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My work with microworlds has been to design com-
puterized environments that allow two foci: conceptual development and 
mathematical problem solving. The theory behind that approach has been 
elaborated elsewhere (Thompson, 1985a). In this chapter I will only briefly 
touch upon theoretical motivations, devoting the majority of the discussion to 
what I mean by a mathematical microworld, how one works, and to issues of 
designing microworld environments. 

The discussion in this chapter is framed by the research program in which 
I have been engaged over the past four years. Figure 5.1 outlines the principal 
components of that program. It shows that remarks given here about the design 
of software to be used in mathematics teaching and learning are not given in 
isolation. Rather, they are informed by results, conceptions, and metaphors 
from investigations of cognitive processes of mathematical comprehension and 
problem solving, prescriptions for cognitive objectives of instruction, and 
analyses of mathematical content (Dreyfus & Thompson, 1985; Thompson, 
1985a). Each of these, in turn, is informed by knowledge gained through re-
search and development of software for teaching and learning mathematics 
(Thompson, 1985b, 198Sc; Thompson & Dreyfus, in press). I do not mean to 
say that one must accept the research program outlined in Fig. 5.1 to design 
mathematical microworlds. Rather, I mean only to say that issues of design are 
at heart theoretical, and as an aid to communication it helps to make explicit 
one's theoretical perspective from the outset. 

Revised version of a paper presented at the Invitational Workshop on Intelligent Computer-Assisted 
Instruction and Personal Computers, San Diego, CA, February 1985. The author wishes to thank 
Matthew Lewis for his helpful and insightful reactions to a draft of this chapter. 
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Figure 5.1 The four components of a research program on understanding 
and improving mathematics teaching and learning. 

Before characterizing mathematical microworlds, it will be instructive to 
discuss the educational problem they address. It is this: far too many students 
do not understand that mathematical symbol systems are fundamentally rep-
resentational; they are contrived by individuals or communities to provide eco-
nomic ways to think about complex ideas. Instead, students typically perceive 
that mathematics is concerned primarily with making marks on paper, and that 
the aim of mathematics instruction is to teach them how to make correct marks 
at correct positions on the paper. The goal that mathematical microworlds serve 
is to provide students with opportunities to create mental models that reflect 
the structure and composition of the formal systems our culture has deemed 
important to learn. Once in place, a mental model serves as a stepping-stone 
for students in their reconstruction of their qualitative knowledge into a formal 
system. In short, a mathematical microworld provides a dynamic semantics for 
a formal system. 

I should also make clear an underlying philosophy of mathematical micro-
worlds. It is that they act as objective systems, in the sense of physical systems 
studied by scientists. A consequence of this philosophy is that microworlds do 
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not teach; they do not provide instruction. The reason is that when a scientist 
performs an experiment upon a physical system, the system does not comment 
on the quality of the experiment. Rather, it merely behaves. A scientist attempts 
to hypothesize the principles by which a system operates by observing the 
system's behavior under experimental conditions. The scientist does not get 
advice from the system.* 

This chapter has five sections. The first discusses general characteristics of 
microworlds and gives an in-depth example of one-a microworld for isometric 
transformations of the plane. The second and third sections discuss issues and 
principles in designing mathematical microworlds. The fourth section discusses 
shortcomings that have been found and enhancements that make use of artificial 
intelligence. The fifth section discusses possibilities for intelligent microworlds 
in schools. 

Mathematical Microworlds 
I will use "mathematical microworld" to mean a system composed of objects, 
relationships among objects, and operations that transform objects and relation-
ships. This characterization is meant to capture the idea of a mathematical 
system as constructed from primitive terms and propositions, where the full 
system initially exists only potentially but includes features that allow students 
to expand that potential. 

It is unfortunate that the generic term "microworld" has been used so many 
different ways. Papert's (1980) use of "microworld" includes a procedure to 
create spiral polygons and a program to simulate Newton's third principle of 
thermodynamics (diSessa, 1982). Lawler (1982) uses "microworld" to describe 
mental constructs that are often called schemata in cognitive psychology; in 
lawler (1984), "microworld" describes any program that provides "inherently 
interesting phenomena." Rather than attempt to create a new name, I use the 
qualifier "mathematical" to distinguish the systems described here from what 
have been called microworlds by others. 

In practice, a mathematical microworld incorporates a graphical display 
that depicts a visualization of the microworld's initial objects. The display in 
conjunction with operations upon the microworld's objects constitutes a model 
of the concept or concepts being proposed to the students. In a very real sense, 
the microworld embodies the structure of the concept. The students' task is to 
internalize that structure and make it their own. 

The last criterion listed-that the system contain operations by which new 
can be made-is essential. This is what makes a mathematical micro-

• My favorite analogy is one concocted by a graduate student: If you want to become an expert 
archer, you practice archery. Suppose you shoot an arrow at a target and the arrow is wide to the 
left. The target doesn't yell "Hey, more to the right." Rather, you judge the efficacy of your proce-
dures by their results and modify them accordingly. 
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world mathematical. In a sense, it forces the system to be a mathematical pro-
gramming language. However, the result of programming is not a "program." 
The result is a new mathematical object. That is, a mathematical microworld 
constitutes the core of an intuitive axiom system, where students can define 
new objects and operations and interactively investigate their properties. 

Examples of Mathematical Microworlds 
Fuller, Prusinkiewicz, and Rambally (1985) have developed a microworld called 
LEGO for creating geometric illustrations. Though their intention was that LEGO 
be used only by a teacher for demonstrations, it contains all the ingredients 
listed above for being a mathematical microworld. Each command in LEGO is 
a function that happens to create a geometric object. New functions (objects) 
are defined by composing existing ones and giving the composition a name. 
New operations on objects (such as intersection and union) are also defined by 
composition. Greenleaf (1984) reports a similar system, called EUCUO. EUCUD 
not only gives the capability of composing functions, but also includes a pro-
gramming language. Neither LEGO nor EUCLID runs on microcomputers. LEGO 
runs on a VAX-730, under Franz LISP, while EUCLID requires specially de-
veloped hardware. 

Rocky's Boots, by the Learning Company, is almost a mathematical micro-
world for Boolean algebra. One constructs "selection mechanisms" (logic cir-
cuits) that cause Rocky the Raccoon to kick objects that possess certain attributes. 
One feature it lacks is that it does not contain a formalism that allows a student 
to represent the effect of one's mechanisms. The need to include a formalism 
in a mathematical microworld is addressed in a later section on design issues. 

Other examples of mathematical microworlds are the Geometric Supposer 
by Judah Schwartz, published by Sunburst, and a Marble Bag microworld being 
developed by Wally Fuerzeig (1986) under the sponsorship of the National 
Science Foundation. 

MOTIONS is a microworld for isometric transformations of the plane (map-
pings of the plane that preserve distances between points) that I developed 
several years ago to run on Apple II's and Commodore 64's. It is designed to 
be used at a number of grade levels, ranging from junior high school to univer-
sity teacher education courses. At the teacher education level, it typically is used 
for a total of 10 weeks (sometimes spanning two courses). 

MOTIONS was designed with a set of cognitive goals in mind. These, briefly, 
are that students understand motion geometry as a mathematical system, and 
that they develop concepts of multivariate mappings, invariances under map-
pings, and of composition as an operation upon mappings. Thompson (1985a) 
gives a detailed treatment of MOTION's cognitive goals. 

The MOTIONS microworld shows a pennant within a Cartesian coordinate 
system. The pennant has three properties: a position, a heading, and an orienta-
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tion. Each property is defined by convention. The pennant's position is the 
position of the bottom tip of its staff. The pennant's beading is the direction of 
the ray emanating from its position and passing through its staff, as measured 
from the right horizontal. Its orientation is the direction one would turn (right 
or left) were one traversing the pennant from the tip of its base. 

The pennant's position and heading are given in a status line, along with 
the measure of the angle formed by the horizontal x-axis, the origin, and the 
pennant's position (Fig. 5.2). The pennant's orientation is not listed since it is 
visually apparent. 

The operations allowed by MOTIONS are translations, rotations, and reflec-
tions (flips). The format for executing each is given below. 

COMMAND 
T heading distance 

R degrees 

F heading 

MEANING 
Translate the plane in a direction of heading 
through a distance of distance units. 
Rotate the plane about the origin through an 
angle of measure degrees. 
Flip (reflect) the plane through the line passing 
through the origin in the direction of heading. 

Figure 5.3 shows a succession of displays as commands are entered. Each 
command operates upon the last-drawn pennant. Hence, effects upon the 

..................... t .................. .. 
1 : 

I 
POS: 0 0 HEADING: 90 ANGLE: UNDEFINED 
COMMAND: 

Figure 5.2 The initial display of MOTIONS. POS gives the pennant's position. 
HEADING gives its direction as measured counter-clockwise in 
degrees from the right-horizontal. ANGLE gives the measure in 
degrees of the angle formed by the pennant's position, the 
origin, and the positive x-axis. 
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POS:OO HEADING: 90 ANGLE: UNDEFINED 
COMMAND: 

.6....., ! 
····-··-·-····-·-··f-········-·-·-···· 

i : 
! : 

POS: 69.3 40 HEADING: 90 ANGLE: 30 
COMMAND: R 90 
POS: -40 69.3 HEADING: 180 ANGLE: 120 
COMMAND: 

i r ......................... e .................... 
I 

POS: 0 0 HEADING: 90 ANGLE: UNDEFINE ) 
COMMAND: T 30 80 
POS: 69.3 40 HEADING: 90 ANGLE: 30 
COMMAND: 

POS: -40 69.3 HEADING: 180 ANGLE: 120 
COMMAND: F 150 
POS: ·80 0 HEADING: 120 ANGLE: 180 
COMMAND: 

Figure 5.3 Successive displays generated by entering commands to 
MOTIONS. From top-left to right-bottom: (1) The initial display. 
(2) T 30 80 moved the plane containing the current pennant 80 
units in a heading of 30°. (3) R 90 rotated the plane containing 
the current pennant 90° about the origin. ( 4) F 150 flipped 
(reflected) the plane through the line passing through the origin 
at a heading of 150°. 

plane are cumulative. The end state of a pennant under one command is the 
beginning state of the pennant for the next. 

One composes transformations in several ways. The most intuitive is simply 
to enter them all on the same line. Each command is executed as if entered 
separately, and each intermediate pennant is drawn (Fig. 5.4). A second way, 
which more closely represents the mathematical idea of composition, is to 
enter the commands surrounded by brackets. When a set of commands is en-
tered in brackets, the composition is performed (Fig. 5.5). A third way to 
compose transformations is to define a new transformation that is made of a 
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POS: -60 20 HEADING: 45 ANGLE: 161.6 
COMMAND: F 0 T 20 100 R 45 
POS: 14 34.1 HEADING: 0 ANGLE: 67.7 
COMMAND: 
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Figure 5.4 Entering commands on one line causes each command to be 
executed in turn. F 0 executed while the pennant was in state 1, 
causing it to take on state 2. T 20 100 executed while the pennant 
was in state 2, causing it to take on state 3. R 45 caused the 
pennant to change from state 3 to its ending state. 

............................... r··············-················· 

POS: -60 20 HEADING: 45 ANGLE: 161.6 
COMMAND: [F 0 T 20 100 R 45] 
POS: 14 34.1 HEADING: 0 ANGLE: 67.7 
COMMAND: 

Figure 5.5 The display after the composition [F 0 T 20 100 R 45] is 
entered. The pennant began in state 1. The composition caused 
the pennant to take on its final state. Compare the initial and 
final states here to those in Fig. 5.4. 
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composition of existing ones. To define a new transformation, one enters DEF 
(for DEFine), the new transformation's name, and the composition that defines 
it (Fig. 5.6). If one wishes a new transformation to be defined so as to take 
variable arguments, then the composition defining it is preceded by the list of 
variable names used in the composition. Variable names are preceded by colons 
in the defining part of the composition (Fig. 5.7). The list of variable names 
preceding a composition has the purpose of distinguishing names that stand for 
arguments from names that are automatically supplied by the microworld (e.g., 
XCOR and YCOR for the x- andy-coordinates of the pennant's position, and 
HEADING for its heading). 

The last feature of MOTIONS to be discussed is not a feature of the program. 
Rather, it is the problem sets that accompany the program. Without problems 
to structure students' investigations, they would be limited for the most part to 
undirected exploration of the program per se, and would most likely avoid 
coming to grips with the intricacies of the subject matter itself. 

The problems are divided into three groups, each group emphasizing dif-
ferent levels of abstraction and generalization. The first group assumes that 
students will consider the pennant to be the object operated upon and focuses 
their attention on invariances under various transformations (heading and 
orientation are invariant under translation, while position varies; orientation 
and center of rotation are invariant under rotation, while position and heading 
vary; line of reflection is invariant under reflection, while position, heading, and 

! 
! : ... _, ___ J ............. . 
i : 
i : 

POS: 0 0 HEADING: 90 ANGLE: UNDEFINED 
COMMAND: DEF "MYST [T 30 80 A 90] 
MYST DEFINED. 
COMMAND: 

: 
! 

.., _____ , .... 1 ............... .. 
MYST DEFINED. 
COMMAND: MYST 

: 
i 
I 

POS: -40 69.3 HEADING: 180 ANGLE: 120 
COMMAND: 

Figure 5.6 Defining a composition by name. The name MYST means to do 
the composition of T 30 80 and R 90. The display on the right 
shows the effect of entering MYST. The composition js, in fact, 
a rotation about the point ( - 14.65, 54.65) through an angle 
of 90°. 
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COMMAND: DEF "R2 [[Z] T 180 :XCOR T 270! 
:YCOA A :Z T 0 :XCOR T 90 :YCOR] 
A2DEFINED. 
COMMAND: 
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: : 

: : 

...... " ................. ! ....................... . 
A2DEFINED. 
COMMAND: R2 -45 

I 
i : 
! 
i 

POS: 60 50 HEADING: 45 ANGLE: 39.8 
COMMAND: 

Figure S.7 Defining a motion that takes variable arguments. Variable names 
in the defining composition are preceded by a colon to distin-
guish them from names of operations. The name Z is in a list to 
distinguish it from names supplied by MOTIONS (XCOR and 
YCOR). The effect of R2 is to rotate the pennant :Z degrees about 
its current position, as shown in the display on the right. The 
exclamation mark(!) indicates that the user's command is con-
tinued on the next screen line. 

orientation vary). The first group also emphasizes that students should become 
skilled at visualizing the effects of the transformations. 

The second group of problems focuses on transformations of the plane 
as multivariate mappings. Students are asked to develop generalizations about 
the effect upon each of the three properties of the pennant (position, head-
ing, and orientation) under the various transformations. An example of this 
type of problem: 

While doing his homework, John entered F 70 while the pennant was at 
position (30,20) with orientation RIGHT. By how much did the pennant's 
initial heading change?* 

The third group of problems emphasizes operations upon transformations. 
The primary operation of concern is composition. The problems address the 
intricacies of composition in a number of ways. One is negation, as in: 

• Initial heading is unstated, so students must determine the general relationship between initial 
and resulting heading of a pennant under a reflection. 
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and: 

Mary entered T 30 80 A 70. Tell her one transformation that will take the 
pennant back to its original state. 

Frank entered F 70 F 90 when he intended to enter F 70 A 90. What one 
transformation could Frank use to put the pennant in the state it would have 
attained had he entered his command correctly? 

Another approach to composition is seen in problems that ask students to 
determine the net effect of entering two or more transformations at once. "Net 
effect" is defined as the single transformation that one could enter to achieve 
the same result as that of the combined transformations. Still another approach 
asks students to form "addition tables" of transformations that are closed under 
composition. This takes them into the realm of algebras of transformations. 

Differences between Mathematical Microworlds and CAl 
There are five primary differences between mathematical microworlds and tra-
ditional CAl. The first centers around the idea of information transmittal. In the 
past, most CAl has been designed with the idea that some body of information 
is to be transmitted from the program to the student, or that the program will 
guide the student to a point of "discovery." A CAl program that is tutorial in 
nature poses questions, gives examples and illustrations, and generally "talks" 
to students. The idea of information transmittal has no relevance to the design 
of a microworld, except to the extent that its design makes it easier or harder 
for students to infer information. 

The second difference between tutorial CAl and mathematical microworlds 
is that the focus of a mathematical microworld is on the construction of meaning 
and relationships, while CAl tends to focus on facts and skills. Kearsley (1985) 
pointed out that my comments here do not apply to simulations, and I agree. 
However, I would not want to classify simulations and mathematical micro-
worlds together. A simulation simulates something. But what does a mathemat-
ical microworld simulate? At most, it "simulates" an axiom system, in the sense 
that it is an instantiation of a formal system and embodies its structure. I would 
think a microworld to be more of a model of a formal system than a simulation 
of a prototype (cf. Kleene, 1952; Kneebone, 1963).* 

A microworld's focus upon relationships leads directly to an emphasis on 
transformations, at least within mathematics. Two mathematical objects are re-
lated when there is some way to transform one or more attributes of one into 
attributes of the other. 

• My remarks here apply only to mathematical microworlds. Microworlds as described by Papert 
(1980) and by Lawler (1984) typically do have a "real world" sense to them, and are more like 
simulations. 
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The third difference between CAl and mathematical microworlds is in the 
layered approach to structure in microworlds. To learn mathematics, students 
must construct mathematical objects, construct relationships among them, and 
then take those relationships as new objects to be operated upon. Mathematical 
microworlds are designed to facilitate that process, whereas mathematical struc-
ture in CAl has typically been ignored. 

The fourth difference is the assumed role of the teacher. My impression of 
CAl, both traditional and intelligent, is that designers envision their programs 
as being temporary substitutes for the teacher-that a teacher would send stu-
dents off to use the program with the confidence that it will do a good job in 
his or her stead. My vision of a teacher using a microworld is as a tool to 
provoke classroom discussions. A teacher might have one computer with a 
large-screen monitor at the front of the classroom and use it to challenge the 
class to think about what will happen when a particular command is entered 
and about what is generally true under various circumstances. That is, a micro-
world's design is predicated upon the assumption that a teacher will be integrally 
involved in the students' explorations. A teacher will certainly have students 
work individually with microworlds, but will do so only with the aim that they 
investigate some particular feature of the mathematics embodied within it. 

Fifth, in traditional CAl, the program and the curriculum are inextricably 
intertwined. In a mathematical microworld there is a strong distinction between 
the curriculum and the environment upon which students act. The software 
presents the environment and metaphor and incorporates the mathematical 
structure within a model. Instructions, explanations, and questions for students 
are given in printed materials. This allows teachers to adapt the curriculum to 
the purposes of instruction as well as to the levels of the students. Continued 
use of a model under these circumstances is apt to contribute to the integration, 
in students' minds, of the various levels at which the concept can be examined.* 

Issues of Design 
In this section I will recount the dialectic between designing MOTIONS and 
assessing its impact on preservice elementary teachers who were using it. 
Throughout the design and evaluation processes, the aim was to uncover fun-
damental features of their cognitions that were retarding their understanding 
of fundamental concepts, and to modify the microworld to address those 
difficulties directly. After discussing the evolution of MOTIONS, I will sum-
marize principles of designing mathematical microworlds that have evolved 
from the implementation of it and five others. t 
• For example, one microworld (for teaching and learning integers) has been used in grade 1 to 
teach addition, in grade 6 to teach negation, and in college in teaching commutative groups. 
t The five others cover integers and introductory algebra, probability, number theory, equivalence 
relations, and elementary arithmetic. 
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The Pedagogical Problem 
The program was first conceived as an alternative to teaching transformation 
geometry through straightedge and compass constructions. In that approach, 
the aim was to have students develop procedures for various constructions (e.g., 
copying an angle, bisecting a line segment, etc.) and apply those procedures to 
problems of mapping points in the plane under isometric (length-preserving) 
transformations. That approach was singularly unsuccessful, for two reasons. 
First, students would become absorbed in a construction's details and lose sight 
of the mathematics that they were supposed to learn. Second, they considered 
each application of a procedure to be a unique transformation, even if it was 
applied as a subprocedure. For example: they were asked to find the image of 
triangle ABC under the translation defined by directed line segment (Fig. 
5.8a). They would construct the images of A, B, and C (by copying angles and 
segments), connect them, and be done. However, in their thinking they per-
formed three translations: one that took A to A', one that took B to B', and one 
that took C to C' (Fig. 5.8b ). They did not understand that the entire set of points 
in the plane was mapped by the translation and that we merely located the 
images of three of them. This might not appear to be a serious problem. How-
ever, when we began to cover compositions of transformations they were be-
wildered by my asking them to find the image of a triangle, for example, under 
the composition of two translations when in their view the problem involved 
nine translations: six to do two translations of a triangle and three to link the 
original points with their final images. Moreover, they could not understand 
how one could equate the entire process of translating a triangle with a single 
translation, since (in their view) any translation moves only a single point. 

The Design of the Interface 
The initial idea behind MOTIONS was to remove the drudgery of straight-
edge and compass constructions so that students could focus upon the 
mathematics of the transformations. The first issue to address was the design 
of the screen and the manner in which students would interact with the pro-
gram. The design of the screen was relatively easy, as transformation 
geometry is commonly taught analytically, where the transformations are rep-
resented by matrices and points of the plane are represented as vectors. 
Thus, the screen needed to show a Cartesian coordinate system. The decision 
to have a flag as an object was made for two reasons: first, it is much easier to 
understand a transformation's effect upon the plane by observing preimage-
image correspondences between sets of points than by observing the effect 
upon individual points. Second, whatever figure was to be displayed needed to 
be such that changes in orientation are apparent. 
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A' 

c 
(b) 

C' 

Figure 5.8 (a) Translate the plane in the direction and distance defined by 
the directed line segment (b) A student's conception of the 
translation depicted in (a): translate A to A' (one translation); 
translate B to B' (two translations); translate C to C' (three 
translations). 

The decision about how to have students interact with the program was 
also relatively easy to make. Since the aim was to teach transformation geometry 
as a mathematical system, and since the objects in that system are functions, the 
program needed to allow students to type common representations of those 
functions in order to "see" their meaning. 

Translations To do a translation they would enter T, along with some mea-
sure of the distance and direction in which to translate. An alternative would 
have been to define T as taking two arguments that denote horizontal and 
vertical displacement. The two definitions of translation are equivalent. Since 
the former definition is easier to visualize (as a vector connecting initial and 
final position), I settled on the former and included activities and problems that 
focused on having students uncover the equivalence of the two representations. 

Rotations To do a rotation they would enter R, along with the measure of the 
angle about which to rotate. Since the center of a rotation could also vary, it 
would have been sensible to have a rotation's center be variable. However, I 
chose to let students investigate how one could do an arbitrary rotation by 
composing existing transformations (as in Fig. 5.7) instead of providing them 
with a command that would trivialize the problem. 
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Reflections To do a reflection (flip) they would enter F (since R is already 
used to denote rotation) along with some defining characteristic(s) of the line 
through which the flip was to be performed. Again, I chose conservatively. The 
default class of lines were those through the origin, and their defining charac-
teristic was their heading (direction). This was decided in anticipation of provid-
ing students with the problem of how to define an arbitrary flip. 

Instructional Design 

It became apparent early on that the preservice teachers who were using MO-
TIONS would need guidance in their investigations if they were to cover any-
thing resembling a curriculum. I decided to provide that guidance through the 
form of a handout containing nothing but an introduction to the program (how 
to start it, the commands, etc.) and a list of questions. The students did not like 
that approach. Their major complaints were (1) that they would work on a 
question and not know whether or not they had answered it "correctly" and 
(2) that they did not understand what they were supposed to learn. I rephrase 
their complaints this way: their first complaint arose because they did not under-
stand that the aim of a question was that they "play" with a problem-varying 
parameters, varying conditions, and so on. It was not that the questions were 
ill-defined. They were well-defined. Rather, the questions were unlike those 
they were used to. The second complaint, about not knowing what they were 
supposed to learn, again arose because of the novelty of the approach. In their 
previous experiences in math courses they were told what they were supposed 
to learn-how to perform some procedure. They had little conception of solving 
a problem with the aim of forming a generalization from their solution methods. 

Intricacies of the Content and Students' Difficulties with MOTIONS 

A number of small matters (in my initially naive view) about the design of 
MOTIONS became significant obstacles to students' understanding of the con-
tent. Aside from making the program more effective, addressing these issues 
opened a host of research questions on mathematical thinking. I became aware 
of them largely as a result of my practice of listening to students talk among 
themselves while working on MOTIONS problems in the computer laboratory. 

Reference Systems A pennant exists within three reference systems--Carte-
sian, polar, and clock (orientation). It is important to understand that a transfor-
mation affects the pennant's properties relative to all three. Students had a 
horrible time coordinating the three, and had particular difficulty with the idea 
of a system of headings that "moved" with the pennant. For example, when 
thinking of translating the plane when a pennant was off the origin many would 
imagine the heading from the origin instead of from the pennant's position, and 
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would become hopelessly confused about how such a thing could be ac-
complished. 

My awareness of this difficulty resulted in the addition of DOT and LINE 
commands so that students could experiment with position and heading inde-
pendently of each other. DOT takes two inputs (an x- and ay-coordinate) and 
places a dot at that position. LINE takes three inputs (two coordinates and a 
heading) and draws a line through the given point with the given heading. Then 
I added activities to the handout that focused on the independence of position 
and heading. 

Command Formats When first writing MOTIONS, it seemed natural to struc-
ture the command for performing a translation so that the user specified first 
a distance and second a direction. The image I relate to this format is that you 
first delineate a set of possible image points (the circle of radius distance from 
the pennant's position) and then restrict those to a single point-the intersec-
tion of the circle and the line having direction heading and passing through the 
pennant's position. However, students could not conjure up this image. They 
insisted that they needed to know the direction first and the distance second in 
order to imagine a translation. Apparently, when the distance was given first 
they would wait for the direction, switch the arguments, and then consider what 
translation that command represented. They found switching arguments bother-
some and distracting. After changing the command format for translations I have 
yet to hear a similar complaint. 

Specifying an Initial State Occasionally, one wishes to have a pennant start 
from a particular initial state. It might be that the pennant is too close to the 
screen's edge to see the result of the next command, or that one wishes to 
perform two motions from the same starting state. The command originally 
included in MOTIONS to put the pennant in a given state was GOTO. GOTO 
took a position, a heading, and an orientation as inputs, and placed a pennant 
in that state. 

The problem with GOTO was that students thought of it as a transforma-
tion-on a par with T, R, and F. Apparently, the common-sense meaning of go 
to made them think of the pennant going from "here" to "there." It appeared 
to them as a state-change operator.* I changed GOTO to START.AT, and the 
problem disappeared. 

Comparing Transformations It is essential that students understand that a 
transformation is applied to the entire plane, and that we merely "highlight'' its 

• The reao;on that GOTO cannot be a state-change operator is that it acts only upon the state of a 
pennant, and not upon the entire plane. GOTO 20 30 40 RIGHT (go to the state of position (20,30), 
heading 40, and orientation RIGHT) would affect the plane one way were a pennant at the origin 
and a different way were a pennant at position (50,70). 
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effect on a particular subset of it. For example, T 30 80 has the same effect 
regardless of the initial state of the pennant. However, students tended to think 
that T 30 80 applied to the plane with the pennant in two different states 
resulted in two different motions, since they "looked" different. The solution to 
this problem was not another feature added to the program. Rather, it was a 
new set of activities that focused upon the independence of state and effect. Or, 
put another way, the activities focused upon invariant relationships between 
initial and final states under classes of transformations. 

The Concept of Net Eft"ect The original treatment of composition consisted 
of having students enter two or more commands on a line. Each motion was 
performed. separately; the composition was the motion that related the pen-
nant's initial and final states (see Fig. 5.4). 

The approach was logically sound. All one must do is ignore intermediate 
states of the pennant. However, few students could ignore the intermediate 
pennants. The presence of intermediate pennants "dominated" their conception 
of a command-set's net result. An analogy would be someone's absolute insis-
tence that a trip from San Diego to New York via Denver and Chicago cannot 
be equated with a trip from San Diego directly to New York. Students felt that 
the two are different transformations since they involve different itineraries. 
This conception of equivalence is acceptable as common sense, but it com-
pletely blocks a student's access to the mathematical idea of composition.* 

The solution to the problem of representing composition within a micro-
world was to allow the student to compose transformations in two ways. The 
first, as already described, is by entering a sequence of motions and having 
MOTIONS carry them out individually. The second is to allow students to group 
a sequence of motions within brackets-make a unit of the sequence, so to 
speak. Whenever a sequence of commands is grouped in brackets, only the 
composition is performed (see Fig. 5.5). Thus a student can examine a compo-
sition at two levels: intuitively, as the consecutive execution of individual com-
mands where the pennant's end state under one motion is the beginning state 
for the next, and more formally, where only the initial and final states of the 
pennant are shown. The idea of composition did not become "easy" as a result 
of this change, but it did become accessible. 

Composition as a Mathematical Operation One of the most difficult ideas 
for students is the idea that some object can be represented in a number of 
different ways. In the context of MOTIONS, this difficulty first appeared in 
problems requiring that students understand that a translation can be both that 

• An example of a student who understands that they are the same in terms of their composition 
is one who would say that a direa flight from New York to San Diego negates either trip, so they 
must be equivalent In their net effea. 
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translation and a composition of others. For example, T 0 5 is also represented 
by the composition [T 45 3 T -45 4]. Students fall victim to the same misconcep-
tion about composing functions that young children have about computing 
sums, which is that a sum is the answer you get from adding. It is not a number 
satisfying a logical relationship with two other numbers. The parallel with MO-
TIONS is in problems such as "Mary entered two translations. The first wasT 
45 3. The net effect was T 0 5. What was the second motion?" Unless students 
understand that T 45 3 bears a logical relationship to T 0 5 they will not think 
to "subtract" the effect of T 45 3 from T 0 5 (by entering [T 0 5 T 45 - 3]) to 
see what translation remains.* For this difficulty, I did not put anything into the 
microworld. Rather, I forced the issue by having students work problems that 
emphasize logical relationships among compositions. 

Defining New Transformations It was surprising to find that students did 
not think of compositions denoted by the use of brackets (e.g., [R 70 F 10]) as 
being on a par with the primitive motions denoted by T, R, and F. Students 
thought of them much as many LISP students think of lambda-expressions: as 
"temporary" functions having no ontological status. In the thinking of students 
of transformation geometry, if a motion does not have a name, then it is not a 
bona fide transformation and cannot be equated to one that does have a name. 
To counter this misconception I added a feature whereby they could name a 
composition, and moreover, could specify variable parameters (whence the 
DEF command; see Figs. 5.6 and 5.7). 

Principles of Designing Microworlds 
Several design principles have emerged from the continuing use and evaluation 
of MOTIONS and from the implementation of several other microworlds. These 
are discussed below. 

Orientation toward Functions 
One of the first requirements in designing a mathematical microworld is to 
describe the system one aims at modeling. In mathematics, a system is a system 
because it is closed under some set of transformations and operations, or more 
generally, functions. Idiosyncracies of any system are a result of the functions 
that define it, and are independent of the objects upon which the functions are 
evaluated. t Thus, since mathematical microworlds are meant to focus upon 

*The translation T 45 -3 is the inverse ofT 45 3. 
t Changing the objects produces a system that is isomorphic to the original system (Lro-"same"; 
morpbic-"structure"). 
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mathematical systems, they automatically have a bias toward being function 
oriented. This means that a user commands a microworld to do something, and 
the "something" it does has an effect on the state of the system. 

Command Formalism 

Since the aim of a mathematical microworld is to provide students an entry 
into a mathematical system, and since mathematical microworlds are by na-
ture function oriented, they are also command oriented. Two issues must be 
addressed in deciding upon the formalism students will use to interact with 
the microworld: the presentation of commands and the format in which stu-
dents will use them. 

Presentation One could present a list of commands in a menu and have 
students choose from the list. This is disadvantageous for a number of reasons. 
First, it is distracting, since the menu must disturb the display, and it is the 
current state of the display that will be affected by the student's next command. 
Second, choosing from a written list is antithetical to what one does when doing 
mathematics. I have found that menus detract from students establishing a cor-
respondence between a formalism and its semantics. It is much more effective \. 
simply to give students a written glossary of commands as part of the printed 
material that contains problems and activities. Third, when students enter indi-
vidual commands, their attention is focused on that command and its effect on 
the system's state. Thus, they have a much more explicit set of experiences from 
which to generalize (e.g., F x does this) than when choosing commands and 
parameters from a menu. 

Command Format The command format must be concise, and must at least 
resemble conventional mathematical formalism. In MOTIONS, T x y corre-
sponds to the mathematically conventional Tx,yi R x corresponds to Rx· In a 
microworld for probability, P[A B C] corresponds to the conventional P[A and 
B and C]; P[[A B] [ C D 11 corresponds toP[ (A and B) or ( C and D)).* A microworld 
for integers and algebra uses prefix notation instead of infix, but represents 
functions and composition as one would in tenth-grade algebra [e.g., as either 
f(g(x))" or (j o g)(x)1. In short, one is somewhat constrained in choosing a 
command format by the conventions already established in mathematics. 

Graphics Display Decisions about the design of the graphics display are 
important, but are not among the most crucial decisions one makes in designing 
a mathematical microworld. The only strong constraint is that there is a clear 

• This mlcroworld focuses upon representing the sample spaces of experiments as trees. (A B C] 
represents the path in the experiment tree containing those outcomes. Thus, it would be nonsensical 
to represent P(IA B) and IC D)) if[A B) and [CD) are of different paths. A priori, the probability is 0. 
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correspondence between the change in the display effected by a command and 
the mathematical meaning of the command. 

The Problem Sets The creation of problems for students is not part of design-
ing a mathematical microworld per se, but the problems exert a strong influence 
upon a microworld's design. This point was illustrated in the section on the 
evolution of MOTIONS. In order to pose problems and activities that focused 
on the independence of position and direction, the microworld needed to 
include DOT and LINE commands. Also, to pose problems that focused upon 
composition of transformations on several levels of conceptual complexity, the 
microworld needed to allow several ways to represent composition. That is, the 
designer of a mathematical microworld must have an idea of the kinds of prob-
lems one wishes to pose so that the microworld allows the problems to be 
posed meaningfully. 

A consensus is building that the problems one commonly asks students to 
solve has a dramatic influence on students' cognitive structures in scientific 
domains (Heller & Hungate, 1985; Larkin, 1981a, 1981b; Reif & Heller, 1982; 
Thompson, 1985a). As such, careful consideration must be given to the content 
and organization of the problems one asks students to solve in the context of 
a mathematical microworld. One crucial feature of the problem sets is that they 
address the subject matter at several levels of abstractness, and the microworld 
needs to allow a student to use it at any of those levels at any time. 

"Levels of abstractness" in the problems means that initial objects are related 
by functions, and classes of functions are related by operations. This is reflected 
in Fig. 5.9. Entry-level problems focus on states, as depicted in the graphics 
display, with functions serving to connect states (Level 0). Problems for Level 0 
can be of two kinds. The first kind is problems that focus students upon states 
and their defining characteristics (e.g., the state of a pennant in MOTIONS); the 
second kind provide any two of 

[State 1, State 2, function] 

and asks the students to provide the third. Problems at Level 1 focus on func-
tions, with states serving as a background for describing a function's general 
effect. Level 2 problems focus on unary and binary operations upon functions, 
such as negation (inverse under some binary operation), composition, and 
(generalized) arithmetic operations. The process of dividing problems into 
levels is discussed in Dreyfus and Thompson (1985), and Thompson (1985a). 

Microworlds Are Sometimes Not Enough 
Mathematical microworlds can effect significant improvements in students· 
mathematical understandings and abilities (Thompson, 1985c: Thompson & 
Dreyfus, in press). Most students benefit from the use of mathematical micro-



102 Mathematical Microworlds 

{States} 

State 1 • State 2 
Function 
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{Function} • {Function} Unary operations 
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{Function} 

LeveiO 
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Level 2 

Figure 5.9 A framework for organizing problems. Level 0 problems focus on 
states and functions as relationships among states. Level 1 prob-
lems focus on the general effect of classes of functions on states. 
Level 2 problems focus on unary and binary operations on 
classes of functions. 

worlds by exploring them somewhat scientifically, such as by controlling vari-
ables while manipulating others, and by using visual feedback to "debug" faulty 
understandings of the subject matter whenever they lead to unexpected results. 
However, a significant minority of students using microworlds are effectively 
blocked from taking advantage of their semantically rich environments. These 
are students who fail to understand the initial concepts depicted by a micro-
world, who do not know how to explore ideas, and/or who do not know how 
to generalize from examples. For these students, microworlds are not enough. 
They need assistance in coming to terms with the raison d'etre of microworlds. 
The following is a discussion of a current research project at Illinois State 
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University that emphasizes concepts of exploration and generalization in micro-
world environments for students who have difficulty with them.* 

We are immediately in a conundrum when redesigning mathematical 
microworlds to address misconceptions. The nonjudgmental, passive nature 
of microworlds is a strong positive feature that serves the goal of long-term 
mathematical development. But to assist students who have misconceptions, 
those misconceptions must be diagnosed and remediated. The ability to diag-
nose and remediate means that a microworld must pose problems, judge re-
sponses, and give appropriate feedback-features that are antithetical to the 
design of mathematical microworlds. The resolution to this conundrum was 
this: rather than have a tutor decide when to intervene and how to structure 
the lesson, we allow students to decide when to invoke the tutor. This allows 
us, and students, to maintain a strong separation between a microworld and 
its tutor. 

A second design issue was how students would interact with a microworld 
so as to allow it to make inferences of qualitative misconceptions, as distinct 
from misconceptions about formal rules and their application (such as those 
investigated by Matz, 1982, and by Sleeman, 1982). Our solution is to allow 
students to have qualitative interactions with a microworld, such as by pointing 
to screen positions or sketching predictions on the screen. These latter features 
demand input facilities equivalent to a mouse. t 

A third design issue was how to represent qualitative knowledge of 
mathematical content to allow automatized inferences about a student's con-
cepts. Current tests suggest that semantic networks, augmented by bug catalogs, 
provide at least a viable solution to this problem.:t 

What Does an Intelligent Microworld Look Like? 
The major extensions to MOTIONS are designed to address misconceptions of 
basic concepts and misconceptions of exploration and generalization. To ad-
dress misconceptions of basic concepts, we incorporate two new commands: a 
WHY? command, which will cause the computer to explain why it did what it 
did in response to the previous command, and a PREDICf command, which 
allows a student to predict the outcome of a command and have the computer 
comment on the prediction. WHY? and PREDICf are discussed in the next 
section. 

• As of this writing, only pieces of the programs described herein are actually running. However, 
since the major issues discussed concern design, I will speak as if the programs are complete. 
t Intelligent microworlds are being implemented for the Apple Macintosh"'. 
i I should point out that the link between mathematical microworlds and ICAI has not arisen 
because of a penchant for finding applications of artificial intelligence in education. Rather, the 
nature of the pedagogical problem and the design issues noted above have led to a natural marriage. 
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We plan to address misconceptions of exploration and generalization by 
incorporating another three commands: EXPLORE, GENERALIZE, and CHAL-
LENGE-ME. The commands EXPLORE and GENERALIZE will work together to 
emphasize that exploring, hypothesizing, generalizing, and then exploring again 
is a natural and powerful method for understanding mathematics. CHAlLENGE-
ME will provide a context for a microworld to interact with students about 
problem-solving strategies. EXPLORE, GENERALIZE, and CHALLENGE-ME are 
discussed in a succeeding section. 

WHY? and PREDICT 

The WHY? command provides students with explanations. Whenever a student 
enters a command in the context of attempting to solve a problem and the 
command leads to an unanticipated result, often the source of the error is a 
misconception of some basic concept. If the student cannot understand why the 
microworld acted differently than expected he or she can enter WHY? and have 
the microworld explain its actions. 

The level of an explanation is a function of the microworld's current 
model of the student in regard to the concepts involved in the explanation. 
A student model with high values on the component concepts receives expla-
nations in terms of theorems (supposedly) already known to that student. A 
student model with neutral values on the component concepts leads to an 
explanation in terms of basic definitions and relationships. A student model 
with low, negative values on the component concepts leads to detailed expla-
nations in terms of basic definitions and relationships accompanied by 
graphical illustrations. 

The more detailed explanations are available to students with high and 
neutral values in their respective student models by their entering WHY? again, 
until the microworld has given the most basic explanation of which it is capable. 
Afterward, the student is referred to the instructor. 

The inclusion of a PREDICT command serves two purposes. First, estimating 
the effect of an operation helps students understand mathematical definitions, 
relationships, and principles. Second, by having a student register his or her 
prediction of a command, the microworld then has information from which to 
infer misconceptions. For example, a very common misconception in transfor-
mation geometry is that the direction in which a pennant will move is always 
determined from the origin (intersection of x- andy-axes) when the plane is 
moved by a translation. In fact, the direction a pennant is moved is determined 
from its position. Students with this misconception cannot understand the idea 
of composition of translations, for the pennant never ends up where they expect 
it (see Fig. 5.10). This misconception is easily uncovered once a student predicts 
the end state of a pennant prior to performing two translations. 
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1 ... r . 
.,,,., ... . ························· · ................... . 

POS: 0 0 HEADING: 90 ANGLE: UNDEFINED 
COMMAND: T 70 50 T 10 60 
POS: 76.2 58.4 HEADING: 90 ANGLE: 37.5 

Figure 5.10 The difference between the actual result of entering T 70 50 
T 10 60 and a student's estimate of the result (marked as •). 
This student thought that all directions are measured with lines 
passing through the origin, not realizing that directions can be 
measured relative to any position in the plane. 

EXPLORE, GENERAliZE, and CHALLENGE-ME 

We address misconceptions of exploring and generalizing in two ways. The first 
is to incorporate an EXPLORE command. When a student enters EXPLORE, the 
microworld begins to record the student's commands in the anticipation that 
at some time he or she will enter GENERALIZE. In response to GENERALIZE, 
the microworld computes a number of generalizations from the student's com-
mands, some, none, or all of which may be valid; nevertheless, they fit the data. 
The student then chooses one for further exploration and continues to enter 
commands. The microworld estimates the relevancy of the commands to the 
chosen generalization, and communicates its estimations when the student en-
ters the command COMMENTS?. The student can also enter YOUR OPINION?, 
which causes the microworld to give what it considers to be a viable set of 
commands to test the chosen generalization. The student can enter WHY? to 
have the microworld explain its choice of commands. 

A second way that we address misconceptions of exploring and generalizing 
is to incorporate a CHALLENGE-ME option. The student can select the type of 
problems on which to be challenged by referring to a section in the booklet 
that accompanies the microworld. For example, in the MOTIONS microworld, 
CHAlLENGE-ME 3.4 means that the student wishes to be challenged by a 
problem dealing with the composition of rotations and reflections (chapter 3, 
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section 4). The microworld's knowledge of problems is stored as schemata that 
describe the types of displays, transformations, problems that can be posed, and 
legitimate plans for solving those problems. It judges students' problem-solving 
strategies by attempting to fit the commands they enter into one of its lists of 
legitimate plans. 

The GENERALIZE and CHAil.ENGE-ME commands provide occasions for a 
microworld to comment on specific problem-solving strategies. These are the 
only two commands that provide the microworld with definite information 
about the problem a student is solving. In the case of CHAlLENGE-ME, we can 
constrain the types of problems to those we think are particularly illustrative of 
important concepts and methods. With prior knowledge of the types of prob-
lems upon which a student will work, we can anticipate specific misconceptions, 
errors, and strategies. 

Intelligent Microworlds in Schools 
Mathematics education in the nation's schools is ripe for intelligent micro-
worlds. Many states report a critical shortage in qualified mathematics teachers 
while at the same time they are raising minimum mathematics requirements 
for graduation. A short-term measure adopted by many states is the practice of 
allowing teachers to "cross over.. from nonscientific disciplines to become 
mathematics teachers-without requiring further training in mathematics. 
Shortages and crossovers are occurring at the same time that government and 
professional reports point out the necessity for an increased emphasis on prob-
lem solving in the K-12 mathematics curriculum. 

Clearly, schools need assistance in their mathematics classrooms. Micro-
worlds can provide one form of assistance, in that teachers need not be bur-
dened with the task of creating models through which the students can explore 
and understand mathematical concepts. Moreover, pedagogically sound and 
mathematically valid intelligent microworlds can put a cognitive scientist, a 
mathematician, and a diagnostician within calling distance of any student using 
them. More than a few teachers could benefit from such assistance. 

Even with today's critical problems, prospects for the introduction of intel-
ligent microworlds, or ICAI in general, into the nation's mathematics classrooms 
are not good. By and large, schools are still purchasing 64K 8-bit computers, 
and there is no reason to believe that they will significantly change their pur-
chasing habits at any time soon (Mazer Corp., 1983; Strategic, Inc., 1984). 

An even greater obstacle than the lack of suitable ICAI hardware is the 
problem of overcoming teachers' conceptions of how one should learn 
mathematics. Too often, their conception is that one learns mathematics by 
memorizing fixed, inflexible algorithms for answering stereotypical problems. 
I have comments written by classroom teachers who have participated in micro-
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world-based demonstration lessons wherein they state that though they found 
microworlds to be interesting, what they witnessed was irrelevant to the topics 
as they teach them. Microworlds "do not teach rules well enough." 

Another obstacle to large-scale implementation of ICAI is the small number 
of computers available to any one teacher. Presentations on how to use one 
computer with 30 students are generally among the best attended at mathe-
matics education conferences. 

The present structure of the mathematics curriculum and the various 
bureaucratic systems for changing it present another obstacle to realizing 
mathematics ICAI in the schools. large-scale implementation of ICAI will require 
restructuring the curriculum, if only to allow time for students to interact with 
computers. Such changes are likely to be within the purview of textbook adop-
tion committees, and innovations in general have not fared well at that level. 
We would do well to recall the pitfalls encountered by large-scale curriculum 
projects of the 1960s and 1970s (Conference Board of the Mathematical Sci-
ences, 1976; Vogeli, 1967). 

Finally, the greatest obstacle to realizing ICAI in the schools is the need for 
teachers to rethink their management of time and resources and the need for 
them to rethink their role in students' learning processes. Subject matter, class-
room management, and student -teacher interactions all change when a micro-
world is integrated with instruction. The subject matter must be rethought so 
as to be presented within the model embodied in the microworld. Also, when 
using a computer as a teaching tool teachers are no longer in complete control 
of the situation; they are no longer the center of attention in the classroom. 
Their role becomes more that of a choreographer than a manager. They ensure 
that all the people and props are in the right place at the right time, provide 
the motivation for the "piece," and then hope for the best. 

The potential benefits of intelligent mathematical microworlds, and ICAI in 
general, are great enough to warrant our best efforts to realize their application 
to classroom teaching and learning. But we should not ·think that their value 
will be apparent to potential consumers. Nor should we think that their value 
will be easily demonstrated. 
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