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Quantitative Reasoning
Mathematics is done within a tradition and with customary modes of reasoning. In the 

United States, it is customary to approach complex mathematical problems with the idea that we 

will use the tools of algebra as an aid to manage such complexity. One byproduct of this custom is

that we are predisposed to move away from the situation itself, with all its complex relationships, 

and move toward the formalities of algebraic and numerical manipulations. This is completely 

natural and quite acceptable—except in the case of persons for whom “formalities” are magical 

and devoid of situational reference. Another byproduct of our predisposition to think that 

complexity is a domain for formal algebra is that we are undisposed to reason in other, more 

concrete ways and we are undisposed to hold such reasoning as a type for which teachers should 

aim. Our predispositions also have the effect of directing us away from examining kinds of 

concrete, intuitive reasoning that might foster the development of the algebraic reasoning which 

we value so highly.

Here is an example of the distinction I have in mind. Two approaches to solving a problem

are depicted: customary algebra and what I call reasoning with quantities and relationships.

I walk from home to school in 30 minutes, and my brother takes 40 

minutes. My brother left 6 minutes before I did. In how many minutes will

I overtake him? (Krutetskii, 1976, p. 160)

An algebraic approach would be to set up an equation, such as , and then 

solve for t. This is a customary approach, and today any problem like this would be placed in an 

algebra textbook.

On the other hand, this problem can be approached in a much more “situation-sensitive” 

manner. Here is an example of one such chain of reasoning:

• Imagine myself and brother walking: What matters is the distance between us and how 

long it takes for that distance to become zero.
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Quantitative Reasoning
• The distance between us shrinks at a rate that is the difference of our walking speeds.

• I take 3/4 as long as brother to walk the same distance, so I walk 4/3 as fast as brother.

• Since I walk 4/3 as fast as brother, the difference of our speeds is 1/3 of brother’s speed.

• The distance between us shrinks at 1/3 of brother’s speed, so the time required for it to 

become zero is 3 times what brother took to walk it.

 I will overtake brother in 18 minutes.

If we take this example as illustrative of a type of reasoning—what I call quantitative 

reasoning—and if we take quantitative reasoning as an objective of arithmetical instruction, then 

problems like the one discussed above can be included in the middle school and junior high 

curriculum.1 To take quantitative reasoning as an objective of instruction, however, it will help to 

have a clear, detailed picture of the mental operations and conceptual structures that enable 

quantitative reasoning to happen.

Before continuing, some issues must be brought out. First, “students’ quantitative 

reasoning” is almost an oxymoron. For the most part students do not reason quantitatively within 

school mathematics. Textbooks and curricula do not promote quantitative reasoning (Stigler, 

Fuson, Ham, & Kim, 1985; Fuson & Stigler, 1989; Porter, 1989). It would be surprising to find 

many teachers teaching for quantitative reasoning since a large portion do not reason 

quantitatively themselves (Post, Harel, Lesh, & Behr, in press). So, from the beginning I am in the

somewhat awkward position of speaking of a model of a particular style of cognition that is rare, 

but which should be a primary aim of instruction in the elementary, middle, and junior-high 

grades. One purpose of this paper is to explicate a meaning of quantitative reasoning as it pertains

to reasoning arithmetically and algebraically. An explication will enable us to speak with precision 

about cognitive objectives for which we might aim and about what might be wrong when students

perform poorly.

1 Krutetskii (1976) considered this problem to be an arithmetic problem.
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Quantitative Reasoning
Second, the theoretical model of quantitative reasoning presented here is in its formative 

stages. Its inspiration comes from many sources, most prominent of which are research on 

additive and multiplicative conceptual fields (e.g., Vergnaud, 1982, 1983, 1988; Kaput, 1985; 

Schwartz, 1988; Post, Lesh, & Behr, 1988) and interviews of research mathematicians, 

mathematics and science graduate students, middle school and junior high students, middle school

and junior high teachers, and elementary/middle school education majors.

Many sources suggest that students rarely reason in terms of quantitative operations. 

Rather, their thinking is dominated by numerical operations, which (as will be shown later) are 

orthogonal to quantitative operations. The fact that students may be correct or incorrect in 

solving a problem is explained, in terms of accounting for observed behavior, more often by 

appealing to models of text-processing schemata than by models of quantitative reasoning (e.g., 

Mayer, 1983, 1987; Kintsch & Greeno, 1985).

Third, the model reflects my bias against local, decontextualized hypotheses. The model is 

of a development of quantity-based algebraic reasoning. In addressing the issue of development of

a concept field such as quantity-based algebraic reasoning, one is constrained severely by the 

supposition that people are not born as ninth-graders. They were also eight-graders, and before 

that they were seventh-graders. That is to say, quantity-based algebraic reasoning must be 

evidently constructible from the kind of knowledge expressed in competent quantity-based 

arithmetical reasoning.

What This Model is About

The model proposed in this paper is about a stratum of reasoning that lies beneath both 

applied arithmetic and applied algebra. It is about people using “rigorously qualitative” reasoning, 

where rigor derives from the intention to attend to the quantification of a situation’s qualities.
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Quantitative Reasoning
It is also about the potential that learning to reason quantitatively has for the kinds of 

algebra children could be expected to learn. That is, it looks for the boundaries of quantitative 

reasoning in the world of algebraic reasoning.

The model presented here is about the cognitive processes and conceptual structures that 

enable the kind of reasoning illustrated in the previous section. These processes and structures are

at the heart of what I call quantitative reasoning and its expression in applied arithmetic and 

applied algebra.

Definitions

I will use the following as heuristic, working definitions of quantity, quantitative 

operations, and quantitative reasoning. I ask you to keep in mind that these definitions have a 

purpose: They are meant to support the operationalization of notions of quantitative and 

algebraic reasoning. That is, they should be examined as constructs in a system. The next section 

(Definitions in Action) will show the operationalizations that they enable.

Quantity

A quantity is a quality of something that one has conceived as admitting some 

measurement process. Part of conceiving a quality as a quantity is to explicitly or implicitly 

conceive of an appropriate unit.

This definition hides a lot of cognition. It assumes that someone has isolated an object or 

has objectified a phenomenon having qualities that, to them, may be measured. To comprehend a 

quantity, children’s conceptions of the “something” must be elaborated and analyzed (by them) to 

the point that they see characteristics of the object which are admissible of processes of gross or 

numerical quantification.

By defining the construct of quantity in this way, it is possible to describe pre- and non-

numerical comprehensions of what, to us, are quantitative situations. It is quite possible that early-
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Quantitative Reasoning
established conceptions of gross quantity provide cognitive “cues” for expert problem solvers of 

applied algebra problems as to productive directions for elaborating their comprehensions of a 

situation in terms of quantities and relationships.

Quantification

Quantification is a process by which one assigns numerical values to qualities. That is, 

quantification is a process of direct or indirect measurement.

This definition does not imply that a quantification process result in a class of magnitudes 

(Freudenthal, 1972.) I am not speaking of quantification processes as producing mathematical 

systems, although to a sophisticated quantifier they could. Young children’s counting can be a 

quantification process (to measure numerousity) just as can a nutritionist's attempts to quantify 

the energy required to dispose of complex sugars.

It is in in the process of quantifying a quality that it becomes truly analyzed. What is a 

quantity from our perspective will become a quantity from a child’s perspective only in the 

context of the child’s development of quantification processes for it. Quantity and quantification 

are a dialectic.

Value

A quantity’s value is the numerical result of a quantification process applied to it.

Extensive Quantity (“Number of things”)

An extensive quantity is a quantity that may be measured directly or is a combination of 

directly measurable quantities. Put another way, extensive quantities are quantities whose 

measures admit normal arithmetic (Cohen & Nagel, 1939).
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Quantitative Reasoning
Intensive Quantity

Intensive quantities are quantities whose measures are non-additive as in normal 

arithmetic (Cohen & Nagel, 1939). Speeds are not additive in general, although velocities are 

additive as vectors. Temperatures, densities, and frequencies are not additive in general.

These definitions of extensive and intensive quantities differ somewhat from others given 

in the literature (e.g., Kaput et al., 1986; Ohlsson, 1988; Schwartz, 1988). According to these 

authors, an intensive quantity is one that can be measured by a ratio. I use Cohen and Nagel’s 

terminology largely because the central issue concerning intensive quantities has to do with the 

distinction between ratio and rate (discussed below) and that the distinction between intensive and

extensive quantities must not interfere with this more central distinction.

Difference

A difference of two quantities is the quantity by which one quantity exceeds or falls short 

of another.

It seems reasonable to allow a weaker definition: A difference of two quantities is the 

amount by which one quantity’s value exceeds or falls short of another’s. The reason for allowing 

the weaker definition is that, conceptually, it seems reasonable to make comparisons like “How 

much greater is my height in centimeters than your age in years?” The stricter definition allows 

comparisons only within a dimension.2

There can be no direction implied in the definition of difference. If the compared quantities

are measured in the same unit, then the direction of the comparison must be decided upon by 

considerations external to the comparison itself. For example, “the” difference between a boy’s 

height measured in centimeters and his dog’s height measured in centimeters is not well defined 

until we make explicit our assumptions about the direction of the comparison. Are we asking how 

2 The weaker definition reflects our ability to turn any measure into a counting measure. It says, in effect, that we 
can ask “How many more of these units than those units are there?”
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Quantitative Reasoning
much taller the boy is than the dog or how much taller the dog is than the boy? In “competent” 

quantitative reasoning, this decision is made independently of the quantities’ values.3

On the other hand, if the two quantities being compared are measured in different units, 

then the unit of the difference determines the direction of the comparison. If one is comparing a 

quantity of apples with a quantity of oranges, and conceives of the difference as a number of 

oranges, then the comparison is “How many more oranges than apples are there?” If there are 

more apples than oranges, the difference will have a negative value.

Ratio

A ratio is a multiplicative comparison between two quantities.

The goal of forming a ratio is to conceive “how many times as large” is one quantity than 

another, or to conceive “how many of these is in that.” If the quantities being compared are 

measured in the same unit, then the comparison can be conceived as being a direct comparison of 

qualities. If the quantities are measured in different units, then it is segmentations (measures) of 

their qualities that are being compared.

This definition of ratio emphasizes the quantitative-relationship aspect of ratio. It allows 

us to speak of ratios without implying an inextricable link between a ratio and an arithmetic 

operation to calculate its value. Of course, in the canonical situation of knowing the values of a 

ratio’s “numerator” and “denominator” quantities, division is the operation that determines the 

ratio’s value. However any operation may be used to calculate a ratio’s value, and that operation 

is determined by the relationship of the ratio to other quantities in a specific situation. This point 

will revisited later in the discussion of quantitative operations.

3 A comparison’s direction must be fixed independently of the quantities’ values. Many students will assume that 
the direction is always from the greater measure to the smaller—to ensure a positive value for the difference 
between two quantities. This gets them into trouble when variable quantities are compared; the difference may have
positive or negative values as the values of the compared quantities vary.
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Rate

A rate is a quantity that may be analyzed into a multiplicative comparison between two 

other quantities—where one quantity’s value is conceived as varying in constant ratio with 

variations in the value of the other.

There is a strong relationship between concepts of rate and ratio. The principal distinction 

that I draw is this: When one conceives of two quantities in a multiplicative comparison, and 

conceives of the compared quantities as being compared in their, independent, static states, one 

has formed a ratio.  As soon as one re-conceives the situation as one in which the value of one 

quantity varies in constant ratio with variations of the other, one has conceived a rate.4

Note the wording “as soon as one re-conceives …”. It is possible, indeed likely, that 

people first conceive a multiplicative comparison in terms of a ratio and re-conceive that ratio as a

rate. A stereotypical occasion for this to happen in schools is when students are asked to find an 

“average speed” when all that is known is a distance traversed and the time of traversal. However,

occasions for re-conceptualizing a ratio as a rate are rife in applied problem solving. We see the 

re-conceptualization of a ratio as a rate as being a critical, fundamental conceptual ability that 

supports much of successful performance in proportional reasoning tasks (Lesh et al., 1988)5, and 

it may be a foundation for the concept of derivative in the calculus.

This definition of rate is different from those given by Lesh et al. (1988), Kaput et al. 

(1984), Ohlsson (1988), Post et al. (1988), and Schwartz (1988), where the principal distinction 

between ratio and rate has to do with the natures (measure spaces, or dimensions) of the 

quantities being compared. According to these authors, a comparison is a ratio if the quantities 

4 I feel very sorry for school students who are told by texts that, on the one hand, “a ratio is used to compare parts 
of one thing to parts of another,” while, on the other hand, “a rate is a ratio comparing different units.” Any student
who attempts to understand this distinction can justifiably conclude that mathematics is not meant to be sensible. 

5 A proportion in the form can represent, in principle, two situations: a statement of equivalent ratios or a 
statement of two instantiations of one rate. It is clear that the latter involves proportional reasoning; whether or not
the former involves proportional reasoning is a current issue.
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Quantitative Reasoning
being compared are within the same measure space, and a comparison is a rate if the quantities 

being compared are of two different measure spaces.6

Some researchers distinguish between ratio and rate by the convention that ratios are 

multiplicative comparisons and rates are “unit ratios” (e.g., Kaput, ___). In that distinction, “3 

oranges per 2 apples” expresses a ratio, while “3/2 oranges per apple” expresses a rate. In the 

present model, this is a false distinction. If one expresses a relationship as “3 oranges per 2 

apples” and has in mind two collections—one having 3 oranges and the other having 2 apples, 

then the underlying conception is of a ratio. On the other hand, if one expresses a relationship as 

“3 oranges per 2 apples” and has in mind that as the value of a quantity of oranges changes, the 

value of the quantity of apples also changes, and they always retain the relationship “3 oranges 

per 2 apples,” then the underlying conception is of a rate. One cannot tell by forms of expression 

alone whether a speaker is conceiving of a ratio or of a rate.

Another difference between conceptions of a rate and conceptions of a ratio is that, 

typically, a ratio describes a situation that is phenomenologically bounded whereas a rate does not.

To conceive of a speed requires neither a conception of a distance travelled nor an amount of time

spent travelling. To conceive of an average speed requires the conception of a “trip-so-far”—a 

completed or partially completed trip.7

In the definition of rate given here,  the natures of the compared quantities and the 

manners in which relationships are expressed are irrelevant. Instead, the essential characteristic of 

a rate is that it is conceived of as constituting a functional relationship. This is consistent with 

6 Schwartz (1988) makes a slightly different distinction. He calls a ratio a rate if it describes a “real” quality of an 
object, e.g. an object’s density. There is no disagreement here with Schwartz's position, except that the definition of
rate I have given includes the possibility of generalizing a ratio to a rate, which can produce rates that are not 
qualities of any “real” thing (e.g., generalizing a ratio between students in a school and planets in the solar system 
to the rate “students per planet”). In this instance, the quantity is a constructed relationship between students and 
planets, yet it does not refer to a “real” quality of some object.

7 One student, responding to the question “Can you measure the speed of a car in miles per century?”, said “You 
can’t measure the speed of a car in miles per century because the car would rust away or the driver would die 
before a century.” This student was not conceiving of speed as a rate. “Miles per century” meant that one had to 
drive for a century.
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Quantitative Reasoning
Karplus’ definition of rate as a linear function (Karplus et al., 1983), and with conceptions of a 

single-variable derivative evaluated at a point (i.e., an instantaneous rate of change) as being the 

slope of a tangent line. It is different from Karplus et al.’s notion of rate as a linear function in 

that, here, a rate is a quality of something that is measured through a functional relationship; it is 

not a function. “Linear function-ness” is a numerical relationship between the values of two 

quantities.

Quantitative Operation

A quantitative operation is the conception of two quantities being taken to produce a new

quantity.

The model includes eight quantitative operations. These are sufficient for generating viable

comprehensions of the great majority of quantitative situations commonly depicted in arithmetic 

and algebra. This list is influenced by Greeno et al. (1985) and by Shalin (1988), which in turn are 

based on the work of Judah Schwartz and Jim Kaput.

Operation Example

• Combine quantities additively Unite  two sets; consider two regions as one.

• Compare quantities additively “How much more (less) of this is there than that?”

• Combine quantities multiplicatively Combine distance and force to get torque; combine linear 

dimensions to get regions; combine force applied and 

distance travelled to get work.

• Compare quantities multiplicatively “How many times as large is this than that?” “This is 

(multiplicatively) what part of that?” “How many of these 

in those?”

• Generalize a ratio “Suppose this comparison applies generally (i.e., suppose it 

were to continue at the same rate).”

• Instantiate a rate “Travel 50 miles per hour for 3 hours.” “Travel 5 hours per
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mile for 6 miles.”

• Compose ratios “Jim has 3 times as many marbles as Sally; Sally has 4 

times as many marbles as Fred. Jim has so many times more

marbles than Fred.”

• Compose rates “A German mark is 75.53 Japanese yen. A US dollar is 1.88

marks. A dollar is some number of yen.”
 It is important to note that quantitative operations are not the same as arithmetic 

operations. Arithmetic operations are numerical operations that are used to calculate a quantity’s 

value; there is no direct correspondence, except in a canonical sense, between quantitative 

operations and the arithmetic operations actually used to calculate a quantity’s value in a given 

situation. Here is an example:

Jim is 15 cm taller than Sarah. This difference is five times greater than the 

difference between Abe and Sam’s heights. What is the difference between Abe 

and Sam’s heights?

• Difference between Sam’s and Abe’s heights: (15÷5) cm.

In this situation division is used to calculate the value of a difference—even though, 

canonically, “difference” means “subtract.”8

It is important to note that a quantitative operation is, in a sense, a description of how a 

quantity comes to exist. A quantitative operation is a conception of one quantity, but a conception

which includes its relationship with the quantities operated upon to make it.9

8 It is clear why students do confound quantitative terms like difference and ratio with the arithmetic operations of 
subtraction and division. In one text series, the word “difference” is used exclusively  to name the answer in a 
subtraction calculation, and the word “ratio” is used exclusively in conjunction with the writing of a fraction or the 
computation of a quotient.

9  This is analogous to a conception of a sum (a+b) as one number, but made in a particular way.
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Quantitative Relationship

A quantitative relationship is the conception of three quantities, two of which determine 

the third by a quantitative operation. 10

The key phrase is that two quantities determine a third by a quantitative operation. In an 

arithmetic relationship, any two of three related numbers can be thought of as determining the 

third. This is not the case of quantities in a quantitative relationship. If a quantity is conceived as 

resulting from a quantitative operation on two other quantities, then the relationship cannot be 

changed without re-conceiving at least one of the quantities.

For example, suppose an average speed is conceived by a multiplicative comparison of a 

distance and an interval of time. That average speed is a ratio. To conceive of the distance 

traveled as being made by moving at an average speed for an interval of time, we must re-

conceive the average speed as a rate of change of distance with respect to time. In this re-

conception, “average speed” is no longer a ratio; it is no longer a multiplicative comparison of 

two quantities.

Quantitative Structure

A quantitative structure is a network of quantitative relationships.

The idea of a quantitative structure will be illustrated in the next section.

Quantitative Reasoning

Quantitative reasoning is the analysis of a situation into a quantitative structure—a 

network of quantities and quantitative relationships.

10  This is analogous to thinking of a sum in two ways: as (a+b) and as a number independently of the fact that it 
is a sum — z = a+b.
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Complex quantitative reasoning entails relating groups of quantitative relationships, such 

as in forming a multiplicative comparison of an additive comparison and an additive combination 

(“This situation is about how many times as large is this difference than is that combination.”).

Formulas

A formula is an expression that describes a numerical method to calculate a quantity’s value.

Quantity-based Arithmetic

Quantity-based arithmetic is:

1) Quantitative reasoning

2) Determination of appropriate operations to calculate quantities’ values

3) The propagation of calculations 

Later sections will amplify this characterization of quantity-based arithmetic. For now, the 

important feature to notice is that arithmetic operations are inferred according to relationships 

among quantities.

Quantity-based Algebra

Quantity-based algebra is the same as quantity-based arithmetic, except:

1) Representations of situations are under-constrained in terms of quantities’ values 

(there is not enough numerical information to propagate calculations)

2) Some value or values is represented symbolically

3) Formulas are propagated instead of values being propagated

Inferences drawn must be propagated in “open” form because of the presence of one or 

more indeterminate values in resulting expressions. Thus, every expression formed in the process 

of solving a problem quantitatively is a formula for calculating a quantity’s value.

Draft: Last modified on Saturday, March 17, 1990.
Page 13



Quantitative Reasoning
Equations

An equation is (1) a formula for a quantity’s value together with the value that the 

formula must yield, or (2) two formulas for a single quantity’s value.

Quantity-based algebra includes issues not present in quantity-based arithmetic. These are:

(1) propagating expressions for the explicit purpose of describing how to calculate a quantity’s 

value; (2) explicitly holding the possibility of propagating an algebraic expression to describe how 

to calculate a quantity’s value when that value is already known; and (3) propagating two non-

equivalent algebraic expressions, where both expressions describe how to calculate the same 

quantity’s value. In cases (2) and (3), propagation produces equations.

Definitions in Action

The definitions given in the previous section are the essential stuff of a model of quantity-

based arithmetic and algebra. They have been incorporated into a computer program, named 

WPA, that is designed to have an observable feature that corresponds directly with an issue or 

distinction addressed by the model. The program also contains an “engine” that makes inferences 

about what arithmetic operations are appropriate for calculating a quantity’s value, and which 

propagates inferences through the structure.

The structure of this section parallels that of the previous. It will use the same 

subheadings, but the content of a subsection will describe how the design of the program (as an 

implementation of the model) incorporates a definition or addresses an issue brought out earlier. 

Examples are given to show implications of each design feature (i.e., assumption) for the behavior

of the model as a whole. The program’s user-interface was inspired by the work of Valerie Shalin 

and Nancy Bee (Greeno, 1985, 1987; Shalin & Bee, 1985; Shalin, 1988).
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Quantity

The correspondent in the program of 

someone thinking of a quantity is for the 

program to display a “notecard.”11 The 

program contains four types of notecards 

(shown at the right), one for each of four 

types of quantities: Number of things, 

difference, ratio, and rate. Any notecard has 

places for four items of information: 

• A name for the quantity (the title-bar of 

the notecard),

Formula Cell

Value Cell

CM

Tom’s Height

Formula Cell

Value Cell

DLR

Cost vs. Saved

 Number of things Difference

Formula Cell

Value Cell

MARBLE:MARBLE

Sally vs. Fred

Formula Cell

Value Cell

M/S

Jane’s Speed

 

Ratio Rate

• a place for a  numeric or algebraic expression that describes how to calculate the quantity’s 

value (the Formula Cell),12

• a place for the quantity’s value (the Value Cell), and

• a place for the unit in which the quantity is measured.

Every notecard must have a title. This reflects the assumption that competent problem 

solvers isolate quantities by their features, and that in isolating a feature one constructs a linguistic

or imagistic description of that feature. 

The presence of a formula cell in a notecard corresponds to an awareness of the 

possibility that one may not be able to get direct access to a quantity’s value, but may have to 

infer it by its relationships with other quantities.13

11 A notecards does not appear magically. It appears because whoever is using the program directs it to display 
one. The only things the program does automatically are to check the consistency of the structure, infer information
about what operations to perform, and propagate inferred information through the structure as it exists at the 
moment of inference.

12 Actually, there are five places. One may set the program so that notecards have two formula cells. The eventual 
need for two formula cells is described later.

13 Another name for a formula cell might be “Calculation Cell.” However, that would not be entirely accurate, as 
the cell itself does no calculations. It contains an expression that describes what calculations need to be performed.
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Quantification

The presence of a unit cell in a notecard corresponds to the assumption that a feature is 

well-conceived as a quantity only after one has settled the issue of quantifying it, and a 

quantification process necessarily involves a unit. If counting is the quantification operation 

appropriate for a situation, then one must decide what is to be counted and what is not. In 

counting, a unit is a situationally-defined countable item.

Also, the process of forming a unit gives insight into the operational composition of a 

quantity. A standard textbook example is to introduce Cartesian-product concept of multiplication

by way of a problem like this:

Bob has four school shirts and five school trousers. How many school 

outfits can he wear?

Unless a student conceives of one outfit as a shirt-trouser combination, then that student will be 

unable to conceive of a set of such combinations, and hence will be unable to understand that set 

as something to be quantified by counting.

Quantitative Operation

A quantitative operation is the conception of making a new quantity from two others. The 

computer implementation of the model does not make a clean distinction between quantitative 

operation and quantitative relationship. This, in fact may, or may not be a shortcoming. Discussion

of this issue is postponed to follow the discussion of quantitative relationship.

Here it is appropriate to point out a common confounding of issues. We need to 

distinguish between quantitative operations that are correct by their logic and quantitative 

operations that are conventionally prescribed. For example: Many middle-school teachers have 

seen students compute the area of, say, a 3 cm. x 4 in. rectangle by multiplying 3 and 4. On the 

one hand, this could be interpreted as inattention to the quantities involved in the situation—one 
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length measured in centimeters and another in inches—and the need for converting one 

measurement unit into another. On the other hand, the student could have, quite correctly, 

conceived of the rectangle as being measured in the unit cm-in, the unit being a rectangle having 

one side of length 1 cm. and the other side of length 1 in. That is, we might not know the 

appropriateness, or even the potential reasonableness, of a student’s calculations until we know 

the unit he or she assumed for the result.14

Quantitative Relationship

As already mentioned, the computer implementation of the model does not make a clean 

distinction between quantitative operation and quantitative relationship. I am unclear as to 

whether this constitutes a bug in the program or a feature of quantitative reasoning.

Ratio’s and differences, by definition, are comparisons. So by representing a ratio or a 

difference as a quantity in and of itself, one implies a quantitative operation, but without actually 

specifying one.

On the other hand, one has not performed a quantitative operation until one has a result 

from operating. To operate means that the operand quantities are known. To have a result 

demands that the result be known—the result’s type and unit cannot be in question, for otherwise 

the quantity is under-specified and one does not have a result. In short, it appears that one cannot 

have completed a quantitative operation without having constructed a quantitative relationship, 

and that one may not have constructed a quantitative relationship without having conceived of a 

quantitative operation.15 The difference between the two appears to be a matter of focus. When 

14 Evidently, it would be rare, today, for us to be wrong when we assume the student failed to attend to the 
quantities. However, were students to come to attend to quantities, and were they to feel free to do whatever might 
make sense relative to the situation, we would need to pay attention to their assumed units for results.

15 Alba Thompson has suggested a nice distinction. It addresses the issue of relationship-without-operation. One 
can know that three quantities are somehow related (e.g., distance, speed, and time) but not know how they are 
related, nor know what quantitative operations are at the heart of the relationship. She suggests that this knowledge
be called an “association.” One can know (have the feeling) that three quantities are somehow associated, but 
without knowing how they are related.
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focusing primarily on the result of operating, we tend to think of the object of attention as an 

operation. When focusing primarily on the result in relation to its operands, we tend to think of 

the object of our attention as a relationship.

An example:

John wants to purchase a bicycle. The bicycle costs $143.95. John has a

total of $83.48 available to him in cash and savings. How much more 

money does John need?

There are, in principle, two ways to conceive of the situation described in the above 

statement. These are shown in Figure 1.

(1) We can think of the amount that John 

needs to save as the amount by which the 

bike’s cost exceeds what John has saved, 

and

(2) We can think of the bike’s cost as being 

made up of what John has saved together 

with what John needs to save.

Cost

Has
saved

Needs to save 
(Unknown addend)

Conception 1 Conception 2

Figure 1

Quantitative operations and relationships are reflected in the program by drawing arrows 

among the notecards. Conception 1 is modeled by showing a difference (Needs to Save) that 

comes from an additive comparison of Bicycle’s Cost and Has Saved (Figure 2a). The triangular 

handle on Needs to Save reflects the conception of it is a difference. The arrows from Needs to 
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Save to Bicycle’s Cost and Has Saved, together with the knowledge that Needs to Save is a 

difference, means that the relationship is made by an additive comparison.

Conception 2 is modeled by showing Bicycle’s Cost as a number of dollars that results from

an additive combination of Has Saved and Needs to Save (Figure 2b). Needs to Save is no longer a 

difference, as in Figure 2a, since it is not made by an additive comparison. It is simply a number of

dollars. 

In either case—Conception 1 or Conception 2—the resulting arithmetic is the same: one 

subtracts the amount one has saved from the cost of the bicycle. Yet, the underlying conceptions 

of the situation are quite different.

Formula Cell

143.95

DLR

Bicycle’s Cost

Formula Cell

83.48

DLR

Has Saved

•143.95-83.48

•60.47

DLR

Needs to Save

 

Formula Cell

143.95

DLR

Bicycle’s Cost

Formula Cell

83.48

DLR

Has Saved

•143.95-83.48

•60.47

DLR

Needs to Save

Figure 2.a Figure 2.b

Another example of conceptual opacity can be found in textbook proportion problems. 

The following is typical (including the typical necessity of assuming “at the same rate”):

Tom ran 3 miles in 17 minutes. How long would it take him to run 5 

miles?

The prescribed representation (in schools) of this situation is in the form of a proportion, 

such as = . However, this proportion does not necessarily reflect any particular underlying 

conception of quantities and relationships. We have, in principle, three conceptions of the 

situation, two of which correspond to this proportion. The two conceptions that correspond to 
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this proportion are:  (1) that the proportion is a statement of equivalence between two ratios, and 

(2) that the proportion is a statement of generalizing a ratio to a rate and instantiating that rate 

with a value. The third conception is unrelated to the idea of proportion: that (3) John always runs

at the same rate, so the two trips are just instantiations of his “running rate” over two periods of 

time.

Figure 3  shows the conception of three quantities — Distance Traveled, Time Traveling, 

and Travel Rate. Travel Rate is given as a ratio to reflect the anticipation that it will be the result of 

a multiplicative comparison.16 Figure 4 shows the establishment of a relationship among these 

three quantities. The arrows show that Travel Rate is the result of an operation on the other two 

quantities. Travel Rate is a ratio, and it is made by comparing Distance Traveled and Time 

Traveling.17

Formula Cell

Value Cell

MI:MIN

Travel Rate

Formula Cell

Value Cell

MIN

Time Traveling

Formula Cell

Value Cell

MI

Distance Traveled

Figure 3

16 The program reflects the primacy of isolating a quantity before determining its value by insisting that any 
notecard be given a name and a unit before it is placed with other notecards on the screen.

17 It should be pointed out that the program demands that units be consistent. Had Distance Traveled been 
measured in kilometers, the program would not have allowed the structure to be completed, giving the explanation 
that there is no way to get a ratio in MI:MIN by comparing a number of things measured in KM with a number of 
things measured in MIN. The program’s demand for consistency among units before allowing a structure to be 
completed makes it a model of competent quantity-based reasoning, but disallows it from being a model of many 
kinds of incompetent reasoning.
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Formula Cell

Value Cell

MI:MIN

Travel Rate

Formula Cell

Value Cell

MIN

Time Traveling

Formula Cell

Value Cell

MI

Distance Traveled

Figure 4

We have two ways to complete the representation of the situation. The first is to represent 

it as two ratios having the same value. Figure 5 shows this. The two ratio structures reflect a 

conception of two different runs, each with its own average rate. The heavy line between the two 

ratio notecards reflects an imposed constraint: the two ratios must have the same value.

Quantity-based Arithmetic

Quantity-based arithmetic is quantitative reasoning together with the determination of 

appropriate arithmetic operations to calculate a quantity’s value, and the propagation of those 

calculations throughout the quantitative structure. Figure 6 continues the example of the Tom’s 

Run problem of the previous section. It shows the results of inferences made by the program and 

the program’s propagation of inferences through the structure. Values were entered in the order 
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Distance 2 [5], Time Traveling [17], and Distance Traveled [3]. Upon entering the value for 

Distance Traveled, the program had enough information to begin drawing inferences and 

propagating inferences through the structure. The program indicates that a cell was inferred (as 

opposed to entered by a user) by putting a bullet (•) before its entry. 

Note: v( ) stands for “value of (whatever is in parentheses)”

- Travel Rate is a multiplicative comparison between Distance Traveled and Time 

Traveling, so v(Travel Rate) = .

- Travel Rate 2 is constrained to have the same value as does Travel Rate, so a calculation

to compute its value is also 3/17.

•5/(3/17)

Value Cell

MIN

Time 2

Formula Cell

5

MI

Distance 2

•3/17

Value Cell

MI:MIN

Travel Rate 2

•3/17

Value Cell

MI:MIN

Travel Rate

Formula Cell

17

MIN

Time Traveling

Formula Cell

3

MI

Distance Traveled

Figure 6

- .
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•5/(3/17)
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•3/17

Value Cell

MI:MIN

Travel Rate

Formula Cell

17

MIN

Time Traveling

Formula Cell

3

MI

Distance Traveled

Figure 7

Figure 7 illustrates a conception of the situation as a Travel Rate being a ratio between 

Distance Traveled and Time Traveling, and then that ratio being used as if it were a rate together 

with Time 2 in order to determine Distance 2. As soon as an arrow was drawn from Distance 2 to 

Travel Rate, the program reflected the rate-like use of the ratio by “rounding” the corners of its 

handle to show that even though it is a ratio, it is being used as if it were a rate. This reflects the 

mental operation of generalizing a ratio to a rate.

The inferences made by the program with respect to calculations to perform were:

• Travel Rate is a ratio comparison between Distance Traveled and Time Traveling, so 

v(Travel Rate) = .

• Distance 2 is a number of things made by instantiating a rate in MI/MIN with a number

of things measured in MIN, so v(Distance 2) = v(Travel Rate) * v(Time 2). Hence 

v(Time 2) = .
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A third conception of the Tom’s Run is expressed in Figure 7b.18 In this conception, Tom 

has a constant running rate (i.e., whenever he runs, he runs at that rate). Thus, both distances are 

made by running at that travel rate over an interval of time. The order in which the program drew 

inferences was Travel Rate [•3/17] and then Time 2 [•5/(3/17)].

•5/(3/17)

Value Cell

MIN

Time 2

Formula Cell

5

MI

Distance 2

•3/17

Value Cell

MI/MIN

Travel Rate

Formula Cell

17

MIN

Time Traveling

Formula Cell

3

MI

Distance Traveled

Figure 7b

Each of the three conceptions of the initial problem—the equality of ratios (Figure 6), the 

generalization of a ratio to a rate (Figure 7), and the notion of “constant running rate” (Figure 7b)

—results in the same calculation being done to compute the value of Time 2. However, as 

conceptions of the described situation in terms of quantities and their relationships, the three 

conceptions are quite different from each other.

Relationships between Quantity and Arithmetic

I have said repeatedly that there is no necessary correspondence between a quantity’s type 

and the numerical operation actually used to calculate its value. To illustrate this explicitly, we 

shall look at a variation of the problem used in the previous examples:

Tom went for two runs. On the first, he ran 3 miles. On the second, he 

ran 5 miles in 28 1/3 minutes. He ran 1/30 mi/min faster on his first run 

18 This conception was suggested by David Tall and Carlos Vasco.
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than on his second. How long did it take him to complete his first run?

1/30

•0.033

MI:MIN

Rate 1 vs. Rate 2

•5/28.333

•0.176

MI:MIN

Travel Rate 2

28+1/3

•28.333

MIN

Time 2

Formula Cell

5

MI

Distance 2

•0.033+0.176

•0.21

MI:MIN

Travel Rate 1

•3/0.21

•14.299

MIN

Time 1

Formula Cell

3

MI

Distance 1

Figure 8

Figure 8 depicts a conception of this situation as a comparison of ratios-as-rates 

(velocities). The top notecard, Rate 1 vs. Rate 2, is a difference, which means it is the result of an 

additive comparison between Travel Rate 1 and Travel Rate 2. Since the difference between Travel 

Rate 1 and Travel Rate 2 has a value of 0.033, and since Travel Rate 2 has a value of 0.176, the 

calculation giving Travel Rate  1’s value is 0.033+0.176. Thus, we have used addition to calculate 

the value of Travel Rate 1 even though Travel Rate  1  is a ratio. 

Inferences and Propagation

Given a quantitative relationship, one can determine the appropriate arithmetical operation

to evaluate any quantity in the relationship. There are two cases: (1) The resultant quantity is 

evaluated based on values of the operand quantities, or (2) An operand quantity is evaluated based

on the values of the resultant and the (other) operand quantity, and on the canonical operation for 

the relationship.
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1) Canonical Arithmetic for Quantitative Relationships: Arithmetic operation to evaluate

a quantity that results from a quantitative operation.

Structure
Arithmetic Operation to 
Evaluate the Resultant 
Quantity

- A quantity is the result of an additive combination of two 
quantities19

Addition

- A quantity is the result of an additive comparison of two 
quantities

Subtraction

- A quantity is the result of a multiplicative combination of 
two quantities

Multiplication

- A quantity is the result of a multiplicative comparison of 
two quantities

Division

- A quantity is the result of an instantiation of a rate Multiplication

- A quantity is the result of a composition of ratios Multiplication

- A quantity is the result of a composition of rates Multiplication
2) Non-canonical Arithmetic for Subordinate Quantities in a Quantitative Relationship: 

Arithmetic operation to evaluate a quantity that is an operand of a quantitative operation. 

Inference of operation is based on knowledge of canonical operation.

- If a = b * c, then c = a ÷ b and b = a ÷ c.

- If a = b ÷ c, then c = b ÷ a and b = a * c. 

- If a = b + c, then c = a - b and b = a - c.

- If a = b - c, then c = b - a and b = a + c.

3) Any time a quantity is evaluated or has a formula constructed for it, every structure of 

which that quantity is part is examined to see if anything new can be inferred about it. If new 

information can be inferred, then an inference is made and propagation continues.

19 “Additive combination” includes disjunctive combinations, such as “Put 3 apples with 4 oranges.” The unit for 
this particular combination is APPLE|ORANGE—any item in this combination is an apple or an orange. Paying 
attention to the unit avoids the asymmetry of Schwartz’s (1988) scheme of calling the resulting unit a “fruit.” That 
is, if the unit of the combination is FRUIT, then from “Sally has 7 [FRUIT], four of which are [ORANGE]” we 
cannot conclude that she has 3 apples. However, from “Sally has 7 [APPLE|ORANGE], four of which are 
[ORANGE]” we can, indeed, conclude that she has 3 apples.
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Transitions to Algebra

Figure 9 repeats Figure 8, but with the program set to accumulate expressions instead of 

being set to evaluate expressions whenever it can do so (this setting also was used in generating 

Figures 6, and 7).

The program’s setting to accumulate expressions instead of evaluating them immediately 

reflects the model’s hypotheses about key shifts in students’ goals and key shifts in students’ 

cognitive processes that constitute a foundation in quantity-based arithmetical reasoning for the 

development of quantity-based algebraic reasoning. The shift in goals is from the goal of “getting 

an answer” to the goal of “laying out a pattern of reasoning.” The shift in cognitive processes is 

from immediate evaluation of expressions (to make propagation simpler in terms of subsequent 

calculations) to the postponement of calculations so that one constructs numeric expressions that 

capture a “history” of a quantity’s value. These shifts in goals and processes amount to students 

developing the intention of constructing “numeric formulas” for calculating quantities’ values.
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Quantity-based Algebra

Formulas

A formula is an expression that describes a numerical method to calculate a quantity’s 

value. As noted in the section Transitions to Algebra, the model proposes that students’ 

transitions from quantity-based arithmetical reasoning to quantity-based algebraic reasoning begin 

with the onset of their intentions to generate “numerical formulas” for quantities’ values.20 The 

transition is continued by their developing the intention to create actual formulas for quantities’ 

values.

The development of the intention to create formulas requires students to be cognizant of a

particular social setting for doing mathematics. It is that there are other persons (including 

oneself) who might be interested in the solution of this type of problem (type being defined by 

structural similarity), and who are not interested in deriving, or are not capable of deriving, a 

solution from first principles. The fact that generating formulas has important cognitive benefits is 

of interest to us (as pedagogues), but generating formulas, as such, cannot be important to 

students unless they see formulas as being useful constructions which serve definite purposes.21

20 I am not saying that this will necessarily begin spontaneously in children. Rather, I am saying that whether as a 
result of instruction, reflection, or a combination of the two, the transition begins when children come to have as a 
goal the generation of numerical formulas as a facilitator for reflecting on their patterns of reasoning.

21 One eighth-grade girl, after constructing a formula for the solution of a problem, asked “Now what?” I said, 
“Now give this formula to your little sister, explain to her what each letter stands for, and tell her to use a 
calculator to do the next 10 problems for you.” She paused, then said “Oh!!! So that’s what a formula is for!” Her 
sister was in the fifth grade.
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Figure 10

Figure 10 repeats Figure 9, but with the use of letters to represent to-be-known values.22 

The inferences drawn and the propagation of inferences through the structure are identical to 

what was done in the arithmetical setting of postponed evaluation of expressions, with the 

exception that now the inferences are expressed symbolically instead of numerically. The cognitive

context in which those inferences are made, however, is quite different from the arithmetical 

setting of calculating answers. When a student’s goal is to perform calculations, it would be 

unnatural to introduce letters. The use of letters would be completely contrary to the goal of 

calculating an answer.

Equations

A formula describes calculations to be done to compute a quantity’s value. An equation is 

(1) a formula for a quantity’s value together with the value that the formula must yield, or (2) two

formulas for a single quantity’s value.

22 Notice: Thinking of letters as representing “to-be-known” values is quite different from thinking of letters as 
representing “unknown” values. The former is a cognitive root (Tall, 1989) of problem parameters. The latter is an
artifact of Algebra I, where the “real” solving is portrayed as starting with an equation, instead of starting with 
derivation of formulas for calculating quantities’ values.
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Cognitive Prerequisites

The present model postulates that for a student to construct an equation when reasoning 

quantitatively about a situation, he or she must have (at least) the following intentions and 

propensities:

1) The intention to generate formulas for quantities,

2) The “willingness” to construct a formula for any quantity that already has a known 

value (i.e., the willingness to ignore, for the moment, that he or she already knows a value for a 

quantity), and

3) The “willingness” to construct more than one formula for any quantity.

Equations Involving a Formula and a Value

The following examples illustrate the effects, as postulated by the present model, of having

the ability to reason quantitatively and having intention (1), while having or not having 

propensities (2) and (3).

Two trains leave the same station at the same time. They travel in opposite directions. 

One train travels 60 km/hr and the other 100 km/hr. In how many hours will they be 880 

km apart? (Hall, in press).
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Train 2's speed

Figure 11
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Figure 11 reflects a conception of the problem in terms of each train’s travel distance 

resulting from going at its own speed for a common amount of time, and the distance between 

them being a combination of the train’s distances (see Thompson, 1988 for three other 

conceptions.)
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Figure 12
Figure 12 shows the effect of propagating inferences without the propensity to construct a

formula for a quantity which has a known value. Upon entering T for Time Traveled, we end up 

with formulas for Train 1’s Dist and Train 2’s Dist, but nothing more.

Figure 13 shows the effect of having the propensity to ignore already known information 

when generating formulas. Upon (my) entering T to stand for the value of Time Traveled, the 

program calculated formulas for Train 1’s distance and Train 2’s distance. It then noticed that it 

could also generate a formula for Distance Between. But, it also noticed that Distance Between 

already had a known value, and it went ahead to generate a formula. To signal that it noticed that 

Distance Between already had a value, but that it went ahead as if that information were unknown, 

the program placed the name of the quantity in braces (i.e., {Distance Between}) and preceded 

information about the quantity by a right brace (}).
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Figure 13

It is worthwhile to note that this model makes apparent the relative arbitrariness of 

equations. The equation depicted in Figure 13, viz. 60T + 100T = 880, came about because of 

supplying the letter T to stand for the value of Time Traveled. I could just as well have supplied a 

letter to stand for the value of Train 1’s Dist or for the value of Train 2’s Dist. Figure 14 shows the 

inferences and resulting equation relative to entering D to stand for the value of Train 2’s Dist. One

would answer the stated question (“In how many hours …”) by solving for D and then 

substituting for D in the formula for Time Traveled (viz., D/100).
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Figure 14

There is still more to the notion of relative arbitrariness of equations. One could also begin

a solution with the intention of deriving an equation for a particular quantity. That is, to continue 

the present example, one could start out with the intention of deriving an equation involving 

Train 2’s Speed. Figure 15 illustrates this strategy. I directed the program to ignore the fact that 

Train 2’s Speed had a value before I entered D for the value of Train 2’s Dist. Upon my entering D 

to stand for the value of Train 2‘s Dist, the program made the following inferences to arrive at the 

equation 

• Distance Between is an additive combination of Train 1’s Dist and Train 2’s Dist, so 

v(Distance Between) = v(Train 1’s Dist) + v(Train 2’s Dist), and therefore v(Train 1’s Dist) 

= 880 - D.23

23 The program could not, at this moment, infer a formula for Time Traveled, for after having been directed to 
ignore the fact that Train 2’s Speed has a value of 100, there was not sufficient information to infer a formula for 
Time Traveled.
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• Train 1’s Dist is an instantiation of Train 1’s Speed at the value of Time Traveled, so 

v(Train 1’s Dist) = v(Train 1’s Speed) * v(Time Traveled). Therefore v(Time Traveled) =

.

• Train 2’s Dist is an instantiation of Train 2’s Speed at the value of Time Traveled, so 

v(Train 2’s Dist) = v(Train 2’s Speed) * v(Time Traveled). Therefore v(Train 2’s Speed) =

 .

Since v(Train 2’s Speed) is also known to be 100, the program arrived at the equation

•(880-D)/60

Value Cell

HR

Time travelled

Formula Cell

880

MI

Distance Between

D

Value Cell

MI

Train 2's Dist

•880-D

Value Cell

MI

Train 1's Dist

Formula Cell

60

MI/HR

Train 1's speed

}•D/((880-D)/60)

}100

MI/HR

{Train 2's speed}

Figure 15

Equations Involving Two Formulas

Propensity (3), the willingness to construct two formulas for one quantity, is reflected in 

the program by its having a “Tall Notecards” setting. Tall Notecards are notecards with two 
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formula cells. Notecards having two formula cells reflect an “openness” to the possibility that they

might both be filled, thus reflecting a willingness to have two formulas for computing a quantity’s 

value.
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Figure 16

Figure 16 shows how Fay, a high-school teacher, conceived Hall’s train problem (of the 

previous example). Fay’s thinking was that there are two relationships between Train 1’s Distance 

and Train 2’s Distance—a constant ratio between their distances and the combination of their 

distances.
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Figure 17

Figure 17 shows that this structure leads to two formulas for calculating the value of Train 

1’s Distance (it also leads to an equation involving the value of Distance Between, which the 
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program derived, but which Fay did not derive). The inferences made by Fay, and captured by the 

program, were:

• The ratio of Train 1’s Distance to Train 2’s distance is 60/100, so if Train 1’s distance 

is D, then Train 2’s distance is  .

• The combined distances traveled by the two trains is 880 miles. So if Train 2 travels D 

miles, Train 1 travels 880 - D miles.

• The equation to solve is .
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MI/HR
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Formula Cell 2

Value Cell

HR
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Formula Cell 1
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Train 1’s Speed
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}880
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D
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Formula Cell 2
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MI

Train 1's Distance
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Value Cell

MI:MI

Train 1 vs. Train 2

Figure 18

Fay did a “quick calculation” to conclude that the ratio of the train’s distances is constant, 

and that its value is 60/100. The program fails to capture that aspect of Fay’s reasoning. Figure 18

shows the incorporation of the trains’ speeds and distances. Upon my entering D to stand for the 

value of Train 2’s Distance, the program propagated appropriately, and propagated an expression 

for the ratio that reduces to 60/100, but then derived an equation involving the value of Distance 

Between and stopped there. The reason it stopped is that the formula for Train 1 vs. Train 2 and the 

equation involving Distance Between were both propagated from Train 1’s Distance—they were not
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propagated from Train 2’s Distance, as was the case in Figure 17. The program is designed so that 

no notecard will propagate to itself, either directly or indirectly. In principle this constraint 

precludes propagating equations that are identities. However, this constraint also causes the 

program to not construct some correct equations.

On the other hand, if we incorporate a temporal dimension into our model of Fay’s 

solution, then the program behaves as did Fay. Figure 19 reflects the computation of a formula for

the ratio between Train 1’s Distance and Train 2’s Distance. Relationships involving Distance 

Between are ignored. 
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Figure 19
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Figure 20

Figure 20 reflects the subsequent decision to ignore relationships involving speeds and 

times, since they are irrelevant to the ratio (as it is constant). Figure 20 also reflects the decision 

to attend to relationships involving Distance Between. By incorporating these two decisions we 

produce a model of Fay’s quantitative reasoning in relation to her construction of a solution.

One aspect of Fay’s solution that remains unmodeled is her predisposition (as distinct 

from willingness) to construct two formulas for one quantity. The program is designed so that it is

predisposed to look for a formula and a value, although it is “willing” to generate two formula’s 

for one quantity.

It was evident in Fay’s comments that she did not think she was trying merely to get two 

formulas for one quantity. Instead, what she thought she was doing was trying to construct as 

many relationships as she could, because she knew that relationships constrain possible solutions.

Equations that Model Recursive Relationships

Students find it extremely difficult to construct equations for situations that involve 

mutual, recursive relationships among quantities. It is frequently the case that the difficulty is 
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more an artifact of instruction that teaches transliteration of text to equations than a difficulty 

inherent in the problem. The next example clarifies this claim.

MEA Export is to deliver an oil valve to Costa Rica. The valve’s price is 

$5000. Freight charges to Costa Rica are $100. Insurance is 1.25% of 

Costa Rica’s total cost. Costa Rica’s total cost includes the costs of the 

valve, insurance, and freight. What is Costa Rica’s total cost? 24

The confusion most typically encountered among students has to do with the mutual, 

recursive relationship involving Costa Rica’s total cost and the cost of insurance. The total cost 

includes the cost of insurance, yet the cost of insurance is based on the total cost. When students 

think that, in writing a formula, they are “pretending” that they know some quantity’s or 

quantities’ values, then they are quite naturally confused—pretensions are time dependent. By this

frame of mind, even in pretense one must know Costa Rica’s total cost in order to compute the 

cost of insurance, while at the same time one must know the cost of insurance to compute Costa 

Rica’s total cost. In this particular case, a frame of mind that suggests one is “pretending” to 

know values when constructing formulas in fact becomes an obstacle to constructing formulas 

(and hence equations). That pretension leads one into a “calculating” frame of mind that results in 

a never-ending series of calculations.

24 This problem is courtesy of Daniel Gonzalez. According to Mr. Gonzalez, it is standard practice for shipping 
and insurance to be paid by the customer. Thus, total cost to Costa Rica must include insurance. However, it is the 
exporter who writes the check for the insurance, and if anything were to go wrong he or she needs to recover that 
cost as well as all others. Thus, it is the total purchase cost, including the cost of insurance, that must be insured.
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Figure 21
Figure 21 shows one model of the situation in terms of quantities and relationships. The 

diagram shows the mutual reliance between Total Cost and Insurance.
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}100

DLR

{Freight}

1.25/100

•0.013

DLR/DLR

Insurance Rate

•C-5000

Value Cell
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Insurance

C

Value Cell

DLR

Total Cost

Figure 22
Figure 22 shows the effect of using a parameter to represent Total Cost’s value. The 

program propagated normally, ending with the equation c-100-.0125c = 5000.

A point raised by this example is this: While one must have the intention of constructing 

formulas for calculating quantities’ values in order to construct equations, the way one conceives 

of a formula’s parameters has a direct influence on one‘s ability to enter the process of 

constructing formulas. If the use of letters is understood as “pretending” that you know a value, 

then difficulties can arise. If the use of letters is understood as representing to-be-known values, 
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then no difficulty arises. The fact that a value is considered “to-be-known” implies nothing about a

process of coming to know it. In some cases it can be chosen arbitrarily; in other cases it must be 

chosen in order to satisfy a set of constraints, as illustrated in this example.

Other Issues

The concept of unary operations on quantities and the concept of scalars are issues of 

quantitative reasoning that do not come under the heading of Quantity-based Arithmetic or 

Quantity-based Algebra, but which are nevertheless important. An examination of relationships 

between the mathematics of scalars and the mathematics of quantity helps to clarify several issues,

particularly the concept of percent as a quantity.

The principal unary operation discussed here is inversion of ratios and rates. An 

examination of situations requiring inversion to comprehend them quantitatively highlights 

potential sources of students’ difficulties with them.

Percents and “Scalar” Quantities

Rates and Ratios as Scalar Quantities

To clarify a quantitative meaning of percent, I will first discuss the general issue of scalars. 

A scalar is typically characterized as a “dimensionless” quantity—a ratio between two quantities in

the same unit. This, however, is more an artifact of an arithmetic of units than of conceptual 

analysis. There are many situations where it is not only sensible, but desirable to retain units in a 

rate involving quantities having the same unit. Here is one example.

Jane is a golfer with a keen eye but a weak swing. She can accurately 

estimate distances, but consistently hits the ball 4/5 as far as she needs 

to hit it. If Jane is 150 yards from where she wants the ball to go, what 

estimate should she use in order to hit the ball far enough?
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Figure 23 shows a conception of Jane’s situation as one where she has a constant “hit 

rate”. The value of that rate is 4/5. The unit of that rate is “yd/yd.” Together these mean that there

are 4/5 yards of “hit” per each yard of distance to the hole. To consider4/5 as a scalar in this 

situation would be unnatural. A unit of “yd/yd” follows naturally from conceiving the situation 

quantitatively.

4/5

Value Cell

YD/YD

Hit Rate

•150/(4/5)

Value Cell

YD

Estimate

Formula Cell

150

YD

Wants to Hit

Figure 23

The interpretation of Jane’s hit rate as having a unit of yd/yd is not necessary, and perhaps 

seems unnatural to the sophisticated reader. The statement “… hits the ball 4/5 as far as she needs 

to hit it” does not, itself, imply a unit for Jane’s hit rate. Rather, it is the unit yd for Wants to Hit 

and Estimate that suggested the unit yd/yd for Jane’s hit rate.

The crux of the issue of scalars resides in the question: Can one quantitatively interpret the

statement “… hits the ball 4/5 as far as she needs to hit it” independently of specific context (i.e., 

units of other quantities)? This question is answered affirmatively, in the present model, by 

allowing the possibility of someone conceiving of a situation in terms of parametric units. The 

idea of parametric units is the same as that of parametric values. You know that a unit will be 

associated with a quantity, but it need not be given specifically to know something about the 

quantity.
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The notion of parametric units is implemented in the program by having one use a 

question mark as the first character in a unit-name. The question mark indicates that the unit is a 

parameter; the name itself is used as a matching variable so that, once bound by the matching 

process in checking the consistency of a quantitative structure, the same name implies the same 

unit within the formal structure of a quantity’s unit.25

4/5

Value Cell

?U1/?U1

Hit Rate

Formula Cell

Value Cell

YD

Estimate

Formula Cell

150

YD

Wants to Hit

Figure 24
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150
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Wants to Hit

Figure 25

Figure 24 reflects the temporal dimension of a (fictitious) person’s reading of Jane’s 

golfing problem. This person conceived of Jane’s hit rate, at the time of reading the passage 

describing it, as a rate with unspecified, and hence parametric, units. Figure 25 shows this 

person’s conception of the situation after having had related the hit rate and the two distances.

25 Whether the same parameter-name needs to imply the same binding throughout a structure is unclear. If a non-
parametric unit name were to be thought of as binding to itself, then the answer would have to be that the same 
parameter-name in different quantity’s units would have to represent the same binding. However, it seems entirely 
reasonable that a person could be thinking of parametric units for different quantities, use the same “mental 
symbol” in constructing the quantity’s units, but intend them to be different. In essence, the issue is whether 
bindings are local to a quantity-as-conceived or global to the person-as-conceiver. I imagine that either could be the
case for any given individual.
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The unit ?U1/?U1 for Hit Rate says that this person thought of  Hit Rate as postulating a 

linear relationship between values of two quantities, and expresses this person’s conclusion that 

the units of the other quantities really don’t matter as long as they are the same.

Percents as Scalar Rates and Scalar Ratios

The quantitative concept of percent occurs as a special case within the general concept of 

quantitative scalars. Quantitative scalars are ratios or rates involving parametric units, where the 

units of numerator and denominator quantities are anticipated to be the same.26 Within the present 

model, a percent is a scalar rate or a scalar ratio—with the additional restriction that its value is 

expressed in terms of multiples of 1/100.27

Unary Operations on Quantities

Algebra teachers will attest to students’ difficulty with problems like the following.

There are 640 acres in 1 square mile. A mile is 5280 feet. A city lot is 50 ft  100 ft. 

What part of an acre is one city lot?28

26 Even though it is a matter of definition, the restriction that to conceptual a quantitative scalar one must 
anticipate numerator and denominator quantities having the same unit is unnecessary. “Scalar-like” thinking can 
arise naturally whenever one anticipates the structure of a quantity’s unit and anticipates that quantity’s 
relationships with other quantities.

27 It is interesting that in this formulation “” itself is used as a scalar rate, meaning th of whatever it is that you are
measuring.

28 In central Illinois, where farmland (measured in acres) is routinely converted to residential area (measured in 
lots), this is a real problem.
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Rectangular Area
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Figure 26
Figure 26 shows one reasonable way to conceive the relationships described in the text.29 

Acres per Lot is a rate made by composing the rates Acres per Sq Mile and Sq Miles per Lot. The 

quantity Sq ft per Sq Mi is made by multiplicatively combining two Ft per Mi rates (the sides of a 

square which is growing).30 The area of a lot is made by comparing the area of a 50  100 

rectangle with the number of lots with which it is associated.31  

After this we see an obstacle: To make Sq Miles per Lot, we need to combine Sq Ft per Lot 

with the inverse of Sq Ft per Sq Mi. We could invert the originally given rates of feet per mile as 

29 By “reasonable” I mean that three college mathematics majors initiated their solutions to this problem in a way 
consistent with this particular setup. 

30 Note: (1) We might object that “Ft per Mi” is one quantity, and hence should not have to be repeated in Figure 
25. However, what is being conceived here is a square whose sides are growing at the same rate. Each side could 
grow at its own rate; the sides’ growth rates must be constrained to be equal in order that the initial square remain 
a square as its sides grow. (2) The unit for Sq Ft per Sq Mi, (ft-ft)/(mi-mi), is equivalent to the unit (ft/mi)-(ft/mi). 
The latter was entered as the unit for Sq Ft per Sq Mi; the program converted that unit to the former, it being a 
more standard form.

31 Forming the ratio Sq Ft per Lot is more like an act of definition than like a multiplicative comparison.
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miles per feet, or we can invert Sq Ft per Sq Mi and use it as a derived quantity. Figure 27 shows 

the effect of apply the “invert rate” operation to Sq Ft per Sq Mi.32
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Figure 27

Upon inverting Sq Ft per Sq Mi, the quantity was divorced from the structure originally 

making it. It retained its (inverted) formula and associated value, but it could not remain 

connected to the two copies of Ft per Mi. Figure 28 shows the completion of this problem’s 

solution.

32 The program inverted the quantity, but it left the name alone. The program is ignorant of naming conventions, 
so it does nothing with names. It is up to the user to change the name so that it reflects the inverted quantity. As 
such, it was I who changed the name, it was not the program.
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Figure 28

The need to invert a quantity midway through conceptualizing a problem is a major 

obstacle for many students. Another source of students’ difficulties with this particular problem is 

that they frequently mis-conceive the “target” quantity (the answer to the question) as being a 

number of things measured either in ACRE or in LOT, while at the same time conceiving of 

“5280 feet in a mile” and “640 acres in a square mile” as denoting rates.33 These particular 

conceptions are incompatible.

A third, clear source of difficulty in this problem is that, though its statement is short, the 

number of quantities involved is relatively large. Students who anticipate that they will need only 

33 This was true of 18 out of 24 middle-school mathematics majors. Sixteen of these 18 got nowhere when trying 
to solve the problem.
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the information given, and therefore are biased against conceiving of “intermediate result” 

quantities, will make little progress on problems like this one.

Simultaneous Equations: Concept or Technique?

Algebra textbooks traditionally devote a chapter to systems of simultaneous equations. 

This suggests that simultaneous equations, and situations modeled by them, are conceptually 

different from single equations and situations modeled by them. I will argue that a more 

appropriate view is that systems of equations are a technique to handle complexity of information 

and relationship, and that the technique is an artifact of paper-and-pencil technology. There is no 

intrinsic conceptual difference between situations modeled by single equations and situations 

modeled by systems of equations.

The following problem is from Eggan and Van Den Eynden (1979). It is typical of 

problems normally offered as practice in setting up simultaneous equations in one variable.

A factory makes toy trucks and toy trains. Each toy needs to be 

assembled and painted. Toy trucks each require 5 minutes assembly 

time and 7 minutes painting time. Toy trains each require 6 minutes 

assembly time and 10 minutes painting time.

The factory rents time on the machines needed for painting and for 

assembling these toys. They have reserved 300 minutes assembly time 

per day and 600 minutes painting time per day. Is there some 

combination of trucks and trains that will enable the factory to use all the

available time on both machines?

Here is a traditional approach: If we let x be the number of trains manufactured, and y be 

the number of trucks manufactured, then a system of equations for this situation is:

10x + 7y = 600 (1)

6x + 5y = 300 (2)
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Solving for y in equation (2) and making a substitution in (1) gives the equation

 If solving for x produces positive, integral values for both x and y, then 

the factory may use all its rented time.

Figure 29 shows a quantitative model of the described situation. One can see that 

equations (1) and (2) get their “simultaneity” from the shared structures hanging from Assembly 

Time and Ptg. Time.
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Figure 29

Figure 30 shows the effect of entering x as a representation of the number of trains. The 

propagation scheme produces the equation shown in Ptg. Time—which is the very same equation 

we ended up with when using the method of substitution with equations (1) and (2), above.

Draft: Last modified on Saturday, March 17, 1990.
Page 49



Quantitative Reasoning

•(300-6X)/5*7

Value Cell

MIN

Truck Ptg. Time

•300-6X

Value Cell

MIN

Truck Assem. Time

X

Value Cell

TRAINS

Num. Trains
•(300-6X)/5

Value Cell

TRUCKS

Num. Trucks

Formula Cell

7

MIN/TRUCK

Truck Ptg. Rate

Formula Cell

5

MIN/TRUCK

Truck Assem. Rate

•10X

Value Cell

MIN

Train Ptg. Time

•6X

Value Cell

MIN

Train Assem. Time

}•10X+(300-6X)/5*7

}600

MIN

{Ptg. Time}

Formula Cell

300

MIN

Assem. Time

Formula Cell

10

MIN/TRAIN

Train Ptg. Rate

Formula Cell

6

MIN/TRAIN

Train Assem. Rate

Figure 30

The propagation scheme that produced the equation for Ptg. Time is the same scheme that 

propagates formulas. However, the propagation of formulas is tantamount to substitution. The 

only issue is, “When does one substitute?” If one follows the heuristic of letting different letters 

stand for the values of different quantities, then one is forced to use substitution at the end of 

“setting up” the problem.34 On the other hand, if one attends to quantitative relationship while 

“setting up” the problem, then substitution will happen incrementally, and the number of 

independent variables introduced will necessarily be minimal. In short, simultaneous equations are 

an artifact of an implicit decision to postpone substitutions.

34 A common difficulty among algebra students when following this heuristic is how to decide what relationships 
to ignore and what relationships to follow. For example, we could let x stand for the number of trains, y stand for 
the number of trucks, z stand for the painting time for trains, and so on. But then we end up with “a bunch of 
letters and no equations.”
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As an aside, the model shown in Figures 29 and 30 does not address the question “Can the

factory manufacture some combination …” with precision. The unit for assembly time and 

painting time is MINUTES when it should be MINUTES/DAY. Figure 31 shows a model of the 

situation in an appropriate unit. All quantities in this representation are rates. However, the same 

equation as before shows up in Ptg. Time. Yet, the arithmetic done to get that equation is based 

completely on combinations and compositions of rates whereas, previously, the arithmetic was 

based on combinations of numbers of things and instantiations of rates. The same equation is 

gotten as before, but for completely different reasons.
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Figure 31
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Subtleties of Propagation

Different effects of when we say, “They are equal”?

(Me and Brother discussion)

When and how to stop propagating

Discussion

From Quantity to Algebra

Missing: A Theory of Quantification

Adequacy of the Model’s Notation

Formal Algebra and Quantitative Algebra

Other Research

Greeno, Shalin

The model of quantitative reasoning in arithmetic and algebra expressed in this paper was 

inspired by the work of Greeno (1987) and Shalin (1988). The notational system displayed by the 
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computer implementation of the model is an extension of one developed by Shalin (Shalin & Bee, 

1985; Shalin, 1988). I am indebted to them; the creation of powerful notation is a non-trivial 

achievement.

Shalin’s intent in developing her notational scheme was to isolate and investigate the 

influence of problem structure on students’ abilities to solve two-step arithmetic word problems 

(Shalin, 1988). She found a discernible influence. Latency response data suggested that persons 

parsed descriptions of situations in ways consistent with predictions based on her analyses of 

problems’ quantitative structures. The specific constructions her subjects made, however, were 

not analyzed.

Shalin’s research did not have an underlying theory of quantity, except for the arithmetic 

of quantity developed by Schwartz. The word problems students solved involved only rates or 

discrete, extensive quantities. Multiplicatively-structured quantities were not considered in 

Shalin’s investigation.

There are three significant difference between Shalin’s model and the model presented 

here. The first is that the model presented here includes a theory of propagation. The theory of 

propagation is the foundation of the model’s hypotheses about students’ transitions from quantity-

based arithmetic to quantity-based algebra. Second, Shalin did not make a distinction between 

quantitative operations and arithmetic operations, which resulted in the confounding of type of 

quantity with arithmetic operation (e.g., describing a quantity is a difference simply because, in a 

particular situation, subtraction is used to calculate its value—see Greeno, 1987, p. 77). Third, 

Shalin’s model did not have an underlying theory of quantity, except for the arithmetic of quantity 

developed by Schwartz. An arithmetic of quantity, however, is not a theory of quantitative 

operations. It is a codification of expressions of quantitative operations, whereby units are treated 

as if they are numbers or algebraic variables. Arithmetics of quantity are symptomatic of 

quantitative reasoning, but they are not descriptions of it.
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