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The idea of fractal dimension is based on the idea of Euclidean dimension. But understanding this 
connection is harder than you might think. Children often think of areas and volumes in a way that we 
would describe as “one-dimensional objects.” What is, for example, one-dimensional area? It is a 
conception of a measurement of a region as being “how many squares do you need to lay down to fill a 
region,” where the squares are, in the child’s conception, no more than, say, pieces of paper with sharp 
corners. That is, they do not conceive of the unit as a dimensioned object. It is simply an object. 

 
Figure 1. One-dimensional Area 

 
Figure 2. One-dimensional Volume 

For example, in one study, I asked 6 fifth-graders to consider the area of the rectangle, shown below. 
They all said that they must either convert centimeters to inches or inches to centimeters before doing 
anything else. I asked the question, “Suppose we did the silly thing and just multiplied 4 and 3. We 
would get 12. But 12 what?” 
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Figure 3. Multiply 4 by 3. You get 12. Twelve what? 

The ensuing discussion went on for 35 minutes before one child asked timidly, “Would it be 12 
rectangles that are 1 cm by 1 inch?” In the next 10 minutes children worked to understand how it was 
that (1) it made sense, in multiplying length by width, they were somehow generating rectangles, and (2) 
that the only thing they needed to know about a “covering collection” was the unit-length of each side of 
the basic area unit.  

In another set of interviews, which followed an intensive teaching unit which took a standard approach 
to developing formulas for area and volume (i.e., counting squares in rows and columns, or counting 
cubes in rows, columns, and layers), only one student could answer the following question. He said, 
“Oh, somebody has already done the multiplication for me!” and went on to multiply 6 by 17. Upon 
further probing, he said that he didn’t need to know the other side lengths because “if I had them I’d just 
multiply, and when I multiply I would just get 17, and I’ve already got 17.” Other children responded 
that they needed to know the other side lengths. I asked them what they would do if they knew the side 
lengths. They said that they would multiply the side lengths, and they couldn’t know what they would 
get unless they knew the actual numbers. 

 
Figure 4. What is the volume of this box? 

These examples illustrate my claim that children often have not made a conceptual connection between 
the formulas they use for area and volume and actual area and volume. It also illustrates my claim that 
children need to conceptualize their units of measurement as dimensionalized objects in order to 
understanding the ideas of area and volume as “dimensionalized attributes” of objects (see diagram 
below). Otherwise, typical encounters with activities to develop area and volume formulas end up 
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capturing nothing more than “quick counting” techniques to determine the number of objects they would 
otherwise count one-by-one (see Figures 1 and 2). 

 
Figure 5. A “square inch” generated by two segments each 1 inch long. 

Now, suppose that students have developed “dimensionalized attributes” conceptions of area and 
volume. Then it makes sense to extend their notion of dimension from “independent directions of 
sweep” to dimensionality as an invariant relationship between replication and similarity. 

The idea of replication is to build a similar copy of the figure you have out of identical copies (Figure 6). 
The idea of similarity is that there is a multiplicative expansion (e.g., a “blow up” of photograph) so that 
each linear component is k times as long in the blow-up as in the original. If r is the number of copies 
used to replicate a figure, and if k is the scale factor (each linear component of the replicate will be k 
times as long as its original), then, in Euclidean space, r =kd for some whole number d. It is absolutely 
essential that if students are going to understand the idea of fractal dimension as an extension of 
Euclidean dimension, then they must internalize this relationship as one they insist must hold for all 
similar figures. That is, they must come to think of it not as just a generalization, but as a defining 
relationship between similarity and dimension. 

 
Figure 6a. Each successive replicate is made with 4 copies of the previous figure. The scale factor between 

replicates is 2. The objectʼs dimension is 2 because 22 = 4. 

 
Figure 6b. Each successive replicate is made with 8 copies of the previous. The scale factor between successive 

figures is 2. The objectʼs dimension is 3 because 23 = 8.. 

Another understanding students will need to have in order to understand fractal dimension is the idea of 
self-similarity. It is a non-trivial leap to believe that the two figures in Figure 7 are similar in every 
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detail. For example, students will often think that, since the larger figure is made from five copies of the 
smaller figure, the larger one has five times as many pieces in it, so the two cannot be similar. To accept 
that they are identical in detail, students must have a mental image of how fractals can be generated, 
with that image entailing the fractal itself as being the limit of the generating process. 

  
Figure 7. Are these two curves similar in every detail? In particular, does the larger curve have the same number 

of pieces in it as the smaller curve? 

To continue, you need 5 copies of the smaller curve to make the larger replicate, and the scale factor is 3 
(the larger curve lies on a segment 3 times as long as the segment on which the smaller one lies). If we 
believe that the curves in Figure 7 are similar, then we can generalize from the Euclidean case to 
conclude that  5 = 3d , where d is the curve’s dimension—but not necessarily a whole number. The 

number d which gives 5 = 3d  is d =
log5
log3

, or d = 1.46.  

In summary, I claim that to understand fractal dimension as a generalization of Euclidean dimension, 
students must have interiorized the relationship between scale and replication stated below to the point it 
is so obvious that it cannot be questioned. 

If r is the number of copies used to replicate a figure, and if k is the scale 
factor (each linear component of the replicate will be k times as long as its 
original), then, in Euclidean space, r =kd for some whole number d. 

That students reach the point that this relationship is obvious is highly non-trivial. I suspect that 
interiorizing this relationship is tantamount to developing a full scheme for multiplictive reasoning. 
Sounds like a promising dissertation topic. 
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