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Introducing Derivative via the Calculus Triangle 

 
Typical treatments of derivative do not clearly convey that the derivative function 

represents the original function’s rate of change. We argue that revealing the relationship 

between a function and its rate of change function for static values of x does not facilitate 

productive ways of thinking about generating the rate of change function or allow 

students to anticipate the graphical behavior of the rate of change function through 

examining a graph of the original function. Accordingly, we propose an approach that 

builds upon Thompson’s (1994, 2008) calculus research that introduces derivative in a 

way that maintains the centrality of rate of change as a conceptual underpinning of 

derivative. In this section we explain the calculus triangle approach and illustrate how the 

approach facilitates mature understandings of derivative by providing examples of the 

approach’s utility in novel and routine settings. 

Our group of teacher-researchers designed and taught two university calculus 

courses that emphasized rate of change and quantitative reasoning. Our approach 

proposed the concept of a calculus triangle to support students in attending explicitly to 

quantities, and constructing a method for creating and tracking the ratio of changes in 

quantities to produce a rate of change function. We have found that the calculus triangle 

allows students to reason flexibly across mathematical domains such as differentiation, 

accumulation, as well as across graphical representations.  

Observations and Research about Students’ Understanding of Derivatives 

Historically, the derivative was constructed as a way to represent and measure the 

rate at which one quantity changes with respect to another quantity. However, many 

students are taught in a way that enables them to solve calculus problems without 
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attending to rates of change. Carlson and colleagues (Carlson, Jacobs, Coe, Larsen, & 

Hsu, 2002) found that second semester calculus students were unable to produce a 

qualitative graph that expressed the height of water in a bottle as a function of the water’s 

volume. The students used memorized properties of second derivatives but could not 

relate inflection points in the graph of the function to changes in width of the bottle. 

Additionally, a number of authors reported students’ difficulties in creating graphical 

representations of a function’s rate of change function (Tall, 1986; Ubuz, 2007). These 

researchers found that students often focused on computing derivatives without 

connecting the derivatives they computed and evaluated to a function’s rate of change at 

specific points in its domain (Ubuz, 2007).  

We Know Derivatives Are About Rates. Why Don’t Our Students? 

 Calculus books’ attention to velocity and development of the limit definition of 

the derivative suggest textbook authors intend to develop the idea of derivative as a rate 

of change. We have focused heavily on how students think about derivatives to 

understand the disconnect between what the textbooks present and what students 

understand. In our survey of best selling calculus books in the United States, we found 

the textbooks qualitatively generated the derivative function in different ways. In most 

books, the secant does not slide through the function’s domain. Rather, one intersection 

of the secant line slides toward the other intersection, creating successively better 

approximations of the tangent line. The tangent line, however, slides through the 

function’s domain. Ferrini-Mundy and Graham (1991) found that students often struggled 

to envision and make sense of a sliding secant line and its relationship to rate of change 
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on a small interval and believed the secant line collapsed into a single point to create the 

sliding tangent. Our observations suggest that this problem persists today. 

 Even if students were successful in envisioning the tangent line as representing 

the rate of change at a point they commonly confounded the notion of derivative at a 

point with the derivative function (Ubuz, 2007). Many calculus books do not explicitly 

describe how to think about rate of change on one small interval to support constructing a 

function that gives the original function’s rate of change over its domain. We did not 

locate any textbooks that helped students think about rate of change over small intervals 

as generalizing to rate of change over the function’s domain.   

We not only observed the difficulties documented by Ubuz and Ferrini-Mundy, 

but also found that it was non-trivial for students who primarily remembered slope as 

“rise-over-run” to think of difference quotient as a rate. After discussing the ratio 

f (x + h)− f (x)
h  with our students it was apparent that many of them did not see f(x+h) 

and f(x) representing amounts of a quantity associated with particular inputs. Without an 

understanding of f(x) as giving the value of a quantity they did not see the f(x+h)-f(x) as 

how much the quantity changed in relation to a given change in input.  

We conjecture that students’ difficulties with function notation, their struggle to 

connect algebraic and graphical representations of functions, and understandings of rate 

of change may explain their struggle to think about derivative as a function. We believe 

that thinking about derivative as an object of calculation may be attributed in part to the 

students’ lack of attention to and construction of quantities in a way that would allow 

them to track the ratio of the quantities’ changes. Given this hypothesis, we have attempt 

to facilitate productive mental images of the derivative as a function whose values give 
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the rate of change of another function f by continuously tracking the average rate of 

change of Quantity A (f(x)) with respect to Quantity B (x) over a continuum of values for 

Quantity B (x to x+h). We use the mathematical construct of a “calculus triangle” to 

achieve this coordination. 

 

The Calculus Triangle 

The intent of the calculus triangle approach is to allow students to envision 

change in a function due to change in its argument. However, there is a distinct danger 

that (1) students will see a calculus triangle as a geometric object, and (2) students will 

see only one calculus triangle at a time. Regarding the first possibility, we want to 

students to see the “legs” of the triangle as changes in input and output of a function and 

the “hypotenuse” as the graph of a linear function (see Figure 1). Regarding the second 

concern, we want students to look at the graph of any function and envision many 

possible calculus triangles. That is, we want them to see that there is a calculus triangle at 

every point on a function’s graph and that these triangles can be as small as one desires 

(see Figure 2). To envision this possibility, we introduce the idea of a “sliding” calculus 

triangle. “Sliding” is produced by fixing the change in the input and allowing the input to 

vary through the domain of the function in a systematic way (e.g. left to right). The 

mental image that “sliding” is intended to promote is that of a calculus triangle traversing 

along the function. 
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Figure 1. A calculus triangle in rectangular coordinates. 

 

Figure 2. There is a calculus triangle at every point on a function’s graph and that these 

triangles can be as small as one desires.  

The definition of derivative, as it was found in the contemporary calculus books 

we surveyed, failed to convey mental imagery that would support students in constructing 

the derivative function. Recall the typical definition of derivative: 

Change in the
function's argument

Change in the
function's value

Graph of the function that has a constant 
rate of change over this interval and that 
produces this net change

1

2

3
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Definition: Let f be a function. We define the derivative of f at x, f’, by 

f '(x) = lim
h→0

f (x + h)− f (x)
h

, provided the limit exists. 

In this definition, h varies while x remains fixed. Hence, f '(x)  represents a scalar 

quantity for a specific value of x. Students are expected to understand that f '(x)  

represents a function by imagining h approaching zero in the difference quotient for all 

values of x in the domain of f. Imagining varying h while x remains fixed does not allow 

one to visualize the derivative function being generated for a continuum of input values. 

In addition, by letting h approach zero, thus producing a difference quotient that 

represents the slope of a tangent line, and visualizing the tangent line sliding along the 

surface of the graph, it appeared to our calculus students that we were focused on the 

properties of this sliding tangent, when we were actually focused on the ratio of two 

quantities which we represented by the sliding tangent.  

By attending to the sliding tangent as an object without reference to the change in 

quantities it represents, students often did not understand that derivative represented a 

rate of change because their conception of rate of change was associated with steepness 

of the tangent line, not comparison of changes in quantities. As an alternative to the 

typical definition of derivative, we avoid allowing the value of h in the difference 

quotient approach zero. Instead, we define the rate of change function rf  as, 

rf (x) =
f (x + h)− f (x)

h
 

for a small, but fixed, value of h. Making h fixed but sufficiently small allows one to let x 

vary, and coordinate the corresponding variation in rf . This simultaneous variation of x 

and rf  is illustrated in what we term the sliding calculus triangle. We emphasize that the 
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calculus triangle is not a geometric object. Instead, it is a way to help students focus 

explicitly on changes in quantities represented by the “legs” of the triangle, the ratio of 

which is represented by the slope of the hypotenuse. Though we found that recognizing 

rf  as a function was non-trivial, that alone is often not sufficient to imagine how the rate 

of change function is generated. For this, we turn to the graphical representation of the 

rate of change function (see Figure 3).  

 

 

Figure 3. The interval of fixed length h represented on the x-axis slides through the 

domain of the function, tracking the quantities h and f(x+h) – f(x). 

In order to generate outputs for the rate of change function, we measure the 

quantity f(x+h) – f(x) in units of h and systematically associate this output value with x, 

the left endpoint of the interval [x, x + h]. Accordingly, a point on the rate of change 

function can be interpreted as (x, f(x+h) – f(x) units of h) (see Figure 3). Then, as x varies 

throughout the domain of the function, this point traces out the rate of change function 

rf (x)  (see Figure 3).  
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Figure 4. The calculus triangle slides as the fixed interval h slides through the domain of 

the function, generating the rate of change function.  

It is important to note that one can slide the calculus triangle through the domain 

of f while coordinating the outputs being generated by measuring f(x+h) – f(x) in units of 

h, which allows the student to think about the rate of change function being generated as 

the calculus triangle moves along the original function f. The mental coordination of 

imagining the rate of change function being generated as one traces along the function is 

not possible when trying to attend to two varying both h and x.  

We recognize that it is arguably unsuitable to compare the calculus triangle 

approach with the traditional approach because the objective of the traditional approach is 

to make sense of the graphical representation of the exact derivative function (at a point) 

whereas the calculus triangle approach merely produces an approximation to the 

derivative function. We believe, however, that generating an approximation to the 

derivative function is unproblematic if an instructional effort is made to discuss the 

convergence (uniformly) of the approximation to the exact derivative function as h 
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approaches zero. The important feature distinguishing the calculus triangle approach 

from the traditional approach is that generating the derivative function precedes letting h 

approach zero in the calculus triangle approach whereas in the traditional approach, the 

limiting process comes first. We believe that when focusing on the calculus triangle, 

students are better suited to think about infinitesimal rate of change near a point. This 

approach contrasts with thinking about rate of change at a point, where quantities are not 

changing, and thus, discussing rate of change becomes problematic. A classroom 

discussion about the relative accuracy of the approximation for sufficiently small values 

of h can be framed so that students’ reasoning relative to generating approximations of 

the actual derivative functions can be isomorphic to more formal definitions of uniform 

convergence. 

Implications and Conclusion 

The traditional approach to developing the derivative function can accomplish one 

of the following two aims, but not both: (1) derivative functions are fundamentally about 

rates of change, and (2) the derivative function can be generated by developing a ratio of 

the changes in the output quantity measured in units of the input quantity through the 

domain of the function f. The calculus triangle approach supports students in establishing 

connections between average rate of change and the derivative function while not 

compromising the potential for the derivative function to be generated by explicitly 

measuring the rate of change of f(x) with respect to x.  

Traditional treatments of calculus use the definition of derivative in an axiomatic 

approach to develop further rules of differentiation. This process emphasizes derivative 

as an operator on functions instead of emphasizing the centrality of rate of change. We 
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believe that the calculus triangle approach allows students to understand the derivative 

function as tracking the ratio between changes in two quantities. If students are able to 

attend to derivative as a rate of change, we believe this supports them in understanding 

the process of differentiation as an operator that measures a rate of change. 

Single and multivariable calculus, and differential equations necessitate that one 

perform symbolic computations as well as interpret the meaning of those computations. 

The calculus triangle approach supports the student in developing both computational 

fluency and interpreting the results of those computations meaningfully. As students 

approach novel problem solving situations, they are equipped with ways of thinking, 

particularly thinking about the derivative function as a rate of change, which are 

necessary to reason through these situations. By thinking about the meaning of the 

computations, students are able to draw connections between ideas in calculus that are 

typically presented as disparate because they require different techniques for 

differentiation.   
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