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Calculus reform and using technology to teach calculus are two
longtime endeavors that appear to have failed to make the differ-
ences in student understanding predicted by proponents. We argue
that one reason for the lack of effect is that the fundamental struc-
ture of the underlying curriculum remains unchanged. It does not
seriously consider students’ development of connected meanings
for rate-of-change functions and accumulation functions. We re-
port an approach to introductory calculus that takes coherence of
meanings as the central criterion by which it is developed, and we
demonstrate that this radical reconstruction of the ideas of calculus
is made possible by its uses of computing technology.
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David Tall, in reflecting on 40 years of calculus reform, said, “After reform
projects have attempted a range of different approaches using technology,
what has occurred is largely a retention of traditional calculus ideas now
supported by dynamic graphics for illustration and symbolic manipulation
for computation” (2010, p. 2). Tallman and Carlson (under review) found that
Tall’s observation actually reflects a broader calculus culture. In a national
sample of 150 Calculus I final exams with 3,735 items, Tallman and Carlson
found that (a) less than 15% of the items required students to do anything
more than recall a procedure; (b) over 90% of the exams had more than
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70% of items classified as “remember” or “recall and apply procedure”; and
(c) only 2.7% of the exams had 40% or more items requiring students to
demonstrate or apply understanding. Tallman and Carlson’s analysis of cal-
culus final exams stands in stark contrast with beliefs of instructors who sub-
mitted them. Over 68% of the instructors claimed that they asked students to
explain their thinking often or very often on final exams, yet only 3% of the
instructors’ items actually requested an explanation. It seems that, while the
reform of calculus has had an impact on calculus rhetoric, it has not had an
impact on what is expected that students learn. In this article we share our
attempt to dramatically transform the calculus that students are expected to
learn.

Calculus can be thought to address two fundamental situations: (a) you
know how fast a quantity is changing and you want to know how much of it
there is, and (b) you know how much of a quantity there is and you want to
know how fast it is changing. It turns out that these situations are two sides
of a coin—and realizing this was the breakthrough behind Newton’s calcu-
lus (Baron, 1969; Boyer, 1959; Bressoud, 2011; Thompson, 1994a). Typical
approaches develop these two parts of calculus independently and then tie
them together with the Fundamental Theorem of Calculus (FTC). A common
outcome, however, is that students understand derivatives as what you get
by applying differentiation rules and that integration is about finding areas
bounded by curves. The FTC is superfluous to their understanding of either.
Derivatives are not about rate of change and integrals are not about accu-
mulation. As one student said about integration, “I don’t understand how a
distance can be an area.”

In this article, we describe a course that approaches introductory calcu-
lus with the aim that students build a reflexive relationship between concepts
of accumulation and rate of change, symbolize that relationship, and then
extend it to have broader reach. We also describe how it is only with tech-
nology that this approach is possible.

The building of this reflexive relationship unfolds in two phases. In
Phase 1 students address Situation 1—they develop accumulation functions
from rate of change functions. It is via Phase 1 that, as Bressoud (2009) urged,
students put the integral into the Fundamental Theorem of (Integral) Calcu-
lus. In Phase 2 students address Situation 2—they develop rate of change
functions from accumulation functions. It is important to note that accumula-
tion and rate of change are never treated separately. Ideas of rate of change
are central to building accumulation functions, and ideas of accumulation
are central to building rate of change functions. In a very real sense, the FTC
is present within every day of instruction.

In broad outline:

Phase 1: Build Accumulation from Rate of Change
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Step 1. Students conceptualize continuous quantitative variation and co-
variation1; conceptualize functions as invariant relationships between
the values of covarying quantities.

Step 2. Students conceptualize constant rate of change as two quantities
covarying so that changes in one are proportional to changes in the
other.

Step 3. Students build accumulation functions from constant rate of
change functions.

Step 4. Students build accumulation functions from constant rate of
change step functions; accumulation occurs over each interval at a
constant rate.

Step 5. Students build approximate accumulation functions from exact
rate of change functions by using step functions to approximate rate
of change functions.

Step 6. Students define exact accumulation functions and represent them
in open form as F (x) =

∫ x
a f (t)dt , where f (t) is a rate of change func-

tion and dt is the size of “an infinitesimal change.” Definite integrals
are then just specific values of exact accumulation functions:

∫ b
a f (x)dx

is simply the value of F at x = b.

Phase 2: Build Rate of Change from Accumulation

Step 7. Students reverse direction: They rethink “amount functions” as
accumulation functions. Thus, any function that gives an amount of
something (like area of a square as a function of its side length) can
be thought of as that amount having accumulated with respect to
variation in its argument. That is, if f is a function whose values give
amounts of some quantity with respect to values of another quantity,
then f (x) =

∫ x
a r(t)dt for some rate of change function r and for some

reference point a. The central problem is to determine r.
Step 8. Students build approximate rate of change functions (as average

rate of change over intervals) to generate rate of change step functions
from exact accumulation functions.

Step 9. Students derive exact rate of change functions in closed form
from exact accumulation functions in closed form.2

Step 10. Students expand the closed-form quest to develop closed-form
representations of functions that are sums, quotients, products, and
composites. We extend further to the case of trigonometric, exponen-
tial, and logarithmic functions.

1 Covariation is the mental process of coordinating the values of two quantities as they
vary simultaneously (Saldanha & Thompson, 1998; Thompson, 2011). As Carlson and col-
leagues (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson, Larsen, & Lesh, 2003) make
clear, covariational reasoning is essential for reasoning about functions as models of dynamic
events, and it is nontrivial for students to develop.
2 A function is expressed in closed form when it is defined succinctly in terms of familiar
functions, or algebraic operations on familiar functions. The function f defined as f (x) =∑∞

k=0
xk

k! is in open form, whereas f defined as f (x) = ex is in closed form.
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Step 11. Students formalize the relationship between accumulation and
rate of change—that has been employed throughout—by stating it as
the Fundamental Theorem of Integral Calculus.

Step 12. Students understand the fact that every rate of change function
has an accumulation function. Some accumulation functions can be
expressed in closed form; most cannot.

This development has four central features. The first feature is that all
steps are permeated with the ideas of variation, covariation, and function as
an invariant relationship between covarying quantities. In other words, it is
a demand of the course that students think that variables vary—always.

The second feature is that students must capture processes of varia-
tion, change, and accumulation symbolically—and their symbolizations must
work. By “work” we mean that when students create a function as a solu-
tion to a problem and define that function within Graphing Calculator (GC;
Avitzur, 2011), the program we use in the course, the function must be both
syntactically coherent (or otherwise it will not return a value) and they must
argue that their function actually answers the question asked. If they use a
summation to define an approximate accumulation function A, then GC must
be able to compute values A(x) for any value of x in A’s domain. Students
must be able to graph y = A(x) and make sense of the graph in relation to
the problem situation.

The third feature is that students’ construction of meaning is central.
Powerful meanings suggest courses of possible action in problematic
situations to a person having them. The course is designed to aid students’
development of understandings and ways of thinking that enable them
to make sense of calculus. One student, who struggled with the idea that
!y/!x gives an average rate of change, exclaimed one day, “Oh! You can’t
see the average rate of change in the graph! You have to compare the
change in y to the change in x in your mind!” Course assessments, both
summative and formative, provide information on the actual meanings that
students have developed.

The fourth feature of the course is that students accept open-form rep-
resentations of a function as actually representing the function. One way in
which GC supports students’ acceptance of open-form definitions of func-
tions is that students can use them in GC in exactly the same way as functions
defined in closed form. The open-form expression

∫ x
0 cos(t)dt represents the

exact accumulation of a quantity that changes at a rate of cos(t) within the
interval 0 ≤ t ≤ x just as exactly as does the close-form expression sin(x). It
is an intellectual achievement for students to understand each of

∫ x
0 cos(t)dt

and sin(x) in its own terms and then to determine that the two expressions
actually define the same function. Their realization that functions expressed
in open form have equal intellectual status as functions expressed in closed
form is at the heart of Steps 5, 8, and 12.
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THE ROLE AND PLACE OF LIMITS IN CALCULUS

Davis and Vinner (1986) claimed that getting closer and closer to is an un-
avoidable way of thinking about limits. Others since then (e.g., Cornu, 1991;
Ferrini-Mundy & Graham, 1994; Oehrtman, 2009; Roh, 2008; Williams, 1991)
support Davis and Vinner’s claim and make clear that, despite our best ef-
forts, a sophisticated understanding of limit is not within the grasp of most
calculus students.

A formal definition of limit is not part of this calculus course. We avoid
limits by talking about the ideas of essentially equal to and close enough for
practical purposes. We grant that these phrases are inexact and are not rigor-
ous. However, we also argue that calculus is not the proper venue to teach
ideas of analysis. Students’ understandings of analysis—rigorous treatments
of limit, continuity, etc.—are best taught as subtleties in concepts that stu-
dents already understand well. As the lead author says to his colleagues, “Our
course on advanced calculus, to students, is advanced nothing. They do not
understand calculus well enough to understand the issues being addressed,
to understand how ideas of advanced calculus are an advance.”

WHAT IT LOOKS LIKE

It requires a semester’s worth of instructional and curricular materials to
support students through Steps 1–12, so it is not possible in this article to
illustrate each step. Instead we will illustrate Steps 1, 5, and 8 and then
discuss the FTC and its centrality to the course.

We must clarify that both our and students’ use of GC is embedded in all
that we do. We use it every day to create animations and to share examples
for class discussion. It, along with a Bamboo tablet, is our blackboard. GC
displays mathematical expressions in standard mathematical notation. So,
in terms of mathematical writing, our projected computer screen looks the
same as if we had written on a whiteboard.

Students use GC as a notebook. They define functions in it, type expla-
nations of their functions, and state their solutions to problems. They also
write explanations of their solutions on printouts of their function definitions
and graphs. None of these uses is unique to this course. What makes the
course unique is the conceptual development that is designed into it and
that GC makes possible.

Step 1: Conceptualizing Variation, Covariation, and Function

Jacobs and Trigueros (Jacobs, 2002; Trigueros & Jacobs, 2008) showed con-
vincingly that even the best high school calculus students have very weak
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understandings of variable. Variables did not vary in these students’ think-
ing. Variables were, in effect, letters that stood for constants—but replaceable
constants. The common input-output image of a function that so many texts
promote is compatible with the image that variables are replaceable con-
stants. But calculus is the mathematics of change, so the variable-as-constant
meaning is largely incompatible with developing an understanding of calcu-
lus. Variables, in students’ thinking, must vary if students are to understand
calculus coherently.

There is a potential conundrum in trying to think coherently about a
variable varying. If a variable is a letter that stands for a number, how can we
think about those numbers changing without thinking that we replace one
number with another? The solution is to take humans out of the “number
changing” process! But to do this requires that we first make the idea of
quantity clear.

A quantity, in this usage, is a mental construct. It is an object conceptu-
alized in such a way that it has one or more attributes that are measurable
(Saldanha & Thompson, 1998; Thompson, 1994b, 1996, 2011). A variable, in
relation to quantities, is a letter that stands for the value of a quantity whose
magnitude varies. Students do not need to think about themselves replacing
one value with another. The fact that, in specific contexts, a quantity’s value
varies takes care of the variation. We can imagine your height since your
birth having a value (a measure) at each moment in time. No one replaced
the value of your height from moment to moment. It changed on its own
without anyone’s help. In this sense, the use of h to represent your height
carries with it the understanding that the value of h varies. This meaning
of variable should be developed in grades K-8. In the United States it is
rarely developed, even in calculus (Carlson, 1998; Jacobs, 2002; Trigueros &
Jacobs, 2008).

We employ a number of computer simulations to convey to students
what we mean by “think covariationally.” Figure 1 shows one that builds
upon the famous “bottle problem” first developed in the 1980s at the Not-
tingham University Shell Centre (UK) and later studied by Marilyn Carlson
(Carlson, 1997, 1998; Carlson, Oehrtman, & Engelke, 2010). The version we
describe here shows the outline of a bottle that is being filled with water and
asks students to imagine a graph of water’s volume in relation to the water’s
height in the bottle.

The display in Figure 1 shows several controls. Two controls allow the
student to adjust the bottle’s shape. The slider “BottomShape” controls how
bulged the bottom is; the slider “TopShape” controls how slanted the top is
(see Figure 2). Finally, the slider h controls the water’s height in the bottle.
It is a feature of GC that you can animate the display by setting one slider to
vary its value automatically. The slider h varies automatically between 0 and
4.25 upon clicking its “Play” button (see Figure 1). As h varies, the shaded
region varies accordingly and the value of “Volume” varies likewise.
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FIGURE 1 The bottle problem display (color figure available online).

Students are presented the task of envisioning the water’s volume in
relation to the water’s height for different bottle shapes, and to represent
that relationship in a hand-drawn graph. They are asked to attend to the fact
that every water height has a volume, and to explain why the volume seems
to increase more rapidly for some changes in height than others. They can
check their hand-drawn graphs by moving the “ShowGraph” slider to 1. The
displayed graph is also dynamic, “revealing” itself as the value of h varies
(Figure 3).

FIGURE 2 The bottle can have different shapes depending on the values of “TopShape” and
“BottomShape. “ In any shape, the water level rises as the value of h increases (color figure
available online).
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FIGURE 3 GC shows a graph of the water’s volume with respect to its height as the water’s
height varies (color figure available online).

Subsequent questions ask students to predict, before showing a graph,
at what heights the change in volume will happen least rapidly, most rapidly;
at what heights the rate increases, decreases, or is constant (again, relative
to various bottle shapes and features of them).

We should point out that GC is a graphing program with some Computer
Algebra System (CAS) capabilities. It is not a programming environment. All
displays, such as the animations in Figures 1–3, are the graphs of mathemat-
ical functions or relationships. Appendix A explains the mathematics behind
Figure 3.

Students’ concepts of function and their understanding of function no-
tation are also addressed in Step 1. Problems and activities from Step 1, and
from Step 8, are given in Appendix B.

Step 5: Build Approximate Accumulation Functions from Exact Rate
of Change Functions

The idea of an exact rate of change function is problematic in traditional
calculus and cannot be used until the derivative has been defined. We have
found, however, that even after traditional instruction on derivative, students
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think of instantaneous rate of change not as the value of a derivative func-
tion but instead as a reading from an object’s personal speedometer (Stroud,
2010; Weber, Tallman, Byerley, & Thompson, 2012). Their meaning of in-
stantaneous rate of change does not entail ratios, limits, or the idea of rate
of change as we normally mean it. While this is a problem for traditional
approaches to calculus (students’ meanings of instantaneous rate of change
are incoherent even after instruction on it), this meaning is adequate for
the purpose of defining accumulation functions from rate functions. Several
weeks afterward we uncover the problematic nature of instantaneous speed
when we define rate of change functions from exact accumulation functions.

The strategy for building an approximate accumulation function from
an exact rate of change function is to first convert the exact rate of change
function into a step function (Figure 4). The reason is that to generate an
amount of change, we need to pretend that the quantity changes at a constant
rate with respect to a small change in its argument. The problem posed to
students is this:

How can we change, say, f (x) = cos(x)esin(x) + 2 into a step function r
that is constant over intervals of size !x and whose values approximate
the values of f ?

The task to approximate a function with a step function is a challenge
for them. How do you define a function that takes any given function and
approximates it with a step function? We can imagine readers asking why
this is a legitimate problem for calculus students. It is a legitimate problem
because without such a method, students cannot compute functions whose
values are approximately equal to a quantity’s accumulation.

The strategy for defining accumulation functions from exact rate of
change functions that we settle upon as a class is essentially this:

FIGURE 4 Define a step function that approximates a given rate of change function over
intervals of size !x (color figure available online).
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FIGURE 5 Given values of a and !x, what is the value of the left end (or middle, or right
end) of the !x-interval containing the value of x? (color figure available online).

1. A step function is constant throughout each !x-interval. Define a function
that assigns the value of f at the left (or middle, or right) of each !x-
interval to every value of x within the !x-interval.

2. In order to assign the value of f at the left endpoint of each !x-interval,
students need to identify the left-end of the !x-interval that the value of
x is within (see Figure 5).

3. Students define the functions left, mid, and right as in Figure 6. Two things
are key to the definition of the function left—the meaning of division and
the use of the floor function. The expression x−a

!x gives the number of
!x-intervals between the values of a and x, including a fraction of an
interval if x is not an endpoint. The floor function, symbolized as $u%,
gives the greatest integer less than or equal to u. Thus, $ x−a

!x % gives the
number of complete !x-intervals between the values of a and x. The
expression a + !x$ x−a

!x % gives the left end of the !x interval that contains
the value of x. Therefore, left(x, a, !x) turns every value of x within a
given !x-interval into the value of the interval’s left end.

4. Define r as r(x, a, !x) = f (left(x, a, !x)); r is a step function whose
value within any !x-interval is the value of f at the left end of the in-
terval. r is the step function we sought. The step function in Figure 4
was created by graphing y = r(x, 0, 0.1), r defined as stated here, and
f (x) = cos(x)esin(x) + 2.

Students typically define the approximate accumulation function A so
that A(x, a, !x) gives the approximate accumulation from a to x, over
complete intervals of size !x, of the quantity that accumulates at a rate of
f (x) at each value of x, as in

A(x, a, !x) =




$ x−a

!x %∑

k=1

r
(
a + (k − 1)!x, a, !x

)
!x





left(x,a,∆x) = a + ∆x
x − a
∆ x







mid(x,a,∆x) = left(x,a,∆x) + ∆x / 2

right(x,a,∆x) = left(x,a,∆x) + ∆x

FIGURE 6 Definitions of functions to give the left endpoint, midpoint, and right endpoint of
the !x-interval that x is in.
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They are surprised when A, defined previously, gives a step function
when graphed. We then devote a lesson to imagining the accumulation
function varying as x varies within a !x-interval. We end with a definition
of A that accounts for accumulation both over completed !x-intervals and
accumulation within the !x-interval that contains the value of x.

A(x, a, !x) =




$ x−a

!x %∑

k=1

r
(
a + (k − 1)!x, a, !x

)
!x





+ r(x, a, !x)
(
x − left(x, a, !x)

)
,

or more simply,

A(x, a, !x) =




$ x−a

!x %∑

k=1

f
(
a + (k − 1)!x

)
!x





+ r(x, a, !x)
(
x − left(x, a, !x)

)

The definition of A, though visually daunting, has a very simple structure
when interpreted according to the quantities that it evaluates. The expression

$ x−a
!x %∑

k=1

f
(
a + (k − 1)!x

)
!x

represents the completed accumulation—accumulation over complete !x-
intervals—between a and x. The expression r(x, a, !x)

(
x − left(x)

)
rep-

resents the accumulation that has occurred within the incomplete interval
containing the value of x—the interval within which x is currently varying.
The accumulation function has the structure of a linear function within any
!x-interval, and thus has the structure of a piecewise-linear function over
the interval [a, x].

A(x, a, !x) =

completed accumulation︷ ︸︸ ︷


$ x−a

!x %∑

k=1

f
(
a + (k − 1)!x

)
!x





+

varying accumulation︷ ︸︸ ︷
r(x, a, !x)

(
x − left(x, a, !x)

)

It is instructive to note that, since A is piecewise-linear, it always changes
at a constant rate within any !x-interval and that rate of change is the value
of f at the left (or middle, or right) of the interval. Noticing this is the first
step in an explicit conceptualization of the FTC.
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Departments of transportation are very concerned with how steep a highway is, because to 
qualify for federal matching funds no stretch of highway can have a rate of change of elevation 
with respect to distance greater than 8/100 ft/ft (i.e., a rate no greater than 8 ft of change in 
elevation per 100 feet of highway). 

The Colorado Department of Transportation puts a graph on highway maps that shows the 
highway's rate of change of elevation at spots on the highway that are not far apart. 

The graph below shows one highway's rate of change of elevation map over a stretch of road. It 
shows the highway's rate of change of elevation (in feet per hundred feet) at each number of 
miles over the first 5.5 miles from Colorado-Utah border. This rate of change of elevation map 
is modeled by the function r(x) = cos(x)esin(x) + 2 . (Remember, this is an example.) Define a 
function that gives the road’s elevation at each distance from the border, given that the road’s 
elevation at the border is 5,326 feet. 

FIGURE 7 A context for developing accumulation functions from rate of change functions.

The development of the generalized accumulation function is done
within the context of concrete situations. We do not have space to show
how this is done, but Figure 7 gives one context that does a lot of work for
the course.

It is important to note that, in this course, no context used in the con-
struction of accumulation functions involves computing an area under a
curve. We consider it a travesty that calculus curricula take area under the
curve as the essential meaning of integration. We point out in one lecture,
weeks after students have begun creating and using accumulation func-
tions, that the product f (a + (k − 1)!x)!x just happens to be the prod-
uct you would use to compute the area of a rectangle having side lengths
f (a + (k − 1)!x) and !x if we are graphing functions within a rectangular
coordinate system. So area under a curve is a very small idea in the realm
of using accumulation functions to model phenomena.

In concluding this discussion of Step 5, we would like to make a brief
comment about Step 6—defining exact accumulation functions. As noted
earlier, we do not discuss limits, but we do discuss the ideas of indis-
tinguishable from and essentially equal to. In playing with the effects of
making values of !x very small, students discover that at some point one or
more of three things happen: (a) making !x smaller makes no appreciable
difference in the values their function produces; (b) the smaller the value
of !x, the slower the computer produces results; and (c) you can always
make !x so small that the computer’s estimates go crazy and become unre-
liable. We then introduce the notation

∫ x
a f (t)dt . We introduce it simply as

a matter of notation to designate an accumulation function for which !x is
so incredibly small that making it smaller makes no appreciable difference
in the values it produces.3 This is actually a rather sly move, because GC

3 We also discuss the need to use a letter other than x in the integrand when we use x in
the integral’s upper limit. (See Thompson & Silverman, 2008, pp. 44–45, for this explanation.)
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allows this open-form integral in function definitions (see Line 9 of Figure 8
in Appendix A). In other words, students start using standard integral no-
tation to define functions that have the same meaning as the approximate
accumulation function (defined as a summation) that they worked so hard
to create. Students then see standard integral notation as a convenience. It
does not introduce anything new.

Step 8: Build Approximate Rate of Change Functions from Exact
Accumulation Functions

As stated earlier, any function that gives an amount of one quantity in relation
to the value of another can be thought of as an accumulation function. The
function v(x) = 4

3πx3 gives the volume of a sphere of radius-length x. If
we think of x varying from 0, then v(15) gives the accumulated volume of a
sphere that grew in size from radius-length 0 to radius-length 15. Put another
way, v(x) =

∫ x
0 r(t)dt for some rate of change function r. The problem is to

determine r.
Our strategy for constructing an exact rate of change function r for

an accumulation function F so that F (x) =
∫ x

a r(t)dt for some number a is
this:

1. Students construct an approximate accumulation function from the exact
accumulation function. The approximate accumulation function will be
piecewise linear over !x-intervals, and the rate of change of the piecewise
function over each !x interval will be the function’s average rate of change
over that interval.

2. The constant-rate step function is the function that has, for each value of
x in a !x-interval, the value of the accumulation function’s average rate
of change over that interval.

3. The exact rate of change function is the function (if there is one) that is
indistinguishable from the rate function generated by using infinitesimally
small values of !x.

While this strategy outlines the general approach, we make one adjust-
ment that simplifies matters significantly. Instead of looking at the average
rate of change of F over fixed !x-intervals, we think of a sliding interval
of length !x (Thompson, 1994a; Weber et al., 2012). We can then define
the general open-form rate of change function for any exact accumulation
function F as r(x) = F (x+!x)−F (x)

!x .
In contrast to traditional approaches to developing the derivative, we

follow Tall (1986) in letting the value of x in the definition of r vary while
keeping the value of !x fixed. Thus, instead of the difference quotient being
a number for every value of !x, it defines a function r for every value of !x.
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If r converges as the value of !x decreases, then it converges to a function,
and we call that function F ’s exact rate of change function. We do not dwell
on a deep meaning of converges, although we do look at examples where
it is clear that convergence does not happen (especially in the context of
discussing the Mean Value Theorem). It is not uncommon for students to see
that r(x) converges differently for different functions F . What they notice,
put in standard language, is that r(x) converges pointwise in some instances
and uniformly in others. Later, we glance at “super wrinkly” functions for
which r(x) does not converge at all, anywhere.

There is one important difference between the development of exact
accumulation functions from exact rate functions and the development of
exact rate functions from exact accumulation functions. In constructing exact
rate of change functions we can often manipulate the approximate rate of
change function’s definition symbolically to see a function we already know.
In other words, we can usually derive closed-form representations of exact
rate of change functions; whereas, we are rarely able to derive closed-form
representations of exact accumulation functions. However, as we develop a
repertoire of exact rate of change functions in closed form that are derived
from exact accumulation functions in closed form, we expand our capacity to
work backward from a closed-form rate of change function to a closed-form
accumulation function.

THE FUNDAMENTAL THEOREM OF CALCULUS

The FTC is often stated like this:

Suppose f is continuous on a closed interval [a,b].
Part I. If the function F is defined by F (x) =

∫ x
a f (t)dt for every x in

[a,b], then F is an antiderivative of f on [a,b].
Part II. If G is any antiderivative of f on [a,b], then

∫ b
a f (x)dx = G(b) −

G(a)

We have argued elsewhere (e.g., Thompson, 1994a) that we should
think of Part I as the FTC’s essence, and think of Part 2 as a relatively
straightforward corollary. It is Part 1 that students have difficulty conceptu-
alizing. Indeed, Phase 1 of the course can be characterized as having the
goal that students conceptualize F (x) =

∫ x
a f (t)dt . The intricate relationship

between accumulation and rate of change is the essence of the FTC. It is by
building accumulation from rate of change and rate of change from accumu-
lation, that the FTC is present each day of instruction. We do not wait until
the end to magically link derivatives and integrals.

To understand that
∫ x

a f (t)dt is an antiderivative of f means, first, to
understand that

∫ x
a f (t)dt is a function of x. So Phase I is structured to

have students develop the idea that accumulation can be conceived as a
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function. The meaning we intend that students develop is that
∫ x

a f (t)dt is
the function that gives the accumulation of a quantity over the interval [a, x]
whose accumulation changes at a rate of f (t) for each value of t in [a, x].
That is, this intended understanding of accumulation entails the FTC—sort
of. After Phase I students know that

∫ x
a f (t)dt is a function of x and they

know that
∫ x

a f (t)dt has f (x) as its rate of change. But, at the end of Phase
1, they do not know that

∫ x
a f (t)dt is an antiderivative of f . This is because

the concept of antiderivative is based on the concept of derivative, which is
developed in Phase 2.

The importance of
∫ x

a f (t)dt being an antiderivative of f is that all
antiderivatives of f differ by at most a constant. Computing individual values
of

A(x, a, !x) =




$ x−a

!x %∑

k=1

f
(
a + (k − 1)!x

)
!x





+ r(x, a, !x)
(
x − left(x, a, !x)

)

is painfully slow for small values of !x even on the fastest computers. But
it is (for infinitesimal values of !x) essentially an antiderivative of f —a
function that has f as its exact rate of change function. So, if we know a
closed-form function, one that is also an antiderivative of f , and one that
we know how to calculate efficiently, then we can use it in place of the
conceptually clear but hard to compute summation. The inefficiency of this
open-form approximation of an exact accumulation function is a primary
motive for deriving closed-form rate of change functions from closed-form
accumulation functions in Phase 2. In deriving closed-form rate of change
functions and, thinking backward with the chain rule, product rule, etc., we
build up a repertoire of easy-to-compute functions that we can use in place
of hard-to-compute open-form approximate accumulation functions. The fact
that we can use exact rate of change functions in many useful applications
is a bonus.

That F (x) =
∫ x

a f (t)dt is a function, and that it is also an antiderivative
of f , is driven home through problems like these:

Problem 1. The function q defined as q(x) = xecos x does not have an ele-
mentary antiderivative. But it has an antiderivative. Name one.

Problem 2. Define G as G(x) =
∫ x

a t cos(t)dt . Define a slider a that takes on
values between -5 and 5. Graph y = G(x). Vary the value of a. Why does
the graph change the way it does?

Problem 3. A ball is hanging by a 2-foot rubber cord from a board. The ball is
then given a sharp push downward and left free to bounce up and down.
Its vertical location relative to its resting point is given by the function
f (x) = −e−x/12 sin

(
π
2 x

)
, where x is the number of seconds since the ball
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was pushed. Define a function that will compute the ball’s total distance
traveled x seconds after being pushed.

Problem 4. Let k be a differentiable function of x. Define the function K as
K (x) =

∫ x
a

d
dt k(t)dt . For what values of a will K (x) = k(x)? Why?

An answer to Problem 1 is Q(x) =
∫ x

0 tecos tdt . By Part I of the FTC,
Q is an antiderivative of xecos x. In exploring Problem 2, students see that
the graph of G moves vertically as they vary the value of a. The answer to
Problem 2, then, is that since G is an antiderivative of xecos x for all values
of a, and since all antiderivatives of xecos x differ by a constant, by varying
the value of a we are varying the value of the constant that is added to∫ x

0 tecos tdt . The essential insight to Problem 3 is that the ball’s total distance
traveled is accumulated by moving in bits of distance, where each bit is
made by the ball moving at a positive rate for an infinitesimal amount of
time. Upon this insight, it is clear that the ball’s total distance traveled after
x seconds is T (x) =

∫ x
0

∣∣ d
dt f (t)

∣∣ dt . The essential insight to Problem 4 is that
both K(x) and k(x) are antiderivatives of d

dxk(x). Thus, by Part 2 of the FTC ,
K (x) = k(x) − k(a), and therefore K (x) = k(x) for values of a such that
k(a) = 0. Students can answer the first part of Problem 4 by defining a as a
slider, graphing K(x) and k(x) for various functions, and then noticing that
the graphs coincide when a is such that k(a) = 0. However, it is students’
insight into the FTC that supports their answer to the “why” part of Problem 4.

MATHEMATICS FIRST, TECHNOLOGY SECOND

This approach to introductory calculus is driven by research on learning
and understanding rate of change and research on students’ difficulties in
calculus. The aim was to teach schemes of meaning that would lend co-
herence to students’ thinking about accumulation and rate of change. Tech-
nology entered the picture as a means to that end. As we have illustrated,
and will explain more fully, technology made the conceptual development
possible. But it was the intended conceptual development that determined
the technology that was needed.

WHY THIS APPROACH IS IMPOSSIBLE WITHOUT TECHNOLOGY

The development of accumulation functions as first-class functions depends
on students being able to represent them and have their representations be-
have like functions they accept: They give it an input and it produces an
output; they graph it; they transform it (shifting its graph left, right, up, or
down as they would any function); and so on. They develop a familiarity
with open-form accumulation functions that makes them, in the students’
experience, real. None of this is possible without employing computing
technology. The fact that GC uses standard mathematical notation enhances
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students’ experiences even more. The notation “becomes alive,” and errors in
students’ notation lead to displays and results that students do not anticipate.
In other words, students’ work with GC allows them to judge the validity of
their mathematics by how it works. Students know that something is amiss if
their choice of a closed form representation of

∫ x
a

1
1+t2 dt does not produce a

graph that matches the graph of y =
∫ x

a
1

1+t2 dt . Similarly, they know some-
thing is amiss if their choice of a closed-form rate of change function for
f (x) = xcos x appears not to coincide with the graph of y = f (x+0.0001)− f (x)

0.0001 .
Technology allows students to form the mindset that open-form definitions
of mathematical functions are not just legitimate mathematical definitions;
they are often trusted definitions if one is unsure about a closed-form result.

We will close by observing that students’ acceptance of GC is a slow
process. At first they insist upon using their handheld calculator when it
would be easier to use GC. At the end of the course, however, students prefer
to use GC, for the very reasons we noted in the previous paragraph—the
mathematics is live. We believe that what happens is best captured by what
Verillon and others have called instrumentation (Artigue, 2002; Thomas &
Holton, 2003; Vérillon & Rabardel, 1995; Zehavi, 2004). By instrumentation,
Verillon and Rabardel mean that people get to know an object or artifact
through using it to the point that its affordances and constraints become part
of their thinking and reasoning. It becomes ready at hand in Heideggar’s
terms (Winograd & Flores, 1986). What is unique in the present course is that
GC’s transformation into an instrument for students’ mathematics happens
hand in hand with students’ construction of the mathematics for which GC
becomes instrumental.
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APPENDIX A

The Mathematics Behind the Bottle Problem Animation

Figure 8 gives the entire workings of the bottle problem animation.
Here is how the mathematics in Figure 8 align with the computer display

and animation:
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FIGURE 8 The mathematical functions and relationships behind the Bottle Problem anima-
tion. In some operating systems, this file will work only if “f (1.5)” in part 2 of Line 5 is

expanded to “1.5e
−1

BottomShape π1.52
+ 1” (color figure available online).

• The bottle’s outline is the graph of a function f that is defined piecewise.
The definition of f appears in Line 5 of Figure 8. The first part of f ’s
definition is a scaled version of the probability density function of a normal
distribution up to x = 1.5, with the value of “BottomShape” used as the
distribution’s standard deviation.

• The second part of f ’s definition is the point-slope formula applied to the
point (y, x) = (1.5, f (1.5)) and a rate of change of “TopShape.”

• Lines 6 and 7 generate the bottle’s outline by graphing x = f (y − 1) and
x = − f (y − 1), 0 < y < 4.25.

• Line 8 shades the region consisting of points (x, y) such that 0 < y < h
and− f (y − 1) < x < f (y − 1).

• Line 9 defines the function V , which is the volume of revolution calculated
using the “slab” method. The radius of each slab is f (y – 1). The limits of
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integration are 0 and the smaller of the value of x and the bottle’s largest
possible height.

• Line 11 graphs y’ = V (x’) for 0 ≤ x’ ≤ the minimum of h and the bottle’s
height. The use of y’ and x’ is a signal to GC to draw the graph in the right
pane.

• As the value of h varies, the mathematics expresses itself as an animation
that shows a bottle being filled and an unfolding graph of its volume versus
its height.

APPENDIX B

Examples of Problems, Exercises, and Activities for Steps 1 and 8

STEP 1 – CONCEPT OF FUNCTION AND FUNCTION NOTATION

Green Globs (Adapted from Dugdale, 1982, Figure 9). This exercise is
an adaptation of Sharon Dugdale’s classic game Green Globs. The difference
between this and Dugdale’s original game is that Dugdale’s game did not
require students to create a composite function. In solving this problem,
students first find a function whose graph passes through the points (in this
case, y = (x−3)3

8 ), but to satisfy the problem’s request students must graph
y = g( x−2

2 ).

FIGURE 9 Screen from activities inspired by Green Globs (color figure available online).
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FIGURE 10 A sequence of problems that focuses on uses of function notation in modeling
(color figure available online).

Blood Alcohol Concentration (Adapted from Stacey, 2010). We use the
Blood Alcohol Concentration (BAC) problem (Figure 10) primarily to place
students in a position where they must modify a function definition in order
to use it more broadly than was intended in its initial design. For example,
Question 2 can be answered with the graph of y = c(x) + c(x − 0.5) + c(x −
1), x ≥ 0. The graph shows Kevin’s BAC over time since his first can of beer.
But to make this expression work, students must redefine c so that c(x) =
0 for x < 0. This is because x – 0.5 is less than 0 for the first half hour and
therefore c(x – 0.5), with c’s original definition, is undefined for the first half
hour. Redefining c so that c(x) = 0 for x < 0 says, in effect, that Kevin’s
BAC is unaffected by beers he is yet to consume.
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FIGURE 11 An assignment from Phase 2, Step 8.

STEP 8. STUDENTS BUILD (AND INVESTIGATE) RATE OF CHANGE FUNCTIONS

Figure 11 shows a problem used to reinforce the idea that any function taken
as an accumulation function can be thought of as an integral built from the
function’s rate of change function.

Figure 12 shows an assignment that focuses on relationships between
the tangent to a function’s graph at a point (a, f (a)), the function’s rate of
change with respect to x at x = a, and information that a function’s rate
of change at a value in its domain tells us about the function’s behavior in
neighborhoods around that value.
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FIGURE 12 An assignment to help students conceptualize relationships between a function’s
rate of change at a point, the tangent to the function’s graph at that point, and what a value
of the function’s rate of change tells us about the function’s behavior.


