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Artificial intelligence is mentioned frequently these days, many times in the context
of an advertisement that tries to sell a new expert system or expert system shell. Given the
current interest but general lack of knowledge about the field, perhaps it would be useful to
define what is meant by “artificial intelligence.”

Originally, artificial intelligence (hereafter, AI) was the study of how to make
machines behave intelligently. By “behave intelligently,” it was meant that a machine
perform a task that normally would require a human to do because the task required
reasoning of some sort (McCorduck, 1979). This performance definition was soon
abandoned, largely because as a task became doable by a machine, many people took that
as indicative that it actually did not require intelligence. Now, AI is defined largely by a
particular programming style: knowledge to perform a task is represented explicitly within a
program, as data. The form such data takes is some discrete structure, such as a tree or
digraph, or a collection of rules, like

“If    some condition     exists (in memory), then    some conclusion     should be
drawn,” or
“If    some condition     exists (in memory), then    some action     should be taken,”

where    some condition     and    some conclusion     are items of data or data patterns and    some
action     is a procedure or procedure name.

“Reasoning” is done by a procedure that interprets knowledge-as-data and draws
inferences from it; inferences so drawn are then added to the “knowledge base.” The
behavior of an artificially intelligent program is determined by the interaction of three
components: the rules of inference built into the inference procedure, the knowledge with
which the program starts, and the task itself. Of course, “the task” is itself a knowledge
structure, for it is represented in the program as the program’s knowledge of the initial
conditions and of the conditions to be achieved. The art of AI is to analyze tasks in such a
way that one can depict knowledge capable of leading to correct performance under widely
varying circumstances.

There should be no more mystique about AI programming than about programming
in general, although in fact this seems not to be the case. The only major difference
between AI programming and programming in general is that an AI programmer has at his
or her disposal very powerful programming languages——languages in which structure
and relationship can be represented explicitly and easily, and in which there is no hard and
fast distinction between data and procedure.

After saying the above, I must confess that I faced a fundamental difficulty in
preparing this paper. Research in AI has focused, for the most part, on building programs
that can solve problems, once posed, independently of human intervention (Feigenbaum &
Barr, 1984). Also, AI programs tend to be quite task oriented. While such programs may
have educational and pedagogical value, it is not apparent that the value of any program
extends beyond a fairly restricted task domain.

An artificially intelligent program that can solve mathematics problems may be
useful as a practical tool, but giving students the capability to obtain answers per se is not a
primary goal of mathematics education. It is important to affect students’ thinking in a way
that develops skill, but a higher-level goal is to affect students’ thinking so that it holds
potential for their constructing new and more powerful ways of thinking in the future
(Dewey, 1949). To achieve the higher-level goal, students must come to think in terms of
such things as patterns, analogies, and metaphors. Research in AI has made significant
strides in explaining patterns in thought, but it has not made much headway with the issues
of analogy and metaphor.

In the remainder of this paper I excersize an author’s perogative. Rather than
attempt to survey the AI literature, annotating the survey with cryptic comments and leaving
it to the reader to make sense of them from the originals, I instead focus on two general
aspects of AI vis-a-vis mathematics education.  I examine past research on the development
of intelligent tutoring systems and give samples of a “new breed” of software. The section
on intelligent tutoring systems attempts to set a tone: though AI has much to offer, we
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should view its research as applied to education with as much skepticism as we would any
other educational research enterprise. In the second section, I review several current
projects that illustrate the power of AI concepts and methodology for developing systems
that present algebraic content in substantially new ways.

Intelligent Tutoring Systems

Most research connecting AI with mathematics education has been to develop
intelligent tutoring systems (ITS’s), which are programs that are intended to mimic the
behavior of a competent tutor (see Sleeman & Brown, 1982 for one of the few collections
on ITS’s). At the present moment, our reaction to ITS research might be like Sam
Johnson’s reaction to the dog that walked on its hind legs. He remarked that we should not
be surprised that the dog walks well or poorly, but that it walks at all. At that level, we can
be impressed by the progress of ITS research. At a more substantive level, were I to
interview an applicant for a tutoring position who displayed the heavy-handedness and lack
of perspective exhibited by many ITS’s, he or she would definitely not get the job. This
may be more a comment on system designers’ concepts of learning and teaching
mathematics than a comment on the potential of intelligent tutoring systems in mathematics
education.

My strongest criticism of ITS research is that, by design, there is no teacher in the
picture, except perhaps as someone who sets system parameters. This is acceptable as a
research ploy when one pushes a concept to see how far it can go on its own. But as a
paradigm I believe leaving the teacher out is a mistake. It is my experience that when one
designs software with the assumption it will be used by a teacher as well as by students,
one designs the software so that it    supports    the teacher in improving instruction, which
results in richer learning by students.

For further information on ITS research, I refer the reader to the bibliography (most
notably, Kearsley, 1987; Sleeman & Brown, 1982; Wenger, 1987).

The Hazards of Myopia

When searching the AI literature as it relates to education, one quickly realizes the
paradigmatic value given to Brown and Burton’s BUGGY model of errors in place value
subtraction (Brown & Burton, 1978; Brown & VanLehn, 1981; Burton, 1982; VanLehn,
1983). In that model, students errors are depicted as bugs——“discrete modifications to
correct skills which effectively duplicate the student’s behavior” (Burton, 1982). A similar
approach to analyzing errors in algebra has been taken by Matz (1980, 1982), Lewis
(1981), and Sleeman (1982, 1984, 1985). In these studies, competence in algebra is
characterized as the possession of a set of correct algebraic rules. For example, one rule
might be

If    the goal is DISTRIBUTE,
and the current expression is of the form A(X-B),

then     write AX - AB.
Errors are characterized as manifestations of incorrect rules (     mal   -rules, to use Sleeman’s
term).

A rule orientation is entirely natural given the constraints of this research: that
representations of knowledge be data within a program, and that representations of
knowledge be prescriptions for action. A rule orientation also is natural given that the goal
was to develop systems capable of solving the problems posed to students, that were able
to solve unanticipated problems arising from interactions with the student, and that were
capable of determining the cause (i.e., “violated rule”) of students’ errors.

Aside from very serious epistemological problems with BUGGY, more pragmatic
problems exist as well. BUGGY-like models of competence, whether used in place-value
subtraction or high school algebra, are quite fragile and contribute less to our understanding
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than at first might be apparent. I say this for four reasons: (1) the principle construct of
BUGGY-like models, a “rule,” has not been clarified; (2) it is not clear that BUGGY-like
models in fact model anything of interest; (3) tacit assumptions about aims of instruction
may not be valid; and (4) BUGGY-like models commonly ignore relationships between
areas of mathematics.

What are rules?    A rule, in AI, is a condition-action pair of the forms shown on page
[2] (Negotia, 1985). This use of “rule” is so general that it cannot have any psychological
meaning, except as a descriptor of behavior. Rules can be used to describe reasoning (i.e.,
“mental behavior”), but they could just as well be used to describe the behavior of a spring
under various distortions. In the final analysis, rules (in AI) are programmers’ abstractions
of initial and final states under some class of transformations. They tell us more about
system designers than about students’ mathematics.

Are BUGGY models of interest?    What BUGGY-like systems model is, in effect,
students’ errors arising from their use of means-end analysis to accomplish tasks of which
they have no understanding and whose goal is to imitate some observed behavior in order
to produce an answer (see Erlwanger, 1973). Put another way, BUGGY-like models are
models of common errors made by students who reason without meaning. BUGGY-like
models may accurately describe the current state of mathematics learning, but we already
know that students are prone to pushing symbols without engaging their brains. In what
way does a detailed understanding of how students perform tasks mindlessly help us
improve mathematics education?

Perhaps the most damaging consequence of defining competence merely as
possession of correct rules is that we fail to look at incompetence as stemming from
impoverished conceptualizations of material from which “correct” rules should have been
abstracted. A student who consistently transforms    a   (    x    +    b    ) into    ax    +    b    , for example, probably
would benefit more from instruction on order of operations and structures of expressions in
arithmetic than from direct instruction on how to “distribute” across parentheses in algebra.

    Assumptions about instruction    . BUGGY models are fragile because they assume,
overtly or covertly, that instruction emphasizes mainly the learning of procedures for
making marks on paper. In place-value subtraction, for instance, when instruction
emphasizes the intricacies of counting by hundreds, tens, and ones from arbitrary starting
points and relationships between counting and structured materials (e.g., Dienes blocks),
one rarely sees evidence of the bugs reported by Brown and Burton (Thompson, 1982).
One still sees errors, but they are more apparently conceptual, with little resemblance to the
errors predicted by BUGGY.

Similarly, there are reasons to believe that if algebra instruction emphasizes the
concept of an expression as an entity having an internal structure, and if “rules” are
proposed as structure-modifying transformations which leave some aspect of an expression
invariant, then common errors as reported by Lewis, Matz, and Sleeman seem not to be so
common (Lesh, 1987; Thompson & Thompson, 1987). I will discuss this claim again in a
later section.

    Relationships to other concept fields   . Studies in algebra that incorporated BUGGY-
like models of competence typically have not considered relationships between algebra and
arithmetic. After first reading Matz (1982), I gave one of her examples to a ninth grader:

Solve for     x    : 
x +1

x + 4
=

5

6
  (Matz, 1982, p. 50)

to which he gave the answer predicted by Matz, namely     x    +1=5 and     x    +4=6, or     x    =4 and
x    =2. I then said, as if offering a new problem: “I am thinking of a number: if you add 1 to
it and then add 4 to it and make a fraction with these two numbers, the fraction reduces to
five-sixths,” while writing the same equation as before.

This student’s strategy in solving the restated question
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appeared to be based on the idea that for 
x+1
x+4 to reduce to 

5
6,     x     had to be congruent to 4

modulo 5, and at the same time     x     had to be congruent to 2 modulo 6. Of course, this is my
characterization and not his. After listing multiples of 5 and multiples of 6, he got a correct
answer:     x    =14. This student knew a lot about ratio and proportion, but he did not relate his
knowledge to the problem when it was first presented. I grant that he did not use the
procedure typically expected for solving this problem, but he did solve it. Moreover, the
typical procedure could have been taught as a generalization of the process by which one
“cross multiplies” fractions to test their equivalence.

I did not offer this example to “disprove” BUGGY-like models of algebraic
competence. Rather, I only wished to reinforce the point that when algebra is taught as a
system for representing relationships among quantities, one sees very different, and
perhaps more desirable, types of behavior than expected under the more stereotypical
circumstances assumed by users of BUGGY-like models. Moreover, if one is sensitive to
the role of prior arithmetical learning in learning algebra and is sensitive to conceptual
contexts for the formation of algebraic “rules,” then when designing an intelligent tutoring
system for algebra one will design the system so as to make it possible for students to
reveal impoverished conceptualizations as well as buggy rules. I discuss the last point more
fully in (Thompson, 1987).

Presenting Content in Substantially New Ways
To Support Human Understanding   

A new approach to software design is emerging from AI. The spirit of the approach
is captured well in Draper and Norman’s introduction to      User Centered System Design.   

...we do not wish to ask how to improve upon an interface to a program
whose function and even implementation has already been decided. We
wish to attempt User Centered System Design, to ask what the goals and
needs of the users are, what tools they need, what kind of tasks they wish
to perform, and what methods they would prefer to use. We would like to
start with the users, and to work from there.

(Draper & Norman, 1986, p. 2)
Norman and Draper’s collection constitutes an attempt to combine various

perspectives from the cognitive sciences on topics that range from being a better typist to
developing mental models of advanced technological devices, and to focus these
perspectives on how best to shape the interaction between humans and computers. They
note that in the pluralism of approaches there exists the germ of a new kind of interaction.

One approach, a rather traditional one, is to start with considerations of
the person, the study of the human information processing structures, and
from this to develop the appropriate dimensions of the user interface. ....
Another approach is to examine the subjective experience of the user and
how it might be enhanced. When we read or watch a play or movie, we
do not think of ourselves as interpreting light images. We become a part
of the action: We imagine ourselves in the scenes being depicted. We have
a “first person experience.”...Well, why not with computers? The ideal
associated with this approach is the feeling of “direct engagement,” the
feeling that the computer is invisible, not even there; but rather,      what is
present is the world we are exploring, be that world music, art, words,
business, mathematics, literature, or whatever your imagination and task
provide you.    [italics added]

(Draper & Norman, 1986, p. 3)
The idea proposed by Draper and Norman, that we examine and enhance the users’

subjective experiences, together with emerging refinements in the technology of object-
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oriented programming, can be synthesized into powerful, supportive environments to make
real what many competent teachers of algebra wish they could accomplish.    “If only I could
get them to see in their minds what I see in mine!”   

I will present aspects of four projects, all currently ongoing, that illustrate the idea
of “direct engagement” between students and computerized, algebraic environments. I will
describe them in some detail, as the nature of the software is probably unfamiliar to a large
segment of mathematics education. The content areas illustrated are problem solving,
equation solving, concept of expression, and concept of equation.

Problem Solving

A question of critical importance is how to prepare students for the transition from
arithmetic to algebra. This question did not originate in AI; it has been addressed from
various perspectives throughout the century (Stanic & Kilpatrick, in press; Kieran, this
volume). One of the most promising approaches is to emphasize issues of problem
representation over problem solution in arithmetic problem solving (Herscovics & Kieran,
1980; Kieran, this volume; Miwa, this volume).

The approach illustrated here draws on a number of sources: AI (object-oriented
systems; see Kay, 1984), cognitive science (semantic networks; see Resnick & Ford,
1981), and mathematics education. The focus of the project is to have students represent
arithmetic and algebra word problems by representing the quantities involved and
relationships among them. The computer program used in this project, which runs on a
Macintosh Plus, was inspired by a program created by Valerie Shalin, Nancy Bee, and Ted
Rees to run on a Xerox Dandelion (described in Greeno, 1985 and in Greeno, Brown, et
al., 1985).

An object-oriented computer program is one that presents a user with what he or
she identifies as objects (e.g., a graph or an image) and which possesses an internal
representation of those objects and their properties. The program allows the user to act on
objects in well defined and natural ways, and responds to those actions as one would
predict on the basis of (perhaps informed) intuition.

A semantic network is a graph that depicts items of knowledge and relationships
among them (Sowa, 1984). Semantic networks have been used in AI to imbue programs
with “knowledge” about some domain. They have been used as theoretical constructs in
cognitive science to formulate hypotheses about knowledge structures that are expressed in
behavior. The novelty of the approach taken by Shalin et al., and extended here, is that the
computer is used as a medium for students to externalize their knowledge structures and
thereby have the potential to refine them.

The computer program illustrated here, called Word Problem Assistant (WPA),
presents students with a menu of icons with which to represent the quantities involved in a
problem. There are four icons to represent four distinct kinds of quantities: numbers of
things, rates, differences, and ratios. At the time of selecting an icon, the student types a
natural-language description of the quantity and types the unit in which the quantity is
measured (Figure 1).

————————————————————
Figure 1 About Here

————————————————————
The handles on the icons are a reminder of the kind of quantity being represented.

The labels within cells (other than the unit cell) tell the student the information that is
appropriate for entry. To enter information, a student puts the pointer over the cell of
interest, clicks the mouse button, and then types the information. Figure 2 shows a
student’s representation of the quantities in this problem:     A biologist released 200 marked
fish into a lake. He later captured six samples of fish. On the average, the number of
marked fish in each sample was 1/60 of the sample size. Approximately how many fish are
in the lake?   
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————————————————————
Figure 2 About Here

————————————————————
To show relationships among the quantities in a problem, a student simply uses the

mouse to draw arrows between them. Figure 3 shows that the quantity      No.         Marked Fish     is
determined by     Total No.        Fish     and      Mark Rate   . Figure 3 also shows a feature of WPA:
whenever there is sufficient information to fill a cell, WPA does it, and puts a bullet (•) in
the line to show that the contents of that cell were inferred. After the student drew the
arrows, WPA inferred that     Total No. Fish     should be the quotient of      Mark Rate    and      No.
Marked Fish    , since      No. Marked Fish     is the product of     Total No.        Fish     and      Mark Rate   .

————————————————————
Figure 3 About Here

————————————————————
Figure 3 shows another feature of WPA. It is that operations are not stated

explicitly. Instead, operations are implied by the kinds of units that compose the relation.
The intent is that students’ attention be focused on the quantities involved and relationships
among them instead of on what formulas to apply. In that way, formulas are experienced as
arising from an understanding of a problem instead of as something that should be sought
early on in solving the problem. This approach also is consistent with Kintsch and Greeno
(1985), who propose that a necessary feature of a “good” mental representation is that it
include information sufficient to determine the operations necessary to solve the problem.

To make explicit the independence of problem structure and specific problem, WPA
includes these features: (1) If a value or description is changed, then all affected inferences
are likewise changed. Thus, one can vary values to correspond with variations of the
original problem. (2) One can change the pattern of information. For example, instead of
entering values for      Mark Rate    and      No. Marked Fish    , we could enter values for     Total No.
Fish     and      Mark Rate   . In this way, we can make explicit the idea of different problems being
variations on a single theme.

WPA also was designed to make explicit the notion of a problem parameter, and to
make explicit the distinction between a parameter and a variable. Two example will
illustrate this distinction.

Imagine this scenario: A teacher proposed the following problem to a class while
using WPA with a projector or large screen monitor.      While driving, John accelerated at 7
ft/sec/sec for 10 seconds. Afterward, he drove at a constant speed. He drove 1000 ft in the
first 5 seconds after he stopped accelerating. What was John’s speed as he began to
accelerate?    Then, the teacher guided the discussion, leading to the representation given in
Figure 4.

————————————————————
Figure 4 About Here

————————————————————
In setting this problem up, the teacher created icons for each quantity of the

problem, plus the two others not mentioned (    Added Speed     and     Final Speed    ). She entered
values into     Distance   ,     Const. Speed Time   ,     Acceleration    , and     Acceleration Time   . Then, she
drew arrows as shown. WPA inferred descriptions and values for     Final Speed    ,     Added
Speed    , and    Initial Speed    . After solving this problem and discussing the solution, she said,
“We will have to solve another problem just like this one, except with different numbers.
But Mrs. Snodgrass will have the computer; we won’t be able to use WPA. Let’s generate
a formula so that we can solve tomorrow’s problem without having to first set it up.” Then
the teacher typed letters into the Description cells of the quantities initially known. As she
typed letters, WPA propagated the letters in place of the previously stored values, resulting
in the representation shown in Figure 5. The letters in this representation are problem
parameters, to be given values at some later time. They are not essential to the solution of
any specific problem having this structure.
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————————————————————
Figure 5 About Here

————————————————————
The distinction between variables and parameters arises from distinctions among

problems in terms of the necessity of using letters to represent them. The following
problem    requires    the use of letters in its representation:    John is now four times as old as
Sally. In five years, John will be three times as old as Sally. How old are John and Sally?   
Figure 6 shows a representation in WPA of this problem. All values were entered;
descriptions were inferred by WPA. The     Comparison 2     quantity holds the seed of the
solution, as it has both a description and a value. The student can solve the problem by
selecting the     Comparison 2     icon and then selecting     Solve Equation     in the Options menu.

————————————————————
Figure 6 About Here

————————————————————
The reason that letters are required in this problem is that while we may assign a

range of values to John’s age, whatever value we assign must satisfy    two     constraints to
make the network consistent. This suggests that solving problems that have the structure of
simultaneous equations would be a cognitively supportive context in which to teach the
concept of letter-as-variable (which would include “graphing” approaches to solving
equations; see Lesh, 1987; Kaput, this volume).

There are many features of WPA that I would like to discuss, especially those that
concern its use in instruction, but cannot for lack of space. To summarize, in traditional
settings we try to communicate this message to students:     A good representation of a
problem is the most important step toward a solution.    With WPA, that message is a fact.

Equation Solving

McArthur (1985) and McArthur, Stasz, and Hotta (in press) describe the first
version of a system that will eventually grow into an intelligent tutor for solving algebraic
equations. In its current form it does not tutor. Rather, it includes what McArthur calls “an
inspectable expert.” That is to say, a student can ask the “expert” to show the details of its
reasoning.

Figure 7 shows a sample screen.1 In McArthur’s system, a portion of the display
shows a    reasoning tree.    A reasoning tree depicts the steps taken in solving an equation,
where branches from any step indicate that the student has attempted more than one
solution path. The number of options available to a student is quite large, as can be seen
from Figure 7. McArthur, Stasz, and Hotta (in press) give a full description of how these
options are used. I will discuss only those options that make the expert “inspectable” and
that support students’ understanding of reasoning in equation solving.

————————————————————
Figure 7 About Here

————————————————————
A student begins a problem by clicking on      New Question     (middle left side of the

screen in Figure 7). After entering the initial equation to solve, the student clicks      New Line   
and types a new line. Under this mode of operation, the display shows what would be
shown were the student recording a solution with paper and pencil.

The difference between using McArthur’s system and using paper and pencil is in
the editing features and checking features provided by the former. Figure 8 shows the
display after the student selected      Go Back     and selected the equation (–6)    x     = –17+15+(–9)    x    

                                                
1 Figures depicting McArthur’s system are taken from McArthur, Stasz, and Hotta (in
press).
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as the step to go back to. The program created a branch from that step to indicate that any
new equations constitute a different solution path than the one he or she was on.

————————————————————
Figure 8 About Here

————————————————————
To activate the expert, a student can select a step (by clicking on a line that connects

two equations) and then select     Step Correct?    from the menu options. The expert will
respond yes or no to correctness, and if the step is correct,    it will comment on the
appropriateness of the step for achieving the goal of solving the equation.    The student can
also ask the expert to supply a next step, by clicking on the     Do Next Step     menu option. If
the student doesn’t understand what the expert has done, he or she can request further
detail by clicking the     Elaborate Step     menu option and then clicking on the line connecting
the two equations in question.

Figure 9 shows the expert’s elaboration of a step. The student typed the equation
-6x = -2 + -9x (continuing from Figure 8). Then he asked the expert to supply the
answer. Then he asked the expert to elaborate on its solution. To request the elaboration,
the student clicked     Elaborate Step    , and then clicked on the equations -6    x     =  -2  + -9     x     and

x = 
-2
 3 . The expert then supplied more detailed steps for deriving the second equation from

the first.
————————————————————

Figure 9 About Here
————————————————————

As with Draper and Norman’s exhortation, we must ask of the intended subjective
experiences to be had by students who use McArthur’s system. Clearly, one is that
students will develop a sense of heuristic search in applying expression-transforming
operations: If one path isn’t productive, go back to solid footing and try another approach.

A second field of experiences, based on the use of STEP OK?, DO NEXT STEP,
and ELABORATE STEP, is intended to develop the idea that knowledge itself is something
that can be reasoned about.

... these activities teach the student that an important part of learning a
cognitive skill is    learning to study your own reasoning processes.    [italics
in original]....[W]hen students are asked why they do poorly on a
mathematics test in grade school, common attributions are “I’m dumb in
math.”, or “I had a bad test.” or “The test was unfair.” Very few identify
specific knowledge that they might have lacked, or even understood that
their correctable lack of knowledge might have been responsible for
failure.

(McArthur et al., in press [p. 17 in
pre-publication manuscript])

The interactions between students and McArthur’s system are possible without a
computer, but just barely so. Even so, the modes of presentation and interaction used in
this system demand the flexibility and rapidity provided only with a computer display.

Concept of Expression

In (Thompson, 1987) I outlined design considerations for developing what I call
mathematical microworlds——computer programs that embody a mathematical system in a
way that promotes mathematical explorations. I also gave an example of a program under
development that embodied an intelligent mentor to aid students in their explorations of
isometric transformations of the plane. The key to incorporating an intelligent mentor into a
mathematical microworld is to study students’ conceptions of the subject matter    as they
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interact with the microworld.    By studying conceptions in the context of students’ work
with a microworld, one finds not only their fundamental misconceptions, but also how
those misconceptions are reflected in students’ interactions with the microworld. One can
then design a “bug catalog” that is sensitive to qualitative, fuzzy misunderstandings. The
first step to this goal is to study students’ conceptualizations.

The program, called EXPRESSIONS, is intended to emphasize cognitive and structural
features of algebra that are not treated typically, and which appear to be sources of many
students difficulties in algebra. These are:

1. Expressions and equations have internal structure, and the structure of an
expression or equation constrains what may be done to it (Greeno, 1982;
cited in Kieran, this volume).

2. Expressions and equations (henceforth, “expressions”) are objects, and as
such they may be acted upon.

3. A field property or an identity is a statement of relationship between an
expression, the application of the property or identity, and the result of that
application.

A premise that unifies the three listed above is:
4. Multiple representations of an object, with actions performed with one being

reflected by changes in the other, facilitate students’ development of
relational understanding (Skemp, 1978) of the content.

Expressions are presented in two forms: in conventional (sentential) notation and in
the form of an expression tree. An expression in sentential notation can be displayed with
or without superfluous parentheses, and multiplication can be made to be represented
explicitly or implicitly.

An action upon an expression is selected by clicking the button with its name.
Buttons are located along the right edge of the computer’s screen (Figure 10).

————————————————————
Figure 10 About Here

————————————————————
The part of the expression to be acted upon is selected by clicking on the place

within the tree that defines the to-be-acted-upon expression. Figure 10 shows the screen
after a student entered (   a    +      b    )  +  (    c    +      d    ) and clicked ASSOCL, which stands for “re-
associate from left to right.” Figure 11 shows the screen after the student clicked the
addition sign at the top of the tree, which indicated that the entire expression was to be
acted upon.

————————————————————
Figure 11 About Here

————————————————————
To apply an identity (e.g.,     x     –      y     =      x     +  –    y    ), the student clicks ID, selects the

identity, and then clicks the top operation of the expression or subexpression to which the
identity is to be applied (Figure 12).

__________________
Figure 12 About Here
__________________

One aim of having students operate upon expressions is to build up a repertoire of
identities for future use. Any sequence of operations upon an expression produces an
identity, since the available operations are equivalence-preserving. When operating upon an
expression, one has,    at any time   , a relationship of equivalence between the initial and
current expressions. By clicking the REMEM button, the initial and current expressions are
added to the list of identities, and can be used thereafter. To see the derivation of an
identity, the student clicks twice on it when presented in the Identity window (see Figure
12).
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Students can operate upon equations in any of three ways. (1) They may operate
upon either side with field properties or identities. (2) They may use the buttons ADDL and
ADDR to add the same quantity or expression to both sides, or use MULTL and MULTR
to multiply both sides by the same quantity or expression. (3) They may replace the buttons
ADDL, ADDR, MULTL, and MULTR with the single button OPERATE. Figure 13
illustrates the use of the MULTL button.

__________________
Figure 13 About Here
__________________

The OPERATE button (not shown so far) allows students to apply the principle that
if f(x) is a function and     u    =    v    , then f(    u    )=f(    v    ). Thus, if they want to square both sides of an
equation and then add 3 to the result, they would click the OPERATE button and type
“   ?    ^ 2 + 3”——meaning that each side of the equation is to be composed with the

function f(x)=x2 + 3. To solve the equation 3(x2 + 4)  = 19, they could click OPERATE,
type “log(   ?   )”, and apply built-in identities having to do with logarithms.

EXPRESSIONS has been used with eight average, leaving-seventh graders and with a
class of preservice elementary school teachers. Students’ use of EXPRESSIONS was guided
by a workbook that contains graduated activities and exercises (see Thompson, 1985, 1987
for an explanation of graduated exercises in a Piagetian tradition). The exercises began with
order of operations in arithmetic expressions, moved to derivations of equivalence of
arithmetic expressions by use of field properties, and then moved to derivations of
identities of algebraic expressions by use of field properties and identities.

Analyses of videotapes and computer-recorded interactions taken during the seventh
grade field trial is given in Thompson and Thompson (1987). Here I will note two
observations. First, contrary to my expectation, students found expression trees to be quite
intuitive. In fact, they soon preferred working with expression trees to working with
expressions in sentential form (all exercises were presented in sentential format).

Second, when planning the pilot, I did not have a clear sense for how to motivate
the use of letters in expressions. There was not time for an elaborated treatment, so I
decided to just begin using letters and listen closely to the students reactions——and plan
accordingly in succeeding studies. To my amazement, students were not bothered by the
introduction of letters in expressions. They quickly saw letters as placeholders for
substructures in a tree. For example, six of the eight students explained that in applying the
associative property, (   a   +    b    )+   c    =     a   +(    b    +   c   ), to (3+5)+(7+9), the subexpression (7+9) “is
just like c”.

The fact that students saw two expressions like (a+b)+c and (3+5)+(7+9) as
appropriate for the application of the ASSOCL transformation suggests that they were
developing a generalized concept of variable——letters could stand for numbers, but in
general they were placeholders within a structure and    anything     could be put in their place,
including other expressions. In another instance, two students, when considering what
identities to apply to (a-b)/c in order to obtain a/c–b/c, remarked that “(a-b) is like u” when
comparing their expression to the identity u/v = u * 1/v.

Frequently, students are bothered by the introduction of letters in expressions.
Why? In their experience, an expression is there to be    evaluated     (Kieran, this volume), and
they cannot evaluate an expression having a letter in it. The seventh graders who used
EXPRESSIONS had a different kind of experience. In their use of EXPRESSIONS an expression
was there to be      manipulated    . The presence of a letter in an expression did not affect their
ability to manipulate it.

My hypothesis about why students used substitution spontaneously when
comparing a complex expression with one that had the same structure but less complexity is
this: These students realized the general purpose of letters because of the nature of their
activities with arithmetic expressions. When transforming an arithmetic expression to
obtain some goal expression, the particular numbers did not matter——only the current and
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goal expressions’ structures constrained their choices. Also, the arithmetic exercises
included many instances of transformations that left subexpressions intact. In working
these exercises, students became used to ignoring, for the moment, the details of a
subexpression and treating it as a single item in the super-expression. They were    thinking    
in terms of substituting an expression for a variable. A cognitive foundation had been laid
for explicit substitution of expressions for letters.

Concept of Equation

Feurzeig (1986) described a multifaceted project, to be used with sixth-graders, that
focuses on three aspects of algebraic understanding. These are: algebra as a language for
describing actions on and relationships among quantities, algebra as one instance of a class
of functional languages, and manipulative skills with expressions and equations. The
portion dealing with manipulative skills has resulted in a program similar in spirit to
McArthur’s program. In this paper, I will discuss only the aspect of Feurzeig’s project that
focuses on algebra as a language for describing actions on and relationships among
quantities. This focus manifested itself in what Feurzeig calls the      Marble Bag Microworld.   

The objects in this microworld are pictures of marbles and bags (bags
contain some unknown number of marbles); the operations include
addition or subtraction of specified numbers of bags or marbles, and
multiplication or division of the current collection by a specified integer.
Students are introduced to marble bag stories and diagrams. They are
shown how to create and solve simple marble bag stories (story
problems). They are introduced to standard algebraic notation as a rapid
way of writing marble bag stories. As a student works on a problem, the
system can show the correspondence between the iconic, English, and
standard algebraic representations of the operations and results.

(Feurzeig, 1985, p. 231)
The Marble Bag Microworld described by Feurzeig consists of a display as shown

in Figure 14.2 The student acts within the microworld by clicking the mouse pointer on an
appropriate object. For example, the display in Figure 14 was made by clicking on the
icons for bags and marbles in the upper-left corner. The microworld provided one bag in
the STORY window and the line “Think of a number. X” in the History window. I clicked
three times on the bag icon, then clicked DONE, and the microworld mimicked my actions
with the line “Multiply by 4. 4X.” And so on. Problems posed to students might take the
form of, “Construct a story that ends up with the expression 2(4x)+2.”

__________________
Figure 14 About Here
__________________

Solving equations is presented as the reverse process of that shown in Figure 14.
To present “equation solving,” the computer generates a marble-bags story in English. The
computer presents a sentence of the story, the student translates the sentence into a display
of marbles and bags, and the computer records the interaction in the History window.

The screen in Figure 15 shows the result of a sequence of such interactions. The
computer’s instructions were given in the panel underneath the word Instructions
(middle-left of screen). As I responded to each instruction (by clicking on marble or bag
icons in the upper left corner), the English-language instruction, along with its algebraic
counterpart appeared in the History window. The first instruction was “Think of a
number” (the Story panel was blank). I clicked on the bag icon, then clicked Done. A

                                                
2 All figures in this section were generated as screen dumps from a prototype copy of the
marble bags microworld, which was lent to me graciously by Wally Feurzeig.
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marble bag appeared in the Story panel; the first line in the History window recorded this
action. The next three lines in the History window are a record of my responses to the
subsequent three sentences in the story. The Instructions panel shows the fifth sentence
of the story: “Subtract your original number” (to which one would respond by clicking on a
marble-bag icon in the Story window).

When the story has been told, the microworld says something like, “There are now
37 marbles. How many marbles did I start with?” To determine the computer’s initial
number of marbles, the student operates on the display of marbles and bags in the Story
panel. The microworld describes the student’s actions in English and in algebraic notation,
which ends up producing a history of the story’s creation and of its inverse-creation.
Feurzeig’s intention is that these activities provide a cognitive foundation for students’
understanding of operations on equations as ways to “unravel” an equation into an initially
unknown  value.

__________________
Figure 15 About Here
__________________

The microworld also has a “balance beam” mode. In this mode the student can
operate on one side of an equation or on both sides. The balance tilts toward one side or the
other if a student does something that does not maintain equivalence between the two sides.
Neither “unraveling” nor the balance beam is a preferred approach. Rather, they are offered
as two complementary aspects of equation solving.

The most impressive feature of Feurzeig’s project (not just the Marble Bags
microworld) is the variety of metaphors it uses to approach the idea of algebra as a
language descriptive of operations upon quantities and relationships among quantities.
While Feurzeig’s team has yet to make the AI side of their programs apparent to an
observer, the intelligence of their design decisions is readily apparent.

Conclusion

I began the previous section with an extended discussion of Draper’s and Norman’s
idea of software that provides a user with the sense of having a “first person” experience.
The spirit of the pieces in Draper’s and Norman’s collection is that of providing people
with tools. The examples cited differ somewhat from that spirit. While one might think of
them as tools for the intellect (Papert, 1980), they were designed with more in mind than as
an aid to cognition. Rather, they were designed with the intent of    shaping     cognition. If their
is an “aid” aspect to these projects, it is that the software was designed so as to aid students
in coming to think the way the designers intended them to think.

Had I focused on tools per se, I would have had to mention hand-held, symbolic
manipulating calculators recently introduced by Hewlett-Packard and soon to be released by
ATT. Had I discussed these, I would have argued that, just as with arithmetical calculators
in elementary school, these machines are largely irrelevant to mathematics education unless
students have appropriate mental models and knowledge structures that enable them to
make judicious use of the technology.

The examples given here differ significantly from previous work with intelligent
tutoring systems. Developers of ITS’s tended to focus on strategic and manipulative skills
within quite rigid boundaries of traditional algebra instruction. The focus of the examples
presented here is at a much higher conceptual level. Were the developers of the examples
presented here to embed their systems within ITS’s, however, past ITS research would be
very fruitful in terms of the techniques used therein, especially the “issue-oriented”
techniques developed by Brown and Burton (1982).

The examples presented here also differ from past approaches that attempted to
present mathematics as descriptive of phenomena, or as descriptive of structural features of
phenomena. Rather, they attempt to present mathematics    as    phenomena. In a very real
sense, these projects attempt to shape students’ experiences so as to foster powerful, yet
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intuitive conceptualizations of the subject matter. The relationship between experience and
conceptualization is stronger than one might think, especially in regard to mathematics
(diSessa, 1983). One could say that, in mathematics,    to experience is to conceptualize   . The
critical issue, from a software design perspective, is to present an environment which
allows conceptualizations at a number of levels, and which promotes students’
advancement through those levels (Norman, 1979; Rumelhart & Norman, 1978;
Thompson, 1985, 1987; Thompson & Dreyfus, in press).

Conceptualizations of subject matter are powerful or weak for very specific
reasons. A weak conceptualization allows students to over generalize, under generalize,
and do “silly” things. A powerful conceptualization provides both generality and
constraints    on that generality. For example, it is one thing to know a rule that transforms
a(x-b)    into    ax     -     ab    , or that transforming    a(x-b)    into    ax     –      b     is not correct because the
result should be    ax     –     ab    . It is quite another thing to know that transforming    a(x-b)    into
ax     –      b     is nonsense.

An expert is an expert not because she does not make mistakes, but because she
notices    mistakes soon after they are made. Mistakes violate constraints. But constraints
often cannot be rules, for rules are too specific. Rather, constraints are more like
metaphors, such as “   (x – b)    is a single thing, like a bucket.” It is inconceivable that
experts possess a myriad of “DO NOT” rules for every conceivable mistake, or that they
avoid mistakes by always applying rules correctly. It is much more plausible that they
possess metaphors——and more broadly, conceptualizations——that allow them to judge
quickly the sense or nonsense of something by the way it “fits” with their more metaphoric
ideas of what they are doing.

Constraints are of no use to students unless they are internalized, unless the
constraints are    their    constraints. The projects illustrated here attempt to focus students
attention in ways that they will construct metaphors, generalizations, and concepts for
themselves. To what extent they succeed, and the reasons for success or failure, are
questions that need to be researched.

Another aspect that unifies the projects described here, but which has yet to become
a research focus, is that of multiple, linked representational systems (Kaput, 1985, 1986).
In WPA, students act on representations of problems and those actions have consequences
for the expressions describing the quantities in the representation. In McArthur’s system,
students act on particular expressions or equations and the system fits the results of those
actions into its representation of their solution paths. In Marble Bags, students act in one
representational system and the results of those actions are reflected in both the system in
which the action occurred and in an alternative representational system. In EXPRESSIONS,
students use a set of trans-representational operations to effect changes in one
representational system by indicating the operand in another system——one in which the
structure of the operand is made explicit and visual.

The idea of multiple, linked representational systems appears to be powerful, but
we have little idea of the actual effect their use has on students’ cognitions. There is
preliminary evidence that their use has a positive effect on skill (Greeno et al., 1985; Lesh,
1987; Thompson & Thompson, 1987), but we do not know in any broad detail the nature
of students’ subjective experiences or how those experiences are reflected in cognition.

Also, we need to look seriously and vigorously at the question of to what extent
achieving the aims embodied in these projects makes any practical difference in the
mathematical lives of students. We can ask if WPA, for instance, makes students better
problem solvers    away     from the program, or if it in fact succeeds in preparing students to
think algebraicly. To answer these questions will not be easy. I tend to think that before we
can obtain satisfactory answers, we will need to rethink our goals and objectives of school
mathematics. I suspect that we will find that, yes, what students learn is valuable and
should be learned, but that what they learn is not assessed on today’s standardized tests and
is not contained in today’s textbooks.
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The programs described in the previous section are not “big” AI programs.
However, I would argue that the issues they address are actually more significant for
learning/teaching algebra (or mathematics, for that matter) than are the issues addressed by
many larger projects, especially those aiming at developing intelligent tutors in algebra.
This is not to say that these programs cannot benefit from past research on intelligent
tutoring systems. Rather, before attempting to create intelligent tutors or intelligent
mentors, we must have a better understanding of the nature of students’ experiences with
this type of software and a better understanding of how students’ thinking can be affected
when using it.
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