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Abstract 

The National Mathematics Panel's recommendations on curricular content are 

based on professional judgment of the panel members, not on research on learning 

and teaching algebra. As such, the panel's recommendations must be viewed in 

light of the political and ideological perspectives from which they were made. 

The recommendations are also examined from the perspective that inattention to 

meaning is a root problem of mathematics teaching and learning, yet the report 

does not consider issues of mathematical meaning or their implications for 

reform. 
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President Bush directed the National Mathematics Advisory Panel “to use the best 

available scientific evidence” to devise a report addressing, among other things, 

“instructional practices, programs, and materials that are effective for improving 

mathematics learning” and “ideas for strengthening capabilities to teach children 

and youth basic mathematics, geometry, algebra, and calculus and other 

mathematical disciplines” (National Mathematics Advisory Panel, 2008a, p. 7)1. 

As I argue below, the Panel’s response falls short of the President’s charge in two 

ways. First, the report fails to produce a trustworthy argument for the curricular 

recommendations it gives. Second, the recommendations themselves address only 

surface aspects of the problems in American mathematics education. 

Trustworthiness 

The Panel defined “best available scientific evidence” to mean results gotten from 

experimental studies that test hypotheses, use random selection and randomized 

assignment to treatments, and that have been replicated (MPFR, p. 81). Though 

the Panel gave two standards of quality – one for evidence and one for effects of 

interventions, they are both made from an experimental design perspective. It is 

instructive that the Panel’s quality of evidence scheme has a “suggestive 

evidence” category, but to be suggestive a study must still use statistical controls. 

Moreover, to be above “low quality” as an investigation of effect a study must 

have at least a “moderately large” probability sample (MPFR, pp. 83-85). So, by 

the Panel’s definitions, most qualitative studies, especially teaching experiments 

and design experiments, fall under the Panel’s low-quality category and cannot 
                                                
1 I will use “MPFR” to refer to the math panel final report.  
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provide even suggestive evidence for future research. As a result, the report is not 

informed by a large portion of basic mathematics education research that 

investigates fundamental processes of classroom learning and teaching. This last 

point is expanded in a later section. 

The MPFR conforms for the most part to its standards when it does cite a 

source of evidence when making an evidence-based claim or recommendation. 

Unfortunately, the panel does not refrain from taking stances for which it has no 

empirical evidence that meets its standard. In particular, the report of the Task 

Group on Conceptual Knowledge and Skills (National Mathematics Advisory 

Panel, 2008b)2, which developed Chapter 4 (Curricular Content), stated, “It 

should be noted that there is no direct empirical evidence to support the 

effectiveness of any lists discussed in this section for success in algebra course 

work” (TGCKS, p. 31). The Task Group nevertheless went on to construct 

recommendations that were “guided by professional judgment” (TGCKS, pp. ix, 

x, 2, 5, 15, 31, 40). However the Math Panel’s final report was less forthcoming 

in regard to the TGCKS’s reliance on professional judgment, stating 

A small number of questions have been deemed to have such 

currency as to require comment from the Panel, even if the 

scientific evidence was not sufficient to justify research-based 

findings. In those instances, the Panel has spoken on the basis 

of collective professional judgment, but it has also endeavored 

                                                
2 I will refer to the task group’s report as TGCKS 
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to minimize both the number and the scope of such comments. 

(MPFR, p. 12) 

Despite the MPFR’s claim of having minimized both the number and scope of 

comments based on “collective professional judgment”, the curricular content 

group’s recommendations, all of which were arrived at by professional judgment, 

are in Chapter 4 of the final report, and there are no other recommendations in 

that chapter. However, the phrase “professional judgment” appears just once in 

Chapter 4. 

It is important to understand the significance of the Panel’s deep reliance 

on the TGCKS’s professional judgment in formulating its curricular 

recommendations. First, doing so belied the Panel’s own standards of quality and 

evidence and its claim that it would make evidence-based recommendations. 

Second, while the Panel chose to rely on some of its members’ professional 

judgment in formulating its recommendations, it consciously chose to ignore the 

professional judgment of more reform-minded experts who had perspectives that 

differed from theirs. 

Moreover, the TGCKS heavy reliance on professional judgment to make 

its recommendations calls into question its members’ qualifications for exercising 

such judgment. For example, what biases did they have? How familiar were they 

with, and how well did they understand, the basic research literature on 

mathematics teaching and learning? The Panel’s deep reliance on professional 

judgment in formulating its curricular content recommendations, without a 

transparent effort to represent competing viewpoints, leaves the Panel open to the 
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charge that it might be composed of the most politically connected members of 

the community, but not the most knowledgeable regarding mathematics learning, 

teaching, and curricula.  

Chapter 4 is written to convey a solid scholarly grounding when often 

there is none. For example, the claim, that “fractions, when properly taught, 

introduces students to the use of symbolic notation and the concept of generality” 

(TGCKS, p. 41) seems innocuous. However, in the TGCKS report, the warrant 

for this claim comes from one reference to one expository article by one of the 

panel’s members (Wu, 2001). The reference is omitted from the MPFR, however, 

giving the statement the appearance that it is a straightforward generalization 

from literature that the Panel found to support it. Now, one might say that 

literature does exist that suggests that fractions, properly taught, is a site where 

students can learn to reason generally, but the Panel did not find it. Rather, it 

expressed its opinion and hid the fact that it was expressing ungrounded opinion. 

That is, the Panel’s violation of its own evidence standards in formulating its 

recommendations creates the impression that they picked their evidence to suit 

their biases.  

The filter that the TGCKS applied to the research literature on 

mathematics learning, teaching, and curricula produces an ironic result. By 

focusing only on investigations of efficacy or effect that passed through their self-

defined evidence and quality standards, they do not cite a single result from basic 

research in mathematics education. At the same time, they found that studies of 

effect and efficacy of instructional or curricular approaches that meet their 
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standards are rare. The net effect, then, is that Chapter 4 of the final report is 

informed neither by basic research in mathematics education nor is it grounded in 

high quality studies of efficacy and effect. Put another way, the Panel’s content 

recommendations convey neither a reason for believing that they will work 

(because they are uninformed by any mechanisms from basic research by which 

they might be expected to work), nor do they inspire confidence that they will be 

effective (because of the paucity of experimental comparisons). 

Had the Panel adopted a more inclusive attitude toward literature it could 

examine, it would have found a plethora of important issues it should address—in 

students’ preparation for algebra and in the very nature of algebra for which they 

should be prepared. Regarding students’ preparation for algebra it is well known 

that many students do not make a transition from arithmetic to algebra. The 

literature on epistemological and cognitive obstacles to mathematical learning 

makes clear that the way a student understands a particular idea can enable or 

obstruct their learning of ideas that depend upon it (Booth, 1981; Carlson, 1998; 

Harel, 1998; Herscovics, 1989; Herscovics & Linchevski, 1994; Schneider, 1991; 

Sierpinska, 1992). For example, students in U.S. elementary grades rarely write 

arithmetic sentences to represent a situation, whereas Russian, Chinese, and 

Japanese students do (Fuson, Stigler, & Bartsch, 1989). The rarity of this practice 

in U.S. elementary grades has the effect that when students move from arithmetic 

to algebra they have developed a predisposition to understand expressions as 

something they should calculate rather than to understand them as representations 

to interpret (Herscovics & Linchevski, 1994; Kieran, 1992; Linchevski & 



Thompson  On Professional Judgment-6 

 

Herscovics, 1996). Regarding the nature of algebra, it is well known that a strong 

focus on algebra as symbol manipulation has the effect that students rarely 

develop the idea that variables represent quantities whose values vary, which has 

long-term negative effects for students success in calculus and analytic geometry 

(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Oehrtman, Carlson, & Thompson, 

2008; Schneider, 1991, 1992; Thompson, 1994a; Trigueros & Jacobs, 2008). 

 Finally, it is important to note that the Final Report has a decidedly martial 

tone. By that I mean that it focuses on a need for students to exhibit specific 

correct mathematical behavior. The tension within the Panel over this issue is 

reflected in its discussion of whether to refer to algorithms, standard algorithms, 

or “the” standard algorithms (November 28, 2007 meeting transcript, pp. 115-120, 

168-170).  The “the” faction won—the Final Report always takes it as a primary 

goal that knowing an algorithm that produces correct results is not satisfactory. 

Rather, students must learn specific (“the standard”) algorithms in arithmetic.  

 In this same regard, there is a stark contrast between the tone of the 2008 

Japanese Course of Study (“COS“; Japan Ministry of Education, 2008) and the 

MPFR’s very martial tone. The COS is quite concerned with children’s thinking; 

the MPFR and the TGCKS report are more concerned with children’s behavior. A 

comparison of the MPFR and TGCKS report with the Japanese COS also 

highlights the Panel’s inattention to the role of meaning in learning mathematics. 

By “meaning” I do not mean “definition”. Rather, I use “meaning” in the sense of 

that which comes to mind to make a word, phrase, observation, etc. sensible and 

comprehensible. Anyone familiar with the Japanese K-9 curriculum knows the 
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importance it gives to students’ construction of meaning as the basis for skill. The 

comparison also highlights an internal contradiction in the Panel’s report—it calls 

repeatedly for greater coherence in the mathematics curriculum while seemingly 

being unaware that coherence is a property of a body of meanings, not a property 

of a list of topics. Thus, the TGCKS provides no guidance to the nation about how 

to increase the likelihood that mathematics instruction and curricula will end up 

with students creating coherent mathematical meanings during their schooling. 

Recommendations for Curricular Content 

 With the above said about the weak warrant given for the 

recommendations in Chapter 4 and about the strong skills-without-meaning 

perspective taken by the Panel, there is little to say about the substance of Chapter 

4’s content recommendations. They revolve around a list of 27 “major topics of 

school algebra” and a list of 11 “benchmarks” for what the Panel considers 

“critical foundations” for school algebra. Unfortunately, the list of major topics is 

as informative about what the Panel envisions being taught as is a textbook’s table 

of contents. Likewise, the benchmarks are little more than statements that students 

will be proficient with the procedures that are taught at a particular grade level. 

Anyone looking for guidance on actually implementing the Panel’s vision of 

preparing students for algebra will not find it in this report.  

One would hope that the TGCKS report could have provided insights not 

included in the Panel Report. It does not. The one area that showed promise but 

remained unfulfilled was the TGCKS emphasis on the importance that students 
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develop strong facility with fractions. The MPFR stated the following 

recommendation. 

The curriculum should allow for sufficient time to ensure 

acquisition of conceptual and procedural knowledge of 

fractions (including decimals and percents) and of proportional 

reasoning. The curriculum should include representational 

supports that have been shown to be effective, such as number 

line representations, and should encompass instruction in tasks 

that tap the full gamut of conceptual and procedural 

knowledge, including ordering fractions on a number line, 

judging equivalence and relative magnitudes of fractions with 

unlike numerators and denominators, and solving problems 

involving ratios and proportion. The curriculum also should 

make explicit connections between intuitive understanding and 

formal problem solving involving fractions. (p. 29) 

Few people in mathematics education would disagree with this 

recommendation. But preceding it is a sequence of paragraphs talking about the 

necessity that children be able to “quickly and easily retrieve basic number facts” 

(MPFR, p. 28), which sets an unfortunate tone for interpreting the 

recommendation, and about how little is understood about the relationship 

between “informal knowledge and the learning of formal mathematical fractional 

concepts and procedures” (MPFR, p. 28). This latter statement is not true. The 

complexities of this relationship are well understood and have been explicated 

thoroughly (Ball, 1993; Cramer, Post, & delMas, 2002; Empson, Junk, 
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Dominguez, & Turner, 2006; Heller, Post, Behr, & Lesh, 1990; Mack, 2001; 

Norton, 2008; Sowder, Bezuk, & Sowder, 1993; Steffe, 2001; Thompson & 

Saldanha, 2003; Tirosh, 2000). But this understanding did not show up in the 

literature that the Panel surveyed. The Panel would have served the nation well had 

it explained why this understanding has not affected the treatment of fractions in 

school texts nor the general psychological literature on fractions. 

Competing visions of school algebra and preparation for them 

It should be clear that there is little chance that the MPFR will lead to 

improvements in students’ learning of arithmetic or algebra. Its emphasis on 

proficiency with standard procedures in arithmetic and its lip service to 

“conceptual understanding” will do little to address the fundamental problem of 

mathematics education in the United States—namely, the systematic inattention to 

students’ development of meanings that will support an interest in mathematics 

that results in taking more, and higher level, coursework.   

 A variety of sources suggest that incoherence and meaninglessness is a 

prominent feature of school mathematics in the United States. The Third 

International Mathematics and Science Study report of 8th-grade mathematics 

instruction in the United States, Germany, and Japan states this clearly. 

Finally, as part of the video study, an independent group of 

U.S. college mathematics teachers evaluated the quality of 

mathematical content in a sample of the video lessons. They 

based their judgments on a detailed written description of the 

content that was altered for each lesson to disguise the country 
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of origin (deleting, for example, references to currency). They 

completed a number of in-depth analyses, the simplest of 

which involved making global judgments of the quality of each 

lesson’s content on a three-point scale (Low, Medium, High). 

Quality was judged according to several criteria, including the 

coherence of the mathematical concepts across different parts 

of the lesson, and the degree to which deductive reasoning was 

included. Whereas 39 percent of the Japanese lessons and 28 

percent of the German ones received the highest rating, none of 

the U.S. lessons received the highest rating. Eighty-nine 

percent of U.S. lessons received the lowest rating, compared 

with 11 percent of Japanese lessons [and 34% of the German 

lessons]. (Stigler, Gonzales, Kawanaka, Knoll, & Serrano, 

1999, p. iv)  

The TIMSS video sampling technique drew representative samples from each of 

its participating countries (Stigler et al., 1999). That no U.S. lesson’s content 

received the highest quality rating from these mathematicians and that 89% of the 

U.S. lessons’ content received the lowest quality rating suggests a general 

inattention in U.S. instruction to meaning in general, let alone meanings that 

students develop. Instead, U.S. lessons tended to focus on having students do 

things and remember what they had done. There was little emphasis on having 

students develop robust and generalizable meanings. However, lack of meaning in 

instruction is a problem that cannot be addressed by a revised list of arithmetic or 
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algebra topics. It will require a systemic re-orientation toward students’ long-term 

development of usable and powerful meanings and to an increase in their 

proclivity to reason with them. To attain a focus on students’ development of 

powerful mathematical meanings and using them in their reasoning, which 

includes coming to a consensus on what accomplishing it looks like, will require 

sustained political and intellectual leadership. Unfortunately, the MPFR provides 

neither one. Whether all students learn the same computational algorithms is a 

distraction.  

The MPFR conveys a stance that meaning is not relevant. How is this so? 

By, for example, speaking of solving equations as a necessary skill at which 

students must become proficient, but not raising the importance that students 

develop meanings for equations —“Where do equations come from? Why are 

they important? What, precisely, do they represent?”—and develop meanings for 

equivalent expressions and equivalent equations (Ernest, 1987; Kirshner, 1989). It 

stresses the importance of linear functions, but not the importance of establishing 

coherent understandings of direct variation and constant rate of change as a 

foundation for them (Clagett, 1968; Confrey, 1994; Harel, Behr, Lesh, & Post, 

1994; Hart, 1978; Karplus, Pulos, & Stage, 1983; Thompson, 1994b). It stresses 

the importance of proficiency with standard arithmetic algorithms, but does not 

admit the importance of, or subtleties of, having students develop orientations to 

“making sense” of problems and situations in which conventional procedures 

might be used (Cobb et al., 1991). It does not recognize that a single-minded 

focus on proficiency is likely one of the major sources of the mathematics anxiety 
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that is rampant in our population (Bessant, 1995; DeBellis & Goldin, 2006; 

Skemp, 1979; Wilensky, 1997). It fails to recognize the importance of what Harel 

(1998) has called “the necessity principle,” the principle that students learn 

mathematics more meaningfully when ideas are introduced to satisfy an 

intellectual need for them, and that such needs are engineered by thoughtfully 

crafted curricula and instruction. For example, were the question, "Could we 

rewrite this expression so that we know it represents the same number, but does 

more useful work?" then properties such as distributivity can be made necessary 

in a context. The MAA report Algebra as a Gateway to a Technological Future 

(McCallum et al., 2007) does a nice job of making this argument. 

Finally, the vision of algebra reflected in the MPFR content 

recommendations is a skills-based foundation for advanced symbolic 

manipulation and abstract algebra (especially the algebra of polynomial forms). It 

completely ignores algebra as a preparation for calculus, which would entail 

strong emphases on variable as varying magnitude (Trigueros & Jacobs, 2008), 

covariation and function (Carlson et al., 2002; Oehrtman et al., 2008), rate of 

change and accumulation (Confrey & Smith, 1995; Thompson & Silverman, 

2008), and modeling (Gravemeijer, Cobb, Bowers, & Whitenack, 2000; Lehrer, 

Schauble, Carpenter, & Penner, 2000; Smith, Haarer, & Confrey, 1997; 

Verschaffel, De Corte, & Vierstraete, 1999). Even successful university calculus 

students have difficulty solving problems that depend upon understanding ideas 

variable as varying magnitude and function as a relationship between variables 

(Carlson, 1998; Selden, Mason, & Selden, 1994; Selden, Selden, Hauk, & Mason, 
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2000; Selden, Mason, & Selden, 1989). All these examples point to the 

importance that the specific meanings that students create for important ideas 

involving foundational ideas have significant long-term repercussions in their 

mathematical development. 

Most of the studies cited here are qualitative studies or have small samples 

that were not selected at random. They nevertheless are, as a whole, suggestive 

that the TGCKS focus on skills is misplaced. For the TGCKS to use the literature 

I cited, however, would have required that its members know and value it. With a 

few exceptions there is no evidence that they did. Instead, they relied on a 

Defense Department group to sift their literature for them. It is thus disappointing 

that the MPFR missed a once-in-a-generation opportunity to address foundational 

problems in the nation’s mathematics education. Instead, it gives untrustworthy 

arguments for its curricular recommendations and the recommendations 

themselves address only surface aspects of the problems in American 

mathematics education. 

Finally, I should point out that most of the studies I’ve cited in criticism of 

the MPFR and the recommendations created by the TGCKS are, according to the 

Panel’s standards of evidence and quality, weak (or no) evidence and low quality. 

There is no doubt that research in mathematics education needs more 

experimental studies that test hypotheses and add to theory confirmation. 

However, the funding has never been adequate to support both research into basic 

mechanisms of learning and teaching and to support large scale, randomized 

experimental studies. 
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