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Reasoning proportionally about collections of a sample statistic’s values is central to developing 
a coherent understanding of statistical inference. This paper discusses key developments that 
unfolded in a classroom teaching experiment designed to support students constructing such 
understanding. Instruction engaged students in activities that focused their attention on the 
variability among outcomes of randomly drawn samples. There occurred a critical shift in 
students’ attention and discourse away from individual sample outcomes and toward the 
distribution of a collection of sample outcomes. This shift supported further developments 
concerning how to compare entire distributions of sample outcomes as a basis for 
conceptualizing a notion of statistical unusualness. We characterize aspects of these 
developments in relation to students’ classroom engagement. 
 
BACKGROUND 

There is substantial evidence in the research literature that students, when asked to make 
judgments about outcomes of random sampling, tend to focus on individual samples and 
statistical summaries of them instead of how collections of sample statistics are distributed. For 
instance, Kahneman and Tversky (1972) produced empirical evidence to support their hypothesis 
that people often base judgments of the probability that a sample will occur on the degree to 
which they think the sample “(i) is similar in essential characteristics to its parent population; and 
(ii) reflects the salient features of the process by which it is generated” (ibid., p. 430). In later 
research, Kahneman and Tversky (1982) conjectured that people tend to take a singular rather 
than a distributional perspective when making judgments under uncertainty. A singular 
perspective is characterized by a focus on the causal system that produced the particular outcome 
and by an assessment of likelihood based on “the propensities of the particular case at hand”. In 
contrast, a distributional perspective relates the case at hand to a sampling schema and views an 
individual case as “an instance of a class of similar cases, for which relative frequencies of 
outcomes are known or can be estimated” (ibid, p. 518).   

Konold (1989) found strong empirical support for Kahneman and Tversky’s (1982) 
conjecture. He presented compelling evidence that people, when asked questions that are 
ostensibly about probability, interpret such questions as asking to predict with certainty the 
outcome of an individual trial of an experiment. The participants in Konold’s study often based 
their predictions of random sampling outcomes on causal explanations instead of information 
obtained from repeating an experiment. Konold (ibid.) referred to these combined orientations as 
the outcome approach. Moreover, he noted that his participants adhered strongly to this approach, 
even in the face of evidence designed to impel them to change their perspective. Decades earlier, 
Piaget & Inhelder (1951) documented the same robust orientations among young children who 
participated in their experiments.   

Sedlmeier & Gigerenzer (1997) conducted an extensive analysis of decades of research on the 
effects of sample size on statistical prediction. They concluded that participants across a diverse 
spectrum of studies who incorrectly answered tasks involving a distribution of sample statistics 
probably interpreted task situations and questions as being about individual samples.  

Some notable studies have addressed students’ understanding of sampling distributions and 
related ideas in instructional settings (Well, Pollatsek, & Boyce, 1990; delMas, Garfield, & 
Chance, 1999; Sedlmeier, 1999). These studies suggest that engagement in carefully designed 
instructional activities using computer simulations of drawing many samples can help orient 
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students’ attention to collections of sample statistics when making judgments involving samples. 
Analyses in these studies did not focus on characterizing students’ evolving conceptions and 
imagery of ideas in relation to their engagement in instruction. Consequently, these studies offer 
limited insight into interactions between engagement, learning, and instruction.  

The ubiquity of variability in random processes and their outcomes is a central idea in 
statistics (Cobb & Moore, 1997). Despite its centrality, students’ understanding of variability and 
our comprehension of variability’s role as an organizing idea in statistics instruction have 
received little research attention (Shaughnessy, Watson, Moritz, & Reading, 1999). Rubin, Bruce, 
& Tenney (1991) elaborated a conceptual analysis in which they proposed that the integration of 
two seemingly contrasting ideas underlay a coherent understanding of sampling and inference: 1) 
sampling representativeness—the expectation that a sample taken from a population will often 
have characteristics similar to that population’s, and 2) sampling variability—the expectation that 
different samples selected from a common population will differ among each other and from the 
sampled population. Rubin et al.’s (ibid.) investigation of statistically untrained high school 
students’ reasoning on sampling and inference tasks showed that students did not integrate these 
two ideas to reason about distributions of sample outcomes. Instead, one or the other expectation 
seemed more salient in students’ minds, depending on the task. Notably, ideas of re-sampling 
were neither at the foreground of the authors’ conceptual analysis nor part of the student tasks.   

Schwartz, Goldman, Vye, & Barron (1998) and Watson & Moritz (2000) both characterized 
sampling as a method of indirectly obtaining information about a larger population by directly 
obtaining information from only a relatively small and representative subset of the population. 
Neither characterization, however, entailed images of the repeatability of the sampling process 
nor of the variability that we can expect among sampling outcomes.  

Saldanha and Thompson (2002) argued that the singular interpretation of likelihood 
(Kahneman & Tversky, 1972, 1982; Konold, 1989) and conceptions of sampling that do not 
foreground ideas of variability and the repeatability of the sampling process are problematic for 
learning statistical inference because they disable one from considering the relative unusualness 
of a sampling process’ outcome. Drawing on the results discussed here and on data from a 
teaching experiment, Saldanha and Thompson (2002) characterized a conception of sampling that 
entails images of the repetitive sampling process, the bounded variability among sampling 
outcomes, and the fuzzy similarity between sample and population. In their characterization these 
images are linked schematically to form an organized system of ideas that, they claim, supports 
building deep connections between sampling and inference. They thus propose this scheme-based 
conception of sampling as a powerful and enabling instructional endpoint.  
 
PURPOSE AND METHODS 

This report is part of a study investigating students’ abilities to conceive the ideas of 
variability, samples, and sampling distributions as an interrelated scheme. The study is the second 
in a sequence of two investigations that employed constructivist teaching experiments (Steffe & 
Thompson, 2000) as the method of inquiry. Our aim was to produce epistemological analyses of 
these ideas—ways of thinking about them that are schematic, imagistic, and dynamic—and 
hypotheses about their development in relation to students’ engagement in classroom instruction 
(von Glasersfeld, 1995; Thompson & Saldanha, 2000).   

Eight students—one 10th-grader, three 11th-graders, and four 12th-graders—enrolled in a 
year-long non-AP statistics course at a suburban high school in the Southeastern United States 
participated in a 17-session classroom teaching experiment during their fall semester. All students 
had completed a standard Algebra II course that included a short unit on statistics and probability. 
This was their only known prior formal instruction in statistics.  

Students’ understandings and emerging conceptions were investigated in three ways: 1) by 
tracing their participation in classroom discussions (all instruction was videotaped); 2) by 
examining their written work; 3) by conducting individual clinical interviews. Three research 
team members were present in the classroom during all lessons: one author designed and 
conducted the instruction; the other observed the instructional sessions and generated field notes; 
a third member operated the video camera(s).  

Two overarching and related themes permeated instruction throughout the experiment’s 



various phases: 1) the process of randomly selecting samples from a population can be repeated 
under similar conditions, and 2) judgments about sampling outcomes can be made on the basis of 
relative frequency patterns that emerge in collections of outcomes of similar samples1. 
Instructional activities were anchored around these themes, which were intended to support 
students’ developing a distributional perspective of sampling and likelihood (Kahneman & 
Tversky, 1982). With these themes in mind to guide the experiment’s progress, activities and 
lessons were revised daily according to what the research team perceived as important issues that 
arose for students in each instructional session. Indeed, the instructional methodology was 
flexible and responsive to local interactions, allowing for extemporaneous and in situ diversions 
from the planned instructional activities whenever the instructor deemed that such would advance 
the overarching instructional agenda. This feature was made possible by the fact that the designer 
and instructor were one and the same person.  

The instructional activities were designed and conducted as discussion-based inquiry-oriented 
investigations. In accordance with our research and instructional agenda, the mathematical 
content of the teaching experiment was light on calculations and symbol use, but heavy on 
explication, description, and connection of ideas2. This agenda was enacted by the team members 
in their on-going interactions with students; we moved to negotiate a culture of sense-making in 
the classroom by placing a high premium on and promoting pro-active participation as listening, 
reflecting, questioning, conjecturing, and explaining and describing one’s own and others’ 
thinking about mathematical ideas under discussion.  

 Our report focuses on broad developments in students’ participation that point to their 
thinking as they engaged in part of a sequence of classroom activities occurring in an early phase 
of the teaching experiment. The activities were designed specifically to support students’ abilities 
to reason proportionally about collections of values of a sample statistic, and to conceive these 
collections as distributions. We characterize key attentional and discursive shifts that occurred in 
the classroom and the co-evolution of students’ ideas and engagement with instruction.  

The instructional sequence began with a concrete sampling activity that focused students’ 
attention on the variability among outcomes of samples drawn randomly from populations having 
a parameter of interest whose value was unknown. Students then used computer simulations to 
investigate what it means to think that an outcome of a stochastic experiment is unusual. The 
sequence concluded by having students compare multiple collections of sampling outcomes with 
the aim of deciding whether a given collection had an unusual distribution. The unfolding of this 
sequence and student ideas that emerged as they engaged in it is described in the next section of 
the paper.  
 
RESULTS 

In the initial sampling activity small groups of students hand-drew random samples from 
different dichotomous populations of objects, the compositions of which were unknown to them3. 
They recorded the samples’ outcomes (i.e., the number of a particular kind of object in each 
sample) and investigated patterns in them. Discussions centered on what those patterns suggested 
about the proportions in the sampled populations, what individual sample outcomes might be if 
the experiment were repeated, and how to decide whether two sets of outcomes were similar or 
dissimilar. In these discussions, we first focused students’ attention on the variability among 
sample outcomes, and there soon emerged a consensus that this variability makes problematic any 
claim about a population’s composition that is based on an individual sample’s result. This led to 
the idea of looking at collections of sample outcomes, instead. Each group drew 10 small samples 
of equal size from a relatively large population of objects and the class investigated how these 
collections, as a whole, were distributed.  
                                                
1 Similar samples share a common size, selection method, and parent population. Furthermore, they are 
selected to obtain information about a common population characteristic.  
2 The most sophisticated calculations used in the course were proportions.  
3 Just prior to this activity, the instructor led a whole-class discussion centered on a simulated sampling 
demonstration that broached the ideas of random sample, population, and making an inference from the 
former to the latter. 



At this point students’ discourse began shifting away from individual samples and toward 
collections of samples. The ensuing discussions focused on how to look at a collection of sample  
outcomes in order to claim something about the composition of the underlying population. One 
pair of students had selected 10 samples of 5 candies each from an opaque sack of red and white 
candies, the proportion of which was unknown to everyone. After some discussion of their results 
and noticing that they had many samples having more whites than reds (see Figure 1.), students 
concluded that there were more white candies than red ones in the sack. They based this 
conclusion on their observation that 80% of the samples were “heavy on the white”—that is, 
contained three or more white candies. We henceforth refer to this collection of outcomes (see 
Figure 1) as Result 1.  

Number of red candies 0 1 2 3 4 5 
Number of samples          (Result 1) 0 5 3 1 0 1 

Figure 1. The outcome of drawing ten samples of 5 candies each from a population having 50% 
red and 50% white candies. 

Thus, students seemed to reason that if a majority of the samples in the collection each 
contained a majority of white candies, then this was sufficiently strong evidence to infer that the 
population also contained a majority of white candies. This line of reasoning suggests that 
students were able to coordinate two levels of thinking: one level involves individual samples and 
their composition; another level involves partitioning the collection of sample compositions in 
order to ascertain what proportion of them are composed mostly of white candies. This was the 
first instance in which students displayed an ability to operationalize the criterion for deciding 
what to infer about the sampled population. It is worth noting that at this point, their inference 
seemed to be quasi-quantitative—it still lacked a precise measure. They claimed only that the 
population, like a majority of the samples, had a majority of white candies. 

When the population proportion was finally revealed to them, students were surprised to learn 
that there were actually equal numbers of red and white candies in the sack. A sustained 
discussion then ensued about two questions: first, “might these results be unusual?”, and then 
“how might we investigate this question?”. It was in this context that one student suggested 
repeating the process of selecting 10 samples of 5 candies several times with the intent of 
comparing this sequence of results to Result 1: “test it over and over”, she said, without 
specifying the nature of the proposed comparison.  

At this juncture we introduced Prob Sim (Konold & Miller, 1996), a sampling simulation 
program, as a tool to efficiently simulate repeating the experiment of drawing 10 samples of 5 
candies from a large population of 50% red and 50% white candies. Each time that we collected 
10 samples, we displayed a histogram of the number of samples having various numbers of red 
and white candies (see Figure 2).  

 
Figure 2. The sequence (from left to right) of outcomes of the simulated candy-sampling experiments. 

Discussion of the results of each simulated experiment focused on making sense of and 
interpreting the information displayed in the Analysis window of the program.4 For each 
collection of 10 sample results, the discussion concluded with a class vote taken to decide 
whether that collection was similar or dissimilar to Result 1. At first, students were uncertain 
about how to decide; some expressed opinions that they were unable to justify. We suggested that 
they think of a collection in terms of the relative weight of parts of its histogram. It emerged 
through the discussion that the characterization “heavy toward the white” was a criterion for 
deciding that a collection of simulated results resembled Result 1. The class applied this criterion 
over 5 simulations (see Figure 2), and the decisions were recorded and displayed in a table as 
                                                
4 Each Prob Sim window shows results of selecting 10 samples of 5 candies each from a large population 
evenly-split with red (“R”) and white (“W”) candies. Each row of the table appearing in a window displays 
an (unordered) outcome of the sample space. The number of samples having that outcome is expressed in 
absolute terms, as a proportion, and as a length of a histogram bar. 



shown in Figure 3. In the end students agreed that Result 1 was not unusual once they saw that  
three of the five simulations produced results “similar” to it.  

Distribution # 1 2 3 4 5 
Similar ? No No Yes Yes Yes 

Figure 3. Record of decisions of whether the simulated process of selecting 10 samples of 5 
candies produced a distribution of outcomes similar to Result 1.  
 
DISCUSSION AND CONCLUSION 

We find it useful to consider the instructional episodes described here as a sequence of phases 
unfolding out of cycles of interaction between instruction and student thinking and engagement. 
From our perspective, a first critical development occurred with students’ realization—prompted 
by an orienting cue from instruction—that the variability among sample outcomes necessitated a 
consideration of how collections of outcomes were distributed in order to infer the underlying 
population’s composition. This led to a second phase of engagement marked by a focus on 
multiple sample outcomes and re-sampling from various populations to accumulate collections of 
such outcomes.  

In the case of the samples drawn from the population of candies, students seemed to reason 
proportionally about this collection; their inferences were based on the relative number of 
samples in the collection having a majority of white candies. We hypothesize that this reasoning 
entails thinking of a collection of sampling outcomes as having a two-tiered structure: on a first 
level one focuses on individual sample compositions and develops a sense of their accumulation; 
on a second level, one objectifies the entire collection and partitions it to determine a part’s 
weight relative to the entire collection. This entails quantifying two different attributes—the 
composition of a collection of samples and the composition of individual samples—and 
coordinating these quantities so as to not confound them. These conceptual operations and their 
coordination can be taken to characterize critical aspects of imagining a collection of sampling 
outcomes as comprising a distribution. In retrospect, this line of reasoning was crucial to 
students’ continued productive engagement in the instructional activities. We propose that it 
underlay their eventual ability to agree on a method for comparing entire distributions of sample 
proportions and to use this method as the basis of a rule for deciding when two such distributions 
are similar.  

These developments, which marked the emergence of a third phase of the episode, were 
driven by interactions between two critical events: 1) the tension that students experienced when 
perceiving a discrepancy between their inference and the actual population proportion, and 2) 
instruction that capitalized on this tension by promoting a culture of inquiry around its resolution 
(e.g., by asking students to investigate whether their surprise was warranted). In this third phase 
students employed the earlier idea of collecting multiple samples and re- applied it to entire 
distributions of samples. That is, they were able to structure the simulated re- sampling results in 
collections of 10 and compare the distribution of each 10-sample collection to Result 1—a 
development facilitated by Prob Sim’s presentation format and by the instructor’s suggestion to 
record each result. In this phase of engagement students’ focus was thus on entire distributions of 
10-sample collections. As decisions about the similarity of each simulated distribution to Result 1 
accumulated, they were recorded and organized (see Figure 3) to facilitate thinking about their 
collection itself as a distribution. Indeed, students were able to arrive at a judgment about the 
relative unusualness of distributions like Result 1 by considering what proportion of the 
collection of 5 distributions (of 10 sample outcomes) were “similar” to it, or, equivalently, what 
proportion of the distribution of 5 similarity decisions were “Yes”. Students’ reasoning here can 
thus be described as entailing conceptual operations similar to those described above, but applied 
to a more complex object: a collection of distributions of sample outcomes.  

In sum, as students participated in these directed activities and discussions their thinking 
appeared to progress in complexity from focusing on single sampling outcomes, to reasoning 
proportionally about a collection of sampling outcomes, and finally to reasoning proportionally 
about a collection of such collections. 
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