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Every high school mathematics teacher who has taught function notation has heard the question: 
Why use f(x) when all we really mean is y? This short article responds to that question by 
addressing the idea of function notation from historical and pedagogical perspectives.  

History 

Notations are a means of representing something conventionally. As such, we cannot understand 
the invention of function notation without first understanding the idea its inventors intended to 
capture with it. Clearly, function notation was invented to represent functions. But the idea of 
function itself evolved and changed over time. Kleiner described the idea of function as “3700 
years of anticipation …. [and] 300 years in intimate connection with problems in calculus and 
analysis” (Kleiner, 1989, p. 282). For 3700 years mathematicians and scientists envisioned two 
quantities changing together but they had no means to represent “changing together”. They could 
represent values of the two quantities, but they did not have a way to represent a relationship that 
existed between them.  
 
Kleiner described the next 300 years, after the advent of algebraic notation, as mathematicians’ 
attempt to express relationships between variables in a way that they could speak of relationships 
yet to be defined explicitly. For example, you know that you had a specific height at each 
moment in time since your birth, but you have no way of knowing exact heights at exact 
moments in time. How might you represent your height at each moment of elapsed time since 
birth without knowing the precise relationship between your height and elapsed time? In other 
words, mathematicians wanted to be able to say something like “my height had a value at each 
moment of elapsed time” symbolically. 
 
Cajori’s history of mathematical notations (Cajori, 1928, 1929)1 gives several examples of 
different attempts to represent relationships between two variables’ values. It is worth noting that 
the difficulty they had was in representing the relationship, not in representing the values. Early 
attempts were unsatisfying because the notation named the relationship, but not what the 
relationship related (e.g.,   x 1  to represent a function of x and   x 2  to represent a second function 
of x). In a 1697 letter from Johann Bernoulli to Gottfried Leibniz, Bernoulli wrote about a new 
notation he had invented that represented both the variable used to define a function, a name for 
the function, and a value of the function for a value of x. “[By Xx] I understand that it has been 
given by X of x, and the constants of the quantities” and “Xx is the same quantity of x and 
constants combined.” (FC, 642). By Bernoulli’s convention, “X2” would represent the value of 
the function X when x has a value of 2.  
 

In 1734, Euler created our modern notation, writing “If 
 
f

x
a
+ c

⎛
⎝⎜

⎞
⎠⎟

 denotes any function of 
 

x
a
+ c  

…”. But Euler’s notation was not taken up generally for several decades. Even Euler adjusted his 
notation so that f:(x) denoted the value of a function of one variable and f:(x,y) denoted the value 
of a function of two variables (FC, 643). Another notation in use during Euler’s life was that all 
                                                
1 Many of my statements rely on Florian Cajori’s excellent two-volume history of mathematical 
notations. Cajori numbered his paragraphs across the two volumes, so I will state citations to 
Cajori’s history as (FC, paragraph number). 
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functions were named by a Greek letter, such as ϕx to name a function (ϕ) defined in the variable 
x. It was not until the early 1800’s that textbooks began using Euler’s original notation 
consistently (FC, 645). However, ideas like a function’s domain, codomain, image, and range 
had yet to be thought of because the problems mathematicians worked on did not demand them. 
 
Today there are a number of conventions for representing relationships between the values of 
two variables. Each emphasizes a different aspect of the idea of function. For example, if one 
wants to emphasize that a function named h is a relationship between two sets A (the set of 
inputs) and B (the set of outputs), one could write   h : A→ B  or  A h⎯→⎯ B . To represent the 

natural log function from the positive reals to the reals we could write    ln :ℜ+ →ℜ,  x loge(x)
to mean that “ln” is the name of the function, it takes positive real numbers as input, and outputs 
real numbers according to the rule that when given a value of x, ln outputs   loge(x) . The second 

notation (function over the arrow) would be   ℜ
+ ln⎯ →⎯ ℜ,  ln(x) = loge(x) , which conveys the 

same information as the first convention. 

Pedagogy 

The above historical discussion was about adult mathematicians trying to devise a notational 
system for representing functions, where their personal concepts of function were quite mature. 
High school students usually will not have a mature understanding of function, even by the 
standards of 1700. The typical approach taken by textbooks is to just begin using “f(x)” where 
they had been using “y”, leading students to ask the natural question, “Why not just use y?”  
 
The issue we must address, as Harel (2013) puts it, is how we might necessitate function 
notation—how we might make function notation a solution to what students recognize is a 
problem. Two ways that I find particularly useful are (1) to create situations where students need 
to re-use a formula repeatedly, and (2) create situations where students need to name a process 
before, or without, having an opportunity to define it.  

Re-use formulas 

To employ the re-use formulas strategy students need a computing device that will allow them to 
define functions. Automatic evaluation of function values is crucial to the success of this 
approach. My examples use a computer program called Graphing Calculator (“GC” for short; 
Avitzur, 2011). 
 
Students like formulas. Well, at least they like formulas in comparison to functions. Formulas 
give explicit rules as to what to do, and many (too many) students prefer rules to thinking any 
day of the week. The idea behind the re-use formulas strategy is to make an explicit reliance on a 
rule as inconvenient as possible. 
 
Figure 1 presents the well-known Box Problem. What I present here regarding function notation 
should follow a thorough discussion of the situation, especially how one can make a box by 
cutting square corners from a rectangular sheet. The discussion should also bring out the facts 
that the box’s height will be the length of the square’s side, the box’s width will be the sheet’s 
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width minus what is cut out, and the box’s length will be the sheet’s length minus what is cut out. 
They will also need to recall, or be reminded, how to compute the volume of a rectangular 
cylinder (area of base times height). 
 

 
Figure 1. The box problem. 

Here is an outline of the re-use formulas approach to necessitating function notation. Plain type 
is something you would say. Italic type is a comment. 

•  Reason together to conclude that volume is base area times height. Base area is width 
times length. So base area is  13.76− 2*4( ) 16.42− 2*4( ) , and volume is therefore 

 4 13.76− 2*4( ) 16.42− 2*4( ) . Now calculate. 
• What would the volume be if the square’s side length is 2.3 cm? What would the volume 

be if the square’s side length is 3.8 cm? What would the volume be if the square’s side 
length is 5 cm? What side length for the square makes the box have the largest possible 
volume? 

• Anyone tired of calculating? 
• What formula are you using to calculate volumes?   V = c(13.76− 2c)(16.42− 2c) , where c 

is the side-length of the square cutout. 
• Does knowing this formula help us calculate values faster than we’ve been calculating 

them? Not really. 
• Let me show you something. There’s a way to name this formula and have the formula 

calculate itself automatically. 
• Define   V (c) = c(13.76− 2c)(16.42− 2c)  in your computing device while projecting your 

device’s display on a projector screen. Explain that c is the cutout’s width in cm and that 
V(c) produces the box’s volume in cubic cm given a value of c. 

• Type V(2.3). The display shows 249.02376. Have students interpret the display. Type 
V(3.8). The display shows 206.45856. Have students interpret the display. Type V(5). The 
display shows 120.696. Have students interpret the display. See Figure 2. I’ve yet to see a 
student who doesn’t think this is cool. 

We have a rectangular sheet of cardboard that is 16.42 cm long and 13.76 
cm wide. We will cut a square with side-length 4 cm from each corner and 
fold the sheet to make a box. What will be the box’s volume? 
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• How much does the volume change were we to increase the cutout length from 4.1 cm to 
4.3 cm? Calculate this by typing V(4.3) – V(4.1). The display shows -13.87296. Have 
students interpret V(4.3), V(4.1), V(4.3) – V(4.1), and -13.87296. 

 
Figure 2. Function V defined, and values of V that are computed by GC when given values of c. 

• How might we think about what (the computing device) is doing when we type 
V(number)? It is important that students develop a mental model of what the device is 
doing to produce numbers. It won’t take long for them to propose something like a 
function machine. 

• How might we use our definition of V to graph the relationship between volume and 
cutout length? 

• Suppose the cardboard sheet was 28 cm by 40 cm. Must we start over from scratch? No. 
Just change the function definition. 

 
I do not mean to convey the impression that I predict the above outline will match what happens 
in your classroom. But it should give an idea about how to orchestrate a lesson that necessitates 
the idea of function notation as a convenient way to re-use formulas. 
 
It is necessary to address the conventions that lie behind function notation after an informal 
introduction to function notation like re-use formulas. The convention for using function 
notation is that you write the name of the rule, the variable that represents the value on which the 
rule acts, and then the rule that defines the function. Figure 3 unpacks the terms and conventions 
having to do with function notation.  

   V
Name

( u
Input

)

Output 

= u(13.76− 2u)(16.42− 2u)
Rule  for  how to  produce  an  output  

Function  definition  

 

Figure 3. Parts of a function definition. 

We often use the phrases “name of rule” and “name of function” interchangeably. The values 
that we put into the rule are called input values. The number that results from applying the rule to 
a specific input value is called an output value, represented above by V(u). The symbol V(u) is an 
example of representing the function’s output values for varying values of the input u. The act of 
using function notation to represent a relationship between two quantities’ values is called 
defining a function.  
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It is important to notice that “=” in the definition of V in Figure 3 does not mean that two 
numbers are equal – that the number represented by V(u) is the same as the number represented 
by   u(13.76− 2u)(16.42− 2u) . Rather, this use of “=” means “is defined to be”. That is why we 
cannot say that the right-hand-side represents the output of V. Instead, it is like the part of a 
dictionary definition that sits aside the word that is being defined.  

Name a process before defining it 

There is a theorem in number theory (call it Theorem A) that says:  

Suppose that a and b are integers, a > b, a, b ≠ 0. Suppose that r is 
the remainder of a divided by b. If d is the greatest common 
divisor of a and b, then d is the greatest common divisor of b and r.  

 
A corollary of Theorem A is that if r = 0, then b is the greatest common divisor of a and b. 
 
Theorem A is the basis for Euclid’s algorithm for computing greatest common divisors (an 
important computation in cryptology). The algorithm goes as follows. I will use “rem” to name a 
function that produces the remainder of one integer divided by another and “gcd” to name a 
function that produces the greatest common divisor of two integers. 
 
You are given values of a and b, b ≠ 0. To compute gcd(a,b): 

• If rem(a,b)=0, then gcd(a,b) = b. 
• If rem(a,b) ≠ 0, then compute gcd(b,r). 

 
We have, essentially, defined gcd, namely: 

  
gcd(x, y) =

y if rem(x, y) = 0
gcd( y,rem(x, y)) if rem(x, y) ≠ 0

⎧
⎨
⎩

  

 
But we have not defined rem even though we have said how we will use its output. Thus, we 
need a definition for the function that produces the remainder of one number divided by another. 
 
To define rem, we must think about how we would compute a remainder: calculate a/b as a 
decimal number, subtract the integer part, and then multiply the remaining decimal part by b. 
The function that gives the integer part of a number is called the “floor” function, denoted  x⎢⎣ ⎥⎦ . 
So, 

  

rem(a,b) = b a
b
− a

b
⎢

⎣
⎢

⎥

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

= a − b a
b

⎢

⎣
⎢

⎥

⎦
⎥
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Figure 4 shows rem and gcd in action within GC. It also shows that gcd is defined for two 
negative integers. But the example of gcd(-58,-4) shows that the number that gcd produces when 
x and y are negative is not their greatest common divisor. GC says it is -2 when it should be 2. I 
invite you to adjust the definition of gcd so that it works for negative integers. You might also 
adjust the definition of gcd so that it produces an acceptable output even when its inputs are not 
integers. 

 
Figure 4. The functions rem and gcd in action. 

A Misuse of Function Notation 

It is common for teachers and textbooks to write statements like C = f(x) = 3x + 2. This is 
actually a misuse of function notation and it confounds meanings of “=”. But just like any 
common practice, it has its pros and cons. 

On the positive side: 

1) Writing C = f (x) = 3x + 2  is convenient. It does two things in one line. It says that C = f(x) 
and it says that f(x) = 3x + 2. 

2) Many textbooks write it this way. 

3) Many people have the habit of writing statements like this. 

On the negative side: 

4) Writing C = f (x) = 3x + 2  reinforces the attitude that f(x) is superfluous. By transitivity of 
equality, C = 3x + 2, so, as many students ask, why not just write that? 

5) Writing C = f (x) = 3x + 2  confounds two meanings of “=”. The first use of “=” in 
C = f (x) = 3x + 2  represents equality between two numbers. The second use of “=”, as 
mentioned earlier, means “is defined as”. 

6) Many people say that you must write C = f (x) = 3x + 2  so that f has an output variable. But 
functions have outputs. They do not have output variables. f(x) represents the output of f 
when it is evaluated at a value of x. The phrase output variable confuses the ideas of function 
and variable. 

7) Writing C = f (x) = 3x + 2  confounds ideas of formula and function. We write A = L ×W  to 
say that the area of a rectangle is the product of its width and length. But suppose L and W 
vary with time? We wouldn’t write “ A = L ×W  after an elapsed time of t minutes”. Nor 
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would we write “ A = L(t)×W (t) after an elapsed time of t minutes”. Rather we would write 
“ A(t) = L(t)×W (t) after an elapse time of t minutes”. 

8) Finally, the statement y = f (x)  derives from the mathematical concept of a function’s graph. 
Technically, the graph of a function f:A → B is defined as Gf = x, y( )∈A × B y = f x( ){ } . 
The statement y = f(x) is simply a shorthand for saying that, given a value of x, the y-
coordinate of the corresponding point on f’s graph is f(x). 

My recommendation 

Try to keep two ideas separate. One is the use of a variable to represent a quantity’s value. The 
other is to say that a quantity’s value is a function of some other quantity’s value. Don’t 
confound these ideas. Instead of writing “C = f (x) = 3x + 2 ” to communicate two ideas in one 
statement, write something like “C = f(x), where f(x) = 3x + 2”. And write this after developing 
the idea that f represents a relationship between two quantities’ values. One quantity has the 
value x and the other has the value f(x). 

Why is function notation difficult for students? 

A primary source of students’ difficulty with function notation is that they only see it where “y” 
could be used just as well. The textbook says they must use f(x) when there really is no need for 
it. They rarely see function notation used in settings where using it actually enables them to do 
things that they otherwise could not. 
 
A second source of students’ difficulty with function notation is that they have not internalized 
the system of conventions in Figure 3 that gives function notation its meaning. A common way 
of thinking among students is that the entire left hand side of Figure 3 is the function’s name—
that the name of the function in Figure 3 has four characters—and that the right hand side of 
Figure 3 is the only part that matters. Thus, they see nothing wrong with function definitions like 

  
f (n) = x(x +1)

2
 because the right hand side tells them how to compute a number and the left 

hand side doesn’t matter. 
 
The moral of this short article is that students must see a need for function notation, must 
internalize its conventions in order to use function notation productively, and must find it useful 
to do interesting mathematics. 
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