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This premise was investigated: Quantitative reasoning provides a genetic foundation 
for algebraic reasoning in applied situations. A model-as-cognitive-objective was 
developed and tested with 25 average-ability eighth graders over a 6-month period. 
The premise received indirect confirmation, in that students who were severely 
deficient in quantitative reasoning as characterized by the model were also poor at 
arithmetic and algebraic problem solving. 

A primary concern in mathematics education, at least within the United States, is 

to incorporate aspects of algebraic reasoning into the elementary curriculum (NCTM, 

1987; Kieran & Wagner, 1988). That is to say, studentsʼ study of arithmetic is 

supposed to prepare them for algebra and currently is not doing so. 

How transitions between the study of arithmetic and the study of algebra might 

be made is an important area currently being researched by many in the PME (see 

Kieran, 1988, for an excellent review). Difficulties caused by that transition is another 

important research area (Booth, 1981; Küchemann, 1980; Herscovics & Kieran, 

1980; Vergnaud & Cortes, 1986). 

The premise of this research is: Competence in algebra is founded genetically 

upon competent quantitative reasoning. This premise is similar to a view of algebra 

as “generalized arithmetic,” but is different in key aspects, for here it is also argued 

that arithmetic is founded on quantitative reasoning. 

The claim that quantitative reasoning is genetically foundational to formal algebra 
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does not preclude the importance of “non-quantitative” algebra (e.g., the study of 

group, ring, and field properties of polynomials, or the study of algebras of real- and 

complex-valued functions). Rather, it provides a link between “non-quantitative” 

algebra and the algebra of applications.3 

QUANTITATIVE REASONING 

A quantity is a measurable quality of something. A magnitude of a quantity is the 

quantityʼs measure in some unit. Quantities are categorized into two kinds: extensive 

and intensive quantities (Freudenthal, 1973; Schwartz, 1987). An extensive quantity 

is one which may be measured in absolute units. An intensive quantity is one which 

may be measured only by units that are constructed comparatively. Lengths, areas, 

volumes, cardinalities, and ordinalities are examples of extensive quantities. Speeds, 

densities, temperatures, pressures, and pitches are examples of intensive quantities, 

as is a multiplicative comparison (ratio) of two quantities. 

To reason quantitatively is to reason about quantities, their magnitudes, and their 

relationships with other quantities. Quantitative mental operations include these: 

 Operation Example 

• Combine quantities additively Unite  two sets; consider two regions as 
one. 

• Compare quantities additively  “How much more of this is there than that?” 
• Combine quantities multiplicatively Combine distance and force to get torque; 

combine linear dimensions to get regions 
• Compare quantities multiplicatively “How many times as large is this than that?” 

Quantitative reasoning is to reason about situations in terms of quantities and 

quantitative operations. This characterization does not identify quantitative reasoning 

with arithmetic; in fact, it is independent of arithmetic. A quantity within a structure of 

quantitative operations may require any arithmetic operation to determine its value. 
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The appropriate operation to compute a quantityʼs value can be inferred only within 

the context of a quantitative structure together with assumptions about what values 

are known. 

Complex quantitative reasoning entails relating groups of quantitative mental 

operations, such as in forming a multiplicative comparison of an additive comparison 

and an additive combination (i.e., “How many times as large is this difference than is 

this combination?”). Quantitative reasoning also entails reasoning relationally about 

quantitative structures, entails the constitutive mental operations for comprehending 

a quantity situationally, and entails the constitutive mental operations which allow one 

to recognize a quantity as one whose value varies or can vary. 

To investigate the sufficiency of quantitative reasoning as a foundation for 

arithmetic and algebraic reasoning, the author constructed a computer program 

(called Word Problem Assistant, or WPA)which makes numerical or algebraic 

inferences solely on the basis of quantitative structure (Thompson, 1988). Once 

given a representation of a situation in terms of quantities, units of measurement, 

initial numerical information, and pairwise relationships among quantities, the 

program will generate arithmetic or algebraic expressions for computing unknown 

values within the situation, including the setting up of equations where appropriate. 

For example, here is a situation with a question about it. 

MEA Export is bidding to supply an oil valve to Costa Rica. They sell this valve 
for $5000. Freight charges to Costa Rica are $100. The insurance cost is 1.25% of 
the total price to Costa Rica. The total price to Costa Rica includes the cost of the 
valve, the cost of freight, and the cost of insurance. 
 
What is the total price to Costa Rica? 

Figure 1 shows a representation of this situation made within WPA, and also 

shows the inferences WPA made. The boxes in Figure 1 (called notecards) represent 



quantities.4 The bottom cell in a notecard contains the name of the unit in which the 

quantity is measured. The Value Cell in a notecard holds the quantityʼs measure, if 

one is known. The Description Cell of a notecard is a place that holds an expression 

which tells how to compute the quantityʼs value. 

 
Figure 1. A representation in WPA of an algebra story problem, along with the 

inferences it made based on the quantitative information presented about the 
situation. 

Entries with bullets (•) are the results of inferences made by WPA. Any entry 

without a bullet was entered by hand. The arrows show quantitative relationships. For 

example, the arrows coming out of Cost,Ins,Frght show that it is made of Cost & Ins 

together with Frght. Since the units are all in dollars (DLR), WPA inferred that this is 

an additive relationship, and hence that if Cost,Ins,Frght is x, and if Frght is 100, 

then Cost & Ins must be x-100. Other inferences were made accordingly, resulting in 

the inference that x-100-x*0.0125 is a formula for computing the value of Cost. Since 
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Cost already had a known value of 5000, WPA decided to ignore Costʼs value (and 

indicated as much by inserting “}” before its value) and to propagate the formula—

resulting in an equation (i.e., two descriptions of a single quantityʼs value) whose 

solution will determine numerical values of all quantities in the representation. 

AN EXPLORATORY STUDY OF QUANTITATIVE REASONING 

WPA constitutes a cognitive objective—a model which can be taken as depicting 

knowledge students are to build as a result of instruction (Greeno, 1980). As a 

cognitive objective, it can be used as a guide for instruction and as a guide for 

assessing studentsʼ knowledge.  

WPA was used on an ongoing basis for 6 months with 25 average-ability eighth 

graders at the ISU laboratory school. Students were given pretests on problem 

structure (similar to Silver, 1981), rate and ratio, concepts of expression and variable 

(similar to Küchemann, 1980), and arithmetic computation. Only on the computation 

pretest did the class average exceed 50%. Other pretest averages were 14% 

(Structure), 30% (Expressions and Variable), and 41% (Rate and Ratio). 

The classroom was equipped with 11 Macintosh Plus computers. Students 

worked in groups of two or three, whether in activities away from the computers or in 

problem solving at the computers. Whole-class instruction was done using the 

blackboard, overhead transparencies, or with a Macintosh connected to a projector. 

When students worked in groups, one group was selected for videotaping. If the 

videotaped group used a computer, their computer was connected to a projector so 

that both they and their computer screen could be videotaped simultaneously.  

The user-interface to WPA was made so that, to use it in solving word problems, 

students needed to make decisions only about quantities involved in the described 

situation. Decisions to be made about identified quantities were: a quantityʼs name, 

its type (“number of things,” difference, ratio, or rate), the unit in which it is measured,  

and quantities that it is made of (by some quantitative operation, but they did not 



have to specify the operation—WPA inferred one). The following are mistakes that 

students made on such a frequent basis that they are indicative of cognitive 

obstacles to quantitative reasoning, and hence are perchance indicative of obstacles 

to algebraic reasoning. 

Naming Quantities 

A predominant tendency was for students to name quantities by their numerical 

value, e.g. “250 dollars” instead of “Samʼs Savings.” Their failure to distinguish 

between a quantity and its measure hindered their ability to explicate relationships. 

This was for two reasons. First, students could identify only “quantities” that had 

given numerical values. It was difficult to identify quantities in a situation that had an 

unknown value, and especially difficult to recognize the need for including 

“intermediate,” but unmentioned quantities. Second, when students had only 

numerical values in mind they had no rational basis for deciding what operation to 

perform to find an unknown value. When one has in mind, for example, only “17.32 

dollars” and “12.87 dollars” without relational information about the quantities having 

these values, one cannot decide, on this information alone, what operation would be 

appropriate to compute the value of a third quantity. 

Identifying Kinds of Quantities/Assigning Units of Measure 

Students reliably identified and assigned appropriate units only to extensive 

quantities of a linear dimension. Multiplicative quantities of any sort (products, ratios, 

rates) were commonly mis-identified or given an inappropriate unit. 

The most common mis-identification was of rates. The typical mistake was to 

give the “numerator” of a rate or ratio as the unit of the identified quantity (with the 

exception of speed in miles per hour). Pay rates per unit time were given “dollar” as 

the unit.  Prices were given “dollar” or “cent” as the unit. Ratios between children and 

buses were given “child” as the unit. And so on. 

WPA required students to pick the kind of quantity a notecard was to represent 



and to supply the unit in which the quantity was to be measured. When a mismatch 

occurred (e.g., saying that a rate had “meter” as a unit), it would say that the unit and 

kind of quantity were not consistent, and would not let students proceed until the two 

were made consistent.  

Showing Relationships 

WPA checked compatibility of units and kinds of quantities when students 

attempted to show relationships among quantities. If they attempted to show, by 

drawing arrows, that an extensive quantity measured in “meter” was made by 

combining a rate measured in “ft/sec” and a time measured in “sec,” WPA would 

explain that the quantities could not be related in this way, and would not establish a 

relationship (i.e., would not draw the arrows). The constraint of compatibility was one 

which students bumped against commonly. 

Studentsʼ consistent violation of the two constraints imposed by WPA proved to 

be so severe that direct instruction on quantity, units of measure, and relationship 

was necessary. This instruction, however, uncovered affective and sociological 

norms which severely obstructed studentsʼ abilities to assimilate instruction on 

quantitative reasoning and its generalization to algebra. Another publication will 

address issues of instruction, affect, and effects of the “social contract” of schooling. 

CONCLUSION 

The premise that quantitative reasoning provides a genetic foundation for 

arithmetic and algebraic reasoning remains to be tested directly. The current study 

provides, at best, indirect confirmation of the premise. This is that students who are 

not good arithmetic or algebra problem solvers have substantial deficiencies in 

quantitative reasoning. The next phase of this project will be a longitudinal study of 

quantitative reasoning and its relationship to algebra. We will follow a class of fifth-

graders for four years, instructing them in quantity, quantitative reasoning, and the 

representation of quantitative structure. It is hoped that a longitudinal approach will 



illuminate issues regarding sufficiency of quantitative reasoning for algebra. 
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