tasks through the lens of competent performance, examin-
ing the fit between students’ thinking and what authors take 
as institutionalized thinking. Greefrath et al. (this issue) 
identify four “basic mental models” of the integral which 
they consider to be institutionalized in the mathematics com-
munity. They then assessed the prevalence of these models 
among students. Their perspective begins with ideas they 
presume are held by mathematicians and look to see the 
extent to which students also hold them. They conclude that 
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the mental models they identified cover the spectrum of stu-
dents’ understandings of integrals.

3.3  Societal, political, and educational aspects 
of changes in high school and university 
calculus

Curriculum reform at a national level is heavily context 
dependent. Stakeholders often collectively exert political 
and intellectual pressure on the group producing the reforms. 
An extreme example is what were called “the math wars” 
in the United States (Bishop, 1999; Jacob, 2001; O’Brien, 
1999; Schoenfeld, 2004).

Two articles in this issue take very different perspectives 
on calculus reform in their nations. Yoon et al. (this issue)  
examine the process of calculus reform in South Korea from 
the outside, giving an account of the societal pressures on 
calculus reform, taking into account stakeholders’ motives 
for their support or opposition to the work of reform as it 
developed. Dreyfus et al. produced an insiders’ account of 
Israel’s first curriculum document for high school mathemat-
ics, focusing specifically on its calculus component.

The effort in South Korea happened in the context of 
larger educational reforms that aimed to lessen students’ 
and parents’ anxiety produced by a highly rigorous and 
demanding high school mathematics curriculum. Com-
peting pressure came from groups concerned that relaxed 
rigor might affect the quality of what South Korean students 
learned. The effort in Israel was motivated by the disorder 
that arose naturally over time from the historical lack of 
mathematics curriculum documents. Dreyfus et al.’s account 
of this work focuses on the ways mathematics education 
research informed their decisions (largely indirectly) and the 
overall design principles of the new mathematics document, 
which aim to support students having positive mathemati-
cal experiences while learning a more coherent mathemat-
ics. They also speak of a major constraint on the calculus 
curriculum document itself—teachers’ capacities to teach a 
more conceptually coherent calculus than the ones to which 
they had become accustomed.

3.4  Learning and teaching multi‑variable calculus

Martinez-Planell and Trigueros (this issue) and Harel (this 
issue) address learning and teaching multivariable calculus. 
Martinez-Planell and Trigueros provide a literature review 
focusing largely on the learning and teaching of calculus of 
two-variable functions, particularly the conceptual demand 
involved in its acquisition as students transition from singe 
variable calculus to multivariable calculus. The study con-
cludes that while understanding the calculus of one-vari-
able functions is essential to understanding the calculus 
of two-variable functions, it is by no means sufficient to 

successfully deal with the demand to coordinate among the 
fundamental planes comprising the 3-dimensional represen-
tation of a real-valued function on R2 . At the heart of this 
conceptual demand, Martinez-Planell and Trigueros argue, 
is spatial reasoning abilities, communication, and mathemat-
ical representation skills in 3D space. Instructional implica-
tions drawn from the research review include the need to 
underline the role of local approximation (i.e., linearization) 
and the need to introduce 3D geometry early.

Harel, too, addresses the issues of linearization and geo-
metrical representation in the learning and teaching of mul-
tivariable calculus, albeit his analyses are not restricted to 
the calculus of two-variable functions. He demonstrates how 
current instruction pays scant attention to linear approxima-
tion despite the central role it plays in the study of calculus, 
and how the prevalent treatment of linearization in current 
instruction is through graphical representation with insuf-
ficient attention to phenomenological experiences involving 
quantitative covariation. Harel theorizes the potential con-
sequences of current multivariable instruction against those 
entailed from instruction guided by the DNR framework. 
His analysis reveals advantage of the latter over the former 
in the quality of understanding the concept of function as 
a covariational processes; in understanding the concept of 
derivative as a linear approximation; in understanding the 
relation between composition of functions and their Jaco-
bian matrices; in understanding the idea underlying the con-
cept of parametrization and the rationale underpinning the 
process of implicit differentiation; as well as in thinking in 
terms of structure, in constructing coherent mental represen-
tations; and in making logical inferences.

4  In closing

The articles in this special issue speak collectively to calcu-
lus learning and teaching around the world. Some articles 
report national efforts to take research on student learning 
into account as one factor in redesigning national curricula. 
Other articles examine efforts to improve students’ learning 
of specific ideas. Several articles portray calculus in disar-
ray in the United States—it being largely a university course 
except for a small number of high school students who take 
calculus in high school and move directly to a higher cal-
culus at university, and university courses being assessed in 
contrast to instructors’ stated goals. Calculus in Europe is 
commonly a high school subject, but the state of students’ 
preparation for it is largely unexamined. Calculus in Singa-
pore, at least as suggested by Toh, is largely disconnected 
from students’ conceptual preparation for it in prior grades. 
One thing we haven’t learned is the extent to which calcu-
lus is being taught in line with the issues we articulated at 
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the beginning of our article—the extent to which calculus 
emphasizes variation, rate of change, and accumulation.

These considerations lead us to three questions for future 
research.

1. What prior-to-calculus mathematical meanings and rea-
soning abilities might students develop in elementary, 
middle, and secondary grades to enhance their transition 
to calculus? To what extent must prior-to-calculus cur-
ricula and instruction target those meanings with an eye 
to the ways they are important for learning calculus? To 
what extent must calculus textbook writers and instruc-
tors have an image of ways pre-calculus meanings and 
ways of thinking are foundational for ideas in calculus 
to leverage them productively?

2. Successful curricula require constructive and robust 
interactions among a triad of elements: (a) production of 
national mathematics curriculum documents, (b) mathe-
matics education research, and (c) teachers’ understand-
ings of content, cognition, and pedagogy. Investigating 
these interactions in a way that respects differences 
among nations and cultures requires sociological and 
cognitive methodologies outside of traditional math-
ematics education research. How can these interactions 
be investigated systematically at an international level?

3. Differentials-based calculus is not accepted widely. 
Why? Is it an interaction between what textbook pub-
lishers believe textbook adopters want and attitudes and 
beliefs among textbook adopters about what students 
need to learn? Might it be that the tension is not the 
relative efficacy between a limit-based calculus and a 
differential-based calculus, but instead between beliefs 
about the relative efficacy of student-centered-meaning-
laden calculus and teacher-centered-procedure-laden 
calculus?

These questions by themselves are overly broad, but they 
provide an umbrella for studies with more focused questions 
that contribute to answering them.
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