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Hypothesis testing has an odd logic.  We collect a sample, calculate a statistic, and produce a 

probability of obtaining it or a more extreme value. From a naïve perspective, the probability of 

that sample is 1. It happened. This is not unlike picking an item from a container with items in 

unknown proportions and then asking about the probability of picking the item you picked. Of 

course, to sophisticates of the subject this is silly. They know that a probability statement about a 

sample’s statistic is not really about that sample. It is about the process of collecting sample 

statistics from a population of values having an assumed distribution.1 Velleman (1997) 

addresses a related issue nicely when he asks and answers his own question, “Where is the 

randomness?” in regard to a confidence interval. He says, 

When constructing confidence intervals keep in mind that the 
confidence interval is the random quantity whereas the population 
parameter is fixed and unchanging. Interpretations of confidence 
intervals should reflect this distinction. When we say, “with 90% 
confidence, 63.5 ≤ µ ≤ 65.5,” we do not mean that “90% of the 
time µ will be between 63.5 and 65.5,” but rather that in the long 
run, 90% of the intervals we compute from independently drawn 
samples will include the true mean. (Velleman, 1997, p. 18/5) 

Velleman’s explanation clarifies that “90% confidence” is not a claim about a specific interval, 

but rather is a claim about the method by which such intervals are produced. Similar conceptions 

are at the foundation of hypothesis testing, except that hypothesis testing draws on the logic of 

indirect argument. We assume that all possible values of the test statistic are distributed 

somehow, centered at the population parameter, and gauge whether the value we obtained is 

sufficiently unusual relative to those assumptions that it puts them in doubt. If so, then we 

conclude that our assumptions are faulty. 

                                                

1 This itself is a sophisticated description. We do not simply collect statistics, as if they were there to collect. We 
collect samples and calculate statistics from them. But to a sophisticate of the subject, the process is collapsed into 
collecting statistics. 
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It would seem from the above that to conceive of sampling as a stochastic process is key 

in all of statistical inference. A number of studies have shown that a focus on understanding 

sampling stochastically is more complex than it appears. In an important series of studies, 

delMas and colleagues (Chance, delMas, & Garfield, in press; delMas, Garfield, & Chance, 

1999, 2004) found that even with intense instructional support using computer simulations, a 

relatively low percentage of students attained a moderate understanding of sampling 

distributions. They summarized: 

Students appeared to confuse the idea that large samples resemble 
the population with the idea that a distribution of sample means 
from large samples will resemble a normal distribution. They also 
demonstrated a tendency to think that as sample size increased, the 
distribution of sample means would look MORE like the 
population, confusing the Law of Large Numbers with the Central 
Limit Theorem. What they seemed to observe and learn in class 
quickly disappeared when completing the posttest items. In 
addition, when solving contextual items, many students did not 
appear to understand that the variability among sample means is 
less than the variability in the population, or that the variability 
among sample means decreases as sample size increases. While 
these results were surprising, they led us to reconsider the 
complexities involved in learning to reason about sampling 
distributions. (delMas et al., 2004, pp. 18-19) 

DelMas et al. (2004) also noted that had they assessed students’ understanding only during 

instruction, based on students’ work and their close engagement with ideas, they would have 

drawn a very different conclusion. As they indicated in their summary, during instruction 

students seemed to rethink their naïve conceptions of sampling and distribution and showed 

apparent progress in developing coherent understandings. The post-instruction assessment 

indicates that they came to rely on instructional supports during class without dramatic changes 

in their original understandings. delMas et al.'s results are consistent with Dunbar's (this volume) 
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theory that major conceptual change is difficult when students cannot assimilate current 

experience to existing ways of thinking. 

An additional consideration in understanding why “take a sample” is hard to understand 

stochastically, and thus why students find it so difficult to learn ideas of sampling distribution 

and statistical inference, is that one must distinguish between variability among individuals in a 

sample, variability among individuals in the sampled population, and variability among statistics 

calculated from samples drawn from it (Rubin, Bruce, & Tenney, 1991; Saldanha & Thompson, 

2002; Thompson, Saldanha, & Liu, 2004; Well, Pollatsek, & Boyce, 1990). While the idea of 

stochastic process is clearly entailed in both notions of variability, to understand sampling as a 

stochastic process is far more complex than to understand selection as a stochastic process. A 

well-developed sense of variability among values of a statistic also entails the coordination of 

understandings of samples as items in themselves and of samples as composed of individuals 

from a population (Saldanha & Thompson, 2002; Thompson et al., 2004) and it entails the 

understanding that repeatedly collecting samples has the result that the values of a statistic are 

distributed somehow within a range of possibilities (Horvath & Lehrer, 1998; Konold & 

Pollatsek, 2002). Moreover, to understand sampling as a stochastic process is problematic 

because of its fundamental reliance on randomness, which is known to be troublesome for people 

at all ages (Batanero & Serrano, 1999; Falk & Konold, 1994, 1997; Metz, 1998).2 

  We came to appreciate the complexities of well-formed concepts of sample and statistical 

inference through two teaching experiments with high school students on the ideas of 

distributions of sample statistics and margin of error (Saldanha & Thompson, 2002; Thompson 

                                                

2 Studies by Schwartz and colleagues and by Watson examine students’ understanding of sample, but without 
attending to the stochastic nature of “take a sample” (Schwartz, Goldman, Vye, & Barron, 1998; Watson, 2001, 
2002; Watson & Moritz, 2000) 
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& Saldanha, 2000; Thompson et al., 2004). Results from both teaching experiments were 

consistent with other findings in regard to students’ difficulties (delMas et al., 1999, 2004; 

Earley, 2001, 2004). However, due to constructivist teaching experiments’ focus on obtaining 

data that supports conceptual analysis (Glasersfeld, 1972, 1995; Steffe, 1996; Thompson, 2000) 

and modeling (Steffe, 1991; Steffe & Thompson, 2000) we were able to dissect students’ 

reasoning to suggest a model of well-formed concepts of sample and sampling.  

The model addresses both why students have difficulty with the ideas of sample and 

distributions of sample statistics and proposes conceptions that, at this moment, seem to support 

competent reasoning about distributions of sample statistics and margin of error. Those students 

who reasoned flexibly about distributions of sample statistics and margin of error had what we 

called a multiplicative conception of sample (Saldanha & Thompson, 2002; Thompson & 

Saldanha, 2000). This is a conception composed of a scheme of related ideas: a hierarchical 

image of sample that allowed students to conceive a collection of samples so that the samples in 

it were simultaneously items in a collection and composed of other items; sampling as a 

stochastic process (hence entailing an image of variability among samples); and the idea that 

each sample had an associated statistic that therefore varied as samples varied. Moreover, these 

students had a bounded sense of variation that entailed two aspects: a quasi-proportional 

relationship between samples and population, which therefore translated into a sense of bounded 

variation in their statistics, and a sense that extreme variation was less likely than small 

variations. All this seemed to support their anticipation of a distribution of sample statistics that 

was independent of (i.e., underlay) particular ways of displaying it. We note also that students 

who had difficulty during the course and with the interview questions seemed to break down in 

one or more of these areas. 
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We developed the outline of this model as a result of a nine-day teaching experiment 

(TE1) with 27 junior and senior high school students enrolled in a non-AP, semester-long 

statistics course (Saldanha & Thompson, 2002; Thompson & Saldanha, 2000). We then designed 

an 18-day teaching experiment (TE2), conducted the following year, that involved 8 students 

(one tenth-grader, three eleventh-graders, and four seniors) in a non-AP year-long statistics 

course. TE2 focused on supporting students’ development of the various aspects of a 

multiplicative conception of sample. The short story of TE2 is that even armed with the insights 

above, our efforts to support the students in TE2 in building the components of a multiplicative 

conception of sample were fraught with periods of backtracking to patch together things that 

went wrong in students’ understandings, and even when we were successful at helping them 

build the “parts”, they found it extremely difficult to coordinate them. Two examples: We 

addressed students’ persistent difficulties in TE1 in distinguishing reliably between samples and 

individuals when both ideas were present in a discussion or situation by giving greater emphasis 

to activities of hand sampling in TE2. However, students in TE2 still found it difficult to 

maintain that distinction and revealed their difficulty in a wide variety of settings. Second, we 

focused explicitly on the idea of distributions of sample statistics as being created through the 

stochastic process “take a sample”, yet students’ understandings remained fragile throughout the 

teaching experiment. We refer readers to (Saldanha, 2004; Saldanha & Thompson, 2002; 

Thompson & Saldanha, 2000; Thompson et al., 2004) for more complete descriptions of these 

teaching experiments’ instruction and analyses.  

Teachers’ understandings of concepts associated with statistical inference 

With our tentative understandings of why statistical inference is hard for students to learn as 

background, we were interested in what teachers understood of the issues we found to be crucial 

in students’ understandings and the extent to which they saw them as pedagogical issues in 
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teaching probability and statistical inference. To this end, we designed a two-week summer 

workshop/seminar for high school teachers. The seminar was advertised as “an opportunity to 

learn about issues involved in teaching and learning probability and statistics with understanding 

and about what constitutes a profound understanding of probability and statistics.” Of 12 

applicants we selected eight who met our criteria—having taken coursework in statistics and 

probability and currently teaching, having taught, or preparing to teach high school statistics 

either as a stand alone course or as a unit within another course. Participating teachers received a 

stipend equivalent to one-half month salary. The research team prepared for the seminar by 

meeting weekly for eight months to devise a set of issues that would be addressed in it, selecting 

video segments and student work from prior teaching experiments to use in seminar discussions, 

and preparing teacher activities. 

Table 1 presents demographic information on the eight selected teachers. None of the 

teachers had extensive coursework in statistics. All had at least a BA in mathematics or 

mathematics education. Statistics backgrounds varied between self-study (statistics and 

probability through regression analysis) to an undergraduate sequence in mathematical statistics. 

Two teachers (Linda and Betty) had experience in statistics applications. Linda taught operations 

research at a Navy Nuclear Power school and Betty was trained in and taught the Ford Motor 

Company FAMS statistical quality control high school curriculum. 

Table 1. Demographic information on seminar participants. 

Teacher Years 
Teaching 

Degree Stat Background Taught 

John 3 MS Applied Math 2 courses math stat AP Calc, AP Stat 
Nicole 24 MAT Math Regression anal (self study) AP Calc, Units in stat 
Sarah 28 BA Math Ed Ed research, test & meas Pre-calc, Units in stat 
Betty 9 BA Math Ed Ed research, FAMS training Alg 2, Prob & Stat 
Lucy 2 BA Math, BA Ed Intro stat, AP Stat training Alg 2, Units in stat 
Linda 9 MS Math 2 courses math stat Calc, Units in stat 
Henry 7 BS Math Ed, M.Ed.  AP Calc, AP Stat 
Alice 21 BA Math 1 sem math stat, bus stat Calc hon, Units in stat 
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 We interviewed each teacher three times: Prior to the seminar about his or her 

understandings of sampling, variability, and the law of large numbers (Appendix I); at the end of 

the first week on statistical inference (Appendix II); and at the end of week 2 on probability and 

stochastic reasoning. This paper will focus on week 1, in which issues of inference were 

prominent. 

The seminar lasted two weeks in June 2001, with the last day of each week devoted to 

individual interviews. Each session began at 9:00a and ended at 3:00p, with 60 minutes for 

lunch. An overview of topics is given in Table 2. All sessions were led by a high school AP 

statistics teacher (Terry) who had collaborated in the seminar design throughout the planning 

period. 

Table2. Overview of seminar topics 

Week Monday Tuesday Wednesday Thursday Friday 
June 11- 
June15 

• Data, samples, 
and polls 

• “Is this result 
unusual?”: 
Concrete 
foundations for 
inference and 
hypothesis 
testing 

• Statistical 
unusualness 

• Statistical 
accuracy 

• Distributions of 
sample 
statistics 

• Margin of error 
• Putting it all 

together 

• Students’ 
understandings 
of distributions 
of sample 
statistics 

• Analysis of 
textbook 
treatments of 
sampling 
distributions  

• Interviews 

June 18 – 
June 22 

• Textbook 
analysis of 
probability 
intro 

• Probabilistic 
vs. non-
probabilistic 
situations 

• Conditional 
probability 

• Contingency 
tables and 
conditional 
probability 

• Students’ 
difficulties with 
conditional 
probability 

• More 
conditional 
probability  

• Uses of 
notation 

• Analysis of 
textbook 
definitions of 
probability 

• Data analysis: 
Measures of 
association 

• Interviews 

Pre-seminar interviews 

The pre-seminar interviews were designed to reveal teachers’ understandings of sampling as a 

stochastic process and of sampling variability. They were asked to read an excerpt from Chapter 
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4 of Moore’s Basic Practice of Statistics. In it Moore develops the ideas of parameter estimation 

by sampling, sampling distributions, and the central limit theorem. Summary 1 lists summaries 

of what the teachers thought the chapter was about and what were the important ideas in it. Only 

John and Henry saw that the excerpt was clearly about sampling distributions, although Henry 

gave greater importance to the central limit theorem. The other teachers saw less organization 

than John, focusing more on smaller ideas as if they were a list of topics.  

Summary 1. What the chapter was about and important ideas in it. 

Teacher Response 
John Sampling distributions. Everything else hangs off of it. 
Nicole Law of large numbers, central limit theorem, mean remains the same but standard deviation 

changes as you take larger samples 
Sarah Statistics vs. parameters; mean and standard deviation; effect of sample size on a sample’s 

distribution 
Lucy Statistic vs. parameter; central limit theorem, law of large numbers 
Betty Population vs. sample; distributing the data shows how the deviation can affect the mean 

and standard deviation; law of large numbers; central limit theorem 
Linda Population distribution vs. sampling distribution; overall picture of sample and mean; what a 

mean is; problems can be solved with formulas 
Henry Didn’t answer question 1. Instead commented on quality of the text’s prose and presentation 

Important ideas are: Distributions; mean and standard deviation; central limit theorem 
Alice Random sampling; parameter vs. statistic; central limit theorem 

 Questions 6, 8, and 11 turned out to be the most revealing of teachers’ understandings. 

Question 6 asked what was varying with regard to the statement, “Buying several securities 

rather than just one reduces the variability of the return on investments.” Moore intended the 

statement to be understood as about average return on collections of stocks at the end of a fixed 

period of time, and to mean that, for a given period of time, the distribution of average returns on 

collections of, say, 10 stocks, over that time period will be less variable than will the distribution 

of returns on the population of individual stocks from which they are formed. However, every 

teacher initially interpreted the statement as saying that the average rate of return on a collection 

of stocks will vary less over time from its original price than will the return on any of the 
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individual stocks in it.3 Only John, after some probing, reconsidered his answer to say that the 

variability occurred from “investment to investment.” 

Question 8 repeated a sentence fragment from Moore’s text, “The fact that averages of 

several observations are less variable …” and asked teachers to interpret it. Summary 2 shows 

that only John interpreted the statement distributionally, saying that the averages will cluster 

more tightly around the population mean than will individual measurements. Linda said that the 

averages of the samples, speaking of more than one average, would be closer to the true mean 

than the individual measurements. The remaining teachers all said that when you average the 

measurements you would get a result that is closer to the “true mean” than the individual 

measurements that make up the average. 

Summary 2. Teachers interpretations of 8a, “average will be less variable.” 

John Means of samples (collections of measurements) will cluster more tightly around the 
population mean than will individual measurements 

Nicole The average will be closer to the mean 
Sarah If you average your data it will be closer to the true average of total population 
Lucy Difference between population mean and sample mean will be less than the difference 

between individual measurements and the population mean 
Betty Compute running averages as you select a sample and the running averages will be 

closer to the true mean 
Linda The averages of samples will be closer to the true mean than will individual measures.  
Henry Larger the sample the closer will be the average to the true mean. 
Alice Difference between true mean and calculated average will be less than between true 

mean and individual measurements. 
 

Question 8b stated: 

The author also says, 

It is common practice to repeat a careful measurement several times and 
report the average of the results. 

                                                

3 We realize that another way of examining variability is by computing the variance of a stock’s value from its 
running average rate of return (which is the exponent of an exponential function), but Moore’s point still remains 
that the comparison is between a distribution of average rates of return for collections and a distribution of average 
rates of return for individual stocks. 
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Does this mean that if I take one measurement of an object’s weight, and if you 
take 4 measurements of its weight and calculate their average, then your average 
will be more accurate than my measurement? (Explain.) 

Summary 3 shows that several teachers were more sensitive to issues of variability in answering 

Question 8b than in answering 8a, although none of them referred to a distribution of averages. 

John said that this statement applies only to the long run—that in the long run the average would 

be closer. Nicole and Sarah said that it should be true theoretically, but the thing you are 

measuring might change during the measurement process. Lucy, Linda, Henry, and Alice said 

that it could or should be, but it might not. Only Betty said that the average would definitely be 

closer to the true measurement.  

Summary 3. Teachers’ responses to 8b, “accuracy of 1 measurement versus average of 4 
measurements.” 

John Statement by itself tells us nothing. If we assume this is repeated, then in the long run 
I will get a good estimate of the actual mean, and you won’t. 

Nicole Theoretically, the average of my four measurements should be closer than your one. 
But also need to measure many times because the thing you are measuring (e.g., air 
quality) can change over short periods of time. 

Sarah Probably not. Many variables undefined – measuring instrument, time of day, age of 
person. (Fix them?) Then theoretically, yes, but actually might not. 

Lucy Depends. I pick 4 you pick one. Your one could be closer than any of my four. 
Betty Yes. 
Linda Not necessarily. But you minimize the chance of being wrong by measuring it more 

times. Less chance of being close when measuring only once (but cannot articulate 
“less chance”). 

Henry Could be. Also, measuring four times gives greater chance to detect measurement 
error. 

Alice Probably should be, but I don’t know whether it would be. 

 In Question 11, Moore misstated the Law of Large Numbers, saying that X  necessarily 

becomes closer to µ as the sample size increases. Summary 4 shows that only John noticed this, 

saying that he disagreed with the statement, that it should say that if they repeated their sampling, 

Luis would “have the better estimate” (but was unclear about what that would mean). Nicole, 

Betty, Linda, and Alice interpreted the statement as written. Sarah and Henry initially interpreted 

it as written, and then qualified their interpretation to say “the likelihood is increased” that the 
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sample mean is closer to µ with increased sample size, although Henry confounded number of 

samples with sample size. John and Lucy said that the statement said that means of larger 

samples “should” be closer to µ than means of smaller samples. None of Sarah, Henry, and Lucy 

thought that their interpretations were in conflict with Moore’s statement. It is worth noting that, 

in this question none of the teachers interpreted the Law of Large Numbers distributionally, in 

the sense that means of larger samples will cluster more tightly around the population mean than 

would means of smaller samples. 

Summary 4. Teachers’ interpretations of Moore’s Law of Large Numbers 

John If you go by Moore, then Luis. But I disagree—cannot stop there. Must resample. A 
sample of size 100 should be closer than a sample of size 10.  

Nicole Sounds like a limit. 
Sarah Take a larger sample size and you’ll get closer to the mean. (Like a limit?) Like a 

reality. More times than not it should be closer. 
Lucy Larger sample more likely to be closer than smaller sample. (Likely?) Could be 

farther but probably closer. 
Betty Take the average of many samples and you’ll be closer to the mean than an individual 

score. 
Linda The more observations the closer the sample mean is to the population mean. 
Henry The more observations and the more samples, the better is the representation of the 

population. To get the true average you would have to repeat sampling. The larger the 
sample increases the likelihood that you will be getting the true average. 

Alice As the number of observations increase, calculating a running average, the closer the 
average is to the population average. 

 Question 11b asked teachers to compare the accuracies of Yan’s sample of size 50 and 

Luis’ sample of size 100. By Moore’s s Law of Large Numbers, Luis’ sample would be 

necessarily closer. By the standard Law of Large Numbers, we could say only that Luis’ sample 

is “more likely” to be closer, meaning that a larger proportion of all samples of size 100 would 

be within a given range of the population mean than all samples of size 50. Summary 5 shows 

that only Nicole stated flatly that Luis’ sample mean would be closer to the population mean than 

Yan’s. Sarah, Betty, and Alice conditioned their response on Moore’s wording. Each teacher 
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responded consistently with their response to 11b when asked the follow-up question, whether 

they would say the same thing if Luis’ sample was of size 52. 

Summary 5. Teachers’ responses to accuracies of Yan’s sample of 50 and Luis’ sample of 100 

John Objected to just one sample. Said repeated sampling is necessary (but did not talk 
about distribution of sample means). “Larger sample is better estimate.” 

Nicole Both samples are random? (Yes.) Luis is closer. 
Sarah Based on Moore’s statement it should be closer. But most of the time the larger 

sample should be closer. 
Lucy Luis, most likely. Most of the time the larger sample will have a closer mean, but 

there can be variability. 
Betty According to this the larger should be closer. But the average of those two would be 

closer to the true height than either one of your averages. 
Linda Luis. (For sure?) Not for sure ... probably. Probably need more observations to be sure 

Luis’ is closer, but I don’t know how many women there are in Nashville to know 
how many observations you need. 

Henry They both could be just as accurate. You’re looking for a breaking point (1/10 the 
population size) to be sure. 

Alice According to the LLN, the sample of 100 is closer. (Okay with this?) Yes. But the 
LLN says you should keep going. 

 
The pre-interviews suggest that, like students in our teaching experiments, the teachers, with the 

exception of John, were predisposed to think in terms of individual samples and not in terms of 

collections of samples, and thus distributions of samples statistics were not a construct by which 

they could form arguments. “Likelihood” of a sample statistic being close to a population 

parameter was a property of individual samples and not of a distribution of sample statistics. 

Moreover, when asked to consider what was varying when comparing investments in collections 

of stocks versus individual stocks, they thought of a single collection of stocks in comparison to 

individual stocks in it. Only John came to see, after our probing questions, that it was a collection 

of collections that were less variable than individual stocks. Finally, only John and Linda 

referred to collections of averages when explaining what “the average will be less variable” 

meant, and while Linda referred to “averages” in the plural, it was not clear that she had a 

distribution in mind. 
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The Seminar 

As seen from Table 1, the seminar’s first week was devoted to issues of understanding and 

teaching statistical inference. It might seem odd that we covered inference before probability. 

We did this for two reasons. First, our focus on inference was highly informal, never drawing on 

technical understandings of probability, and emphasizing the idea of distribution. Second, the 

idea of distribution would be central to our sessions on probability, too, and we hoped to avoid 

any carry-over effect that might have happened had we covered probability before inference. 

The seminars were conducted in a free-discussion format. Terry began each session with pre-

planned activities and a “guide” for discussions we hoped would happen, but the discussions 

often strayed from the central point and most of the time those digressions were important 

enough that Terry would see where they went. Terry would then nudge the discussions back to 

the current main point. 

For the purposes of this paper we will first focus on teachers’ discussions of unusualness 

during the first three days of the seminar. This idea turned out to be especially slippery for 

teachers, each expressing confusion at various times. We focused on unusualness for several 

reasons. First, as already mentioned, the logic of hypothesis testing is that one rejects a null 

hypothesis whenever an observed sample is judged to be sufficiently unusual (improbable, rare) 

in light of it. This logic demands that we assume the sample statistic of interest has some 

underlying distribution, for without assuming a distribution we have no way to gauge any 

sample’s rarity. This assumption is made independently of the sample. It is like a policy decision: 

“If, according to our assumptions, we judge that samples like the one observed occur less than 

x% of the time (i.e., are sufficiently unusual), then our sampling procedure was not random, it 

was biased, or values of the sample statistic are not distributed as we presumed.” Second, we 
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observed in high school teaching experiments (Saldanha, 2004; Saldanha & Thompson, 2002; 

Thompson & Saldanha, 2000; Thompson et al., 2004) that students had a powerful sense of 

“unusual” as meaning simply that the observed result is surprising, where “surprising” meant 

differing substantially from what they anticipated. By this meaning, if one has no prior 

expectation about what a result should be, then no result is unusual. Since students made 

theoretical commitments regarding distributions of outcomes infrequently, their attempts to 

apply the logic of hypothesis testing often became a meaningless exercise. 

We begin with an episode from Day 3 of the seminar.  We started the day by engaging 

the teachers in discussion of the following question, adapted from Konold (1994).  

Ephram works at a theater, taking tickets for one movie per night 
at a theater that holds 250 people. The town has 30 000 people. He 
estimates that he knows 300 of them by name. Ephram noticed that 
he often saw at least two people he knew. Is it in fact unusual that 
at least two people Ephram knows attend the movie he shows, or 
could people be coming because he is there? 

The teachers first gave intuitive answers. All said it would not be unusual for Ephram to see two 

people he knows. Subsequent discussion focused on the method for investigating the question, 

and it revealed that only one teacher, Alice, had a conception of unusualness that was grounded 

in a scheme of distribution of sample statistics. She proposed, as the method of investigating the 

question, “Each night record how many he knew out of the 250 and keep track of it over a long 

period of time”, which suggested that she had conceived of “Ephram sees x people he knows” as 

a random event and would evaluate the likelihood of outcomes “Ephram sees at least two people 

he knows” against the distribution of a large number of possible outcomes. 

Other teachers had various conceptions of unusualness. Three teachers, Sarah, Linda, and 

Betty stated flatly that something is unusual if it is unexpected, and expectations are made on the 

basis of personal experience. John’s conception of unusualness was also subjective and non-
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stochastic. He justified his intuitive answer by reasoning that Ephram knows 300 people out of 

30,000 people in his town, so for every 100 people, he knows 1 person. On any given night he 

should know 2.5 people out of 250 people who come to the theatre, given that this 250 people is 

a representative sample of 30,000 in his town. John employed what we call the proportionality 

heuristic: evaluating the likelihood of a sample statistic by comparing it against the population 

proportion or a statistic of a larger sample. He did not conceptualize a scheme of repeated 

sampling that would allow him to quantify unusualness. Henry’s conception of unusualness was 

somewhat stochastic, albeit nonstandard. He defined unusualness as, “Something is unusual if 

I’m doing it less than 50% of the time.” The ensuing discussion revealed that the teachers, with 

exception of Alice, had a subjective conception of unusualness, and this conception did not 

support their thinking in hypothesis testing. 

The second major idea was the logic of hypothesis testing, which is similar to that of 

proof by contradiction. In proof by contradiction, we establish a statement given certain 

conditions by assuming its negation and then bringing that assumption into conflict with an 

implication of it or with an accepted fact. We then conclude that the statement is true under the 

given conditions because its negation is untenable. In hypothesis testing, we test the plausibility 

of H1 by assuming a rival, complementary hypothesis, H0, and then examining the likelihood of 

obtaining results similar to what actually occurred given that H0 is true. A small chance of results 

like what actually occurred with H0 being true casts doubt on the plausibility of H0 and in turn 

suggests the viability of H1.  

To understand the teachers’ understanding of the logic of hypothesis testing, we engaged 

them in a discussion of the following task: 

Assume that sampling procedures are acceptable and that a sample 
is collected having 60% favoring Pepsi. Argue for or against this 
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conclusion: This sample suggests that there are more people in the 
sampled population who prefer Pepsi than prefer Coca Cola.  

This question was accompanied by a list of 135 simulated samples of size 100 taken from 

a population that was split 50-50 in their preference for Coca Cola or Pepsi. Four of the 135 

sample statistics exceeded 60%.  

Three teachers, Lucy, John, and Henry, said that the statement there were more people in the 

sampled population who prefer Pepsi than prefer Coca Cola was false. They based their claim 

on the evidence that only 2.96% of the simulated samples had 60% or more favoring Pepsi. Their 

logic seemed to have been: If the population was indeed unevenly split, with more Pepsi drinkers 

than Coke drinkers, then you would expect to get samples like the one obtained (60% Pepsi 

drinkers) more frequently than 2.96% of the time. The rarity of such samples suggested that the 

population was not unevenly split. They seemed to understand the list as containing actual 

sample proportions. This puzzled us because in nearly the same breath they spoke both that there 

should be more samples above 60% if that was the actual break and of the simulation of drawing 

from a population split 50-50. 

Terry, the seminar leader, pushed the teachers to explain the tension between 1) we 

actually got a sample of whom 60% preferred Pepsi, and 2) the sample’s occurrence is rare under 

the assumption that the population is evenly split. Henry suggested that the sample was not 

randomly chosen. John suggested that the assumption of 50-50 split was not valid.  

One teacher, Linda, insisted that the assumption should not be rejected on the basis of 

one sample. Her argument was that no matter how rare a sample is, it can occur, thus its 

occurrence cannot be used against any assumption.4 Her opposition to rejecting the assumption 

of evenly-split population (H0) rested on her commitment to the null hypothesis and her concern 
                                                

4 We called this the “OJ” argument. 
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for whether the null hypothesis had been proven false. Linda said she would reject H0 only if 

there was overwhelming evidence against it, and she therefore opposed “rejecting the null on the 

basis of one sample.” She instead proposed to take more samples to see whether H0 was right or 

wrong. Linda reasoned that, since any rare sample could, theoretically, occur, one sample cannot 

provide overwhelming evidence. Linda’s concern for establishing the truth or falsity of a null 

hypothesis is inconsistent with the idea of a decision rule. A decision rule does not tell us 

whether the null hypothesis in any one context is right or wrong. Rather, it tells us that if we 

apply the decision rule consistently, then we can anticipate, over the long run, rejecting H0 

inappropriately a small percent of the time. 

In sum, the discussion and interviews from this seminar revealed a spectrum of choices 

that the teachers made when facing the question, “Do we reject a null hypothesis when a sample 

is unusual in light of it?” Figure 1 illustrates the structure of that spectrum.   

 

Figure 1: Theoretical framework for teachers’ logic of hypothesis testing 
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This figure captures the varieties of choices the teachers made when a small p-value was found. 

Decisions 1-3 are likely to be made by people who are committed to the null hypothesis, 

meaning they must have evidence against it to abandon it, whereas people who are committed to 

the alternative hypothesis would reject the null on the basis of a small p-value. The results of the 

discussion suggested that most of the teachers exhibited a commitment to the null hypothesis (the 

initial assumption that the population was evenly split), whereas in standard hypothesis testing, 

one’s commitment is to the alternative hypothesis. That is, it is the alternative hypothesis that 

one suspects is true, and the logic of hypothesis testing provides a conservative method for 

confirming it. 

Toward the end of the discussion, Pat proposed a way of thinking about observed events that 

led Henry and John to eventually concur with him that the data suggested that the chance of 

getting samples of 60% or more was sufficiently rare so as to reject the assumption that the 

population was evenly split. In this discussion, Pat proposed an analogy between taking a sample 

and flipping a pen. 

1. Pat Suppose I tell you that while you were talking, I flipped my pen and it landed on its tip 
and stayed there. 

2. John I will say do that 1000 more times, and I’ll bet you it won’t happen once. 
3. Pat Well. I’m not going to do that. But I’m asking you, do you believe it? 
4. Linda Sure. 
5. Betty Sure, there is a chance that could happen. 
6. Pat Do  you believe it? 
7. Sarah Which tip? 
  (Terry &Alice Laugh.) 
8. Pat The pointy tip. 
9. Sarah No. 
10. Henry Do I believe you? If I know nothing about you, I would not believe you. But if I have a 

personal relationship with you, and I know that you have a tendency to tell the truth, and 
I know that it could happen, it’d be rare but it could happen, I might have a tendency to 
believe you. But if you have a equal likelihood of lying to me, then I would say that I 
don’t believe you. 

11. Pat Why not? 
12. Henry  Because it’s very rare, very very rare. 
13. John It’s a little different from this situation. 
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14. Pat How can we talk about one instance? You are making an inference about what I do over 
the long run. 

15. Henry It could happen. 
16. Pat  It could happen 
17. John But the difference is this: if you tell me you flip a coin 10 times, all 10 times it came up 

with heads, I don’t believe you. But if you tell me 6 times it came up with the heads, 
then I could believe you. Because getting 6 heads is a lot more likely than getting 10 
heads. 

18. Pat Now, the point is that there is an implied, you are using a tacit decision rule. You are 
discounting a claim using a tacit decision. That tacit decision rule has to do with how 
rare, how frequently would you expect this thing that I claim happening could happen. 
See, essentially, you are saying, I know that really could happen, but my decision is to 
say, I don’t believe it. I imagine the relative frequency to be exceeding a certain 
threshold.  

19. Pat: Now, suppose that you look at my pen, and it is landing on its tip, then what would you 
say? 

20. Henry: I would have to investigate the pen, the wire. I still would doubt it. 
21. Pat : Oh, no, you are looking at it. 
22. Henry: I have to investigate, seeing is not validity. 
23. John: We haven’t been told, maybe some of the constraints of the experiment were left out. 
24. Pat: All right. In other words, you assumed the way it worked. You are saying it couldn’t 

have worked the way you assumed it would. Something is different. 
25. Henry: Something is different. My assumption was wrong. 
26. Pat: Yeah, so then what you are doing is that, saying that, “Gee, this happened. But I thought 

I know the way these things work. And if they in fact work the way I assume they do, 
this will be extremely rare, and if it does happen, then probably it doesn’t work the way 
I assume it works.” See there is reverse logic to it? 

27. Henry : Right. 
28. Pat: Do you all see now that what that entails is hypothesis testing? 
29. John: Yeah. 
30. Pat : So we’re deciding whether or not to reject the null hypothesis5. 
31. John : Right. 
32. Henry: In which we would have. 
33. Terry: I probably would. 2.9%, that’s pretty unlikely. 

In this rather extended exchange, Pat again highlighted the logic of hypothesis testing: 

When a sample occurs, and the likelihood of the sample’s occurrence is rare under a given 

assumption, we conclude that either 1) the assumption is right, but the sample is not randomly 

chosen, or 2) the sample is randomly chosen, so the given assumption is not warranted. Pat 

expressed one variation of this logic: If 1) a sample occurred, 2) the likelihood of the sample’s 

                                                

5 Please note that here Pat explicitly pointed out the equivalence of “the initial assumption” and “the null 
hypothesis”. 
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occurrence is rare under a given assumption, and 3) the sample is randomly chosen, then we 

conclude that the given assumption is not valid. The discussion ended with John and Henry 

agreeing explicitly with the logic of hypothesis testing and the others at least suppressing any 

disagreement. 

We asked this question in the first end-of-week interview to see the extent to which the 

teachers had internalized the logic of hypothesis testing. 

The Metro Tech Alumni Association surveyed 20 randomly-
selected graduates of Metro Tech, asking them if they were 
satisfied with the education that Metro gave them. Only 60% of the 
graduates said they were very satisfied. However, the 
administration claims that over 80% of all graduates are very 
satisfied. Do you believe the administration? Can you test their 
claim?  

This interview question presents a typical hypothesis testing scenario: There was a stated claim 

about a population parameter, namely that 80% of all graduates of Metro Tech were very 

satisfied with the education that Metro gave them. A random sample of 20 graduates found that 

only 60% of them said they were satisfied. The implied question was, “Are samples like or more 

extreme than 60% sufficiently rare, assuming the administration’s claim, to reject that claim?” 

 All the teachers noticed the large difference between 60% and 80%, and they believed 

the small sample size was the reason for it. They had different opinions about whether they 

believed the administration’s claim. Nicole and Betty said they did not believe it. Betty believed 

that there need to have more samples to back up the claim.   Henry, Linda, Alice, and Sarah said 

they believed the claim.  Henry, Linda, and Alice based their choice on their belief that despite 

the sample results being 60%, the population percent being 80% was still possible. Sarah, 

however, did not think that 80% was a claim about the population percent. Rather, she thought it 

was a sample result, and it was self-evident to her that two samples should produce different 
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results. John and Lucy were hesitant in making a decision, with Lucy leaning towards not 

believing the administration because the claimed figure was much bigger than the sample result.  

In short, we see strong evidence of teachers employing a non-distributional way of thinking 

about the scenario, and this opened each of them to using a logic of evidence rather than a logic 

of hypothesis testing. 

When asked how they would test the administration’s claim, only Henry proposed to use 

hypothesis testing. The methods other teachers proposed fall into the following categories: 

1. Take many more samples of size 20 from the population of graduates (John, Nicole, 
Sarah, Alice) 

2. Take a larger sample from the population of graduates (Alice) 
3. Take one or a few more samples of size 20 from the population of graduates (Lucy, 

Betty) 
4. Survey the entire population (Linda) 

In sum, teachers’ responses on this interview question suggested that they did not employ 

spontaneously the method of hypothesis testing for the situation. Instead, 7 of 8 teachers 

proposed methods of investigation that presumed that they would have access to the population, 

and none of these methods were well-defined policies that would allow one to make consistent 

judgment. This led to our conjecture that even though the teachers might have understood the 

logic of hypothesis testing at the end of the seminar, they did not understand its functionality. In 

other words, they did not know the types (or models) of questions that hypothesis testing was 

created for, and how hypothesis testing became a particularly useful tool for answering these 

types of questions. 

Overall, the results revealed that the majority of teachers embraced conceptions of 

probability and logic of hypothesis testing that will support not using it in ways that its inventors 

intended. Only one teacher conceptualized unusualness within a scheme of repeated sampling, 

and thus the others did not incorporate the idea of a distribution of sample statistics in their 
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thinking of statistical inference. Most of the teachers did not understand the logic of hypothesis 

testing, or if they understood it they thought it was irrelevant to settle competing claims about a 

population parameter. This was revealed in the non-conventional decisions they made when a 

collected sample fell into the category of “unusual” in light of an assumption. These decisions 

revealed their commitment to a logic of evidence, as distinct from a logic of hypothesis testing, 

in examining the viability of the null hypothesis. Beyond the complexity of hypothesis testing as 

a concept, we conjecture that part of teachers’ difficulties was due to their commitment to 

evidence-based, as in legal, argumentation with regard to accepting or rejecting a claim. Thus, 

even when they came to understand the logic of hypothesis testing, that logic itself was not 

relevant to making decisions about viability of claims. This conjecture was supported by the 

interview data where only one teacher proposed hypothesis testing as the method of 

investigation. 

Conclusions and Implications 

The results of our intervention revealed that teachers’ difficulty in understanding and employing 

statistical inference came in part from their compartmentalized knowledge of probability and of 

statistical inference. That is, their conceptions of probability (or unusualness) were not grounded 

in the conception of distribution, and thus did not support thinking about distributions of sample 

statistics and the probabilities (i.e., proportions of values) that a statistic is in a particular range. 

The implication of this result is that instructions on probability and on statistical inference must 

be designed with the principal purpose that it helps one understand probability statistically and to 

understand statistics probabilistically. This purpose might be achieved by designing instruction 

so that teachers develop the capacity and orientation to think in terms of distributions of sample 

statistics, which hopefully would have the salutary effect of supporting a stochastic, 
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distributional conception of probability, and lead to their inclusion of distributions of sample 

statistics in their understanding of statistical inference.  We suspect that teachers who value 

distributional reasoning in probability and who imagine a statistic as having a distribution of 

values will be better positioned to help students reason probabilistically about statistical claims.  

We also learned that part of the teachers’ difficulties in understanding hypothesis testing 

was a result of their logic of argumentation, namely the belief that rejecting a null hypothesis 

means to prove it is wrong. The implication of this result is that understanding hypothesis testing 

entails a substantial departure from teachers’ prior experience and their established beliefs in 

regard to reasoning about data. To confront these hidden beliefs, we could, for example, design 

activities according to the framework in Figure 1 to have teachers consider the implications of 

each choice they might make in regard to claims and evidence. In having teachers reflect on the 

tacit beliefs behind non-conventional choices, we might help them come to internalize the logic 

of hypothesis testing so that it becomes, for them, a natural way of thinking. 

Finally, we note that while these teachers' difficulties with hypothesis testing resembled 

those had by high school students, they differed in important respects. Both groups held logics of 

argumentation that resembled a legal argument, but students had greater difficulty forming an 

image of "take a sample" as a stochastic process. The teachers understood a table of sample 

outcomes (one that we had also used with students) as portraying a distribution more readily than 

did students, yet the two groups applied similar types of reasoning when judging the viability of 

claims about the population. This suggests to us that the problem of helping teachers help 

students understand statistical inference is doubly difficult. Not only must teachers understand 

students' difficulties and ways they might overcome them, they must adjust their own 

understandings to support a logic of argumentation that is alien to them. 
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Appendix I 

Pre-seminar interview 

Prelude 

I am going to ask you some questions that are based on the reading we asked you to do. Please 
do not think that we expect you to be able to respond immediately with answers to them or to 
have mastered the ideas they address. Rather, we need to have a sense of what you understand 
about these ideas ahead of the workshop so that we can determine how your thinking and 
understandings were influenced by participating in it. 

So, please answer these questions to the best of your ability, but also be assured that we are not 
judging your answers. 
General questions 

(Teaches were given an excerpt from Moore’s Basic Practice of Statistics on samples, sample 
means, and variability of the sample mean.) 

1. What was this excerpt about? 
2. What are your impressions of it? 
3. What, in your opinion, are the important ideas in it? 
4. What in this excerpt would you anticipate that students might have trouble with? 
5. Are there any parts of the excerpt that, in your opinion, are problematic? 

Particular questions 

6. On page 292 in Example 4.23 the author says, 

“Buying several securities rather than just one reduces the 
variability of the return on investment. 

What is varying that its variability is reduced? 

What does “reduces the variability” mean? 

7. Please interpret the histogram on page 292. What is it showing? 

8. On page 295, Example 4.24, the author says, 

The fact that averages of several observations are less variable … 

a. What might this mean? 

b. The author also says, 

It is common practice to repeat a careful measurement several 
times and report the average of the results. 
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Does this mean that if I take one measurement of an object’s weight and you take 4 
measurements of its weight and calculate their average, then your average will be more 
accurate than my measurement? (Explain.) 

9. On page 294, the author says,  

“The sampling distribution of X  is the distribution of the values of 
X  in all possible samples of the same size from the population. 

Could you please explain what this is talking about? 

10. Problem 4.81 on page 301 makes these statements: 

a. The distribution of annual returns on common stocks is roughly symmetric, but 
extreme observations are more frequent than in a normal distribution 

b. Because the distribution Is not strongly nonnormal, the mean return over even a 
moderate number of years is close to normal. 

c. In the long run, annual real returns on common stocks have varied with mean 
about 9% and standard deviation about 28% 

d. Andrew plans to retire in 45 years and is considering investing in stocks 

e. What is the probability (assuming that the past pattern of variation continues) that 
the mean annual return on common stocks over the next 45 years will exceed 
15%? 

Please interpret these statements. 

11. Here is the author’s statement of the Law of Large Numbers: 

Draw observations at random from any population with finite 
mean µ. As the number of observations drawn increases, the mean 
X  of the observed values gets closer and closer to µ. 

a. Please explain what this statement says. 

b. Assume we are sampling from the females in Nashville, TN and that 
we calculate a sample’s mean height. 

- Yan collected a random sample of 50 females and calculated their 
mean height. 

- Luis collected a random sample of 100 females and calculated their 
mean height. 
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- Whose mean height is closer to the population mean (i.e., the mean 
height of all girls in the population)? 

c. If answer to (b)  is “Luis”: Suppose Luis’ sample contains 52 females. Would you 
say the same thing? 
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Appendix II 

Mid-seminar Interview 

Question 1. 

The Metro Tech Alumni Association surveyed 20 randomly-selected graduates of Metro Tech, 
asking them to if they were satisfied with the education that Metro gave them. Only 61% of the 
graduates said they were very satisfied. However, the administration claims that over 80% of all 
graduates are very satisfied 
 
Do you believe the administration?  
Can you test their claim? 

 
 
Question 2. 

A Harris poll of 535 people, held prior to Timothy McVeigh’s execution, reported that 73% of 
U.S. citizens supported the death penalty. Harris reported that this poll had a margin of error of 
±5%. 
 
Please interpret “±5%. 
How might they have determined this? 
How could they test their claim of “± 5%”? 
 
Question 3 

Here is a partial data display of information gathered by the US News and World Report in 1997 
on the country’s top colleges. 
TopColleges

=

Co l l ege Reputat i… AcceptR… Retent ion G radRate B randVa l C l assesUnder20 C l a s sesOve r50

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

Allegheny U. (PA) 2.6 0.57 0.84 41 0.36 0.13

American U. (DC) 2.9 0.79 0.85 0.7 43 0.42 0.03

Andrews U. (MI) 1.8 0.65 0.66 0.47 39 0.68 0.04

Arizona State U. 3.3 0.79 0.71 0.48 19 0.28 0.18

Auburn U. (AL) 3.1 0.86 0.8 0.65 67 0.4 0.08

Ball State U. (IN) 2.5 0.92 0.7 0.54 32 0.35 0.09

Baylor U. (TX) 3.3 0.83 0.7 149 0.42 0.11

Biola U. (CA) 1.8 0.88 0.77 0.55 252

Boston College 3.5 0.39 0.94 0.85 377 0.41 0.09

Boston U.1 3.4 0.55 0.84 0.7 125

Bowling Green State U… 2.6 0.86 0.76 0.6 26 0.49 0.05

Brandeis U. (MA) 3.7 0.54 0.9 0.82 356 0.62 0.1

Brigham Young U. Prov… 3.2 0.71 0.87 0.67 149 0.34 0.17  
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Different collegiate associations, such as NCAA conferences, were interested in developing a 
measure of overall association stature (you can probably guess which ones were for or against 
this!). 
 
Dr. Robert Horness of Colgatte University thought that the formula  

mean(ReputationRating)× mean(BrandValueRating) 

might be useful in this regard. 

A new association of 23 schools announced a score of 1300 on the Horness scale. Is that good? 

(Let the teacher give an initial response. If s/he says something equivalent to “I need to see the 
distribution of measures,” then use Fathom to produce a histogram.  

Question 4 

Mrs. Smithey conducted a computer simulation of collecting 100 samples of size 25 from a 
population having 32% with characteristic X. A student wondered out loud what the point of 
doing the simulation is when you already know the answer! 

Please comment.  

What is the purpose of using a simulation to make collections of sample statistics? 

 

Question 5 

Which of each pair is the more fundamental idea: 

Idea 1 Idea 2 

Equation ............................................ Function 

Sampling Distribution........................ Distribution of Sample Statistics 

Parameter........................................... Statistic 

 


