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Someone, I cannot remember who, paraphrased Winston Churchill by saying that 
mathematics and mathematics education are two disciplines separated by a common 
subject. The mathematician is primarily concerned with doing mathematics at a high 
level of abstraction. The mathematics educator is primarily concerned with what it is that 
one does when doing mathematics and what kinds of experiences are propitious for a 
person’s later successes. Until recently mathematics education research has focused 
predominantly on the learning and teaching of early mathematics in the school 
curriculum, so it is natural that practicing mathematicians have found it difficult to relate 
to mathematics education research. I suspect that the current interest in calculus reform 
[21, 63] and the broader rethinking of the undergraduate curriculum, together with the 
advent of the AMS/MAA Joint Committee on Research in Undergraduate Mathematics 
Education, will lead to a wider recognition that mathematics and mathematics education 
are fundamentally dependent upon one another. 

My purpose in writing this paper is to discuss research on students’ understanding 
of functions and its importance for the undergraduate curriculum. Much has been written 
recently about concepts of function that goes into far greater detail than I will (see [33, 
46, 57, 64] for extensive reviews). I will impose a somewhat idiosyncratic structure upon 
this literature to present an overview of research on concepts of function and to highlight 
issues I believe need greater consideration than they have so far received. 

 As a matter of background, I should say a few words about the perspective I bring 
to this task. We cannot speak strictly about the development of a single concept, such as 
function. If we have learned anything in mathematics education research it is that a 
person’s thinking does not respect topical boundaries. When analyzing students’ concepts 
of function, we need to keep in mind that the imagery and understandings evoked in 
students by our probing is going to be textured by their pre-understandings of such things 
as expressions, variables, arithmetic operations, and quantity. We also need to keep in 
mind that their mathematical learning has, for the most part, happened in schools, which 
means that our interpretations of students’ performance must be conditioned by our 
knowledge that they are taught by teachers with their own images of what constitutes 
mathematics, and that both the learning and teaching of mathematics are conditioned by 
the cultures (school, ethnic, and national) in which they occur [5, 12, 56, 77]. I have tried 
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to capture these background relationships in Figure 1. While ignoring this issue might 
simplify matters enormously for us as teachers and mathematics education researchers, 
we do so at the peril of losing generalizability and validity of our interpretations and 
conclusions. 

Expression

Arithmetic
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Function
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Teachers
School

Culture

 
Figure 1. Students’ concepts always emerge in relation to other concepts they hold, and in 
relation to teachers’ orientations and in relation to cultural values expressed by teachers, peers, 
and families. 

Another perspective I bring is that concepts emerge over time, much as a dynamical 
system. The actual form a concept takes (or that it fails to take) in a student’s reasoning 
can be tremendously influenced by seemingly trivial deviations from valid 
understandings of mathematics they learned much earlier. For example, it is common that 
elementary school students have impoverished understandings of whole-number 
numeration. This in itself makes it difficult for them to develop what is often called 
“number sense” [32], and also makes it virtually impossible for them to make sense of 
standard arithmetic algorithms. This contributes substantially to their developing an 
orientation toward memorizing meaningless symbol manipulation. They develop this 
orientation as a mechanism for coping with an otherwise intolerable situation—not 
having a clue as to what the teacher is talking about, but nevertheless being expected to 
perform.  

School students’ common orientation toward “remembering what to do with marks 
on paper” eventually shows up in our college classrooms, perhaps showing itself only 
vestigially as ungrounded formal reasoning. This is what Sfard [59] refers to as 
disconnected reification—students turning what are offered, by us, as representations into 
the actual objects of their reasoning. I mention Sfard’s notion of disconnected reification 
for a purpose. Tinkering with instruction or curriculum to emphasize functions will be 
insufficient if we fail to address students’ common orientation to ungrounded symbol 
manipulation. I will return to this point later. 

I will shape my discussion of research on function concepts around six themes. 
These are: 

• Concept image and concept definition 
• Function as action, as process, and as object 
• Function as covariation of quantities and function as correspondence 
• Understanding phenomena and representing phenomena 
• Operations on numbers and operations on functions 
• Emergent issues 
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One theme I will not discuss, except to explain why not, is the literature on multiple 
representations. In this regard I will express my opinion as to why this line of research 
needs to be rethought. 

I selected these six themes because of their emergence in the literature as constructs 
around which a stable consensus seems to have developed regarding their importance for 
students’ understandings of function. When examined closely, these themes are highly 
related, but they nevertheless seem to provide a useful organization for entry into the 
issues of learning and teaching the concept of function and using the concept of function 
as an organizing construct in the curriculum.  

The distinction between students’ concept images and the notion of concept 
definition arose as a way to understand how students expressed reasoning that was 
inconsistent with taught definitions of function, limit, derivative, etc. The distinction 
between function as process and function as object emerges from a variety of traditions, 
both philosophical and psychological. One way to think of this distinction is to reflect on 
the formulation f (t)dt

a

x

∫  in the First Fundamental Theorem of Calculus. We must think 
of integration as the culmination of a limiting process, but at the same time consider that 
process, applied over an interval of variable length, as producing a correspondence. The 
third theme, regarding covariation and correspondence, highlights a tension, both in 
students’ learning and among researchers, regarding what a function is. I’ll attempt to 
make it evident that this tension can be both natural and productive. The fourth theme, 
regarding phenomena23 and representation, is one over which I will linger. It has to do 
with students’ conceptions of the stuff that mathematics is often about, and I don’t just 
mean physics or chemistry or some domain of application. The fifth theme, having to do 
with operations on numbers and operations on functions, reflects my feeling that a 
distinction needs to become part of the fabric of instruction in secondary and early 
undergraduate mathematics—the distinction between seeing arithmetic operations as 
operations on numbers and seeing those same operations as operations on functions. The 
last theme points to issues that emerge from research on function concepts that have yet 
to be investigated directly. 

Concept Image and Concept Definition 
The distinction between concept image and concept definition arose originally in 

the work of Vinner, Tall, and Dreyfus [66, 83, 85]. In their usage, a concept definition is 
a customary or conventional linguistic formulation that demarcates the boundaries of a 
word’s or phrase’s application. On the other hand, a concept image comprises the visual 
representations, mental pictures, experiences and impressions evoked by the concept 
name. 

In lay situations, people understand words through the imagery evoked when they 
hear them. They operate from the basis of imagery, not from the basis of conventional 
constraints adopted by a community. People understand a word technically through the 
logical relationships evoked by the word. They operate from the basis of conventional 
and formal constraints entailed within their understanding of the system within which the 
technical term occurs. Vinner, Tall, and Dreyfus arrived at the distinction between 
concept image and concept definition after puzzling over students’ misuse and 
misapplication of mathematical terms like function, limit, tangent, and derivative. For 
example, if in a student’s mathematical experience the word “tangent” has been used only 
to describe a tangent to a circle, then it is quite reasonable for him to incorporate into his 
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image of tangents the characteristic that the entire line lies to one side or the other of the 
curve, and that it intersects the curve only once [83]. Notice that this image of tangent—
uniquely touching at one point—has nothing to do with the notion of a limit of secants. It 
is natural that a student who maintains this image of tangent is perplexed when trying to 
imagine a tangent to the graph of f(x)=x3 at (0,0), or a tangent to the graph of g(x)=x at 
any point on its graph. 

A predominant image evoked in students by the word “function” is of two written 
expressions separated by an equal sign (Figure 2). We might think that only neophytes 
hold this image of function. I suspect it is far more prevalent than we acknowledge. An 
example will illustrate my suspicion and at the same time illustrate how Tall, Vinner, and 
Dreyfus envision the influence of concept images over concept definitions. 

 
Figure 2. A concept image of “function.” Something written on the left is “equal to” something 
written on the right. 

My wife, Alba Thompson, teaches a course designed to be a transition from lower- 
to upper-division undergraduate mathematics. It focuses on problem solving and proof. 
Students are supposed to take it after calculus and linear algebra, but a fair portion of the 
class typically have taken at least one term of advanced calculus or modern algebra. In 
the context of studying mathematical induction she asked one student to put his work on 
the board in regard to deriving and proving a formula for the sum Sn = 12+22+…+n2. The 

student wrote f (x) = n(n +1)(2n +1)
6

. Not a single student thought there was anything 

wrong with this formulation. It turned out, after prolonged probing by Alba, that this 
formulation was acceptable because it fit within students’ concept image of function, 
which I’ve presented in Figure 3.  

 
Figure 3. Students’ acceptance of an ill-formed function representation because it fit their concept 
image of function. 

An important point to draw from Figure 3 is that mal-formed concept images are 
insidious. They keep showing up in the strangest places. On the other hand, we could not 
function intellectually without having concept images. The key point is that mathematical 
“experts” come to use concept images and concept definitions dialectically [83, 84]. Over 
time, their images become tuned so that they are consonant with a conventionally 
accepted concept definition, which in turn allows intuition to guide and support reason. 
Not every student of mathematics attains equilibrium between definitions and images, 
however. We can increase their chances of success by giving explicit attention to imagery 
as an important aspect of pedagogy and curriculum. In the next sections I discuss 
important aspects of well-formed concept images of function. 
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Function as Action, Process, and Object 
It is well known that elementary school students have difficulty conceiving of 

arithmetical expressions as anything beyond a command to calculate [13, 19, 35]. They 
typically do not think of, say, 4(12-(4+5)) as representing a number. Similarly, algebra 
students often think of, say, x(12-(x+5)) as a representing a command to calculate. When 
they come to think of an expression as producing a result of calculating, they have what 
several researchers have called an action conception of function [6, 24]. This conception 
is as a recipe to apply to numbers. Students holding an action concept of function imagine 
that the recipe remains the same across numbers, but that they must actually apply it to 
some number before the recipe will produce anything. They do not necessarily view the 
recipe as representing a result of its application. 

When students build an image of “self-evaluating” expressions they have what is 
called a process conception of function. They do not feel compelled to imagine actually 
evaluating an expression in order to think of the result of its evaluation. From the 
perspective of students with a process conception of function, an expression stands for 
what you would get by evaluating it. 

It is surprising that achieving a process conception of function is a non-trivial 
achievement for students, and that for many students it is not achieved without receiving 
instruction that focuses explicitly on its development [24, 30]. Dubinsky and his 
colleagues [6, 25] have developed an instructional approach using ISETL, a set-theoretic 
programming language, that shows promise as an instructional environment for students’ 
development of a process conception of function. They use ISETL to write named 
processes, which then serve as function definitions. Students can then direct that a 
function be applied to individual numbers or to numbers in a pre-specified set, in both 
cases by using the name of the function in place of its defining process. 

A process conception of function opens the door to a wealth of imagery. Students 
can begin to imagine “running through” a continuum of numbers, letting an expression 
evaluate itself (very rapidly!) at each number.1 I should note that to become skilled at 
conjuring such an image students must practice conjuring it [18]. Goldenberg and Lewis 
[29, 30] have developed visual supports for students to envision functions as processes 
applied over a continuum. 

Once students are adept at imagining expressions being evaluated continually as 
they “run rapidly” over a continuum, the groundwork has been laid for them to reflect on 
a set of possible inputs in relation to the set of corresponding outputs. I will say more 
about this idea in the section Covariation and Correspondence.  

At the point where students have solidified a process conception of function so that 
a representation of the process is sufficient to support their reasoning about it, they can 
begin (I emphasize begin) to reason formally about functions—they can reason about 
functions as if they were objects. To reason formally about functions seems to entail a 
scheme of conceptual operations which grow from a great deal of reflection on functional 
processes. Primary among these is an image of functional process as defining a 
correspondence between two sets: a set of possible inputs to the process and a set of 
possible outputs from the process.  

                                                
1 I am not speaking literally. Rather, I am speaking from the point of view of the student. 
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The many paths by which students achieve an object conception of function are 
long and complex[2], and explanations of it draw on a long tradition in philosophy and 
epistemology regarding the notion of reflective abstraction [4, 23, 53-55, 69, 86]. One 
hallmark of a student’s object conception of functions is her ability to reason about 
operations on sets of functions. I should quickly point out that it is easy to be fooled—to 
think that students are reasoning about functions as objects when it is actually the 
function’s literal representation (i.e.,  marks on paper) that is the object of their reasoning 
[58, 59, 61]. I suspect that the kinds of intellectual operations that go into operating 
meaningfully on functions have a considerable overlap with the kinds of operations that 
enable students to reason about such things as operations on cosets in quotient groups—
behind their visible operations is a tacit image of completed element-by-element 
operations.2 

A question raised by several reviewers, and also raised by Carolyn Kieran [43, p. 
232], is whether students must first develop process conceptions of function before 
developing object conceptions of function. This question was raised in the context of 
discussions of computer environments that ostensibly allow students to interact directly 
with function graphs, or to manipulate situations and see real-time changes in associated 
graphs. My remarks in the section Multiple Representations are pertinent to the matter of 
multi-representational computer environments. For now I will say that only that, as a 
matter of word usage, I would prefer not to talk about students interacting with functions 
as objects until I am assured that the students have conceived the objects they interact 
with as functions or representations of functions. As Jim Kaput said, “What is being 
represented, for a knowledgeable third party observer, is NOT what is being represented 
for the person living in the representational process” [personal communication]. I think 
we easily confuse perspectives when we say that students interact with functions as 
objects. A more veridical description might be that students interact with automatically 
generated “things” (e.g., wavy lines on a computer screen) that they come to make sense 
of in relation to the situations the things are tied to and in relation to their progressive 
internalization of the conventions by which the things behave. So, to answer the question 
of process/object precedence, I see every reason to believe that in an individual student’s 
construction of function, process conceptions of function will precede object conceptions 
of function. What has changed because of technological advances are the kinds of 
experiences we can engender in the hope that students eventually create functions as 
objects. 

Function as Covaration and Function as Correspondence 
One way to think of the evolution of today’s many ways to think of functions is as 

the current state of a long battle to conceptualize our world quantitatively. Clagett [9] 
relates Oresme’s attempts to capture the variational nature of a quality’s “intensity” (e.g., 
temperature) over position and time. Kaput [41] extends Clagett’s analysis to trace the 

                                                
2 Intuitionists might complain that such an image is impossible over infinite domains [7, 
36, 80]. But I do not mean that people imagine actually completing all possible element-
by-element operations. Rather, they just imagine that it is done—in the same way that 
they might imagine passing over all possible points on a path between their easy chair 
and their television set. 
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evolution of today’s ideas of variable and variability in the calculus, concluding that 
today’s static picture of function hides many of the intellectual achievements that gave 
rise to our current conceptions. 

The current standard definition of function highlights correspondence over 
variation—elements in one set correspond to elements in another so that each element in 
the first corresponds to exactly one element in the second. Since the 1930’s this ordered-
pair notion of function has been taken as the “official” definition of function, largely 
because it solved many problems introduced historically by people like Fourier who 
wished to define functions by a limit process [31, 44]. The ordered-pair definition has 
received strong criticism on pedagogical grounds [8, 28, 45, 90]—that it can be 
meaningful only to people who recognize the problems it solves, but not to a student who 
is new to the idea of function. On the other hand, we can point to many natural 
occurrences of correspondences that cannot be expressed analytically or imagined as the 
product of covariation but which we still would like to call functions (e.g., person’s name 
to person’s social security number in a relational database), so a non-correspondence 
understanding of function is too restrictive in regard to relationships we would like say 
are functional relationships. 

The tension between thinking of function as covariation and of function as 
correspondence is natural. They are both part of our intellectual heritage, so they show up 
in our collective thinking. Poincaré put the matter nicely when he said: 

Perhaps you think I use too many comparisons; yet pardon still another. 
You have doubtless seen those delicate assemblages of siliceous needles 
which form the skeleton of certain sponges. When the organic matter has 
disappeared, there remains only a frail and elegant skeleton of certain 
sponges. True, nothing is there except silica, but what is interesting is the 
form this silica has taken, and we could not understand it if we did not 
know the living sponge which has given it precisely this form. Thus it is 
that the old intuitive notions of our fathers, even when we have abandoned 
them, still imprint their form upon the logical constructions we have put in 
their place. (Poincaré, 1913, p. 219 , quoted in [65 p. 16]). 

Function as covariation is one of those “old intuitive notions of our fathers” of 
which Poincaré spoke. It is natural that vestiges of it show up in our mathematical 
culture. But we still face the question of how to reflect our heritage within a curriculum 
in a way that is coherent in regard to a conceptual development of the subject and at the 
same time respects current mathematical conventions. One way is to reflect the historical 
development within the curriculum—emphasize function as covariation in K-14, and then 
introduce function as correspondence as the need arises (e.g., differential equations; 
pointwise and uniform convergence of function sequences). This would also respect 
current thinking about the development of function conceptions through the levels of 
action, process, and object. 

I wish to mention quickly that in today’s K-14 mathematics curriculum there is no 
emphasis on function as covariation. In fact, there is no emphasis on variation. I 
examined the most recent editions of two popular K-9 text series and found that the 
closest they come to examining variation is to have students construct tables of data, and 
even then there is a profound confusion between the ideas of random variable and 
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variable magnitude.3 This is in stark contrast to the Japanese elementary curriculum [37] 
which repeatedly provokes students to conceptualize literal notations as representing a 
continuum of states in dynamic situations. 

Finally, I am surprised that so little has been investigated in regard to students’ 
concepts of variable magnitude—the focus instead being on variable as literal 
representation of number [1, 79, 87]. It seems, to me anyway, that a progressively more 
abstract notion of covariation rests upon a progressively more abstract image of variable 
magnitude. 

Understanding Phenomena and Representing Phenomena 
Zorn, in a report of a NSF-sponsored conference on the state of calculus reform, 

said that common complaints were represented by one physicist’s remark that, whether 
having had calculus or not, “his students were ‘as innocent as newborn babes’ about 
acceleration and velocity”  [91 p. 1]. Many mathematicians respond to this complaint by 
saying that we teach mathematics, not physics. The larger issue, I believe, is to what 
extent we should expect our students to understand the “stuff” that mathematics is about 
in its applications. 

A debate about whether we should teach physics or chemistry in mathematics class 
will not be productive. A more productive debate will center around the extent to which 
we orient students toward conceptualizing the situations our mathematics is about at the 
moments we use it, and, to relate this debate to functions, what role conceptions of 
function might play in supporting or inhibiting students’ conceptualizations of situations. 

Introductory calculus is a natural site to begin discussions of situational conceptions 
in relation to curriculum, pedagogy, and student learning. For most students, it is the first 
time they meet functions as models of quantitative situations.4 The research by Monk [50, 
51] suggests that students’ difficulties with applications run much deeper than their 
difficulties with the visible mathematics taught in class. 

Monk investigated students’ conceptualizations of two classical situations having to 
do with related rates: (1) A person is walking toward a street lamp; students are asked to 
relate changes in the length of the person’s shadow to changes in his distance from the 
lamp [51]. (2) A ladder is sliding down a wall; students are asked to relate changes in one 
end’s height above the floor to changes in the other end’s distance from the wall [50]. 
Monk provided physical models for students’ experimentation and asked questions about 
the situations that encouraged students to reason with the physical devices. We should 
take special note of one aspect of students’ reasoning in Monk’s reports: Their difficulty 
in developing a coherent conceptualization of a physical model as a system of 

                                                
3 The confusion is between, for example, my height as it varies over a sample of 1000 
moments in time and the heights of a sample of 1000 people. The 1000 measurements of 
my height are values of a variable magnitude that can be thought to covary with time; the 
heights of 1000 people at one moment in time can be thought of as values of a random 
variable or one value of a vector-valued function, but thinking of them either way would 
not justify speaking of “height as a function of age” as these texts do. 
4 This is not to say that subject matter in school mathematics could not be cast as 
involving functions as models. Rather, the instruction received by most students rarely 
emphasizes even thinking about situations, let alone of functions as models of situations. 
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dependencies among quantities whose values vary—even while holding the devices in 
their hands and playing with them. For example, in [51] one student, who was one of the 
more adept at symbolic mathematics, was also quite certain that (in the street lamp 
situation) the tip of a person’s shadow moves at an increasing rate while the shadow’s 
length changes at a constant rate. This suggests to me that whatever students have in 
mind as they employ symbolic mathematics, it often is not the situation their professors 
intend to capture with their symbolic mathematics. It also suggests to me that we need to 
pay much closer curricular and pedagogical attention to students’ pre-symbolic actions, 
such as imagining dynamic situations so that their images adhere consistently to systems 
of constraints. In [73] I propose that imagining situations as being functionally 
constituted is also part of seeing generality in geometric diagrams, and that we can 
actively promote this ability in schoolchildren with carefully crafted curriculum and 
instruction. Perhaps the same types of activities would be productive for college students. 

The importance of attending to students’ conceptualizations of situations applies to 
more than physical phenomena and physical quantities. It applies whenever we use 
mathematical notation referentially. In informal investigations of senior mathematics 
majors’ and secondary mathematics teachers’ understandings of the problem shown in 
Figure 4, I have found, in principle, three categories of conceptualizations. The first is 
that they imagine moving one corner of the rectangle and all other parts adjust 
automatically to conform to the problem’s constraints (Figure 5a). These students tend to 
express functional descriptions of area in relation to lengths of Side1 and Side2, and to 
express the lengths of Side1 and Side2 in relation to the length of some segment. Another 
category is reflected in Figure 5b. It is that the initial rectangle is made into other 
rectangles by moving each corner independently of the others. These students don’t even 
reach a point where they consider what quantity area might be a function of—if they 
attempt to think of area as a function of anything then they are obstructed by the fact that, 
in their conception, it is a function of four variables. The third category (Figure 5c) is that 
they focus their attention on one side, imagining they are moving the rectangle much as 
do students in the first category, but they do not attend to anything but the side as a 
whole. They were obstructed from conceiving area as a function of a something by the 
fact that, within their current conception of the situation, they felt there was nothing they 
could quantify as a measure of the aspect they imagined themselves manipulating.5  

                                                
5 I included in the first category those students who thought of moving a side while 
thinking of measuring the distance between a vertex on the triangle and a vertex on the 
rectangle. 
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Figure 4. Diagram to accompany the problem, “A rectangle is situated within a triangle as shown 
above. Find dimensions of the rectangle that maximize its area.” 

 
Figure 5. Three categories of conceptualizing the underlying situation: (a) Move one vertex, 
everything moves accordingly, lengths of sides, and hence area, are a function of the distance 
from vertex D to corner of rectangle. (b) Move each of the rectangle’s corners to get another 
rectangle. (c) Move a side of the rectangle; everything else moves accordingly. Area is somehow 
a function of “where the side is.” 

A pedagogical implication of these examples is that, for students whose 
conceptualizations fall into the second two categories illustrated in Figure 5, an instructor 
who fails to understand how they are thinking about the situation will probably speak past 
their difficulties. Any symbolic talk that assumes students have an image like that in the 
first category will not communicate. These students need a different kind of remediation, 
a remediation that orients them to construct the situation as one of constrained variation. 
Only then will they be in a position to understand the task as originally intended, to 
represent analytically a covariation of magnitudes. 

The examples given by Monk, as described previously, and the example I gave 
above should not be dismissed as somehow pathological. A growing body of evidence 
suggests that this kind of miscommunication—instructors erroneously assuming students 
have a principled understanding of an underlying situation—is far from uncommon. Alba 
Thompson and I have found this to be the case in the teaching of rate in middle school 
[67, 68] and in the teaching of calculus [75]. Research by White and by Ueno [78, 88, 89] 
suggests quite strongly that this type of miscommunication also occurs frequently in the 
teaching of physics. 
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Operations on Numbers and Operations on Functions 
 The process conception of function described by Dubinsky and his colleagues [2, 6, 

24] emphasizes arithmetic operations as operations on numbers, so that, for example 
f (x) = x2 + 3x  is the function determined by evaluating the sum of a number squared and 
three times the number. This seems non problematic. We can even consider the family of 
functions f a(x) = x

2 + ax . A common exercise in secondary school algebra is to show 
that the graphs of any function in this family is a translation of the graph of another 
(Figure 6).  

An article by Dugdale [27] inspired me to ask students in one course for senior 
mathematics majors to examine the influence that changes in the linear coefficient has on 
the behavior of functions in the family ga(x) = x2 + ax,  a, x  ε  ℜ,  n  ε  Ν . They quickly 
discovered that thinking of one graph as being the translation of another gave little insight 
into the general effect that changing the value of a has for n>2 (Figure 7).  

 
Figure 6. The family of functions fa(x)=x2+ax as a ranges from -3 to 3 in increments of 0.3. Each 
graph in the family is a translation of any other graph in the family. 

 
Figure 7. The family of functions fa(x)=x3+ax as a ranges from -3 to 3 in increments of 0.3. The 
graphs are not translations of each other. 

A little reflection makes their difficulty clear. Thinking of the graph of one 
quadratic as being a translation of another draws only on pointwise correspondence of 
points in the Cartesian plane. It is somewhat coincidental that, in the case of two 
quadratics f and g, there exist numbers a and b that will relate two subsets of the plane 
defined by {(x,y)|y=f(x)} and {(u,v)|v=g(u)} so that f(x)+b = g(x+c) for some real numbers 
b and c. This relationship does not generalize to polynomials of degree greater than 2. It 
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was only after these students came to think of the expression xn+ax as a sum of functions 
instead of as a sum of numbers that they gained insight into the effect of varying the 
linear coefficient in a way that generalized across n. Figure 8 shows their generalized 
image of the effect of varying a in the case of g2(x) . By varying the linear coefficient we 
change the slope of the line upon which segments of length x2 are placed, but we 
continue to add the same values of x2. Seeing the effect this way makes it clear why the 
family g3(x)   appears as it does in Figure 7—the values of x3 remain unchanged, but are 
being “attached” to a line of varying slope. 

I suspect that an orientation toward viewing arithmetic operations as operations on 
numbers supports students’ natural inclination to view graphs as pictorial objects sans 
points. I often hear even mathematics majors speak of a graph as “stretching” or “getting 
skinnier” or “being squished” without any thought being given to an underlying dynamics 
of functional relationship. Goldenberg [30] notes that a similar orientation toward casting 
change of scale and change of axes as operations on functions tends to direct students 
away from thinking of functional relationship and toward thinking of graphs as objects in 
and of themselves.6 

 
Figure 8. (a) The functions f(x)=0.94x and g(x)=x2. (b) The function h(x)=x2+0.94x as the sum of 
f(x) and g(x). Varying the linear coefficient varies the slope of the graph of f, but the increments 
due to g remain constant—they just get moved up or down as the linear coefficient varies. 

The notion of derivative and integral as operators (e.g., on products, sums, 
quotients, compositions of functions) is based on seeing expressions as being comprised 
of operations on functions. A curricular and instructional emphasis in algebra and 
precalculus on having students develop images of arithmetic operations in analytically-
defined functions as operations on functions would seem to prepare them for a deeper 
understanding of this aspect of the calculus. At the same time, a conception of operations 
in expressions as operating on numbers and not on functions would seem to be an 
obstacle to understanding the derivative and integral as linear operators. These are 
empirically testable hypotheses; I would welcome research on them. 

                                                
6 One reviewer interpreted this comment as being denigrative of graphs as mathematical 
objects. This is not the case. Rather, I am speaking about students thinking of graphs as 
nonmathematical objects—as if they were a piece of string or a rubber band. I see no 
benefit in students holding such conceptions of graphs. 
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Another investigation suggested by this line of argument would be to assess the 
conceptual requirements for understanding expressions as being comprised of operations 
on functions. I suspect they would entail, at least, an image of function as process 
completed over a domain. But, again, this is an empirically testable hypothesis—one 
which would be ideally suited for a research/development project, since to investigate 
this question one would need to develop curriculum and pedagogy aimed at having 
students learn to think of functions as something to be operated on. 

Emergent Issues 
A number of issues emerge from the literature on function concepts that have not 

been directly researched, but nevertheless seem important. These are: 
• Are specific kinds of intellectual operations required to conceptualize different 

kinds of functions? 
• To what extent are students’ difficulties a product of instructional obstacles? 
• To what extent are students constrained by our misunderstanding their practical 

realities? 
Development of specific functions 

Recent research in students’ understanding of multiplicative structures [16, 17, 74, 
81, 82] suggests that students who develop strong concepts of function begin doing so by 
building images of quantitative covariation. But at the same time, it is becoming evident 
that “quantitative covariation” is not a unitary construct. My own research [74, 76] 
suggests that concepts of linear function emerge from deep understandings of rate. Earlier 
in this paper I argued that understanding polynomial functions entails special 
conceptualizations. Dreyfus’ research [22] highlights the need for students to 
conceptualize periodic phenomena if they are to develop more than a superficial 
understanding of trigonometric functions. The work by Confrey’s research group [17, 62] 
suggests that students must first comprehend recursive processes in order to 
conceptualize exponential functions. 

The case of exponential functions is especially instructive. I have shared the graph 
shown in Figure 9 with a number of secondary mathematics teachers and university 
professors, asking “during what period of time was inflation the greatest?” Responses, 
vary, but they almost uniformly include the period from 1978 to 1980. When asked to 
pick the period with the next highest inflation rate, responses vary considerably more—
but they have yet to include the period from 1945 to 1948, the period which includes the 
actual highest inflation rate. 

After having been told that 1945-1948 contains the actual highest inflation rate, 
many people say something like, “Oh, of course—you have to compare one year’s price 
as a percent of the previous year’s price.” But even more (so far, none have been 
university professors) could not reconcile my comment with their reading of the graph. It 
seems that they were looking at inflation as increase in price per year (i.e., rate of 
increase with respect to time), which translates into slope, instead of as percentage 
change, which is a recurrence relationship. Confrey and her group argue that the notion of 
recurrence is common to conceptualizations of situations that entail exponential growth. 
They also note that this style of thinking is absent in the school mathematics curriculum. I 
suspect that many calculus instructors routinely assume that it is non-problematic for 
students to envision exponential growth when it seems few are inclined to do so without a 
great deal of orientation on the instructor’s part. 
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Figure 9. The price of an item marked in 1929 at $1,000 during the years 1930-1992,  adjusted for 
inflation. 

Our tacit expectations: Cognitive and instructional obstacles 
Herscovics [34] explicated the notion of cognitive obstacle as it relates to learning 

mathematics. A cognitive obstacle is a way of knowing something that gets in the way of 
understanding something else. For example, thinking of a graphics construction as 
producing only what is immediately envisioned can be an obstacle in regard to 
conceptualizing the construction of a fractal [70]. An instructional obstacle is instruction 
that promotes new cognitive obstacles or supports or is neutral in regard to students’ 
existing cognitive obstacles. Sierpinska [61]  discusses a number of instructional 
obstacles to the understanding of functions. I will attempt to illustrate how we often 
contribute unthinkingly to our students’ difficulties. 

Many calculus texts begin their section on implicit differentiation with a discussion 
of how an equation in two variables somehow hides a function—one variable being a 
function of the other. Behind this approach lurk three conceptions of function, and 
students are not alerted that there is something subtle going on. The first conception of 
function is of a multi-variable equation—f(x,y)=c. That is, we are looking at the pre-
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image of a level curve. The second conception is that of function as rule. It is suggested 
that from the equation we can, or at least would like to, rewrite the equation to get a rule 
for obtaining values of one variable from values of the other. The third conception is that 
of function as correspondence between sets. Any subset of the pre-image that determines 
a univocal mapping from one variable to the other is a function. 

My point in relating this common opening to implicit differentiation is twofold: 
First, it is often evident that what the author really has in mind is getting to the rule for 
implicit differentiation with no real expectation that students understand the notion of 
implicit function. Second, if the intent is for students to understand the setting under 
which implicit differentiation happens, then they should be alerted to how complex the 
setting is. “Warning, Go slow! We’re going to look at a pretty sophisticated set of ideas 
here.” 

I entitled this section “Our tacit expectations.” Do we expect students to really 
understand what we teach? If no, then we need to say so. If yes, then we need to expect 
understanding, communicate that expectation, and provide curricular and pedagogical 
support for students to meet our expectations. 
Students’ practical realities 

We must keep in mind that our college students have spent 12 years in school 
learning that mathematics is a ritualistic behavior, and that often their expectation of us is 
to “show them how to do it.” Their mathematical experiences did not include learning 
how to use notation thoughtfully and reflectively; notation is something to be seen, not to 
be interpreted. But, to change students’ orientation requires a “renegotiation of the 
didactic contract” [3, 49]. Students need to know that we know where they are coming 
from, and that ritualistic performance is not satisfactory. At the same time, we must 
assume the responsibility for shaping our instruction so that it can be understood 
conceptually, and to do that we must attend constantly to matters of imagery and 
understanding. 

Multiple Representations 
While the importance of students’ understanding expressions, tables, and graphs has 

been common knowledge for at least a century, it is only since the early 1980’s that they 
have been seen cognitively and pedagogically as alternative windows on a central idea 
[38, 39, 42]. Even though a semblance of multiple representations can be seen in Diene’s 
original idea of multiple embodiments of mathematical concepts [20, 47], the notion of 
multiple representations has today become a powerful motor of curricular research and 
development largely because of access to increasingly powerful computers and graphing 
calculators. I refer you to [57] and [46] for state-of-the-art reviews of research on graphs, 
tables, and expressions as they relate to the matter of multiple representations of function. 
I will instead give a cautionary note regarding an important missing element in this line 
of research and development. 

I believe that the idea of multiple representations, as currently construed, has not 
been carefully thought out, and the primary construct needing explication is the very idea 
of representation.7 Tables, graphs, and expressions might be multiple representations of 

                                                
7 This is entirely parallel to the situation in information processing psychology—no one 
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functions to us, but I have seen no evidence that they are multiple representations of 
anything to students. In fact, I am now unconvinced that they are multiple representations 
even to us, but instead may be areas of representational activity among which, as 
Moschkovich, Schoenfeld, and Arcavi [52] have said, we have built rich and varied 
connections. It could well be a fiction that there is any interior to our network of 
connections, that our sense of “common referent” among tables, expressions, and graphs 
is just an expression of our sense, developed over many experiences, that we can move 
from one type of representational activity to another, keeping the current situation 
somehow intact. Put another way, the core concept of “function” is not represented by 
any of what are commonly called the multiple representations of function, but instead our 
making connections among representational activities produces a subjective sense of 
invariance. 

I do not make these statements idly, as I was one to jump on the multiple-
representations bandwagon early on [71, 72], and I am now saying that I was mistaken. I 
agree with Kaput [40] that it may be wrongheaded to focus on graphs, expressions, or 
tables as representations of function. We should instead focus on them as representations 
of something that, from the students’ perspective, is representable, such as aspects of a 
specific situation. The key issue then becomes twofold: (1) To find situations that are 
sufficiently propitious for engendering multitudes of representational activity and (2) To 
orient students toward drawing connections among their representational activities in 
regard to the situation that engendered them. The situation being represented must be 
paramount in students’ awareness, for if they do not see something remaining the same as 
they move among tables, graphs, and expressions, then it increases the probability that 
they will see each as a “topic” to be learned in isolation of the others. Dugdale [26] 
provides an excellent example of a productive and powerful coordination of situation and 
representation. 

Reflections 
Much of the literature on students’ concepts of function highlights what they do not 

know about functions and why that might be the case. One lesson we can learn  is that 
students can use abstract function concepts only if they build connected abstractions from 
“functional” reasoning—reasoning about constrained covariation, reasoning about 
representations of quantitative and numerical relationships, and reasoning about 
properties of relationships. Curricula that are constructed logically, but which do not 
attend to transitional conceptualizations, can put students at risk of having to cope with 
demands of performance by turning our representations into their objects of learning [48, 
59, 60] 

Another lesson to draw from the foregoing is that our success in vitalizing the 
undergraduate curriculum is highly dependent upon a great deal more conceptual 
development happening in schools. If students come to us with impoverished concepts of 
function, then there is not a lot we can do except accommodate to the constraints we 
find.8 We must support, collectively and individually, the efforts of NCTM [14, 15]  to 
reform school mathematics. We cannot succeed unless they succeed. 

                                                                                                                                            
has bothered to question what is meant by “information” [10, 11]. 
8 This is not to say that we cannot do anything. It means that whatever we try must take 
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Finally, we need to broaden our notion of appropriate curriculum. Logical 
developments of content look especially good to people who already know it, but they are 
“logical” precisely because they express the logic we have constructed in our 
understandings of the subject. I propose that we orient ourselves toward developing 
conceptual curricula—curricula that are mathematically sound, but nevertheless are 
constructed from the start with an eye to building students’ understandings, and are 
constructed to assess skill as an expression of understanding. I take this as our major 
challenge over the coming decade. 
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