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Abstract 

Shulman (1986, 1987) coined the term pedagogical content knowledge (PCK) to address what at 

that time had become increasingly evident – that content knowledge itself was not sufficient for 

teachers to be successful. Throughout the past two decades, researchers within the field of 

mathematics teacher education have been expanding the notion of PCK and developing more 

fine-grained conceptualizations of this knowledge for teaching mathematics. One such 

conceptualization that shows promise is mathematical knowledge for teaching – mathematical 

knowledge that is specifically useful in teaching mathematics. While mathematical knowledge 

for teaching has started to gain attention as an important concept in the mathematics teacher 

education research community, there is limited understanding of what it is, how one might 

recognize it, and how it might develop in the minds of teachers. In this article, we propose a 

framework for studying the development of mathematical knowledge for teaching that is 

grounded in research in both mathematics education and the learning sciences. 

 

Key Words: Mathematical Knowledge for Teaching; Pedagogical Content Knowledge; 
Mathematics Teacher Education
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Toward a Framework for the Development of Mathematical Knowledge for Teaching 

 

It is widely accepted that teachers of mathematics need deep understanding of 

mathematics (Ball, 1993; Grossman, Wilson, & Shulman, 1989; Ma, 1999; Schifter, 1995). 

However it is axiomatic that teachers’ knowledge of mathematics alone is insufficient to support 

their attempts to teach for understanding. Shulman (1986) coined the term pedagogical content 

knowledge (PCK), specific content knowledge as applied to teaching, in part, to address what at 

that time had become increasingly evident – that content knowledge itself is not sufficient for 

teachers to be successful. Pedagogical content knowledge is knowledge that lies at the 

confluence of content knowledge, knowledge of students’ thinking (the understandings they 

bring to a particular class or lesson and how it can be capitalized upon), and knowledge of 

mathematics education and pedagogy (e.g., curriculum, particularly difficult concepts, and 

effective images and instructional aids).   

Throughout the past two decades, researchers within the field of mathematics teacher 

education have been expanding the notion of PCK through the developing of more fine-grained 

conceptualizations of this knowledge for teaching mathematics. For example, Leinhardt and 

Smith (1985) highlight the importance of teachers’ conceptual understandings of mathematics. 

Ball (1990), Ball and Bass (2000) and Thompson and Thompson (1996), note that teaching for 

understanding requires special mathematical knowledge for teaching (MKT).  

Ball and her colleagues (Ball, Hill, & Bass, 2005; Ball, 1993; Ball, 2007; Ball & 

McDiarmid, 1990) have attempted to answer the question “what do teachers do in teaching 

mathematics, and in what ways does what they do demand mathematical reasoning, insight, 

understanding, and skill?” (p. 17). Their pioneering work has succeeded in identifying various 
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examples of special ways in which one must know mathematical procedures and representations 

to interact productively with students in the context of teaching (Ball et al., 2005; Ball & Bass, 

2003; Hill & Ball, 2004; Hill, Rowan, & Ball, 2005). They have also demonstrated that 

conceptual demands of teaching mathematics are, in fact, different than the mathematical 

understandings needed by other practitioners of mathematics (Ball, 1990; Ball, 1991). Others 

have shown that the mathematical knowledge needed for teaching mathematics is different from 

the mathematical knowledge taught in university mathematics classes (Kahan, Cooper, & 

Bethea, 2003). Further, Ball and her colleagues have succeeded in identifying a positive 

relationship between mathematical knowledge for teaching, as assessed by their instrument for 

measuring it, and student achievement (Hill et al., 2005). 

Ball and her colleagues have focused on special ways teachers must know the 

mathematics that is visible during instruction, such as representations created during a 

computation and issues associated with the standard definitions of terms. Their focus is on the 

ways teachers treat this visible mathematics that are sensitive to students’ understanding of it. 

We accept this focus as essential for identifying and sharing best practices of teaching. But we 

also ask the question, “What mathematical understandings allow a teacher to act in these ways 

spontaneously? How might these understandings develop?” For example, Thompson (2008) 

identifies special ways of understanding the idea of angle measure that are entailed in helping 

students see that degree measure and radian measure are intrinsically related in the same way 

that centimeters and inches are. Our reason for this focus is pragmatic:  

If a teacher’s conceptual structures comprise disconnected facts and procedures, their instruction 

is likely to focus on disconnected facts and procedures. In contrast, if a teacher’s conceptual 

structures comprise a web of mathematical ideas and compatible ways of thinking, it will at least 

be possible that she attempts to develop these same conceptual structures in her students. We 
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believe that it is mathematical understandings of the latter type that serve as a necessary condition 

for teachers to teach for students’ high-quality understanding (Thompson, Carlson, & Silverman, 

2007, pp. 416-417).  

Our perspective entails a fundamentally different foci than Ball’s MKT: rather than 

focusing on identifying the mathematical reasoning, insight, understanding and skill needed in 

teaching mathematics, we focus on the mathematical understandings “that carry through an 

instructional sequence, that are foundational for learning other ideas, and that play into a network 

of ideas that does significant work in students’ reasoning” (Thompson, 2008, p. 1). While we 

feel these research foci and conceptualizations of MKT are complementary, we have chosen our 

foci based on the observation that students (at least in the U.S.), and therefore teachers, seldom 

experience coherence or generativity in mathematics (Stigler, Gonzales, Kawanaka, Knoll, & 

Serrano, 1999; Stigler & Hiebert, 1999) and that the work of teaching for understanding is 

predicated on coherent and generative understandings of the big mathematical ideas that make up 

the curriculum.   

Research on student learning of mathematics is frequently theoretically grounded in some 

variant of constructivism (radical, social, etc.). Thompson (2002) notes that rather than 

explaining phenomena or prescribing actions, such a theoretical foundation or background theory 

serves “to constrain the types of explanations we give, to frame our conceptions of what needs 

explaining, and to filter what may be taken as a legitimate problem” (p. 192). We contend that 

there is no commonly accepted theoretical framework for research in mathematics teacher 

education and, as such, a research base for prospective or practicing mathematics teacher 

development is emerging relatively slowly and is particularly sensitive to the influence of 

political agendas and current trends in related fields. The purpose of this article is to propose a 

theoretical framework that extends a constructivist perspective to include the development of 
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MKT and in doing so, we call for others to extend or contest it. We firmly believe that systemic 

improvement in teacher quality is not possible without such an orienting framework for the field.  

Extending the Construct of Pedagogical Content Knowledge 

We begin with a discussion of the related construct of pedagogical content knowledge for 

mathematics teaching. In a review of the literature on PCK, Gess-Newsome (1999) proposes two 

models: integrative and transformative. In the integrative model of PCK, the relevant knowledge 

bases used in teaching are developed separately (or possibly in an incorporated manner) and the 

knowledge becomes integrated through the act of teaching. Under the integrative model, PCK 

does not exist as a domain of knowledge in itself. As Gess-Newsome (1999) notes, “The task of 

the teacher is to selectively draw upon the independent knowledge bases of subject matter, 

pedagogy, and context and integrate them as needed to create effective learning opportunities” 

(p. 11). An expert teacher, then, is one with organized knowledge bases that can be quickly and 

easily drawn upon while engaged in the act of teaching. This model of PCK is problematic for 

many reasons, including the fact that students tend to exit teacher preparation programs unable to 

effectively integrate their pedagogical knowledge bases with their procedural and often 

incoherent mathematical understandings (Carpenter, Fennema, Peterson, & Carey, 1988).  

In this article, we adopt a model for the development of knowledge for teaching 

mathematics that is compatible with Gess-Newsome’s (1999) transformative model for PCK, but 

avoids the pitfalls of assuming independent knowledge bases from which teachers act. Gess-

Newsome describes PCK as the result of a fundamental transformation of knowledge and the 

creation of new knowledge that, though possibly similar to existing mathematical or pedagogical 

understandings, possesses distinct characteristics that were not present in their original form 

(Gess-Newsome, 1999). The transformative model of PCK is, in some sense, a response to the 
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shortcomings of traditional teacher education programs that employ the integrative model, which 

Mason (1999) described as “[...] often merely providing future and current teachers with an array 

of noncontextualized, unconnected activities, concepts, and demonstrations” (p. 277). In contrast, 

the transformative model necessitates purposefully integrated experiences that provide teachers 

with opportunities to extend and connect their mathematical and pedagogical understandings to 

create a “new” knowledge.  

We believe that this transformative model is a solid starting point for thinking about the 

development of MKT. Despite the fact that since inception of PCK “transformation” has been at 

the core (Wilson, Shulman, & Richert, 1987), there are not many examples of these 

transformations in the literature. In the following section, we introduce our proposed framework 

for understanding this transformation en route to the development of mathematical knowledge 

for teaching.  

Toward a Framework 

In our framework, we see a person’s MKT as being grounded in a personally powerful 

understanding of particular mathematical concepts and as being created through the 

transformation of those concepts from an understanding having pedagogical potential to an 

understanding that does have pedagogical power. As such, in this section, we describe what we 

mean by a personally powerful understanding, a pedagogically powerful understanding, and the 

proposed mechanism for the development of each. 

Simon (2002, October) introduced the idea of a key developmental understanding (KDU) 

in mathematics as a way to think about understandings that are powerful springboards for 

learning, and hence are useful goals of mathematics instruction. He describes a KDU as a 

conceptual advance or a “change in the learner’s ability to think about and/or perceive particular 
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mathematical relationships” (p. 993). Individuals who possess a KDU tend to find different, yet 

conceptually related ideas and problems understandable, solvable and sometimes even trivial. 

Thompson and Thompson (1996) propose that evidence of such understanding includes one’s 

ability to solve a variety of both directly and indirectly related problems as a consequence of 

their understanding (as opposed to having been explicitly taught how to solve such problems). 

Simon’s Key Developmental Understandings are an example of mathematical understandings 

“that carry through an instructional sequence, that are foundational for learning other ideas, and 

that play into a network of ideas that does significant work in students’ reasoning” (Thompson, 

2008, p. 1). 

Teachers who develop KDUs of particular mathematical ideas can do impressive 

mathematics with regard to those ideas, but it is not necessarily true that their understandings are 

powerful pedagogically; it is possible for a teacher to have a KDU and be unaware of its utility 

as a theme around which productive classroom conversations can be organized. Developing 

MKT, then, involves transforming these personal key developmental understandings of a 

particular mathematical concept to an understanding of: (1) how this key developmental 

understanding could empower their students’ learning of related ideas; and (2) actions a teacher 

might take to support students' development of it and reasons why those actions might work. 

This transformation requires what Piaget called decentering: “the uniquely human ability to 

differentiate one’s own point of view from the point of view of another” (Wolvin & Coakley, 

1993, p. 178) or attempting to see the world from the perspective of another. Viewed in this way, 

MKT is a second-order model: “[a model] observers may construct of the subject’s knowledge in 

order to explain their observations (i.e., their experience) of the subject’s states and activities” 

(Steffe et al., 1983, p. xvi). 
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A valid question to ask at this point is how might such understandings – both a personally 

powerful understanding (KDU) and MKT – develop in the minds of prospective and practicing 

teachers whose existing conceptions may or may not be powerful on a personal level. We believe 

that the answer to this question lies in the domain of cognitive psychology and note that Piaget 

proposed reflecting abstraction as the answer to similar questions (Piaget, 1977/2001; Steffe, 

1991). In the sections that follow, we argue that the development of a KDU involves a first 

abstraction via reflecting abstraction and the development of MKT involves a second abstraction 

(where the development of a KDU is the first-order abstraction). Here we are applying Piaget's 

notion of reflective abstraction to the prospective or practicing teacher. An example is useful in 

making clear some of the subtleties of our proposed framework; in the next section, we present a 

discussion and analysis of one well-known example of teachers’ mathematical development.  

Teachers’ Understanding of Area and Multiplicative Reasoning 

Simon (1995) discusses one segment of a course designed to help prospective elementary 

mathematics teachers develop a deep understanding of the elementary mathematics curriculum. 

This segment centered on multiplicative relationships and employed the concept of area as a 

vehicle for developing an understanding of multiplicatively defined quantities. Simon 

specifically noted “My purpose was to focus on the multiplicative relationships involved, not to 

teach about area … [and to foster] a solid conceptual link between their understandings of 

multiplication and their understandings of measuring area” (p. 123). Simon divided the class into 

groups, gave each group a small cardboard rectangle and proposed the following problem: 

Determine how many rectangles, of the size and shape that you were given, could fit on 

the top surface of your table. Rectangles cannot be overlapped, cannot be cut, nor can 

they overlap the edges of the table. Be prepared to describe to the class how you solved 

the problem (Simon, 1995, p 123). 
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Simon’s prospective teachers began the task by counting the number of cards that could be 

placed along the length of the table and the number of cards that could be placed along the width 

of the table and then multiplied the two quantities. During the whole class discussion that 

followed, Simon attempted to focus the conversation on the multiplicative relationships involved 

by asking his prospective teachers why they multiplied in this situation. Initial responses 

included “[…] ‘cause that’s the way we’ve been taught,” or “[…] it’s a mathematical law” 

(Simon, 1995, p. 124).  

Simon then presented Molly’s explanation for why she multiplied, namely that she was 

multiplying the number of groups by the number in each group and that when she was counting 

one way, she was counting one side, she was counting many rectangles in a group and when she 

was counting the other side, she was counting how many groups. It was clear to Simon that few 

of the prospective teachers had understood Molly’s explanation. Simon then posed the question 

“What instructional situation might afford other prospective teachers the opportunity to construct 

understandings similar to Molly’s” (p. 124) and hypothesized that he needed to pose tasks that 

focused on the relationships between the solution strategy (multiplying), counting the number of 

rectangles along the length and width, and the area of the table as covering the table with the unit 

of area and that problematized their view of area is simply the result of length times width. To do 

so, he devised two tasks: Double Counting and Turning Rectangles. The Double Counting 

problem focused on counting individual rectangles and counting groups of rectangles:  

Bill said, “If the table is 13 rectangles long and 9 rectangles wide, and if I count 1, 2, 3 […] 13 

and then again 1, 2, 3 […] 9, and then I multiply, 13 × 9, then I have counted the corner rectangle 

twice.” Respond to Bill’s comment (p. 125). 

In discussing his prospective teachers’ response to the Double Counting problem, Simon noted 

that many prospective teachers began to “insist that we are really counting rows and columns … 
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[though] I suspect that some of the [prospective teachers] have latched onto the notion of rows 

and columns in an unexamined way” (p. 126).  

The “Turned Rectangles” problem (see Figure 1), which had emerged in some of the 

prospective teachers’ initial work, asked the question of whether the orientation of the rectangle 

mattered and was envisioned as having potential for supporting prospective teachers’ 

understanding of multiplicatively related quantities such as area:  

Do you have to maintain the orientation of the rectangle for the second measurement or could (or 

should) you rotate the rectangle 90 degrees, using the same side of the rectangle to measure the 

both sides of the table.  

 

Figure 1: The “Turning Rectangles” problem. 

The prospective teachers’ responses to the Turned Rectangle problem were that the 

product of the two numbers would have no meaning (the product of 4 × 3 in Figure 1). Again, 

Simon posed an additional task to engage the prospective teachers in an activity from which he 

envisioned the multiplicative unit of area would emerge as a topic of discussion: 

Out in the hall I have two [rectangular] tables of different sizes. I used this method … where I 

measure across one way, turn the [rectangle], measure down the other way, and multiply… . 

When I multiplied using [this] method, on table A I got 32 as my answer and [when I measured] 
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table B [using the same rectangle and the same method], I got 22. Now what I want to know is, 

[having used] the method of turning the rectangle, is table A bigger, is table B bigger, or don't 

you have enough information from my method to tell? (Simon & Blume, 1994, p. 480)  

As the  prospective teachers worked on the extension, some noticed that turning the unit was 

similar to using it as a ruler (measuring the rectangle’s sides in units of the cardboard rectangle’s 

side length) and that multiplying the two measures amounted to covering the rectangle with 

squares (see Figure 2). 

 

Figure 2. Seeing the unit rectangle as a ruler by 
which one measures the length of each side, 

creating unit squares in the process. 

While Simon presented his analysis and discussion of these problems, in part, to 

articulate a model of teacher decision-making that he called the Mathematics Teaching Cycle and 

the constituent idea of a hypothetical learning trajectory, we presented his analysis for a 

different reason: The instructional setting presented was conceived by Simon as an environment 

propitious for prospective teachers’ development. Simon’s goal was, at least in part, to help his  

prospective teachers develop mathematical understandings of multiplication, and the vehicle for 

that development was a learning trajectory that included mathematical tasks designed to move 

the classroom conversation toward that goal. The critical question for our purposes is what 

mathematical understandings supported Simon’s ability to conceive of the mathematical tasks 

that would support teachers’ development along his hypothetical learning trajectory.  
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In thinking about the understandings that guided Simon’s actions, we contrast his actions 

with typical instructional activities designed to support the prospective teachers’ understanding 

of area as length times width: providing them with unit squares to cover the area and make the 

meaning of that calculation understandable. Piaget, Inhelder, and Szeminska (1948/1960) 

observed that while it is quite easy for children to cover an area and to multiply algorithmically, 

it is less straightforward for them to understand how two lines (length and width) produce an 

area when multiplied. They note that while squares are discrete quantities, length and width are 

lines that represent continuous quantities and that “it is impossible for children to understand 

how two lines (the length and width) can produce an area when multiplied” (Kamii & Kysh, 

2006, p. 108). The learner must construct their understanding of area as a multiplicatively related 

quantity derived from two linear measurements. We contend that this understanding of 

multiplicatively related quantities, which also applies to volume (area times length), force (mass 

times acceleration), distance (rate times time), etc., is a key developmental understanding.  

In the remaining sections, we unpack Simon’s use of his KDU to illustrate our contention 

that while developing these personally powerful mathematical understandings are important, 

they are not sufficient for conceiving environments where teachers (prospective or practicing) 

might develop similar KDUs. We need to explain teachers’ development of understandings that 

support their anticipation of a web of student understandings that comprise a KDU. It is in that 

respect that we present our theoretical framework.  

Characterizing  Mathematical Knowledge for Teaching 

Unpacking the Learning Environments 

Simon’s instruction in the prior example aimed at having teachers develop a new way of 

thinking about area and their experiencing a fundamental shift in their understanding of 
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multiplication – a KDU. An important question is how might someone develop an understanding 

of area as a multiplicative quantity when they already possess an understanding of area that is 

incompatible? As described previously, Piaget proposed reflective abstraction as the answer to 

how these new cognitive structures might develop (Simon, Tzur, Heinz, & Kinzel, 2004; Steffe, 

1991; Thompson, 1985). Reflective abstraction is a process by which new, more advanced 

conceptions develop out of existing conceptions and involves abstracting properties of action 

coordinations in order to develop new cognitive structures. To illustrate this process, we present 

an example of such new cognitive structures and the abstraction process in the context of 

mathematics teacher education.  

Simon noted that his class did develop a means of understanding the relationship between 

the larger rectangle’s area and “multiplying the length times the width”. With respect to this, one 

of the prospective teachers, Candy, commented,: “… it makes it confusing to try to look at the 

length times width. … You should really treat it as so many sets or so many groups, like nine 

groups …, thirteen groups of nine” (Simon, 1995, p. 126). This realization seemed to be the 

result of the  prospective teachers visualizing a number of copies of their rectangle covering the 

surface to be measured. Teachers who reason in this way are likely looking for similarities and 

difference between the objects themselves, or “draw[ing] … information from objects and from 

the material or observable characteristics of actions,” (Piaget, 1977/2001, p. 317) where, in this 

case, the action is understanding the characteristics of the collection. Piaget refers to this as 

empirical abstraction. Knowledge obtained through empirical abstraction, though it may be a 

transformation of previous knowledge, is not viewed as the development of new knowledge, 

because this is simply focusing on characteristics already in that object (Piaget, 1977/2001).  
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Individuals at this level might reason something like this: “If I cover the surface with 

copies of my rectangle and try to count all the rectangles, it would be easier if I counted the 

number in a row [or column] and then see how many rows [or columns] there are. The total area 

will be the same as the number of rows times how many rectangles there are in a row.” In 

contrast, consider the prospective teachers who developed the ability to explain why measuring 

the lengths of sides to create square units was useful in describing areas. These teachers realized 

that they were not measuring the larger rectangle’s area by covering it with smaller rectangles. 

They realized that they were using the length of one side of the smaller rectangle to measure the 

length of the sides of the larger rectangle, and thus creating a unit of area out of units of length. 

These latter prospective teachers developed new knowledge through reflective abstraction, not 

empirical abstraction. Instead of conceiving the smaller rectangle as something to use to “cover” 

the larger rectangle, they abstracted from their actions the notion that measuring the sides of a 

rectangle with a common length induces a covering made of squares or parts of squares and that 

the salient aspect of putting down the cardboard rectangle is that they are using the length of 

one side as a common length. It was this realization that allowed them to make sense of the area 

of the larger rectangles in units of “square sides.” It is thus our claim that the prospective 

teachers who came to recognize the square as a derived unit of measurement developed new 

knowledge that was transformed, or abstracted, from applying their prior knowledge. Those 

prospective teachers who simply developed an understanding of why they multiply when 

calculating area did not fundamentally transform their knowledge, but simply augmented it via 

empirical abstraction.  

Obviously, it is desirable for any teacher to develop deep personally powerful 

mathematical understandings. When teachers possess an understanding of area being measured 
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by these “new units,” for example, it allows them to conceive of the complexity of teaching area 

in a different way. When encountering a student who is struggling with the notion of area, rather 

than relying on many different ways of saying, essentially, “multiply length times width,” a 

teacher could also focus on the development of the idea of area as “covering” and the 

relationship between linear measurements and area. This understanding of area as an n+1 

dimensional, derived unit requiring the coordination of an n-dimensional quantity and a one-

dimensional quantity, in turn could help students make sense of commonly problematic areas 

such as the relationship between area and volume.  

In our recent work (Silverman, 2004; Silverman & Thompson, 2005), we note that such 

abstracted understandings are not sufficient for teachers to have the ability to present students 

with opportunities that position them to develop similar, consistent understandings. It is well 

documented that most teachers who do change their teaching practices do so in superficial ways 

(Stigler & Hiebert, 1999) and our work, which examined this result with a finer-grained analysis, 

indicated that changes in their teaching are a result of their pedagogical conceptualizations of the 

mathematics: both the sense they have made about the mathematics and their awareness of its 

conceptual development.  

Refined Goals for Mathematics Teacher Education 

Thompson, Philipp, Thompson, and Boyd (1994) and Cobb, Boufi, McClain, and 

Whitenack (1997) argue convincingly that students' participation in conversations about their 

mathematical activity (including reasoning, interpreting, and meaning-making) is essential for 

their developing rich, connected mathematical understandings. It therefore follows that it is in 

the context of instruction that supports reflective conversations that teachers’ development of 

KDUs is most probable. But original conversations that support collective reflection (and thus 
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generating a reflective conversation) must be about something that transcends the conversations. 

Thompson (2002) used the phrase didactic objects to refer to things that exist at the boundary 

between original and reflective conversations. He explained that while reflective conversations 

can arise spontaneously, they can also be designed, and the design of objects about which the 

conversation centers can be done systematically. 

Thompson (2002) describes this view of instructional design in mathematics as creating 

“a particular dynamical space, one that will be propitious for individual growth in some intended 

direction, but will also allow for a variety of understandings that will fit with where individual 

students are at that moment of time” (p. 194). With regards to this dynamical space, Thompson 

(1985) notes that when conceptualized in this way, instructional design requires that the 

objectives of instruction be stated in cognitive terms and that images of instruction be of a 

teacher choreographing conversations which have the possibility of stimulating reflective 

discourse around the desired mathematical idea. Instructional design, therefore, is not about 

teaching particular content; rather it is about formulating particularly powerful understandings 

and designing interactional spaces where others can come to understand the content in a similar 

and consistent way. It is also about designing instructional environments that take into account 

categories of "ways of thinking"i that students bring to instruction and which might be leveraged 

profitably to move the conversation forward.  

Framework for Mathematical Knowledge of Teaching 

This perspective on instructional design is just as applicable to mathematics teacher 

education as it is in the teaching of mathematics and it is in this vein that we propose the 

following framework for Mathematical Knowledge for Teaching. A teacher has developed 

knowledge that supports conceptual teaching of a particular mathematical topic when he or she 

(1) has developed a KDU within which that topic exists, (2) has constructed models of the 
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variety of ways students may understand the content (decentering); (3) has an image of how 

someone else might come to think of the mathematical idea in a similar way; (4) has an image of 

the kinds of activities and conversations about those activities that might support another 

person's development of a similar understanding of the mathematical idea; and (5) has an image 

of how students who have come to think about the mathematical idea in the specified way are 

empowered to learn other, related mathematical ideas. 

As a teacher thinks about the content to be taught, she envisions a student (other than the 

teacher) working through the material, easing through some problems and stumbling over others. 

The entire time, the teacher must ask herself “what must a student understand to create the 

understanding that I envision?” and “what kinds of conversations might position one to develop 

such understandings?” The prospective teacher must put herself in the place of a student and 

attempt to examine the operations that a student would need and the constraints the student 

would have to operate under in order to (logically) behave as the prospective teacher wishes a 

student to do. This is reflective abstraction.  

A key developmental understanding might be viewed as a pedagogical action, where 

action is used in the Piagetian senseii. Teachers are engaged in pedagogical actions when they 

wonder, “What might I do to help students think like what I have in mind?” Their question is 

posed in a domain specific manner, such as “How might I help my students think about 

logarithms as an accelerated condensing and recoding of the number line?” The development of 

MKT involves separating one’s own understanding from the hypothetical understanding of the 

learner (Steffe, 1994). When a person views a pedagogical action as if she is not an actor in the 

situation (even though she is), and when the person can separate herself from the action (and 

thereby reflect on it), the pedagogical action has been transformed into a pedagogical 
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understanding. It is this understanding that is capable of being reflected upon, for the teacher 

now sees various alternatives that could have happened and has developed agency over the 

process. The teacher is also now able to see the “pedagogical power” of key developmental 

understanding. 

When a teacher develops a key developmental understanding, his content knowledge 

becomes “related” to other content knowledge and extends his web of connections (Thompson & 

Saldanha, 2003). A key developmental understanding could then be viewed as knowledge that is 

assimilated to a scheme. This new understanding (and thus new knowledge) cannot be MKT 

because this transformed knowledge is not in and of itself pedagogicaliii. At this point, this new 

knowledge is mathematical knowledge that has pedagogical potential. It is not until the teacher 

transforms this knowledge into knowledge that is pedagogically powerful that the teacher has 

developed MKT.  

Concluding Comments 

The mathematical knowledge required for teaching mathematics is one of the three 

strands of the research program identified by the RAND Mathematics Study Panel (2003) as 

integral for improving the quality of mathematics instruction in the United States. They note that 

one important line of work is to “extend current research on [the] mathematical knowledge 

needed for teaching other mathematical topics and to the realm of mathematical practices and 

their role in teaching” (p. 23). In this article, we extend this work by identifying a potential 

framework for recognizing MKT and for thinking about how it might develop in the minds of 

teachers. While identifying the specific knowledge needed for teaching particular mathematical 

content is important, it is a daunting task, considering the variety of mathematical content that 

comprises the K-12 mathematics curriculum. We present a framework that is not only informed 
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by the work of mathematics teaching, but also a developmental trajectory for mathematics 

learning and the learning sciences. Our framework opens up the possibility for the goal of 

mathematics teacher education to shift from positioning prospective teachers to develop 

particular MKT to developing professional practices that would support teachers’ ability to 

continually develop of MKT throughout their careers. These practices include the development 

of key developmental understandings, becoming reflectively aware of them, and placing them 

within a model of students’ learning in the context of instruction.

                                                 

i We borrow this idea from Thompson and Saldanha (2000, October), who develop the notion of epistemic subject as a way to 
explain how a teacher can attend to the intellectual needs of an entire classroom without having to attend to the needs of every 
student in it. An epistemic subject is an idealized person who happens to think in a particular way. Our use of "categories of 
ways of thinking" is equivalent to Thompson and Saldanha's use of "epistemic subject." 

ii Piaget defined the word broadly as any change to the perceptual input (Piaget, 1967). 
iii Thus there is a transformation in the development of further refined and developed mathematical knowledge. It is, however, 

new mathematical knowledge, not pedagogical knowledge.  
 



Toward a Framework 21 

 

References 

 

Ball, D., Hill, H., & Bass, H. (2005). Knowing mathematics for teaching: Who knows 
mathematics well enough to teach third grade, and how can we decide? American 
Educator, 29(3), 14-22, 43-46. 

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher 
education. Elementary School Journal, 90, 449-466. 

Ball, D. L. (1991). Teaching mathematics for understanding: What do teachers need to know 
about subject matter? In M. Kennedy (Ed.), Teaching academic subjects to diverse 
learners (pp. 63083). New York: Teachers College Press. 

Ball, D. L. (1993). Halves, pieces, and twoths:  Constructing and using representational contexts 
in teaching fractions. In T. Carpenter, E. Fennema & T. Romberg (Eds.), Rational 
numbers: An integration of research (pp. 157-195). Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Ball, D. L. (2007). What kind of mathematical work is teaching and how does it shape a core 
challenge for teacher education. Paper presented at the Judith E. Jacobs lecture given at 
the annual meeting of the Association of Mathematics Teacher Educators.  

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to 
teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on 
mathematics teaching and learning (pp. 83-104). Westport, CT: Ablex Publishing. 

Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for 
teaching. Paper presented at the 2002 Annual Meeting of the Canadian Mathematics 
Education Study Group.  

Ball, D. L., & McDiarmid, G. W. (1990). The subject matter preparation of teachers. In W. R. 
Houston (Ed.), Handbook of research on teacher education (pp. 437-449). New York: 
Macmillan. 

Carpenter, T., Fennema, E., Peterson, P. L., & Carey, D. (1988). Teachers' pedagogical content 
knowledge of students' problem solving in elementary arithmetic. Journal for Research 
in Mathematics Education, 19, 385-401. 

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflexive discourse and collective 
reflection. Journal of Research in Mathematics Education, 28(3), 258-277. 

Gess-Newsome, J. (1999). Introduction and orientation to examining pedagogical content 
knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical 
content knowledge (pp. 3-20). Dordrecht, The Netherlands: Kluwer Academic Publishers. 



Toward a Framework 22 

 

Grossman, P. L., Wilson, S. M., & Shulman, L. S. (1989). Teachers of substance:  Subject matter 
knowledge for teaching. In M. C. Reynolds (Ed.), Knowledge base for the beginning 
teacher (pp. 23-36). Elmsford, NY: Pergamon Press, Inc. 

Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: Results from California's 
Mathematics Professional Development Institutes. Journal for Research in Mathematics 
Education, 35(5), 330-351. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for 
teaching on student achievement. American Educational Research Journal, 42(5), 371-
406. 

Kahan, J., Cooper, D., & Bethea, K. (2003). The role of mathematics teachers' content 
knowledge in their teaching:  A framework for research applied to a study of teachers. 
Journal of Mathematics Teacher Education, 6, 223. 

Kamii, C., & Kysh, J. (2006). The difficulty of "length x width": Is a square the unit of 
measurement? Journal of Mathematical Behavior, 25, 105-115. 

Leinhardt, G., & Smith, D. (1985). Expertise in mathematics instruction: Subject matter 
knowledge. Journal of Educational Psychology, 78, 247-271. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of 
fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence 
Erlbaum Associates. 

Mason, C. (1999). The TRIAD approach: A consensus for science teaching and learning. In J. 
Gess-Newsome & N. Lederman (Eds.), Examining pedagogical content knowledge (pp. 
277-292). Boston: Kluwer Academic Publishers. 

Piaget, J. (1967). Six psychological studies. New York, NY: Vintage Books. 

Piaget, J. (1977/2001). Studies in reflecting abstraction (R. L. Campbell, Trans.). Sussex, UK: 
Psychology Press. 

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child's conception of geometry. London: 
Rutledge & Kegan Paul. (Original work published 1948). 

RAND Mathematics Study Panel. (2003). Mathematical Proficiency for all students: toward a 
strategic research and development program in mathematics education. Santa Monica, 
CA: RAND. 

Schifter, D. (1995). Teachers' changing conceptions of the nature of mathematics:  Enactment in 
the classroom. In B. S. Nelson (Ed.), Inquiry and the development of teaching:  Issues in 
the transformation of mathematics teaching (pp. 17-25). Newton, MA: Center for the 
Development of Teaching, Educational Development Center. 



Toward a Framework 23 

 

Shulman, L. S. (1986). Those who understand:  Knowledge growth in teaching. Educational 
Researcher, 15(2), 4-14. 

Shulman, L. S. (1987). Knowledge and teaching:  Foundations of the new reform. Harvard 
Educational Review, 57(1), 1-22. 

Silverman, J. (2004, April 12-17, 2004). Comparing aspects of constructivist research 
methodologies in mathematics education:  Modeling, Intersubjectivity, and Tool Use. 
Paper presented at the annual meeting of the American Educational Research 
Association, San Diego, CA. 

Silverman, J., & Thompson, P. W. (2005, October). Investigating the relationship between 
mathematical understandings and teaching mathematics. Paper presented at the Annual 
Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Roanoke, VA. 

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 
Journal for Research in Mathematics Education, 26(2), 114-145. 

Simon, M. (2002, October). Focusing on key developmental understandings in mathematics. 
Paper presented at the Twenty-fourth Annual Meeting of the North American Chapter of 
the International Group for the Psychology of Mathematics Education, Athens, GA. 

Simon, M., & Blume, G. (1994). Building and understanding multiplicative relationships: A 
study of prospective elementary teachers. Journal for Research in Mathematics 
Education, 25, 472-494. 

Simon, M., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual 
learning:  Elaborating the construct of reflective abstraction. Journal for Research in 
Mathematics Education, 35(5), 305-329. 

Steffe, L. P. (1991). The learning paradox. In L. P. Steffe (Ed.), Epistemological foundations of 
mathematical experience (pp. 26-44). New York: Springer-Verlag. 

Steffe, L. P. (1994). Children's constitution of meaning for arithmetical words:  A curricular 
problem. In D. Tirosh (Ed.), Implicit and explicit knowledge:  An educational approach 
(pp. 131-168). Norwood, NJ: Ablex. 

Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS 
Videotape Classroom Study:  Methods and findings from an exploratory research project 
on eighth-grade mathematics instruction in Germany, Japan, and the United States. 
(National Center for Education Statistics Report No. NCES 99-0974).  Washington, D.C.: 
U.S. Government Printing Office. 

Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world's teachers for 
improving education in the classroom. New York: Free Press. 



Toward a Framework 24 

 

Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. A. (1994). Calculational and 
conceptual orientations in teaching mathematics. In A. Coxford (Ed.), 1994 Yearbook of 
the NCTM (pp. 79–92). Reston, VA: NCTM. 

Thompson, A. G., & Thompson, P. W. (1996). Talking about rates conceptually, Part II: 
Mathematical knowledge for teaching. Journal for Research in Mathematics Education, 
27(1), 2-24. 

Thompson, P. W. (1985). Experience, problem solving, and learning mathematics:  
Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and 
learning mathematical problem solving:  Multiple research perspectives (pp. 189-243). 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. 
Gravemeijer, R. Leherer, B. VanOers & L. Verschaffel (Eds.), Symbolizing, modeling, 
and tool use in mathematics education (pp. 197-220). Dordrecht, the Netherlands: 
Kluwer Academic Publishers. 

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the 
foundation of mathematics education. Plenary paper delivered at the 32nd Annual 
Meeting of the International Group for the Psychology of Mathematics Education. 
Morelia, Mexico. Volume 1, pp 1-18. 

Thompson, P. W., Carlson, M., & Silverman, J. (2007). The design of tasks in support of 
teachers' development of coherent mathematical meanings. Journal for Mathematics 
Teacher Education, 10(4-6), 415-432. 

Thompson, P. W., & Saldanha, L. (2000, October). Epistemological analyses of mathematical 
ideas: A research methodology. Paper presented at the Twenty-second Annual Meeting 
of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Tucson, Arizona. 

Thompson, P. W., & Saldanha, L. (2003). Fractions and multiplicative reasoning. In J. 
Kilpatrick, G. Martin & D. Schifter (Eds.), Research companion to the Principles and 
Standards for School Mathematics (pp. 95-113). Reston, VA: National Council of 
Teachers of Mathematics. 

Wilson, M. S., Shulman, L. S., & Richert, A. R. (1987). "150 different ways" of knowing:  
Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring teacher 
thinking (pp. 104-124). London: Cassell PLC. 

Wolvin, A., & Coakley, C. (1993). Perspectives on Listening. Westport, CT: Greenwood 
Publishing Group. 

 
 


