
 PATRICK W. THOMPSON

 IMAGES OF RATE AND OPERATIONAL UNDERSTANDING OF THE

 FUNDAMENTAL THEOREM OF CALCULUSt

 ABSTRACr. Conceptual analyses of Newton's use of the Fundamental Theorem of Calculus and of
 one 7th-grader's understanding of distance traveled while accelerating suggest at concepts of rate
 of change and infinitesimal change are central to understanding the Fundamental Theorem. Analyses
 of a teaching experiment with 19 senior and graduate mathematics students suggest that students'

 difficulties with the Theorem stem from impoverished concepts of rate of change and from poorly-
 developed and poorly coordinated images of functional covariation and multiplicatively-constructed
 quantities.

 John Dewey once said that theory is the most practical of all things (Dewey, 1929).

 Theory is the stuff by which we act with anticipation of our actions outcomes and

 it is the stuff by which we formulate problems and plan solutions to them. It
 is in this sense that I consider this theoretical investigation of students' calculus

 concepts to be a highly practical endeavor. Mine is a theoretical paper driven by
 practical problems. The theoretical side has to do with imagery and operations
 in the constitution of students' understanding of the Fundamental Theorem of
 Calculus; the practical side is motivated by our general lack of insight into the
 poor quality of calculus learning and teaching in the United States.

 A primary theme I will develop is that students' difficulties with the Funda-
 mental Theorem of Calculus can be traced to impoverished images of rate. To
 develop this theme I will need to make several digressions - one to explicate my
 use of "image", one to explain what I mean by images of rate, and a third to clarify
 issues surrounding the Fundamental Theorem itself.

 IMAGERY AND OPERATIONS

 By "image" I mean much more than a mental picture. Rather, I mean "image"
 as the kind of knowledge that enables one to walk into a room full of old friends

 and expect to know how events will unfold. An image is constituted by coor-
 dinated fragments of experience from kinesthesia, proprioception, smell, touch,
 taste, vision, or hearing. It seems essential also to include the possibility that
 images entail fragments of past affective experiences, such as fearing, enjoying,
 or puzzling, and fragments of past cognitive experiences, such as judging, decid-
 ing, inferring, or imagining.' Images are less well delineated than are schemes of
 actions or operations (Cobb and von Glasersfeld, 1983). They are more akin to
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 figural knowledge (Johnson, 1987; Thompson, 1985) and metaphor (Goldenberg,
 1988). A person's images can be drawn from many sources, and hence they tend

 to be highly idiosyncratic.

 The roots of this overly-broad characterization of image go back to Piaget's

 ideas of praxis (goal-directed action), operation, and scheme. I discuss these
 connections more fully in other papers (Thompson, 1985, 1991, in press a). For
 the present purpose I will focus on Piaget's idea of an image and its relationship

 to mental operations.

 Piaget distinguished among three general types of images. The distinctions he

 drew were based on how dependent upon the image were the actions of reasoning

 associated with it. The earliest images formed by children are an "internalized act
 of imitation ... the motor response required to bring action to bear on an object ...

 a schema of action" (Piaget, 1967, p. 294). By this I take Piaget to have meant
 images associated with the creation of objects, whereby we internalize objects by
 acting upon them. We internalize them by internalizing our actions. Piaget's char-
 acterization was originally formulated to account for object permanence. It can

 also provide insight into a person's creation of mathematical objects (Dubinsky,
 1991; Sfard, 1991; Thompson, 1985), and when the development of a person's

 imagery is halted at this early level it can lead to mathematical understandings
 that are nothing more than internalized patterns of action (Boyd, 1992).

 A later kind of image people create is one having to do with primitive forms

 of thought experiments. "In place of merely representing the object itself, inde-

 pendently of its transformations, this image expresses a phase or an outcome of
 the action performed on the object. ... [but] the image cannot keep pace with the

 actions because, unlike operations, such actions are not coordinated one with the
 other" (Piaget, 1967, p. 295). It is advantageous to interpret Piaget's description
 broadly. If by actions we include ascription of meaning or significance, then we
 can speak of images as contributing to the building of understanding and com-
 prehension, and we can speak of understandings-in-the-making as contributing to
 ever more stable images.

 A third kind of image people come to form is one that supports thought

 experiments, and supports reasoning by way of quantitative relationships. An
 image conjured at a moment is shaped by the mental operations one performs, and

 operations applied within the image are tested for consistency with the scheme
 of which the operation is part. At the same time that the image is shaped by the
 operations, the operations are constrained by the image, for the image contains
 vestiges of having operated, and hence results of operating must be consistent
 with the transformations of the image if one is to avoid becoming confused.2

 [This is an image] that is dynamic and mobile in character ... entirely concerned with the trans-
 formations of the object. ... [The image] is no longer a necessary aid to thought, for the actions
 which it represents are henceforth independent of their physical realization and consist only of
 transformations grouped in free, transitive and reversible combination... In short, the image is now
 no more than a symbol of an operation, an imitative symbol like its precursors, but one which is
 constantly outpaced by the dynamics of the transformations. Its sole function is now to express
 certain momentary states occurring in the course of such transformations by way of references or

 symbolic allusions." (Piaget, 1967, p. 296.)
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 Piaget's ideas of image are similar to those of Kosslyn (1980), and Johnson
 (1987), but in different degrees. Kosslyn dismisses the idea of images as mental

 pictures (Kosslyn, 1980, p. 19), characterizing images as highly processed per-
 ceptual data that only resembles what is produced during actual perception. On

 the other hand, Kosslyn's is a correspondence theory, whereby images represent
 features of an objective reality. Piaget's theory assumes no correspondence; it

 takes objects as things constructed, not as things to be represented (von Glasers-

 feld, 1978). Also, Kosslyn's notion of image seems to be much more oriented to
 visualization than is Piaget's. Piaget was much more concerned with ensembles

 of action by which people assimilate objects than with visualizing an object in its

 absence. Finally, Kosslyn focuses on images as the PRODUCTS of acting. Piaget
 focuses on images as the products of ACTING. So, to Kosslyn, images are data

 produced by perceptual processing. To Piaget, images are residues of coordinated

 actions, performed within a context with an intention, and only early images are
 concerned with physical objects.

 Piaget's idea of image is remarkably consistent with Johnson's (1987) detailed
 argument that rationality arises from and is conditioned by the patterns of our

 bodily experience. Johnson takes to task realist philosophy and cognitive science

 (which together he calls "Objectivism") in his criticism of their attempts to capture

 meaning and understanding within a referential framework.3

 Piaget maintained throughouthis career that all knowledge originates in action,

 both bodily and imaginative (Piaget, 1950, 1968, 1971, 1976, 1980). While
 Johnson's primary purpose was to give substance to this idea in the realms of

 everyday life, Piaget was primarily concerned with the origins of scientific and

 mathematical reasoning - reasoning that is oriented to our understandings of

 quantity and structure. For example, while Johnson focused on the idea of balance

 as an image schema emerging from senses of stability and their projection to

 images of symmetric forces (Johnson, 1987, pp. 72-98), it requires a nontrivial

 reconstruction to create an image of balance as involving countervailing twisting

 actions - where we imagine the twisting actions themselves in such a way that it

 occurs to us that we might somehow measure them. It seems to involve more than

 a metaphorical projection of balance as countervailing pushes to have an image of

 balance that entails the understanding that any of a class of weight-distance pairs
 on one side of a fulcrum can be balanced by any of a well-determined class of
 weight-distance pairs on the other side of a fulcrum.

 I should note that the meaning of "image" developed here is only tangentially
 related to the idea of concept image as developed by Vinner (Tall and Vinner,

 1981, Vinner, 1987, 1989, 1991, 1992, Vinner and Dreyfus, 1989). Vinner's idea
 of concept image focuses on the coalescence of mental pictures into categories

 corresponding to conventional mathematical vocabulary, while the notion of image

 I've attempted to develop focuses on the dynamics of mental operations. The two

 notions of image are not inconsistent, they merely have a different focus.

 The construct of image portrayed here - as dynamic, originating in bodily
 actions and movements of attention, and as the source and carrier of mental
 operations - will be fundamental to analyses of students understanding of integral
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 Distance and fime accrue simutaneously Distance and time accrued simultaneously and continuously. Each
 and in proportional correspondence- One speed-distance is a fractional part of the total accrued distance.
 speed-distance or part trof is made while Each time-unit is a fractional part of the total accrued time.
 moving for 1 time-unit or corresponding part
 thereof. Moving for one dme-unit orpart
 thereof implies moving one speed-distance
 or corresponding part thereof.

 Fig. 1. Speed as a rate. Distance and time accrue simultaneously and continuously, and accruals of

 quantities stand in the same proportional relationship with their respective total accumulations. This
 image supports proportional correspondence, that iths of one accumulation corresponds to a ths of

 the other accumulation.

 and derivative. It will provide the orientation needed to speculate about what the

 "something" is that students have in mind when they speak of something changing

 or of something accumulating.

 IMAGES OF RATE

 The development of images of rate starts with children's image of change in

 some quantity (e.g., displacement of position, increase in volume), progresses to

 a loosely coordinated image of two quantities (e.g., displacement of position and

 duration of displacement), which progresses to an image of the covariation of two

 quantities so that their measures remain in constant ratio (Thompson, in press a;

 Thompson and Thompson, 1992).

 The development of mature images of rate involves a schematic coordination

 of relationships among accumulations of two quantities and accruals by which the
 accumulations are constructed. For example, in the case of constant speed, the

 total distance traveled in relation to the duration of the trip can be imagined as
 each having accumulated through accruals of distance and accruals of time so that
 at any moment during the trip the total distance traveled at that moment in relation

 to the total time of the trip is the same as the accrual of distance in relation to the

 accrual of time (Figure 1).

 Rates which involve time seem to be the most intuitive, but time as a quantity

 which can be imagined to vary proportionally with another quantity is a non-

 trivial construction for students (Thompson and Thompson, in press; Thompson,
 in press a). A further abstraction is required to develop an image of rate that
 entails the covariation of two non-temporal quantities (e.g., volume and surface
 area) and the notion of average rate of change of some quantity over some range

 of an independent quantity (e.g., average rate of change of luminance with respect
 to the displacement of a light source from 9.2 meters to 9.5 meters away from a

 target, which might be measured in (candela/cm2)/meter).
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 Total Quandty 1

 .....". . ........... ..........

 Total Quantity 2
 Fig. 2. An image of rate that entails proportionality between total accumulations in relation to
 accumulations of accruals. The two quantities vary in relation to each other so that the fractional part

 of Total Quantity I made by any accumulation of accruals or parts thereof within Total Quantity 1 is
 the same as the fractional part of Total Quantity 2 made by a corresponding accumulation of accruals

 or parts thereof within Total Quantity 2.

 A general scheme for rate entails coordinated images of respective accumula-

 tions of accruals in relation to total accumulations. The coordination is such that

 the student comes to possess a preunderstanding that the fractional part of any
 accumulation of accruals of one quantity in relation to its total accumulation is the

 same as the fractional part of its covariant's accumulation of accruals in relation
 to its total accumulation. More formally, this can be expressed as

 accumulated accruals 1 accumulated accruals 2

 total accumulation 1 total accumulation 2

 although expressing it this way does not capture the dynamics of an image of

 covariation that I am trying to convey. I have tried to capture this image of

 covariation in constant ratio in Figure 2. Another way to interpret the diagram
 in Figure 2 is that it is the product of one's coordination of iterable units (Steffe,
 1991 and in press).

 A significant aspect of mature images of rate is that accruals and accumulations

 are two sides of a coin. TIwo quantities which change in measure (accumulate)
 so that they remain in constant ratio do so through simultaneous accruals which
 adhere to the ratio; two quantities which change through accruals in constant
 ratio have total accumulations which themselves adhere to the ratio. A hallmark
 of a mature image of rate is that accrual necessarily implies accumulation and
 accumulation necessarily implies accrual.4

 THE FUNDAMENTAL THEOREM OF CALCULUS

 The Fundamental Theorem of Calculus, developed independently by Newton
 and Leibniz in the late 1600's, provides what Courant called "the root idea of
 the whole of differential and integral calculus" (Courant, 1937, p. 111). Its
 creation made possible the algorithmic development of what we know now as
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 the calculus. It also created a cultural necessity for deeper examinations of,

 and ultimately the resolution of, relationships between conceptions of discrete

 and continuous magnitudes, whence the formalization of the real number system
 (Baron, 1969; Boyer, 1959; Wilder, 1981). While the history of the Fundamental

 Theorem and the developments it fostered are rich and fascinating as topics in

 their own right, I will focus on ways of thinking that might make it intelligible

 to individuals reflecting on relationships between derivative and integral. The

 relationship between derivative and integral is often stated today as follows:

 FUNDAMENTAL THEOREM OF CALCULUS

 Suppose f is continuous on a closed interval [a, b].

 Part L If the function G is defined by

 G(x) = J f(t)dt

 a

 for every x in [a, b], then G is an antiderivative of f on [a, b].
 Part II. If F is any antiderivative of f on [a, b], then

 b

 I f(x)dx = F(b) - F(a)
 a

 (Swokowski, 1991, p. 283)

 I shall focus on what Swokowski calls Part I of the Fundamental Theorem.

 This says that if some quantity A has a measure t that ranges from a to b, and if
 some quantity B has a measure f(t) that is conceived as being a function of the
 measure of A, and if AB is a quantity made multiplicatively from quantities A
 and B, then as quantity AB accumulates with variations of A (and hence B), the

 accumulation of quantity AB changes at a rate that is identical with the measure

 of quantity B at the upper end of AB's accumulation.5
 The Fundamental Theorem of Calculus - the realization that the accumulation

 of a quantity and the rate of change of its accumulation are tightly related -

 is one of the intellectual hallmarks in the development of the calculus. Prior to

 Newton's and Leibniz' realization of the Fundamental Theorem, what we now call

 integration was conceived primarily as the determination of a cumulative amount

 of some quantity, such as arc length, area, volume, or mass; what we now call
 differentiation was conceived primarily as the determination of angular velocity,

 tangency, and curvature (Baron, 1969). But these two classes of problems were
 conceived separately, and each was developed with techniques limited to the type
 of problem being addressed.

 Although both classes of problems are readily seen to be separately capable of inversion, thus,

 given the area under the curve or the tangent to the curve in terms of abscissa or ordinate, to
 find the curve, the relation between tangent method and quadrature [area] is not so immediately
 obvious. The relation between tangent and arc ultimately became one of the most significant
 links between differential and integral processes and, for this and other reasons, the problem of
 rectification became crucial in the seventeenth century. The inverse nature of the two classes of
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 problems was approached in terms of a geometric model by Torricelli, Gregory and Barrow but

 only with Newton did the relation emerge as centml and general. (Baron, 1969, p. 4)

 The focus on the two classes of problems mentioned by Baron developed as
 a natural outgrowth of the realization by Apollonius, Oresme, Vi6te, Descartes,
 and Fermat that covariation of two magnitudes can be depicted graphically, so

 that any problem having to do with accumulation could be represented as the
 determination of an area and that any problem having to do with rate of change
 could be represented as the determination of tangency (Boyer, 1959). That is,

 initial development of ideas of the calculus was being done by mathematicians
 who had a strong preunderstanding that even though they were focusing explicitly

 on tangents to curves or areas bounded by curves, they were in fact looking

 for general solutions to any problem of accumulation or change that could be

 expressed analytically.

 Accounts by Baron (1969) and by Boyer (1959) suggest that Newton became

 aware of the Fundamental Theorem by way of a very definite image of cumulative

 variation: that accumulations happen by a process of accrual.6

 Here [in Newton's development of relationships between derivative and integral] we have an
 expression for area which was arrived at, not through the determination of the sum of infinitesimal

 areas, nor through equivalent methods which had been employed by Newton's predecessors from

 Antiphon to Pascal. Instead, it was obtained by a consideration of the momentary increase in the
 area at the point in question. In other words, whereas previous quadratures had been found by

 means of the equivalent of the definite integral defined as a limit of a sum, Newton here determined

 first the rate of change of the area, and then from this found the area itself by what we should
 now call the indefinite integral [antiderivative] of the function representing the ordinate. It is
 to be noted, furthermore, that the process which is made fundamental in this proposition is the
 determination of rates of change. In other words, what we should now call the derivative is taken
 as the basic idea and the integral is defined in terms of this. (Boyer, 1959, p. 191)

 It is worthwhile to mention that Newton envisioned fluxions (rates of change

 in quantities) and fluents (flowing quantities made by fluxions) as what we would
 today call functions. This is one reason why his insight was so important. His
 method was to start with an analytic expression for a function f that gives the rate

 of change of some quantity and derive an analytic expression for a function F that

 gives the cumulative amount of that quantity.

 What images might have supported Newton's insight? First, Newton was

 committed to an image of dynamic quantities, in continual flux, instead of to

 the more common notion of quantities in fixed, indeterminate states (Kaput, in
 press). Second, as noted by Baron (1969, pp. 263-266), Newton understood

 motion as being the unifying concept for his methods to determine tangency (rate

 of change), curvature, arc length, and quadrature (accumulation). Third, he felt
 quite comfortable thinking of a continuum as being composed of infinitesimals
 - quantities as small as one pleases which may be discounted when held in
 comparison to a quantity which is an order of magnitude larger (Boyer, 1959,
 pp. 198-200).7

 Here is one way to take these notions in combination so that the Fundamental
 Theorem is intuitively clear: In a changing, multiplicative quantity, the total

 accumulation changes at the rate of the accruals of the constitutive quantities.
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 2ft

 Fig. 3. A mold made of tiers with square bases. Each comer of a tier is offset 0.25 ft perpendicularly
 from the nearest edge of the tier below it.

 For example, suppose you have driven a car for x miles, and that in the next

 0.0001 seconds you average 93 km/hr. During that 0.0001 seconds, your total

 driving distance is changing at the rate of 93 km/hr - regardless of how far you
 have driven. If we imagine that during each infinitesimal period of time you drove

 at some average speed, and if we could know each of those average speeds, we

 could reconstruct your total driving distance at each infinitesimal moment of time.

 Thus, if we were to have an analytic expression which gave us your speed during

 each infinitesimal period of time, we could, in principle, recover your "distance
 function." The problem is now one of technique - construct an analytic function
 whose rate of change differs at most infinitesimally from the rates of change we

 know you had. This method is not unique to speed and distance, but will apply to
 any quantity constructed multiplicatively from a rate and another quantity.

 A second example will highlight the interrelationships among accumulation of

 a quantity, accruals in its constituents, and rate of change: Suppose that liquified
 plastic is being poured into a hollow mold, shown in Figure 3, through a hole in
 its top. Each corner of a tier is offset 0.25 feet perpendicularly from the nearest

 edges of the tier below it. Let v(h) represent the volume of plastic in the mold
 as a function of the plastic's height h from the bottom of the mold. At what rate

 is v(h) changing with respect to h when the plastic is filling the third tier? The
 total volume is changing at the average rate that the third tier is filling, which is

 simply the volume of the tier divided by the height of the tier, which in turn is

 (A(base) . height)/height.
 These examples bring out two important images: (1) thinking of quantities as

 being composed multiplicatively of two other quantities, and (2) thinking in terms

 of infinitesimals.8 In the first example, increments of distance are conceived of
 being made by traveling for some small amount of time at some speed. In the
 second example, increments of volume are conceived as being made by taking
 some base area to a varying height. In either case, the accumulating quantity is
 imagined to be made of infinitesimal accruals in the quantities which, composed
 multiplicatively, make up the accruals in the accumulating quantity. When one
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 Total Accumulation
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 Fig. 4. Acceleration - the rate at which the speed-distance per time-unit grows. Image is of
 acceleration happening in jumps.

 of those quantities is the rate at which the quantity changes over an infinitesimal

 interval, then the total accumulation changes over any infinitesimal interval at the

 quantity's rate of change over that infinitesimal interval.

 EARLY IMAGES OF THE FUNDAMENTAL THEOREM OF CALCULUS

 While we cannot expect students to recreate the discoveries of Newton, we can
 look for kinds of reasoning which would provide us with starting points to de-
 velop instructional and curricular approaches oriented at students' development

 of imagery and forms of expression to support their later insight into important

 ideas in the calculus. In this section I will report one teaching experiment which

 attempted to do this. The teaching experiment was with Sue, a seventh-grader, and

 the content of the teaching experiment were the ideas of speed and acceleration.

 An image of acceleration is that "speed grows with time." I have depicted
 this image in Figure 4. The quantification of acceleration is the determination

 of by how much the speed-distance grows with each passing unit of time. The
 complication that acceleration introduces in students' comprehension of situations
 is not so much in the accrual as in imagining the accumulation.

 I depicted the accumulation in Figure 4 as happening only in whole-increments

 of time. This depiction seems justified not as an accurate portrayal of the most

 sophisticated understanding of acceleration, but as an intermediate image that
 becomes refined through the study of limiting processes typically developed in
 calculus.

 Sue's work on a problem having to do with acceleration is presented below. I

 had already established that Sue possessed the scheme of operations entailed in
 Figure 2 in the context of a unit on reasoning about speed as a rate (Thompson, in

 press a).

 EXCERPT I

 1.1 Pat: Imagine this. I'm driving my car at 50 mi/hr. I speed up smoothly to 60 mi/h,
 and it takes me one hour to do it. About how far did I go in that hour?

 1.2 Sue: (Long pause. Begins drawing a number line.)

 1.3 Pat: What are you doing?
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 Fig. 5. Sue's scratch work for "How far did I go while I took one hour to speed up from 50 mi/hr to
 60 mi/br?" .

 1.4 Sue: I figure that if you speed up 10 miles per hour in one hour, that you speeded
 up I mile per hour every 6 minutes. So I'll figure how far you went in each of
 those six minutes and then add them up. (See Figure S.)

 1.5 Pat: (After Sue is finished.) Is this the exact distance I traveled?

 1.6 Sue: No ... you actually traveled a little farther.

 1.7 Pat: How could you get a more accurate estimate?

 1.8 Sue: (Pause.) I could see how far you went every time you speed up a half mile
 per hour.

 Figure 5 shows Sue's work. She assumed that Pat accelerated at the rate of
 10 (milhr)Ihr, which would be equivalent to 1 (mi/hr)/ji1 hr. She then assumed
 Pat drove for one-tenth of an hour (6 minutes) at 50 mi/hr, then one-tenth hour at

 5i mi/lit, and so on. She then determined how far Pat would go in each of these
 one-tenth hour periods.

 Sue's solution to estimating the distance I traveled while accelerating has the
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 60 miles

 50 mil.es 1 0 mile, . .....1111"0 -----

 This part was added

 1 hour in 1 hour

 1 hour

 Fig. 6. Sue's image of increasing a car's speed from 50 miles per hour to 60 miles per hour as being

 the result of increasing the speed-distance by 10 miles at a uniform rate of 1 mile every one-tenth of
 an hour.

 structure of a Riemann sum. It would be expressed formally as

 AV = final speed - initial speed (a number of miles per hour)

 AT = final time - initial time (a number of hours)

 t= AT (a number of hours)9
 Av= 1 mi/hr

 n-i

 d = Z(initial speed + i?wv)zAt (a number of miles),
 i=O

 which says that you first imagine that the increase in speed is distributed evenly
 across the number of hours you take to speed up, then pretend that you go at a
 constant speed within each increment of time and add up how far you go in each
 of them.

 What I wish to draw attention to is Sue's initial inference that Pat's speed
 increased by one mile per hour every one-tenth of an hour. This seems to be the
 crucial inference that got her going, and this inference seems to be based on an
 image of total acceleration like that shown in Figure 6.

 Sue's inference was that since 10 mi/hr was added to Pat's speed in one hour,
 this was the same as adding 1 mile per hour to Pat's speed every one-tenth of
 an hour.'0 This suggests an image of acceleration that falls between a concept of
 speed and a concept of continuously accelerated speed.

 While we can be inspired by the sophistication of Sue's reasoning, we should
 take care not to read too much into it. Evidently, Sue had an operational rate
 scheme, as evidenced by her coordination of acceleration, velocity, and distance,
 but she had not yet formalized these coordinations so that she could express
 them analytically. In Excerpt 1, Sue's construction of distance traveled while
 accelerating for one hour was for a specific increase in speed over a specific
 amount of time. She-was not able to express the general structure of her approach
 as I did in my summary after Figure 5. To accomplish such a summary, Sue would
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 have needed to encapsulate her method within a language so that her entire process
 is captured by an expression which describes local behavior of the process.

 Another aspect of Sue's reasoning which will be important in the sequel is that

 her image of the situation seemed not to entail the continuous growth of velocity,
 and hence of distance, during the periods of acceleration. She did not realize

 that the questions I asked her could have been asked about any moment of time

 during the two respective periods of acceleration, and that her calculational method
 would, in principle, yield an approximate distance traveled at each moment while

 accelerating. This is not to disparage Sue's reasoning. Rather, it is to point

 out a significant difference between Newton's and Sue's perspectives. Sue saw
 completed growth. Newton saw cumulative growth varying immediately as a
 function of time.

 The inspiration we can draw from Sue's example is that there are early forms

 of imagery which we might draw upon pedagogically in teaching ideas of the
 calculus. It remains an open question as to how we might provide occasions for
 students to transform those images into others which are propitious for insight
 into the calculus.

 A TEACHING EXPERIMENT ON THE FUNDAMENTAL THEOREM OF CALCULUS

 To study students' insights into the Fundamental Theorem of Calculus I devised a

 teaching experiment for a group of students enrolled in a course on computers in
 teaching mathematics. I had two reasons for choosing this group of students. The
 first was serendipity - this course is structured to have students first experience

 what it means to conceptualize important ideas in mathematics deeply and then
 devise instruction to foster the same experiences with their students. A focus on
 the Fundamental Theorem fits naturally within this structure. The second reason

 is that I hoped to gain insight into the kinds of understandings and orientations stu-

 dents take with them from introductory calculus and into secondary mathematics
 classrooms.

 The Students

 The group was composed of 7 senior mathematics majors, 1 senior elementary
 education major, 10 masters students in secondary mathematics education, and
 1 masters student in applied mathematics. Seventeen students had completed 3
 semesters of calculus with grades of B or better, while the other two had grades of

 C. Seven students had taken advanced calculus and four were currently enrolled
 in advanced calculus.

 In a preliminary assessment only one student, a teacher of Advanced Placement

 calculus, gave a satisfactory definition of the definite integral of a function; the
 expression xf+l /(n + 1) was the most common response. Only four students
 gave a satisfactory definition of the derivative of a function; statements about the

 slope of a tangent were the most common response. In response to the question
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 c AB

 A 6 in G

 (a) (b)
 Fig. 7. Diagrams accompanying this problem: Use a graping program to find the dimensions of the
 rectangle in (a) and the triangle in (b) which produce the largest possible area

 "What letter goes in the blank to define this function: F(_) =f f (t)dt, " 16
 students said that the letter t goes in place of the blank. Fifteen of 19 students
 solved a simple optimization problem, and 10 of 19 solved a complex optimization
 problem. Both optimization problems were taken from a calculus text.

 The concept of function was problematic for many students. Six of 19 students

 could express the area of the rectangle in Figure 7a or the area of the triangle in

 Figure 7b as a function of some quantity (e.g., area of the rectangle as a function
 of the length of AD in Figure 7a) so that it could be graphed over a suitable
 domain by a graphing program. A common complaint was that there was not
 enough information to "solve for the area." Four of 19 students gave satisfactory

 explanations for why the graph of f (x) = cos(8 sin(3x)), xe[-7r, 7r], behaves as
 it does. Most explanations made no reference to the behavior of 8 sin(3x) or to
 the fact that any function will be periodic if and only if its argument is periodic
 modulo some modulus.

 Classroom conversations and self-reports of students' high school and college
 mathematical experiences suggested that they and their instructors had engaged
 largely in "symbol speak" - talking about notations and notational actions without

 mentioning an interpretation of the notations themselves. As a result, students had

 learned to focus their attention on internalizing patterns of figural actions - the
 kinds of things to write, where to write them, and so on. Later excerpts will show

 the ways in which students expressed an orientation to notational action patterns
 sans interpretation during the teaching experiment.

 The Teaching Unit

 The class met twice weekly for 1.5 hours each meeting between February 2 and
 March 4, 1993, for a total of 10 meetings. Students had ready access to a computer
 lab or had a computer at home on which to work on assignments. The last two
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 meetings - those in which the Fundamental Theorem of Calculus was discussed
 - were videotaped and transcribed. A small-group session after the last meeting

 was also videotaped and transcribed.
 The teaching experiment was structured to focus on four phases of conceptual

 development. These were:

 Phase I: Analyze behavior of functions' graphs; explain their behavior;
 Model situations using functions and derive information about
 situations from graphs (3 meetings)

 Phase II: Average rates of change; functions which give average rates of
 change over all intervals of a fixed length (2 meetings)

 Phase III: Accumulations of change: Riemann sums (2 meetings)

 Phase IV: Relationships among variable quantity, accumulation of change,
 and rate of change of accumulation (2 meetings)

 The first phase focused on orienting students to reconstitute their images of

 function so that it would be based on images of covariation (Thompson, in press b).

 The second phase focused on having students enrich their notion of average rate
 so that they could express it as a difference quotient that reflected average rate of

 change over an increment of some quantity. The third phase focused on having
 students conceptualize Riemann sums as functions that describe an approximate
 accumulation of one quantity with respect to variations in another. The unit was
 intended to culminate in Phase IV by asking students to bring these separate
 developments together in the context of problems that highlighted the inverse
 relationship between accumulation and accrual so that they would have an occasion
 to construct, for themselves, the Fundamental Theorem of Calculus. It was my
 hope that students would construct the Fundamental Theorem of Calculus; the
 larger aim of the teaching experiment, however, was to highlight aspects of their

 conceptions and orientations that might facilitate or obstruct such a construction.

 It is important to note that all through the teaching experiment I gave explicit

 attention to students' images of mathematical activity, with special reference to

 uses of notation and the construction of explanations. It was essential that they
 come to interpret notation as someone's attempt to say something - and hence they

 should reflect on what was intended to be said, and that they should use notation

 as a medium for expressing their images, inferences, and methods. But to express
 images, inferences, and methods it was also essential that they come to take these

 as important activities upon which to reflect. This was an uncommon orientation
 for most students, and the details of our contract were continually renegotiated.

 I will briefly describe the teaching experiment's first three phases to illustrate

 the nature of instruction and orientation I took to the subject, and to give a sense
 of the students' orientations. I will describe the fourth phase in detail.

 Phase 1: Functions, Graphs, and Models (3 meetings)
 Students were given two assignments aimed at their developing insight into

 the behavior of functions by examining the behaviors of their graphs. Examples
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 TABLE I

 Sample tasks from Phase 1 of the teaching experiment. Roman numerals indicate assignment number

 during the teaching experiment

 1.2. Investigate the behavior of these functions. Explain why they behave the way they do.
 [Note: A good explanation is one which, if understood ahead of time, would have allowed

 you to predict the behavior of the function.]

 f2(x) = xsin(I/x)

 f3(x) = cos(x) + O.Olabs(cos(100x))

 f6(X) = X2 mod 2

 Answer each of the following questions by constructing appropriate functions and then using

 Analyzer to graph the functions and estimate the question's answer. For each problem, hand in:

 * a labelled diagram,

 * a statement of what the function represents,

 * an explanation of what the function's graph shows you about the situation,

 * a note about what you looked for in the graphs to answer the question.

 11.1. Jamie Johnson rides frequently with her father to Chicago. One one particular trip it took
 2 hours for them to travel the 110 miles from home to Chicago. They made the trip in
 two parts. Jamie kept an eye on the speedometer and estimated that in the first part they
 averaged 40 miles per hour. She estimated that in the second part they averaged 60 miles

 per hour. About how long did they drive in each part of the trip?

 11.7. Statistical data from trucking companies suggests that the operating cost of a certain truck

 (excluding driver's wages) is 12 + x/6 cents per mile when the truck travels at x miles
 per hour. If the driver earns $6.00 per hour, what is the most economical speed to operate
 the truck on a 400 mile turnpike where the minimum speed is 40 miles per hour and the
 maximum speed is 65 miles per hour?

 of tasks from these assignments are given in Table I. Classroom discussions em-

 phasized that Cartesian graphs are made of points, and the points in a graph are

 positioned in a way that reflect each value of a function in relation to the argu-

 ment that produces that value. Functions as models of dynamic situations were

 emphasized through problems like 1. 1 and 11.7 (Table I).

 Phase lI: Average Rates and Functions (2 meetings)

 The derivative of a function is typically developed pointwise. That is, it is

 defined with the understanding that x in the expression

 f'(x) = lim f(x + h)-f(x)

 is fixed relative to h. My instruction on rates of change drew from an example

 developed by David Tall (Tall, 1986; Tall et al., 1988) wherein x in the definition
 of f'(x) is free to vary for each value of h. This alternative approach to the
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 derivative has two very natural interpretations. The first is that for a fixed value
 of h, the function

 fh(X) = f (x + h)- f (x)
 h

 gives the average rate of change of f over every interval of length h contained in
 the domain of f. The second is that

 f() = f (x + h)- f (x)
 h

 gives the slopes of every secant which connects the points (x, f(x)) and (x +

 h, f(x + h)). The second interpretation supports an image of a "sliding secant"
 - slide an interval of length h through the domain of f, thereby sliding the secant

 defined over that interval, and keep track of the secant's slope. The relationship
 of either interpretation to the standard definition of the derivative is that as we

 let h approach 0 we produce a family of functions that converges to the function
 which gives the instantaneous rate of change of f at every value in the domain of
 f where the pointwise limit exists.

 The reason for my taking this approach to the derivative is that the notion of
 function is always uppermost in any discussion of a function's rate of change.
 It also encourages students to think of a function's rate of change in concrete
 settings in ways that are consistent with ideas of rate of change over some interval.

 Finally, I intended that their image of a function's average rate of change over a
 small interval would come into play when thinking of the relationship between

 accumulations and accruals in Phase IV.

 Table II presents sample tasks from Phase II of the teaching experiment. The
 tasks here were oriented toward conceptualizing the derivative as a function that

 is approximated by a "Newtonian ratio," a jargon phrase concocted during the
 teaching experiment to refer to fh(x).

 I was suprised by the nature of students' difficulty in interpreting the functions

 they defined for III.4 (Table HI). Excerpt 3 provides an interchange between myself

 and two students in the computer lab after they had developed and graphed the
 function

 r(x) = d(x +0.1) - d(x)
 0.1

 where d(x) was defined as d(x) = 16x2. Bob is a high school mathematics
 teacher, Alice is a mathematics education masters student.

 EXCERPT 3

 3.1 Bob: We're having trouble making sense of what we're looking at.

 3.2 Alice: Or even what we did!

 3.3 Pat: Okay, what is this function you typed? What does it represent?
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 TABLE II

 Sample tasks from Phase 2 of the teaching experiment. Roman numerals indicate assignment number
 Juring the teaching experiment

 When an object falls from a resting start, the distance it has fallen t seconds after being released is

 given by the function d(t) = 16t2 (assuming we ignore resistance).

 III.3. An engine fell offaDC 9. What was the engines average vertical speed between 3.1 seconds

 and 3.2 seconds after it started falling? Between 3.2 and 3.3 seconds? Between 3.15 and
 3.25 seconds? (Answer these questions using just paper-and-pencil.)

 111.4. Use Analyzer to produce a graph of the engine's average vertical speed over every 1/10th
 second interval. (Don'tfall into the trap of thinking that the only 1/10th second intervals
 are (0, 0.1], (0.1, 0.21, (0.2, 0.3], and so on. In stead, think of a "sliding interval" that has
 every value in the domain as its left end point.)

 II1.5. Generalize part (111.4) so that your function uses a parameter. Play around with different
 values of the parameter to generate a family of functions which approximate the function
 that gives the engine's vertical speed at every instant of time after it began falling.

 111.8. Jayne, the clas trouble maker, asked a question about (III.5). She said, "If we think of an
 object at an instant of time, then it didn't move any distance over that instant of time, and
 it didn't take any time to move nowhere. So, what can it possibly mean to talk about the

 object's speed at an instant of time when speed is about moving some distance in some
 amount of time?" Comment on Jayne's dilemma

 III.10. Use the technique developed in [earlier problems] to define a function whose values
 approximate the instantaneous rate of change of the function g(x) = cos(x)esin(x) at all

 values of x in (-10, 10).

 3.4 Alice: That's what we can't figure out.

 3.5 Pat: How did you come up with it at all?

 3.6 Bob: We just put letters in for numbers [referring to their solutions to 111.3, Table II].

 3.7 Pat: Okay, let's take it a piece at a time. What does d(x + 0.1) represent?

 3.8 Bob: How far it went in one tenth of a second.

 3.9 Alice: How fast it is going.

 3.10 Pat: Well ... I don't understand how you came up with your interpretations.

 3.11 Alice: I was guessing (laughs).

 3.12 Bob: It's like this ... d(x) gives how far the engine dropped in x seconds, so x + 0.l
 is another tenth of a second. So d(x + 0.1) gives how far it went in that extra

 tenth.

 3.13 Pat: How far it went in just that tenth of a second, or how far it fell altogether in

 x + 0.1 seconds?

 3.14 Alice: Oh ... it has to be how far it fell in the whole amount of time.

 3.15 Bob: [ don't... (pause)

 3.16 Pat: Let's change the subject for a little while. If I were to tell you how far this

 engine fell in 7 seconds, what would you need to know to tell me how far it
 fell in the last two seconds?

 3.17 Bob: (Pause.) How far it fell in the first 5 seconds.
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 3.18 Alice: Then you'd subtract.

 3.19 Pat: You'd subtract what to get what?

 3.20 Alice: Subtract how far it went in 5 seconds from how far it went in 7 seconds to get

 how far it fell in the last 2 seconds.

 3.21 Pat: How would you calculate the engine's average speed during those last

 2 seconds?

 3.22 Bob: Divide by 2.

 3.23 Pat: Divide what by 2?

 3.24 Both: The distance it went in the last 2 seconds.

 3.25 Pat: Now, tell me again what d(x + 0.1) and d(x) represent?

 3.26 Bob: How far ... how far...

 3.27 Alice: How far it fell in x + 0.1 seconds and how far it fell in x seconds.

 3.28 Pat: Okay, what does the difference of those two represent?

 3.29 Bob: How far it fell in the last tenth of a second?

 3.30 Pat: Not necessarily the last tenth, just the tenth of a second after x seconds of

 falling. (Pause.) Now, what does r(x) represent?

 3.31 Both: How fast it went during that tenth of a second.

 3.32 Pat: Was it always going one speed during that tenth of a second? (Long pause.)

 3.33 Alice: Oh ... its average speed during that tenth of a second!

 3.34 Pat: Okay! Now, what does the graph of r(x) represent?

 3.35 Alice: Howfast ... how fast ...

 3.36 Bob: It's average speed ... after ... (to himself) when?

 3.37 Alice: It's average speed ... over ... over ... every one-tenth interval ... one-tenth

 second. Over every one-tenth second interval of time!

 3.38 Bob: Oh.

 3.39 Pat: Okay (enters "r(l .5)" at keyboard; program prints "49.60"), this says that

 r(l.5) is 49.6. What does that mean?

 3.40 Bob: It was going 49.6 feet per second after one and a half seconds.

 3.41 Alice: It went an average speed of 49.6 feet per second when it fell from 1.5 seconds

 to 1.6 seconds.

 Bob's difficulty was not uncommon. Those students who experienced diffi-

 culty seemed to want to think of the difference quotient as "the derivative" and
 interpret it as "how fast it [the function] is changing," without interpreting the

 details of the expression as an amount of change in one quantity in relation to a

 change in another. Several students chose to write the difference quotient in their
 homework as

 f(x + h) - f(x)
 (x + h) - x

 I presume this was a mnemonic to help them keep in mind that the denominator
 was also a difference and that the quotient evaluated a multiplicative comparison
 of changes.

 My intention for Item II1.8 (Table II) was to orient students to thinking of
 instantaneous velocity as a limit of average velocities. In fact, students' responses
 surprised me. Of the 12 responses turned in, all said essentially that they would
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 explain to Sue that "instant" was not really an instant, but an amount of time so
 small that it was virtually indistinguishable from zero seconds.

 Phase III: Riemann Sums (3 meetings)

 I introduced Phase Ill with a discussion of Sue's problem and solution, as

 presented earlier in this article (Figure 5). I was struck by the direction taken
 by students: A consensus emerged that, had they been Sue's teacher, they would
 have had Sue "discover" that she could just multiply the amount of time taken to

 speed up by the mean of the beginning and ending speeds. Sue's solution method
 was, to them, a rather clumsy way to approximate "the correct answer." I asked,
 "Does Sue's solution have anything to do with calculus?" "No." I then presented

 Sue's problem with a variable acceleration, asking "Which method will generalize

 to this new setting - yours or Sue's?" Eventually they demurred that there might

 have been more sophistication in Sue's reasoning than they originally recognized.

 Instruction during Phase III focused on conceptualizing a Riemann sum as a
 function and on conceptualizing dynamic situations as representable by Riemann
 sums (see Table III). A major difficulty for many students was to express functional

 relationships in situations analytically, and to coordinate their images of functional

 covariation of two quantities with an image of accumulation by way of accruing
 "chunks" of a quantity. The notion of a Riemann sum as presented in Phase m -
 an approximation to a variable accumulation - often conflicted with their images
 of definite integral and Riemann sum as applying only in situations involving

 fixed amounts of some quantity (the typical scenario in freshman calculus). This
 conflict revealed itself in a number of ways - a common one being that a student
 would write an expression for a Riemann sum, but with an image that what he or
 she was finding was a total amount of a quantity (e.g., total work, area, volume,
 etc.) instead of a varying amount of the quantity.

 I gave special attention to items like IV.5 and IV.6 in Table Ill. The reason for
 this was to give students an occasion to reflect on the details by which the process

 of Riemannian summation assigns values to its argument. The first case (IV.5)
 corresponds to assigning a fixed subinterval length in any partition of the interval

 [0, x]. For xE[iAx, (i + 1)Ax) the expression [x//x] is constant, so

 X/Ax

 Z f(iAx)?\x
 i=l

 is constant over that interval,"1 and hence

 Z f(iAx)Ax
 i=l

 produces a constant function over each of the subintervals through which x varies

 - a step function. The second case (IV.6) corresponds to assigning a fixed number
 of subintervals in any partition of [0, x]. As x varies, the number of subintervals
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 TABLE III

 Sample tasks from Phase 3 of the teaching experiment. Roman numerals indicate assignment number

 during the teaching experiment

 IV. 1. a. Use Analyzer and Riemann sums to produce a graph of the approximate velocity

 of a car during its first 10 seconds of accelerating from a standing start when it
 accelerates at the rate of 11.5 mi/hr/sec.

 b. Use Analyzer and Riemann sums to produce a graph of the approximate distance

 covered by a car during its first 10 seconds of accelerating from a standing start
 when it accelerates at the rate of 11.5 mi/hr/sec.

 IV.2. Use Analyzer and Riemann sums to produce a graph of the volume of water in a

 conical storage tank that is 25 feet high and 30 feet wide at the top. Express the
 volume as a function of the height of the water above the tip of the cone.

 IV.5. a. How might you think of the expression

 Z cos(iAz)Ax
 i=l

 to understand that it defines a Riemann sum evaluated at every value of x in your
 domain?

 b. Explain why the Riemann sum defined this way always produces a step function,

 regardless of the value of Ax (assuming it is not zero).

 IV.6. a. How might you think of the expression

 n

 Zcos ( )-
 , n n

 to understand that it defines a Riemann sum evaluated at every value of x in your
 domain?

 b. Explain why the Riemann sum defined this way never produce a step function,
 regardless of the value of n.

 in the partition remains the same, but the subintervals "stretch" proportionally

 as x gets proportionally larger. In both cases I emphasized that they should try
 to imagine the process of Riemann summation as happening so rapidly that they
 could think of x varying freely and the process would keep up with it. That is, as
 x varies, the process of summation happens at each value of x, and the process
 happens "so rapidly that it doesn't slow x down - you can slide x along its domain

 and not feel any resistance from the process as it tries to keep up."

 Phase IV: The Fundamental Theorem of Calculus (2 meetings)

 I did not introduce the Fundamental Theorem of Calculus as such. Instead,
 I continued a discussion of one Riemann sum problem that students had found

 particularly troublesome. The problem was:

 Hexane is a gas used for industrial purposes. Clentice Smith of Cargill Corp., Bloomington, IL in
 November, 1989 requested a graph that will give the approximate volume of hexane (measured in
 cubic inches) held by the tank shown in Figure 8. Use Analyzer and Riemann sums to produce
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 Hexane Water

 ~ i .. ........

 13' (156")

 Fig. 8. A tank with water in the bottom and hexane sitting atop the water. The hexane always reaches
 the hole in the tank's side regardless of the height of the water.

 such a graph. Express the volume of hexane as a function of the height of the water (measured in
 inches).

 Assumptions

 * The face of the tank is a disk (i.e., a region bounded by a circle)

 * the shape of the tank is cylindrical

 * the hexane sits atop the water

 * the dimensions of the tank are as shown

 * a hole in the tank resides 18" vertically from the top of the tank

 * the hexane always reaches the bottom edge of the hole.

 My intention with this problem was to recap students' solutions and use the
 discussion as a setting for asking about, what would turn out to be, the Fundamental

 Theorem of Calculus. I intended to do this by graphing the width of a horizontal
 slice of the tank's face as a function of the slice's height from the floor, graphing

 the area of the face's water-covered portion as a function of the water's height, and

 then ask about how fast the water-covered portion's area changes with respect to
 the water's height. I presumed that students would suggest a difference quotient
 to estimate the function which gives rate of change of area as a function of
 the water's height, and I planned then to graph this difference quotient and ask
 students to compare its graph with the graph of the horizontal-slice width as a
 function of height (anticipating that the two graphs will appear to be identical).
 The culminating question would be, "If this graph is of the width of a horizontal
 slice as a function of its height from the tank's bottom, and the other graph is
 of the rate of change of area as a function of the region's height from the tank's

 bottom, then why do they look the same? Is there some reason for it, or is it just
 coincidence?"

 The session began with one student's, Blake's, presentation of his solution to
 the problem. He established that the main aspect of this problem was to express
 the area of the water-covered region of the tank's face as a function of the water's
 height from the bottom. Blake then defined a function to give the width of an
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 48 Y

 x

 ) h/n

 h

 -48

 Fig. 9. Face of cylindrical tank. Water level is at height h measured from tank's bottom, with ith

 rectangle in partition highlighted; xi and yi are coordinates of the ith rectangular piece's lower-right
 comer.

 arbitrary chord as a function of its height (Figure 9) and set up an appropriate

 Riemann sum as a function of the water's height.

 After Blake had completed his presentation I displayed his equations on a

 projector screen.'2. They are presented below as Equation Set 1. The function
 x(h) gives the x-coordinate of a chord's right endpoint expressed as a function of

 the chord's height above the bottom of the circular face (Figure 9). The function

 w(h) gives the chord's width. The function A(h) gives the approximate area of
 the water-covered portion of the tank's face as a function of water's height. The

 function V(h) gives the approximate volume of the hexane as a function of the
 water's height.

 n =20 E1.1

 x(h) = 482 - (-48 + h)2 E1.2

 w(h) = 2x(h) E1.3

 z = w(h) E1.4

 A(h) = w (j-)- E1.5

 3=

 y = A(h) E1.6

 Total Area = A(78) E1.7

 V(h) = 156(Total Area - A[h]) E1.8
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 80 ... ...

 60- _ ./ ..........j

 40 - .......
 z
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 I +
 20h 40 60

 Fig. 10. Graph of z = w(h), the width of a cross section as a function of the cross section's height
 above the cylinder's bottom.

 6000

 4000

 2000

 XI *I
 20 h 40 60

 Fig. 11. Graph of y = A(h), the approximate area of the tank face's water-covered portion as height
 of water increases.

 v = V(h) El.9

 Equation Set 1: Blake's system of equations and functions for the Hexane
 problem.

 We discussed Figure 9 and its relationship to the functions x(h) and w(h),
 shown above as E1.2 and E1.3, and we discussed the graph of w(h) [Figure 10]..
 The discussion of A(h) first centered around interpreting its construction,

 which was not straightforward for some who still had questions. After I was

 satisfied that everyone understood the construction of A(h) and V(h), I displayed
 a graph of y = A(h) (Figure 11) and then redirected the focus of the lesson by
 asking about the rate of change of area of the face's water-covered portion as the
 water's height increases. The ensuing discussion is given in Excerpt 4.
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 EXCERPT 4

 4.1 Pat: Let me back up a little [scrolls back to equation E.5]. I want to ask you a
 question. We had this area function [highlights El.S]. Suppose that I ask you
 the question, "How could we get a function that approximates how fast the
 area is changing as the height increases?" [moves hand upward to indicate an
 increasing water height.]

 4.2 Long pause.

 4.3 Student: Tangent to the slope of the line.

 4.4 Bob: You basically take a tangent at any point on the curve ... on your area function.

 4.5 Pat: Okay. Do you know how to do that?

 4.6 Bob: Pause. Basically, by taking limits ... I'm trying to remember this stuff.

 4.7 Jim: Isn't it just that limiting thing that we've been doing?

 4.8 Pat: That limiting thing?

 4.9 Laughter.

 4.10 Alf: It's just the difference quotient, isn't it?

 4.11 Pat: Alf?

 4.12 Alf: The difference quotient, where

 4.13 Jim: The moving secant line.

 4.14 Alf: Yeah.

 4.15 Alice: Oh yeah!

 4.16 Alf:. It would be f of x plus h minus f of x all over h.

 4.17 Pat: What would that give you?

 4.18 Student: The speed.

 4.19 Pat: The speed of what?

 4.20 Alf: The speed for how fast the area is changing.

 4.21 Pat: How does this give you what you say?

 4.22 Jane: It's like average speed.

 My question about how fast the area changes with respect to height appeared to

 take them by surprise. The first two responses seemed to emanate from a concept
 image of derivative as slope of a tangent. Only when Alf spoke of the difference
 quotient (? 4.10) did the idea of average rate of change over a small interval of
 height emerge.

 How to express the difference quotient of change in area in relation to change
 in height was problematic for a number of students, despite Alf's suggestion
 (? 4.16). After a consensus emerged on how to express the difference quotient,
 I entered the equations shown in Equation Set 2 and displayed a graph of the
 approximate rate of change in area with respect to height (Figure 12).

 dA(h) = A(h + Ah) - A(h) E2.1

 Ahh=0.01 E2.2

 q = dA(h) E2.3
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 80

 40 - - - --- ......
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 Fig. 12. Graph of q = dA(h), the approximate rate of change of the water-covered portion's area as
 a function of the water's height.

 Equation Set 2: Equations to define and graph the difference quotient which
 gives the approximate rate of change of the water-covered portion's area with
 respect to the water's height.

 Excerpt 5, below, presents the discussion immediately following my presen-

 tation of Figure 12. It began with "what does this graph show us," but quickly
 moved to why it appears to be the same as the graph shown in Figure 10.

 EXCERPTS

 5.1 Pat: What does this graph [Figure 12] show us?

 5.2 Several: The rate at which the area is changing.

 5.3 Pat: What shows me the rate at which the area is changing when the height is 20
 inches.

 5.4 Alice: It's whatever q is when h is 20.

 5.5 Pat: Does this graph look familiar?

 5.6 Jane: It looks like the ... the uh ... the base of the rectangle that we had.

 5.7 Roy: Oh... of course.

 5.8 Pat: Moves the graphs shown in Figure 12 and Figure 10 so that they are side by

 side on the projector screen.

 5.9 Bob: What was the one on the left again [Figure 10]?

 5.10 Alf: The derivative of ... [several students speak at oncel

 5.11 Pat: That's how fast the area is changing as a function of h.

 5.12 Bob: And it's changing in the same respect as that thing [pointing to diagram shown
 in Figure 9] is getting wider.

 5.13 Alice: [to herselfl That makes sense.

 5.14 Pat: Pause. Why?

 5.15 Bob: Pause. Why? Because that's what you multiplied it by!
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 5.16 Pat: What do you mean, "That's what I multiplied it by?"

 5.17 Bob: You're taking the change in x [spreading his hand apart horizontally] and

 multiplying it by as it changes here [holding his thumb andforefinger slightly

 apart vertically] ... as the chord length changes ... the change in x gives you
 one of those little rectangular boxes we've been talking about.

 5.18 Pat: Yeah.

 5.19 Bob: Now, as that changes, as it gets larger, then the area is going to get larger.
 Now, I know ... I got it in my mind but it's not coming out my mouth.

 5.20 Pat: Can anyone reinterpret what Bob is saying? Pause.

 5.21 Alice: I'm having the same problem ... how to say it.

 Bob's remarks (beginning in T 5.12) seem to have emanated from a loosely
 articulated collection of images. It appears that he had an image of a chord moving

 up ('s 5.12, 5.17, 5.19), getting wider as it moves up (? 5.19). Bob referred to
 a "change in x" (? 5.17), but it seems more like he had in mind what might
 more appropriately be called "a changed x", "a changing x," "another x," or even
 perhaps "a bigger x" - where "x" referred to either a chord or the length of a chord.

 In (? 5.17), Bob referred to getting "one of those little rectangular boxes." In
 (? 5.19) Bob referred to the area changing as "that" changes, presumably meaning
 that the area changes by moving the chord upward, thereby accumulating another

 "little rectangular box."

 Bob's image, as described in the previous paragraph, gives him insight into
 the accumulation of area, but it is not an image of the rate of change of area with

 respect to height. Bob still needed to relate the change in area to the change in
 height - in the same way that one would relate a change in distance to a change
 in time to develop insight into speed as rate of change of distance with respect to
 time.

 Bob quit his attempt to explain what he had in mind. Alf and Alice then
 entered the discussion. Alice eventually hypothesized that the two were somehow
 identical because they were both changing because of being functions of the height.

 EXCERPT 6

 6.1 Alf: Isn't it that the area function is the change

 6.2 Alice: The area function changes the

 6.3 Alf: The area function is actually the change ... or the rate of change .. f for the
 [spreads hands apart]

 6.4 Bob: What's staying the same in both?

 6.5 Alice: When you change the height, you change the area, and when you change the
 height the width changes also ... so therefore ... did you follow that?

 6.6 Pat: Go ahead.

 6.7 Alice: So therefore ... when you want to find the rate of change of the area that's
 going to go along with the rate of change of the width ... since they're both a
 function of the height, they're going to change the same ... together.

 6.8 Pat: Paul, did you follow what Alice was saying?
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 A,ho+.01)-A(h4

 A(ho+.01)

 A(ho)

 lo ho*.01
 Fig. 13. Increase in area in relation to increase in h of 0.01 inches.

 6.9 Paul: I doooon't knoooow.

 Laughter

 Alice's hypothesis regarding the source of similarity between the two graphs
 (? 6.5, 6.7) led eventually to rampant confusion. Students began to misinterpret
 graphs (e.g., saying that the graph of z = w(h) shows the rate of change of the
 width, or that the graph of q = dA(h) shows the area as a function of height)
 and to confuse volume with area. I decided to redirect the discussion to try to
 emphasize rate of change.

 EXCERPT 7

 7.1 Pat: Perhaps it would be helpful to come back to the area function [points at El.S]

 and its graph [draws a section of the graph of y = A(h) on the blackboard].
 In terms of the graph, what we're doing at each value of h is to find the slope of

 a secant over an interval of length 0.01 [see Figure 13]. Let's label this point

 ho and this point ho + 0.01. What is this value [indicates vertical segment at
 ho; note that Figure 13 shows all labels, but the vertical magnitudes were not
 yet labeled during this exchange]?

 7.2 Bob: Vofh.

 7.3 Pat: Actually, it's A of ho - this is the graph of area as a function of height. What
 is this value [indicates right vertical segment]?

 7.4 Several: A of h naught plus point zero one.

 7.5 Pat: Okay. And this [indicates excess of A(ho + 0.01) over A(ho) in Figure 13] is
 the difference between the two ... A(ho + 0.01)- A(ho). [Writes expression

 on blackboard. Diagram on blackboard now matches Figure 13].

 7.6 We're looking at a little bit of area ... on the surface of that disk. So here
 is, if you like, A(h., + 0.01) [draws diagram with \\\\ hash marks; see
 Figure 14] and here is A(ho) [drawn ////hash marks: see Figure 14]. When
 you subtract A(ho) away[sweeps hand across ////hashed region], you're left
 with A(ho + 0.01) - A(ho). What is this [sweeps hand across difference
 region]? [Pause.] This is approximately the width at ho times the height of
 this little piece. The height is approximately what?

 7.7 Student: Delta h.
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 AT O.01)-A(hO)
 hO +.01 a

 INX \\ x x\ X k \ \' N \t X

 Fig. 14. "A little bit of area."

 w(ho) Ah

 A(h+.O 1) - A(ho) w(hv) A<
 Ah

 Fig. 15. Expression for approximating the average rate of change of region's area over the interval

 [ho, ho + Ah].

 7.8 Pat: Point zero one, but in principle your right, it's delta h. [Writes w(ho)Ah next
 to difference region.] So this [puts a bracket above A(ho + 0.01) - A(ho)]
 is approximately the width at ho times delta h [writes w(ho) x Ah above
 bracket].

 7.9 Alf: Divide that by delta h.

 7.10 Pat: Yeah ... [writesfraction bar under A(ho + 0.01) - A(ho), then Ah under
 fraction bar] divide that by delta h, and guess what?

 7.11 Alf:

 Bob: You get the width.

 7.12 Pat: You get approximately the width at ho. [See Figure 15.]

 7.13 Jane: Hmmm.

 My presentation in Excerpt 7 was too didactic to glean anything now about

 how students understood the role of rate in linking w(h) and dA(h). Also, in
 retrospect, I can see that the idea of rate of change moved to the background,

 becoming implicit in my remarks. I will return to this point later, in my discussion

 of the teaching experiment.
 The next problem, IV.2 in Table III, asked for a Riemann sum that gives

 the approximate volume of water in a conical storage tank as a function of the

 water's height. Students had worked this problem earlier with little difficulty. The

 functions produced in that solution were A(h) = -r(5h)2, which gives the area

 of a cross-sectional disk as a function of the disk's height from the bottom of the

 cone, and V(h) = 7= A(jh/n) (h/n), which gives the approximate volume
 of water when its height is h. I graphed y = A(h) and z = V(h), and then
 asked, as before, how we could express the approximate rate of change of the
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 ho

 Fig. 16. Initial diagram in discussion with Sally.

 ho+.o+

 Fig. 17. Diagram of difference between volume at height ho + 0.01 and volume at height ho.

 water's volume as a function of its height. Several students suggested graphing
 the function.

 DV(h) = V(h + Ah) - V(h)

 The graph of DV(h) appeared identical to the graph of A(h), and the discussion
 moved to trying to understand why we should expect them to be the same.

 Many of the confusions seen in discussions of the previous problem surfaced

 again. Students confused "changing" with "rate of change," and confused amount
 and change in amount. One student, Sally, eventually suggested that we "use the
 same argument as the last one."

 EXCERPT 8

 8.1 Pat: Go ahead and say more.

 8.2 Sally: With ... except for now we would have V(ho + 0.01) - V(ho).
 0.01

 8.3 Pat: So ... what kind of diagram should we use?

 8.4 Sally: Visualize ... oh.

 8.5 Pat: Here's the cone [Figure 16]. How should I shade in V(ho)?

 ho+. Aho
 V A(ho)

 Fig. 18. Difference of V(h( + Ah) and V(ho) approximated by product of area of base times height
 of cylinder.
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 8.6 Sally: So it would be the disk there with Ah as its height?

 8.7 Pat: Just V(ho).

 8.8 Sally: The disk

 8.9 Pat: Draws a disk centered at ho. You said a disk. Now, what is V(ho)?
 8.10 Sally: Pause.

 8.11 Pat: That's the volume of the cone from the bottom up to ho. [Sweeps hand upward
 over diagram.]

 8.12 Sally: Oh... okay.

 8.13 Pat: So that's everything ... everything up to ho. [Shades diagram. Writes

 "V(ho) = \\\\ ]
 8.14 Sally: So ... V of ho plus point zero one or something would be just a little bit above

 it and would be everything underneath that?

 8.15 Pat: Allright. [Writes"V(ho+0.01) = ////"]SoIwouldgoup[marksho+0.01]
 ... this is ho + 0.01 [draws disk at that height; shades in region below disk,
 see Figure 17] and take everything under that. And what would we get?

 8.16 Sally: And so when you subtract them you would get ... just a little chunk ... of
 volume.

 8.17 Pat: That's right. We would get just a little bit of volume [draws inset of difference;
 see Figure 18]. How high is this chunk?

 8.18 Sally: 0.01.

 8.19 Pat: 0.01. Or ... let's use Ah.

 8.20 Sally: Yeah, A h.

 8.21 Pat: So, it's A h high. Pause. And this is ... [indicates base of inset]?

 8.22 Alf:

 8.23 Jim: The area.

 8.24 Pat: A(ho), isn't it? So, V(ho + Ah) - V(ho) is ... the volume of this little
 chunk. So, how could we express that given what we know over here [points
 to diagram shown in Figure 18]? Jim?

 8.25 Jim: A(h) times Ah.

 8.26 Pat: [Completes previously started sentence. Writes V(ho + Ah) - V(ho)

 A(ho)Ah.] So, what happens when we divide by Ah?

 8.27 Several: You just get the area.

 As in the discussion of the previous problem, I allowed the idea of rate of

 change to move to the background, becoming implicit in my remarks. It is not

 clear from Excerpt 8 whether students understood that the expression

 V(ho + Ah) - V(ho)

 Ah

 evaluated an average rate of change of volume with respect to height of a cylinder

 over the interval [ho, ho + Ah], which in turn gave the average rate of change
 with respect to height of the total volume over that interval. We will see that it is

 unlikely that they understood the discussion to be about rates.
 I met a small group of students after class - the number varied during the

 meeting, starting with four and ending with seven. The purpose of the meeting
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 A&h

 V(h+Ah)

 V(h)

 Fig. 19. Students' diagram for identifying amount of change in volume as water rises in height within
 a conical storage tank.

 V(h+Ah)-V(h) A x Ah
 Ah~ ~ ~~Ah A

 Fig. 20. Students' reproduction of diagram drawn during class discussion.

 was for students to ask questions and discuss their confusions. Blake, Roy,
 Adam, and Fred had already begun discussing the "cone" problem, and had drawn
 Figure 19 and Figure 20 on the blackboard before I joined them.

 The four of them had been discussing "how the surface area and volume are
 related." Blake spoke to me as I joined the group.

 EXCERPT 9

 9.1 Blake: I'm not getting the connection I mean, in my mind I understand how they're

 the same. It's kind of like, to put it in words, how the surface area is related to

 the volume. How ... see, we're talking about the surface area ... the graph of
 that is the same as the rate of change of the volume ... they're both changing
 because they're both functions of ... delta h, the change in h.

 9.2 Blake: To me, it's almost the same thing as when Alf was talldng about when you
 take the derivative of something and then you want to go backwards to it.
 But they're both ... it's ... it's like I know what I'm thinking, but I can't say
 it. [Long pause.] Uh ... like how are they related? They're related because
 they're both functions of the height ...

 9.3 Pat: Yeah, they're both functions of the height.

 9.4 Blake: [Places thumb andforefinger over cylinder on blackboard; see Figure 20.]
 of how this disk is changing, I guess [spreads thumb andforefinger apart]. As
 the disk changes, because ... this height ... this delta h always stays the same
 [indicates thickness of cylinder with thumb andforefinger] but the surface area

 is changing [sweeps finger in a circular motion over the top of the cylinder].

 9.5 Long pause. Paul joins the group.

 9.6 1 guess it's stupid to say that it's just common sense. As that surface area gets
 bigger [moves hands and fingers to show a "growing circle"] so that in one
 graph you're looking at the surface area ... the surface area ... that's ... there's
 no other way that the volume can change. [Pause.]
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 9.7 Pat: Is except by ... ?

 9.8 Blake: As a function of the area. [Pause.]

 9.9 Pat: As a function of the surface area?

 9.10 Blake: Yeah, the surface area.

 Blake's remarks suggest he was struggling with two sources of meaning for

 the identity between a cross-section's area and the rate of change of volume with

 respect to height. In (? 9.2) Blake referred to a remark made by Alf, during

 class, regarding a connection between the derivative of a distance function and the

 antiderivative of a speed function. This suggests Blake remembered something
 about an integral of a derivative somehow returning you to an original function.

 On the other hand, in (?'s 9.1, 9.4-9.10), Blake appeared to be thinking of a

 circular disk moving upward, so that the surface area of the disk becomes larger

 while at the same time water fills the space generated by moving the disk upward.

 This image resembled Bob's remarks (Excerpt 5, ?'s 5.17-5.19) and Alice's re-
 marks (Excerpt 6, ?'s 6.5-6.7) during class about the water-covered area of a
 tank's face changing as a chord gets wider. Adam's and Fred's comments in the

 ensuing conversation (Excerpt 10, below) follow Blake's predominant direction of

 thought- that the two graphs are identical because the two quantities are changing

 simultaneously.

 EXCERPT 10

 Discussion continues from Excerpt 9.

 10.1 Pat: Okay. [Pause. Speaks to Blake.] So the volume changes ... here's where

 I'm not clear on what you're saying. It sounds like you're saying that volume

 changes as the surface area changes.

 Alfjoins the group.

 10.2 Adam: [Walks up to the board and points at the top cross section in Figure 19. Turns
 to Pat.] Are you just thinking about this as a slab floating on top of the water
 ... as this [the slab] goes up [moves hand upward] ... as the surface area
 gets bigger [moves hands apart to indicate a growing circle] ... the volume
 underneath [sweeps hand across region below the slab] is going to change ...
 the same ... type of rate [moves hand up and down in front of diagram in
 Figure 19]. What I ... I just don't know how to explain it.

 10.3 Pat: Sarne type of rate?

 10.4 Adam: Well, it's ... this [slab] is changing ... is getting bigger [shows growing circle
 with hands andfingers] as you're going up, and this [volume under slab] is
 getting bigger as you're going up [moves hands as if pushing the slab upward].

 10.5 Pat: Okay ... so they're both getting bigger.

 10.6 Fred: But ... why is it that they're both the same?

 10.7 Pat: Yes, that's the key question. Why is it that area tums out to be exactly the same
 as the rate of change of the volume? [Pause.] There's a qualitative similarity
 in that, yes, they are both getting bigger. But Fred asked the key question,
 "Why is it that they're identical?"

 10.8 Fred: I don't know [laughter]. [Very long pause.]

 10.9 Blake: Is it so simple that we're just overlooking it, or is it really that hard?

 10.10 Pat: Well, it's partly in front of you.
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 10.11 Fred: I can see it algebraically when you put it in this kind of form [Figure 20], but
 I guess I have trouble visualizing it

 Adam's remarks in (?'s 10.2-10.4) are telling in two ways. First, he appears
 to have, like Blake and others, an image of a circular disk moving upward, thereby

 increasing its area, while the generated space increases in volume. Second, he
 seems to have identified "rate" with "change," so that he ended up saying things

 like "as the surface area gets bigger ... the volume underneath is going to change

 ... the same ... type of rate" (? 10.2). If Adam was indeed thinking of a rate,
 then it was the rate of change of volume with respect to area of the circular cross

 section. It appears, however, that by "same type of rate" he meant that the two

 quantities change simultaneously and in the same direction (increase) instead of

 as an amount of change in one quantity in relation to an amount of change in the
 other.

 Fred's comments (?'s 10.6-10.11) are also telling in several ways. First, he
 appears not to have an articulated image of "they" in "But ... why is it that they're

 the same?" (? 10.6). If, as were Adam and Blake, Fred thought of "they" as
 "changing area" and "changing volume," then his confusion is understandable.
 He was thinking of two things that are not the same. Second, if he was thinking
 of changing area in relation to changing volume, then it is evident why he could
 not visualize what is expressed in the formulation

 V(h + Ah) - V(h) = A x Ah (10.11) .

 He was not thinking of the slab (Figure 20) as an accrual of volume - composed
 multiplicatively of disk area and height - in comparison to a change in height.
 Instead, Fred seemed to imagine the slab as that which defined the upper bound
 of the water.

 I sensed the confusion between "both changing" and one quantity having the

 same value as the rate of change of the other, and attempted to refocus their atten-

 tion on the ideas of rate of change of volume on the one hand and area of the disk

 on the other hand. This exchange is given in Excerpt 11.

 EXCERPT 11

 11.1 Pat: Well, here, let's try this. What I hear is a little mnixing of the ideas of area,
 change in the area, and change in the volume. You're right that the volume
 only gets bigger when the area gets bigger. But thinking of it that way ... I
 don't see much hope in that giving us insight into why the rate of change of
 the volume is actually the same as the area function. [Pause.] The idea that
 as one gets bigger the other gets bigger doesn't seem to help much.

 11.2 Blake: It doesn't mean that they necessarily have to be the same.

 11.3 Fred: Is it something to do with this rate [indicates vertical change in water levetl
 being exactly the same as that rate [indicates change in radius of circular cross
 section; see Figure 19]?

 11.4 Pat: [Pause.] Uh ... I don't think they're the same.

 11.5 Fred: The same ... proportion.
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 V ?YV versus A(h)
 dh

 Fig. 21. Figure 19, revised during discussion.

 11.6 Blake: Yeah ... those segments are proportional, but the rates of change are different.
 [Pause. Erases Figure 20.] Here's what we're comparing. We're comparing

 [writes "dV/dh"] the rate of volume with respect to h, versus area as a
 function of h [writes "vs. A(h)"]. See, over here [points to A(h)"] we're
 not talking about any kind of rate of change; we're just talking about area of
 a cross section as a function of its height from the bottom of the cone. Over

 here [points to "dV/dh'] we're talking about a rate of change. [Long pause.
 Figure 20 is now erased from the board. Figure 19 is changed, appearing

 now as in Figure 21.]

 In Excerpt 11 I attempted to point out that what was the same (the graphs of

 cross-sectional area as a function of height and rate of change of volume with re-
 spect to height) were expressions of two different concepts - cross-sectional area
 and rate of change of volume. The ensuing discussion makes it evident that my

 formal expression of rate of change of one thing versus an amount of something
 else was not assimilated in the way I had intended.

 EXCERPT 12

 12.1 Alf: Am I thinking of this right. This [points to "A(h)'" is the area of the disk
 at some particular point [moves hand up and down as if along vertical axis
 through middle of the cone]

 12.2 Pat: Yes, this is the area of a circular cross section.

 12.3 Alf: At h [points to "A(h)"].

 12.4 Pat: At ... [moves hand vertically upward and then stops as if to show movement
 to a spot] at h.

 12.5 Alf: At h ... so ... then ... if you were thinking about this [holds thumb and
 forefinger apart and next to top circular cross section in Figure 21. as if to
 measure its thickness] ... the change in volume [moves thumb andforefinger
 together, as if squeezing cylindrical slab, diminishing its height] ... as delta h
 gets small, the change in volume ... delta h ... let me think.

 12.6 Pat: Go ahead and express the change in the volume, and then the rate of change
 in the volume with respect to height.
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 Fig. 22. Alf's addition to Figure 18. The hand depicted here represents Alf's hand; it was not part of
 Alf's drawing.

 12.7 Alf: Okay, the change in volume [holds thumb andforefinger apart; long pause
 before he approaches diagram in Figure 21] ... [places thumb andforefinger
 slightly apart next to top circular cross section in Figure 21] ... the change in
 the volume would be some minute [minuscule] ... distance in height ...

 12.8 Pat: Go ahead and draw it in.

 12.9 Alf: [Draws new circular cross section; diagram now appears as in Figure 22.]
 See ... I can almost picture in my niind that as delta h goes to zero [moves
 thumb and forefinger together next to top circular cross section in Figure 22]
 that that becomes the exact area disk that we're talldng about. I mean that's
 that's ... In other words, as I shrink that height, this [top of cylinder] and this

 [bottom of cylinder] becomes [pushes hands together one atop the other, as if
 squeezing something between them] ... exactly that [holds out one hand flat,

 parallel to floor, moving it side to side as if stroking the top of a table] ... like
 a disk with no thickness. And when you write it out as a volume ... let's see, I
 don't remember the notation we used ... how did we write it ... it would be

 V(h + Ah)-V(h)

 Ah

 12.10 Fred: Equals.

 12.11 Alf: And this would be the change in volume.

 12.12 Blake: And you're saying that as delta h approaches zero, then we have, basically,

 12.13 Alf: I see that as being the area

 Despite my attempt in Excerpt 1 1 and in Excerpt 12, 1 12.6, to orient students to
 think about rate of change of volume, Alf persisted in thinking about an increment

 in volume unrelated to any increment in height. Moreover, he began to think of a

 limiting process whereby, figurally, when you diminish the accrual's incremental

 thickness, you get an area. Alf seemed to be thinking of making the cylinder shorter

 and shorter, until top meets bottom. His image could be described formally as

 lim V(h + Ah) - V(h) = A(h),

 which would have meant that
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 sn + 5.0~~~~6.

 -5.0 5.0

 Fig. 23. Graph to accompany follow-up assessment item 2.

 lim V(h+ h)-V(h) = lim A(h)
 Ah-0+ Ah Ah 0 A\h

 an equality I cannot interpret. The "nh" in the denominator of Alf's difference
 quotient seemed insignificant to him. Perhaps this was because his focus was

 on the accrued "chunk" instead of on a meaning for the difference quotient that

 defined the function whose graph raised the issue in the first place.

 There is a very natural interpretation of [V(h + Lh) - V(h)]/Ah in regard to
 rate of change of accumulation. It is that it represents the average rate of change

 of volume over the interval [h, h + Ah], where volume is defined by the value of
 the Riemann sum. Over the interval [h, h + Ah], volume accrues by "stretching
 vertically" the cylinder having base area A(h) - the area of the cross-sectional
 disk at height h.'3 Since the base area of the cylinder is constant over [h, h + A h],

 the volume grows at the rate A(h). This is analogous to the case of speed. If we
 are considering a total accumulation of distance as a function of time, and if we
 assume that over some increment of time the distance is accruing at a constant

 rate, then regardless of how distance has accumulated prior to this increment of
 time, the total accumulated distance is changing at that constant rate over this
 increment of time.

 Follow-up Assessment

 Students took an exam two meetings after the end of the teaching experiment. I
 included four items to clarify possible sources of difficulty - two items on inter-

 preting a difference quotient and two items on Riemann sums as functions. The
 difference quotient items were:
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 TABLE IV

 Students' responses to Test Item 3. Note: Responses regarding information and responses
 regarding unit do not necessarily correspond within rows. The columns are presented inde-
 pendently of one another

 Information given by x(t) Unit

 Response Frequency Response Frequency

 Ave. rate of change of volume 4 Cubic meters per hour 7

 Derivative 6 Hours 2

 Rate of change of cooling 5 Degrees/hour 3

 Average volume 1 0.1 I

 Average change in volume 1 Square meters I

 Surface area 1 Volume/time/time I

 No answer 1 Other 4

 2. a. The graph in Figure 23 is of f(x) = lxi, -5 < a < 5. Sketch a graph of h(x)=
 [f (x + Ax) - f(x)]/Ax over the same domain with Ax = 0.5. Use the coordinate
 system provided in the graph. Hint: Imagine a sliding interval.

 b. Suppose you let Ax become progressively smaller. Explain what happens to the graph
 of h(x).

 3. a. The volume in cubic meters of a cooling object t hours after removing a heat source is
 given by the function v(t). Suppose a function x(t) is defined as

 x(t) = v(t + 0.1) - z(t)
 0.1

 State precisely what information x(t) gives about this object. (That is, don't tell me

 what x(t) approxirnates. Tell we what information it actually gives.)

 b. What is the unit of x(t)?

 On Test Item 2 (difference quotient of absolute value function) 17 of 19 students

 drew a graph of the derivative of IxI. Only two students attended to the behavior
 of the function between -0.5 and 0. In follow-up interviews of each student, the

 17 who drew a graph of the derivative of IxI admitted thinking "derivative". The
 two who attended to h(x)'s behavior around 0 did not think of a rate of change or
 slope of a secant, but instead evaluated the function at different values of x and
 just happened to try values between -0.5 and 0.

 The results of Item 3 are given in Table IV. Pour students referred to an average

 rate of change of volume. Two others referred to an average, but not an average
 rate. Six students said that x(t) is a derivative; five said that it is a rate of change,
 but of cooling. Only seven students gave an appropriate unit for x(t).

 The Riemann sum items were:
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 5.0

 Fig. 24. Graph to accompany follow-up assessment item 4.

 4. a. The graph in Figure 24 is of a function q(x) defined over the interval [0, 5]. Sketch a

 graph of

 n

 z(x) = E q (i-)- for n 1000 and x in [0, 5].
 i=l

 Use the coordinate system provided in the graph.

 b. For what values of x (approximately) will z(x) achieve a local maximum or a local

 minimum? Explain.

 6. Let q(t) be defined by

 t/At

 q(t) = E f(iAt)At.
 i=l

 Explain the process by which the expression

 t/At

 Z f(iAt)At
 i-l

 assigns a value to q(t) for each value of t in the domain of f.

 Responses to Item 4 were difficult to interpret. Eight students sketched appro-

 priate graphs. They claimed to have identified the Riemann sum as "area" and to
 have proceeded from that basis. Interviews with each student revealed a variety

 of reasons for inappropriate graphs. One student said "derivative" just popped
 into his head; several said that they didn't know how to proceed when they didn't
 know what the actual function was (i.e., they did not have an analytic definition
 of the function). Another student thought he should try to sketch a graph of the
 areas of each of the 1000 rectangles you would get for z(5).

 Responses to Item 6 showed that the coordination of images involved in
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 understanding Riemann sums as functions was a complex act. One student wrote:

 First the value of a certain chunk is measured by iAt. This is then multiplied by the change which

 is At. This is repeated for every value of t and then added up. Each value of t is cut up into t/At
 intervals, and added. t/At is the number of intervals the piece is to be divided up into.

 This student evidently had a number of problems, one being that he was

 imagining a "chunk" of a quantity independently of the analytic expression that

 established its measure - i?At does not "measure" the chunk, it just puts you at the

 right place to make it. The expression f(iAt)At gives the chunk's measure. A

 more serious problem, though, is that this student appeared to be imagining t and

 i varying simultaneously instead of as first i varying from I to t/It for a fixed
 value of t and then varying t.

 Another student wrote:

 - Here At represents the size of each interval that f is being broken up into.

 - So t/At equals the number of intervals the graph of f is broken up into.
 - So our i starts out at I and then goes to t/At.

 - The expression first finds f and then it finds the ith interval of f that we are dealing with. Then
 it finds the value of the function f at that interval and then multiplies by At. This finds the area of

 that particular rectangle. Then we add it to the previous areas found and plot that point. You then
 connect all the points to get your curve.

 The first sentence in this student's explanation, "...the size of each interval
 that f is being broken up into," suggests that she was imagining a Riemann sum
 over a fixed interval, which would normally correspond to an approximation of

 a definite integral f f(t)dt instead of the indefinite integral f f(t)dt. Her
 last three sentences suggest that she, too, sometimes imagined i and t varying
 simultaneously.

 Seven of 19 students expressed an appropriate order of variation for the index
 variable of the Riemann sum and the argument of the function. Five students
 appeared to have mixed images of definite and indefinite integrals. The remain-
 ing seven students had confounded the two variations so that everything was
 happening at once.

 DISCUSSION

 I structured the teaching experiment so that students were presented with a phe-
 nomenon requiring explanation: That when they graphed a function f (x), defined
 the Riemann sum g(x) as

 n

 g(x)= f i
 t=I

 then graphed the function

 Dg(x) = g(x + A\X) -g(x)
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 268 PATRICK W. THOMPSON

 the graphs of g(x) and Dg(x) appeared identical for suitably large n and suitably
 small Ax. The functions were grounded in concrete settings, and explanations
 attempted by students' drew from their images and conceptions of the settings. My
 discussion will have three parts: Students' images as expressed during the teaching
 experiment and their contribution to students' difficulties, issues of notation, and

 implications of the present teaching experiment for standard approaches to the
 Fundamental Theorem and introductory calculus in general.

 Students' Images

 There seemed to be a confluence of images behind students' difficulties in con-
 struction and explanation for the problem of explaining an apparent relationship

 between f(x), g(x), and Dg(x) as defined in the previous paragraph. These have

 to do with their images of function, their fixation on accrual as a solitary object,
 and a weak scheme for average rate of change. I conclude this section by relating

 the teaching experiment to Piaget's levels of imagery.

 Images of Function

 Students repeatedly made remarks that suggested a figural image of function - an

 image of a short expression on the left and a long expression on the right, separated

 by an equal sign (Thompson, in press b). This was not the only image students
 could conjure, but it seemed to be many students' "working image" - what came
 to mind without conscious effort whenever "function" was mentioned. This of-
 ten oriented them away from grappling with conceptual connections entailed in
 situations dealing with covarying quantities.

 In reviewing my notes and students work on assignments in Phase I, I noticed

 that students' explanations of the behavior of functions often spoke of the func-

 tion's behavior as if it could be analyzed independently of its argument. Remarks
 were oriented to "the function" (often meaning the visual object called its graph)

 and not to a covariation of two variables. The analyses often referred to just one
 thing varying, this thing called "the function." Difficulties caused by an orienta-
 tion to function as an idea with no interior showed up especially clearly when the
 function to be analyzed was a composition of functions. In analyzing the behavior
 of f(g(x)) it is critical to take into account the behavior of g(x) in relation to x,
 for the variation of g(x) is the variation of f's argument.

 Finally, it seems that students' images of Riemann sums were insufficient to
 support their reasoning about a sum's rate of change. I suspect they were thinking

 of a Riemann sum as being static - that even though its argument could change,
 and the Riemann sum could be evaluated with a new argument, it was still a sum
 of unvarying "chunks" and a change in its argument was more like substituting a
 new value for the argument than a continuous change in its value. Their images of
 a Riemann sum seem not to have entailed a sense of motion, either in its argument

 or in its value.
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 Accruals as Solitary Objects

 Students' remarks regarding a relationship between the rate of change of a Rie-
 mann sum and a constituent quantity in an accrual to the sum14 always focused on

 the accrual as a solitary object (see especially Excerpt 12). To see a relationship
 between the two they needed either to conceptualize the accrual as itself accruing

 at a constant rate with respect to the independent quantity (e.g., height) or to con-

 ceptualize it as the average rate of increase in the accumulation over an increment

 in the independent quantity. In either case, it is necessary to have clearly in mind

 that accruals to the sum are constructed multiplicatively. In the first case, the ac-

 crual itself accruing at a constant rate, the accumulative quantity must be imagined

 to be constructed incrementally, where each increment is made by an increase in

 the quantity at a constant rate of change. In the second case, the accruals coming

 in "chunks", each accrual must be imagined to be a multiplicative combination

 of quantities (e.g., area and length) that will have increased at an average rate of
 change.

 Students' fixation on accrual as a solitary object - simply as a thing with no

 constituent quantities - resembles young children's difficulties in constructing

 speed as a rate of change of distance with respect to time. Young children tend
 to think of speed as a distance - a measuring stick by which to measure other
 distances (Thompson and Thompson, in press; Thompson, in press a; Thompson

 and Thompson, 1992), and not something that grows in relation to a growing

 duration. This is not to say that the students in this teaching experiment understood

 speed in the same way as young children. Rather, it suggests that their schemes for

 rate and average rate were not operational to the extent that they could assimilate

 any covariate change to them.

 SchemeforAverage Rate of Change
 A final source of difficulty, to which I already alluded in the previous section,
 was that students apparently did not have operational schemes for average rate of

 change. What do we mean by average rate of change of a quantity? We typically
 mean that if a quantity were to grow in measure at a constant rate of change with

 respect to a uniformly changing quantity, then we would end up with the same

 amount of change in the dependent quantity as actually occurred. An average
 speed of 55 km/hr on a trip means that if we were to repeat the trip traveling at

 a constant rate of 55 km/hr, then we would travel precisely the same amount of

 distance in precisely the same amount of time as had been the case originally. This
 notion is highly related to the Mean Value Theorem for derivatives, which says, in

 effect, that all differentiable functions do have an average rate of change over an
 interval and it is equal to some instantaneous rate of change within that interval. In

 the case of a Riemann sum, the rate of change of the sum for x within an interval

 [q, q + Aq] is equal to the average rate of change of the quantity f(t) At for some
 t in [q, q + Aq] and for At varying from q to q + ?q - which is just f(t).
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 Coordination of Actions

 As noted in the introduction, Piaget characterized his second level of imagery

 as, "In place of merely representing the object itself, independently of its trans-

 formations, this image expresses a phase or an outcome of the action performed

 on the object. ... [but] the image cannot keep pace with the actions because,
 unlike operations, such actions are not coordinates one with the other" (Piaget,

 1967, p. 295). This seems to capture the nature of some students' understanding

 of Riemann sum, and other students' understanding of Riemann sum in relation

 to rate of change. Some students had not come to coordinate the variations of
 upper limit of summation and the variations in the index of the summation; some

 students had not coordinated the actions of forming a sum and multiplicatively

 constructing an accrual to a sum. Other students had mastered both of these

 coordinations but could not coordinate that ensemble of actions with the action

 of comparing multiplicatively the growth in an accrual with growth in one of its

 constituent quantities. As Piaget said, their actions outpaced their images because

 their actions were not coordinated. Operational understanding of the Fundamental

 Theorem entails the coordination of these actions so that the scheme remains in

 balance. Operational understanding of the Fundamental Theorem allows one to

 hold simultaneously in relation to one another the mental actions of forming ac-
 cruals, accumulating accruals, and comparing an accrual to one of its constituent

 quantities multiplicatively.

 Notation

 I should point out that the above discussion is colored by one serious matter. This

 is that students often acted from an orientation which led them to use notation

 opaquely. We discussed this tendency during class on several occasions. A

 common remark was that this seemed, from their point of view, the most efficient
 way to cope with what they thought had been expected of them, both in high

 school and in college. When students did interpret notation, it often came as an

 afterthought, and they often tended to read into the notation what they wanted it

 to say, without questioning how what they actually wrote might be interpreted by

 another person. More often, though, students would not interpret the notation with

 which they worked, but would instead associate patterns of action with various

 notational configurations and then respond according to internalized patterns of
 action. Their orientation toward notational opacity, while having nothing to do
 with conceptual difficulties with the Fundamental Theorem of Calculus as such,

 certainly contributed to their not having grappled with key connections.

 Implications for Contemporary Treatments of the Fundamental Theorem

 The approach taken within this teaching experiment resembles Anton's (1992,
 pp. 320-323) intuitive development of the Fundamental Theorem, with the ex-
 ception that Anton does not employ Riemann sums and focuses exclusively on
 the case of area bounded by a function's graph. Anton's intuitive development is
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 not oriented at students' conceptualizing the Fundamental Theorem so much as

 to motivate his upcoming focus on techniques of antidifferentiation.15 A focus on

 techniques of antidifferentiation is historically accurate - Newton's and Leibniz'

 motivation for constructing the Fundamental Theorem was so that they could

 make algorithmic the process of constructing analytic expressions for areas under

 curves. However, Anton switches, unannounced, to another conceptualization in

 justifying the Fundamental Theorem - he bases it on the mean value theorem for
 integrals. The mean value theorem for integrals says that continuous functions

 have an average value over an interval, where the average value fav over [a, b] of

 a continuous function f is defined as = (b - a)1 f f(x)dx (Swokowski,
 1991, p. 281). On the other hand, the mean value theorem for derivatives says that

 if f is continuous on a closed interval [a, b] and differentiable on the open interval

 (a, b), then there exists a number c in (a, b) such that f'(c) = [f (b) - f (a)]/(b-a)

 (Swokowski, 1991, p. 179). The mean value theorem for integrals allows a formal
 proof of the Fundamental Theorem to go smoothly - we can substitute the average

 value of the integrated function for the integral of the function over the incre-

 ment in its argument. On the other hand, the mean value theorem for derivatives
 supports a conceptualization of what is going on - the accumulation (integral) of

 the multiplicatively-constructed quantity f(t)dt is changing at an average rate of
 change that is equal to f(t) for some t in [x, x + Ax].

 A typical proof of the Fundamental Theorem goes something like this: Let f (x)

 be a continuous function defined on [a, b]. Define F(x) as F(x) = fb f(t)dt.
 Then

 x+h :

 f f(t)dt - f f (t)dt
 F'(x) = lim a a

 h--+O h

 x+h

 f f (t)dt

 = lim X
 h-+o h

 = lim for some z 4[x, x + h].
 h-*o h

 The last line is where the mean value theorem for integrals is used. The integral

 x+h f(t)dt is equal to f(z)h for some z in the interval [x, x + h]. That is, the
 integral is equal to the average value of the function over the interval times the

 width of the interval. Then, as h -p 0, z -- x, and so F'(x) = f(x).
 The problem with the typical proof is not so much in the proof as that it

 is presented as modeling a static situation. It is presented in such a way that

 nothing is changing. If students are to understand F'(x) is a rate of change, then
 something must be changing. But as soon as we bring in the idea of motion, then

 the mean value theorem of integrals becomes a conceptual misfit - it doesn't fit

 the image of fx f (t)dt as a dynamic accumulation of a quantity. We must rely on
 the mean value theorem for derivatives to support the idea of rate of accumulation.
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 272 PATRICK W. THOMPSON

 However, this teaching experiment suggests that a great deal of image-building

 regarding accumulation, rate of change, and rate of accumulation must precede

 their coordination and synthesis into the Fundamental Theorem.

 NOTES

 t Research reported in this paper was supported by National Science Foundation Grants No. MDR
 89-50311 and 90-96275, and by a grant of equipment from Apple Computer, Inc., Office of External

 Research. Any conclusions or recommendations stated here are those of the author and do not
 necessarily reflect official positions of NSF or Apple Computer. Also, I wish to thank Paul Cobb and
 Guershon Harel for their helpful reactions to an earlier draft of this article.

 1 Tom Kieren and Susan Pirie (Kieren and Pirie, 1990, 1991; Kieren, 1989; Pirie and Kieren, 1991)
 make it evident that the act of imagining can itself inform our images.

 2 The Latin root of "confused" is confundere, to mix together. Thus, one way to think of being in a
 state of confusion is that we create inconsistent images while operating.
 3Winograd and Flores (1986) give similar criticisms of referential meaning in cognitive science.
 41 should point out that when students speak of "rate" as in "distance equals rate times time," they
 need not be speaking of anything having to do with rate as I use the term. They may be engaging in

 mere "symbol speak," having no imagistic content except for the imagery of notational actions (Hayes,
 1973).

 5 This is a nonstandard interpretation. I am actually anticipating discussions regarding Newton's
 development of the Fundamental Theorem.

 6 Here I must stress that I am talking about images and not about logical demonstration. The notion of
 accrual, when made rigorous, poses many problems regarding continuity of change and relationships
 between discrete and continuous quantities (this is the well-known problem of infinitesimals). But
 that is beside the present point - what sorts of images make the Fundamental Theorem intelligible.
 7 We must keep in mind that during Newton's time all functions were thought to be continuous
 and differentiable almost everywhere. It was only later that pathological functions and Fourier series
 showed that these ideas could be pushed beyond a point where they became insufficient as a foundation

 for the calculus (Kuhn, 1970; Wilder, 1967, 1968).
 8 I must stress once more that this is not a rigorous development. Rather, it is about images that
 might support the "obviousness" of the Fundamental Theorem. Also, it seems that Newton sensed
 the inadequacies of infinitesimals as a logical foundation for his calculus and eventually disavowed
 them (Boyer, 1959, p. 213). Nevertheless, it seems clear that his initial insights were facilitated by his
 acceptance of infinitesimals.

 9 It is important to note that, formally, the unit of A T/I V should be hr/(mi/hr), but Sue evidently
 reasoned that I/AVths of the total change in velocity should correspond to 1//Vths of the time
 in which the change in velocity occurred. Therefore each increment of the total time would be
 AT/IAVths of one hour This is the kind of reasoning about rates depicted in Figures 1 and 2.
 10 In a later problem, "about how far does a rock fall on the moon in its fourth second of falling if
 on the moon falling things speed up at the rate of 6 ft/sec every second," Sue concluded that at the
 beginning of the fourth second the rock would be falling 18 ft/sec, and that each one-tenth of a second

 thereafter the rock would speed up by 0.6 ft/sec.
 I A more accurate representation of the Riemann sum would be to have [x /Ax], the greatest integer
 less than or equal to x /Ax, in the upper limit of the summation. However, our graphing programn used

 the convention that the upper limit of a summation is truncated to an integer, so it was only necessary

 to put x/Ax as the upper limit of the summation.
 12 My class presentations were with a Macintosh Powerbook connected to an LCD projection panel.
 I used Theorist, which allows expressions and functions to be displayed in standard mathematical
 notation and which allows graphs, diagrams, etc. to be placed anywhere on the computer screen. The
 function definitions and graphs presented here are taken directly from my class presentation.
 13 See the discussion of Figure 3.
 14 By an "accrual" to a Riemann sum I mean the thing whose measure is f (ti )z t. So by "constituent
 quantity" I mean the ffiing measured by f(ti) in f(ti)At.
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 15 An antiderivative of f(x) is a function g(x) such that g'(x) = f (x). Antidifferentiation is the
 process of finding an antiderivative.
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