
- 1 -

Mathematics Software†

Patrick W. Thompson

Illinois State University

Barbara Bowen has asked us to discuss examples of decisions we have made that address a

number of issues. These issues (e.g., use of multiple representations, “hooks” into the software,

etc.) are important approaches to consider in software design. Before speaking specifically to items

in her list, however, I will speak to the themes amplified by them.

Also, I am sure that most people attending this conference will have made design decisions

that strike a balance among these issues: too strong an adherence to any one can preclude adherence

to one or more others. I will discuss (my) self-imposed constraints which shape any balance

achieved among these issues.

Self-imposed Constraints

First, the programs I design are meant to be used as pedagogical tools. This means that I

always assume that a teacher is in control of instruction, and the programs he or she uses will be

used as tools to achieve some set of learning objectives.1 Sometimes a program will be used by a

teacher as a device to instigate discussions; sometimes a program will be used by a teacher to

establish a set of constraints within which students are to solve problems. Nevertheless, a program

being used is used. It does nothing on its own unless directed by a person, and it is the person

who chooses the problem (pedagogical, mathematical, or both) a tool is used to solve.

Second, these programs are meant to assist in students’ achievement of cognitive objectives

in some conceptual field in mathematics. This means that a lot of cognitive analysis needs to be

done beforehand, and even more needs to be done during the design-implement-redesign cycle. It

also means that these programs are not “generic,” in the way a word processor is a generic tool for

composing prose.

Third, these programs are meant to enhance the subjective experience of the student in

mathematically substantial ways. This means that mathematics is not meant to be “shown.” It is

meant to be “felt.” The aim is for students to construct mathematical knowledge through

interactions with software, in the context of problems defined within the metaphor of the software,

but which are defined independently of it (e.g., through problem sheets or discussions). As such,

the mathematics “shown” by a program is both more and less than the mathematics that is intended

† Research reported in this paper is supported by NSF Grant No. MDR 87-51381 and by a grant of equipment by
Apple Computer. Any opinions expressed or implied are those of the author and do not necesarilly represent
positions of the NSF or Apple Computer.
1 I do not mean by this that I assume the teacher is always teaching. Rather, I assume only that a teacher will make
all substantive instructional decisions. The software might constrain those decisions, but it does not dictate them.

Mathematics Software

-2-

to be “seen” by students. There is more foundational mathematics shown these programs than is

seen by students, but there is less mathematics availed by them than is intended to be constructed

by students. It is more difficult than it sounds to keep from availing too much mathematics to

students in a program designed to assist in the teaching of mathematical concepts and skills.

Fourth, I try to design programs that are transparent to students using them. The reason for

this constraint is simple: I want students to be students of mathematics, not students of some

program. Thus, these programs are meant to provide intuition-building experiences that students

can formalize independently of the programs. That is, computer programs of this genre are meant

to be transitional devices that assist students in constructing mathematical systems meaningfully.

The goal is for students to interiorize a program by constructing for themselves the mathematical

system programmed into it. But I intend that students will eventually no longer need the program to

give meaning to the mathematics.

Imply and Support the User’s Full Intelligence

 If we are to take this theme seriously, then it must be incorporated into programs in a deeply

principled way. Above all, this theme implies that we assume students can and should reason. In

mathematics, this means that we attempt to make contextual and mathematical constraints explicit,

but at the same time it means that we do not attempt to enforce prescribed ways to solve problems

within these constraints.

To take this theme seriously and at the same time wear the cap of pedagogue is difficult. It

means that software must be designed so that its use assists students in constructing schemes for

systematic reasoning and, just as importantly, assists students in constructing the objects toward

which reasoning is to be directed. It also means that we need to isolate cognitive roots of

mathematical concepts, which is quite different from isolating mathematical roots of these

concepts.2

Coordination of multiple representational systems

It is now evident that mathematical competence rests upon one’s ability to coordinate

multiple, complementary representational systems (Janvier, 1987; Kaput, 1986, this volume). I

have used four approaches to the inclusion of multiple, linked representations. In one there is a

visual model of some mathematical domain and a set of commands that make things happen within

that model. That is, the mathematical meaning of the formalism is defined within the visual model.

Problems framed within the metaphor of the visual model are posed; students must solve the

problem by casting their solutions or explorations within the command language, which typically

2 For example, David Tall differentiates between the concept of “local straightness” as a cognitive root of derivatives
and the concept of limit as a mathematical root of derivatives.

Mathematics Software

-3-

resembles traditional mathematical notation (Thompson, 1985a, 1985b, 1987a; Thompson &

Dreyfus, 1988). A second approach is to have two representational systems, either of which can be

active. Problems are posed to students within the framework of one of the systems; they must

achieve a solution by acting within the framework of the other (Thompson, 1987b, 1989c). A third

approach is to have three representational systems, where one is completely traditional, one is

graphic, and the third is a trans-system set of actions that have consequences in the other two

systems. Students act within the trans-system set of actions and apply those actions to the graphic

representational system (Thompson & Thompson, 1987; Thompson, 1989a). The fourth approach

is to have two systems, one of which is completely traditional, the other graphic, and the student

acts completely within the graphic system. The traditional system (e.g., arithmetic or algebraic

expressions) corresponds to consequences of actions within the graphic system (Thompson,

1989a, 1989b).

In all four approaches, a program is meant to set a context for students’ problem solving and

for teachers to initiate discussions of substantial cognitive issues. Curriculum is kept independent

of software, but programs are designed to support a cognitive curriculum (Thompson, 1985a,

1989c).

An Example

Base-ten numeration is one of the most foundational mathematical systems students will learn

in school. Every numerical algorithm is founded ultimately upon some system for representing

numbers, and concrete aggregates beyond those we can perceive directly may be accessed only

through some numeration system. It is also evident that too many students understand our

numeration system only to the extent that they can “read” numerals (NAEP, __; McKnight et al.,

1987). They need to understand that a numeration system constitutes a set of constraints within

which methods for naming the result of an operation are invented.

I will draw on one program and its associated pedagogy to make concrete the idea of making

contextual and mathematical constraints explicit while leaving it up to students to construct methods

for solving problems within those constraints. In this program, called BLOCKS MICROWORLD (or

BLOCKS, for short), the major constraint is that students can represent quantities only within a base

numeration system (in this example, the base is ten). The topic of this example is decimal

numeration, and the operation is division.

Sue, the student from whose work these illustrations are taken, was a fourth-grader. Prior to

working with division of decimal numbers, Sue participated in instruction on decimal numeration

and addition and subtraction of decimal numbers (Thompson, 1989d), and instruction on division

of whole numbers. Sue was reminded continually that she was free to solve problems any way she

wished; her main task was to construct a method by which she could record the state of a problem

Mathematics Software

-4-

each time she acted on BLOCKS' display. This approach was suggested by Vergnaud (1982). The

intent was that students first develop “theorems in action” (i.e., intuitive schemes) and then

transform them into “theorems in thought” (i.e., students formalize their schemes by organizing

and representing them systematically).

In this example, Sue was

asked to name the result of

dividing 93 by 8. She created

the display in Figure 1 by

dragging copies of blocks (9

tens and 3 ones) into the

“block” area. She then used a

menu to have BLOCKS display

8 containers. That is, Sue

translated “What is 93 ÷ 8?”

into the problem of sharing 93

ones among 8 containers so

that each container receives the

same number.

Sue’s method of sharing

was to try to share blocks of

the smallest value first. Here,

her method immediately created

a problem: how to share 3 ones

among 8 containers, where

“one” is represented by a single

block.3 She decided to change

her representation of one, so

that a “long” block represented one (see Figure 2). Were she simply to have changed the unit, her

display would have represented 9.3 instead of 93. Sue needed to decide to chose a menu item that

both increased the unit and increased the size of each block.

3 The program refused to put any singles into containers because the containers were linked. The links reflected the
constraint that if any container received blocks, then every container must receive the same number of the same kind
of block.

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

0

Figure 1

1 2 3 4 5 6 7 8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

Figure 2

Mathematics Software

-5-

Sue’s next step was to

break apart the ones (into

tenths) and share as many

tenths among containers as she

could. To execute this step, she

selected the three ones (by

drawing a selection rectangle)

and then clicked the Unglue

button, which caused each one

to break apart into tenths

(Figure 3). Sue then dragged 3

groups of 8 tenths each to the

containers, ending up with

Figure 4.

In the remainder of her

solution, Sue continued her

method of working first with

the smallest block numerous

enough to be shared, and

increased the unit each time she

needed to break apart one or

more singles.

After having solved many

division problems with

BLOCKS, Sue was given the

additional task of devising a

scheme by which to record

steps in her solutions. Her

scheme, applied to

93 ÷ 8 = __, is shown in

Figure 5. With her notational

scheme Sue could solve

division problems without

using BLOCKS while at the

same time referring to her

experiences with it. Sue’s use

1 2 3 4 5 6 7 8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

Figure 3

1 2 3 4 5 6 7 8

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

2.4

Figure 4

Figure 5

Mathematics Software

-6-

of BLOCKS established a semantic base—a mental model—that she could “think with” as she

solved division problems symbolically.

Conclusion

One could ask, legitimately, these two questions: (1) Why use a computer to simulate

Dienes’ blocks when students could use the real things? and (2) Why bother to use computers

to teach anachronisms (computational algorithms)? First, the constraints built into BLOCKS are

different from those built into physical Dienes’ blocks, while at the same time some physical

constraints are relaxed. These differences make for substantially richer experiences when students

use BLOCKS in the solution of problems, and these experiences translate into richer meanings

being injected into written symbols (Thompson, 1989d). Second, the “reform” movements, which

tell us to toss out anything having to do with paper-and-pencil calculations, do not distinguish

between two aspects of paper-and-pencil uses. One aspect, and the one that should be tossed out,

is the ritualistic performance of prescribed procedures, where neither written marks nor actions on

them have any meaning for the children “learning” them. Another, the aspect illustrated in Sue’s

work, is the use of notation to represent a concrete system and one’s actions on it. This latter

aspect is at the heart of intelligent uses of arithmetic and algebra, and is foundational to

mathematical modeling. The construction of elementary representational systems and algorithms

within them is part and parcel of an approach to mathematics education called algorithmics

(Hatfield, in press). Through intelligent uses of computers we can combine the spirit of

algorithmics with instruction on important conventional representational systems, such as base-ten

numeration.

References

Janvier, C. (1987). (Ed.) Representational systems. Hillsdale, NJ: Erlbaum.

Kaput, J. (1986). Information technology and mathematics: Opening new representational

windows. Journal of Mathematical Behavior, 5, 187-207.

McKnight, C., Crosswhite, J., Dossey, J., Kifer, L., Swafford, J., Travers, K., & Cooney, T.
(1987). The underachieving curriculum: Assessing U.S. school mathematics from an
international perspective. Urbana, IL: Stipes.

Thompson, P. W., & Dreyfus, T. (1988). Integers as transformations. Journal for Research in
Mathematics Education, 19, 115-133.

Thompson, P. W., & Thompson, A. G. (1987). Computer presentations of structure in algebra.
In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the Eleventh Annual
Meeting of the International Group for the Psychology of Mathematics Education.

Mathematics Software

-7-

Thompson, P. W. (1985a). Experience, problem solving, and learning mathematics:
Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Learning and
teaching mathematical problem solving: Multiple research perspectives (pp. 189-236).
Hillsdale, NJ: Erlbaum.

Thompson, P. W. (1985b). A Piagetian approach to transformation geometry via microworlds.
Mathematics Teacher, 78 (6), 465-472.

Thompson, P. W. (1987a). Mathematical microworlds and intelligent computer-assisted
instruction. In G. Kearsley, (Ed.), Artificial intelligence and instruction. Addison-Wesley.

Thompson, P. W. (1987b). Direct-engagment software for learning and teaching mathematics.

Thompson, P. W. (1989a). Artificial intelligence, advanced technology, and learning and teaching
algebra. In C. Kieren & S. Wagner (Eds.) Research issues in the learning and teaching of
algebra (pp. 135-161). Reston, VA: National Council of Teachers of Mathematics.

Thompson, P. W. (1989b, March). A cognitive model of quantity-based algebraic reasoning.
Paper presented at the Annual Meeting of the American Educational Research Association, San
Francisco.

Thompson, P. W. (1989c, April). Notes on technology and curriculum reform. Working paper
distributed at the symposium New Technology’s Challenges to Curriculum, Pedagogy, and
Evaluation, Research Presession to the Annual Meeting of the National Council of Teachers of
Mathematics, Orlando.

Thompson, P. W. (1989d). Cognitive effects of multiple representations of mathematical
concepts. Final project report of NSF Grant No. MDR 87-51381.

