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Though commonly used in math and physics, the concept of frames of reference is not described 
cognitively in any literature. The lack of a careful description of the mental actions involved in 
thinking within a frame of reference inhibits our ability to account for issues related to frames of 
reference in students’ reasoning. In this paper we offer a theoretical model of mental actions 
involved in conceptualizing a frame of reference.  Additionally, we posit mental actions that are 
necessary for a student to reason with multiple frames of reference. This theoretical model 
provides an additional lens through which researchers can examine students’ quantitative 
reasoning. 
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Consider the following problems that students encounter routinely in high school:  
x Bobby is 3 years older than Lucy. When Bobby is x years old, how old will Lucy be? 
x A particular engine can propel a boat at a maximum of 32 miles per hour. The boat 

travels 30 miles upstream from Port Adele to Port Chimney and then back, at maximum 
speed. The captain dropped a branch in the water before starting, estimating the 
downstream current as 6 mph. Considering just travel time, how long will the round-trip 
take? 

x Yolanda and Sydney ran in the same marathon. Sydney ran 5/3 times as fast as Yolanda. 
If Sydney finished the 26.2-mile race in 4 hours, what was Yolanda’s average speed? 

Students often struggle to manage the dual perspectives required in each task (Bowden et al., 
1992; Panse, Ramadas, & Kumar, 1994; Monaghan & Clement, 1999); for instance, the first 
scenario provides a comparison of Bobby and Lucy’s age relative to Lucy’s age, then switches to 
describing Bobby’s age from Bobby’s perspective, and finally asks for Lucy’s age relative to 
Bobby’s. A student must similarly tease apart the ways in which the framing of information 
about quantities in a scenario switches between two frames in the other two examples. In our 
own work investigating teachers’ meanings on similar tasks, we identified a need to isolate the 
type of reasoning involved in answering the above tasks within quantitative reasoning. 

Our search of the literature provided just a few references, all in physics education, that deal 
with tasks of this nature (Bowden et al., 1992; Panse et al., 1994; Monaghan & Clement, 1999). 
In line with the physics terminology, we choose to describe the extra layer of complexity in the 
above problems as issues of “frames of reference”. In this report, we introduce what we mean by 
a conceptualized frame of reference and reasoning with frames of reference, and explain why 
this is an area that deserves attention by the math education community. 

A definition of the noun phrase “frame of reference” would suggest that a frame of reference 
is an object external to the person reasoning with it. Such a perspective does not align with our 
goal of describing what it might mean for an individual to conceptualize a frame of reference. 
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Therefore, we articulate the mental activity involved in conceptualizing and reasoning with 
frames of reference. While the products of the mental activity we describe align with the 
classical definition for frame of reference as a coordinate system or a system of measures, our 
emphasis is on the mental actions a student must employ to conceptualize a frame of reference. 
In particular, we use the phrase “frame of reference” to refer to a set of mental actions through 
which an individual might organize processes and products of quantitative reasoning (Thompson, 
2011). As such, conceptualizing frames of reference and quantitative reasoning are interrelated, 
with frames of reference providing an additional lens with which to look at quantitative 
reasoning.  

Conceptualizing a Frame of Reference 
An individual can think of a measure as merely reflecting the size of an object relative to a 

unit or he can think of a measure within a system of potential measures and comparisons of 
measures. An individual conceives of measures as existing within a frame of reference if the act 
of measuring entails: 1) committing to a unit so that all measures are multiplicative comparisons 
to it, 2) committing to a reference point that gives meaning to a zero measure and all non-zero 
measures, and 3) committing to a directionality of measure comparison additively, 
multiplicatively, or both.  

Committing to a Unit 
 As an example, a student can think about the measure “4.5 feet” in different ways. If the 
student focuses only on the value “4.5” and sees the unit as of secondary (or perhaps no) 
importance, there is no meaningful connection between the unit and the value for this student. In 
contrast, if the student sees a multiplicative relationship between the unit and the value, this 
provides a meaning for the measure. In this second case, “4.5 feet” is a length that is 4.5 times as 
long as the length of an object that is taken as a standard foot. A student who sees this 
relationship and the importance of unit in establishing meaning for each measure has taken the 
first crucial step towards conceptualizing a frame of reference. 

Committing to a Reference Point 
As a demonstration, consider the phrases “distance Ben walked” and “distance Ben walked 

from his house today”. Both phrases describe quantities. The first phrase is vague and leaves a 
reader wondering if the quantity described is Ben’s distance walked today, Ben’s distance 
walked in his room, or the distance Ben walked since his birth. As such, the ambiguity in the 
phrase “distance Ben walked” creates ambiguity in the meaning of a measure. Saying the 
measure of “distance Ben walked” is m units fails to provide usable information for an individual 
trying to reason about the situation. Moreover, the vagueness of “distance Ben walked” would 
make it possible for an individual to inadvertently change his meaning for “distance Ben walked” 
while reasoning within a complex situation. He might define formulas or expressions to model 
the situation without understanding that his inconsistent meanings for the quantity make his 
model incoherent. Another possibility is that two individuals can read a situation and internally 
ascribe different meanings to the quantity “distance Ben walked” (by assigning different 
reference points) without realizing that they have done so. They might then discuss a problem 
and never realize that they are talking past one another because they are operating and speaking 
within two different frames of reference. 

The specificity of “the distance Ben walked from his house today” makes it a more useful 
description of a quantity. In particular, we can confidently say that if the measure of the quantity 
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“distance Ben walked from his house today” is zero, then Ben hasn’t left his house today. 
Similarly, if the measure of that quantity is b units, b > 0, then Ben walked b units outside of his 
house. The commitment to a reference point attributes a meaning to every measure of the 
quantity and avoids the problems associated with ambiguity described above. 

Committing to a Directionality of Measure Comparison 
Consider a student designing a study to investigate the relationship between people’s weight 

and Vitamin C consumption. The student plans to weigh each participant at the start and at the 
end of a two-month period, during which the participants will consume various amounts of 
Vitamin C daily. The student plans to examine the changes in the participants’ weights. This 
student could imagine these comparisons in two different ways. If the student is oriented to think 
always of positive changes, then the student would make the following kinds of statements: 
“Josh is 6 pounds heavier at the end of the study” and “Wanda is 6 pounds lighter at the end of 
the study”. In this case, the student has not thought of the comparison of measures within a frame 
of reference. Rather, the student adjusted his description so that a comparison always results in a 
positive number. Such adjustments constantly alter the directionality of comparison in order to 
think of the larger measure relative to the smaller. Should the student be asked what a 
participant’s change of 1.5 pounds means, he could not say definitively whether the participant 
gained or lost weight.  

Alternatively, suppose that the student commits to a comparison of “pounds heavier at the 
end than at the beginning”. The additive comparison that the student has in mind is the post-
weight minus the pre-weight. Here, the student would make statements like: “Josh is 6 pounds 
heavier” and “Wanda is –6 pounds heavier.” In these statements, the student made use of the 
same direction in comparing the measures. Unlike the other case, the student now definitely 
interprets a change of 1.5 pounds as the individual weighed 1.5 pounds more at the end of the 
experiment than at the beginning. 

We note that this commitment to the directionality is crucial when making multiple 
comparisons. For instance, most students can mentally shift between “heavier than” and “lighter 
than” when comparing two people’s weights. However, the activity of comparing three or more 
people’s weights proves much more difficult without committing to a directionality within a 
frame of reference. 

An analogous commitment to a directionality when comparing measures holds for 
multiplicative comparisons. A student thinking within a frame of reference will be able to say “x 
is 3 times as large as y” and “y is one-third as large as x.” A student who avoids committing to a 
directionality of comparison will only be able to make the first statement, possibly because of a 
discomfort with non-integers. 

As a final note, we emphasize that we are not suggesting people should commit to a single 
reference point or a single directionality of comparison for their entire engagement in a task. In 
fact, it is often the case that while solving problems, an individual must conceptualize more than 
one frame of reference. The commitments we refer to only occur within the act of 
conceptualizing one frame of reference; a student can choose to work with a different frame of 
reference for the same quantity within one context, but while working within one frame, he 
works consistently with the choices of reference point and directionality of comparison he made 
in order to conceptualize that frame of reference. The conceptualization of multiple frames of 
reference then requires further mental actions to bring information from multiple frames 
together, an activity we call reasoning with multiple frames of reference. 
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Reasoning with Multiple Frames of Reference 
We identify two types of reasoning that a student might employ when engaging in a task that 

necessitates conceiving of multiple frames of reference. The first type is that a student 
coordinates multiple frames of reference when he finds the relationship between one or more 
quantities’ measures in two frames, such that he can determine a measure given in one frame 
from a measure given in the other. A student who has coordinated two frames of reference could, 
given an event’s representation in one frame, represent that event in another frame in order to 
compare similar quantities. The second type of reasoning is that of a student combining multiple 
frames of reference when he considers two different quantities simultaneously within their 
respective frames of reference. Below we discuss the mental actions that are associated with each 
type of reasoning.  

Coordinating Multiple Frames of Reference 
A student coordinates multiple frames of reference by carrying out three sets of mental 

actions. She must first recognize the need to transform the measures of quantities measured in 
different frames of reference into measures measured in the same frame of reference. Second, a 
student must coordinate known measures of quantities in different frames in order to answer her 
question. Third, she must use those known measures to coordinate the frames. 

We illustrate these mental actions in the context of the task presented in Figure 1. 
 

Two children, Alice and Bob, walk together from school to home. Alice starts measuring the 
distance they have traveled by counting the sidewalk squares they have crossed since passing the 
tree. Bob starts counting the sidewalk squares they have crossed since passing the stop sign and 
noticed that there were 3 squares between the tree and the sign. Let u be the number of sidewalk 
squares Alice has counted. Write an expression that gives Bob’s count of sidewalk squares. 

 
Figure 1. The Alice and Bob task. 

Before beginning to coordinate multiple frames of reference, the student must first recognize 
that Alice and Bob each conceived of a comparable quantity within separate frames of reference. 
The student’s recognition of this fact coincides with her envisioning what a distance of zero 
squares means to both Alice and Bob. The student must recognize that for Alice, “zero squares” 
means that the children are at the tree; likewise the student understands that “zero squares” to 
Bob means that the children are at the stop sign.  

While the student could answer the prompt with a statement such as “Let v represent the 
number of squares that Bob has counted”, she may feel the need to make use of the given 
definition for u. However, in attempting to use u, she imagines shifting from Alice’s 
measurements (and frame of reference) to Bob’s measurements (and frame of reference). The 
student anticipates that for the shift to work, she needs to find a commonality between the two 
frames of reference. The stem of the task in Figure 1 provides the student with a useful point of 
commonality between the frames. The student knows that Alice and Bob walk along the same 
path, counting the same sidewalk squares, with Alice starting to count at a tree and, three squares 
later, Bob starts counting at the stop sign. The stop sign serves as a point of commonality 
between the two frames of reference. The student knows that for Alice the stop sign is 3 squares 
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from the tree. Likewise, she knows that Bob views the stop sign as 0 squares from itself.  Thus, a 
measure of 3 squares for Alice, 3Alice, is the same point along the path as 0 squares for Bob, 0Bob. 
In establishing the link 3Alice ≡ 0Bob, the student has coordinated known measures of comparable 
quantities from two different frames of reference. To fully coordinate the two frames of 
reference, the student must establish the relationship between the measure of a quantity in one 
frame of reference and the measure of the comparable quantity in other frame of reference. The 
student imagines that if Alice and Bob are at the stop sign and move forward one square, then 
both of Alice’s and Bob’s counts will increase by one; thus 4Alice ≡ 1Bob. She anticipates that as 
they keep moving forward any amount, both Alice and Bob will increase their counts (e.g. they 
move forward another 0.5 squares, 4.5Alice ≡ 1.5Bob).  Likewise, she imagines that if Alice and 
Bob moved backward one square, their counts would increase by -1; thus 2Alice ≡ –1Bob. In 
examining these connections based from the point of commonality, the student anticipates that 
Bob’s count will always be 3 squares less than Alice’s count. This supports the student in 
expressing Bob’s count as u – 3 using Alice’s frame of reference.  

Coordinating multiple frames of reference is cognitively demanding. It requires that a student 
conceive each frame as a valid frame, be aware of the need to coordinate quantities’ measures 
within them, and carry out the mental process of finding a relation between the frames while 
keeping all relative quantities and information in mind. 

Combining Multiple Frames of Reference 
A student combines frames of reference when she considers multiple quantities that exist 

within separate frames of reference simultaneously. Combining frames of reference is a separate 
act from coordinating frames of reference. When combining frames of reference, the student 
does not have a goal of expressing measures of one or more quantities in terms of different 
frames. Rather, the student’s goal is simply to hold quantities from multiple frames of reference 
in mind concurrently. In the above section, the student would have combined Alice’s frame of 
reference with Bob’s frame of reference had she stated “Alice and Bob’s home is both u squares 
from the tree and u – 3 squares from the stop sign”. As a further example, coordinate systems 
allow us (mathematicians, teachers, and students) to represent the measures of different 
quantities simultaneously when those measures stem from potentially different frames of 
reference. Figure 2 shows two examples of this; a coordinate system combining Alice’s and 
Bob’s frames of reference as well as a coordinate system for air temperature in Fahrenheit and 
Celsius. Students’ acts of joining two or more number lines that represent measures of (one or 
more) quantities in different frames of reference, and anticipating that ordered pairs (or n-tuples) 
give information about the measures in relation to each other, is the heart of combining multiple 
frames of reference.   
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Figure 2. Examples of coordinate systems as combining multiple frames of reference. 

Coordinating and Combining Multiple Frames of Reference 
We note that when the student imagines a point (an ordered pair) along either line in Figure 2 

as representing the measures of quantities in different frames of reference, she has combined the 
frames. If, however, she sees the line not just as representing a set of coordinated measures of 
quantities, but as a transformational relation between values of the quantities, she sees the graph 
as representing a functional relationship between the quantities. 

Placing Our Theoretical Perspective amongst Others 
Our interest in frames of reference and reasoning with frames of reference came about in an 

unexpected way. While analyzing teachers’ responses to two items intended to target 
proportional thinking and rate of change, we found that teachers’ responses to both items 
revealed struggles with coordinating quantities measured in what we came to realize were 
different frames of reference. Bowden et al. (1992) looked at the different approaches students 
used to analyze problems that involved an object moving inside another moving object (such as 
vector addition or proportional reasoning) and concluded that few students focused on 
“distinguishing frames of reference” (p.263-264). Bowden et al. noted that they attempted to 
characterize students’ meanings based on their entire transcripts; however, Bowden et al. did not 
explain what they meant by “frames of reference”. Rather, they used “frame of reference” as the 
possession of some object, e.g. “the frame of reference of the boat,” Likewise they did not 
explain what they meant by “students’ meanings.” Monaghan and Clement (1999) wrote that 
computer simulations helped students develop mental imagery and ability to switch between 
frames of reference (e.g., as in a scenario involving a moving car and a plane flying overhead). 
However, they did not define or explain what they meant by frames of reference other than using 
pointers as Bowden et al. did. In further work they continued to use the construct of frames of 
reference without explicating what they meant by it (Monaghan & Clement 2000). Panse et al. 
(1994) investigated and identified “alternative [unproductive] conceptions” that students had 
about frames of reference, such as the idea that a frame of reference was a concrete object with 
boundaries or that a frame of reference is defined by the existence of a concrete object. While 
they did valuable work in describing alternative conceptions that hindered students’ ability to 
reason about physical situations, they did not describe their normative conception of frames of 
reference. In all literature focusing on the idea of frames of reference or student thinking thereof, 
the authors presume that they and their readers share a common understanding of what “frames 
of reference” entails. 
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Expanding the Theory of Quantitative Reasoning 
The few times an author (usually of a textbook) did explicitly describe what he or she meant 

by a frame of reference, the description focused on a frame of reference as an object or objects. 
Typical definitions range from “a coordinate system with a clock” (Young and Freedman 2011) 
to “a rigid system of 3 orthogonal rods welded together” (Carroll 2004) to “a set of observers at 
rest relative to each other” (de Hosson et al. 2010), with no further discussion about how students 
must conceptualize a frame of reference in order to reason with them. Such definitions support a 
student in focusing on the object of a frame of reference itself. In contrast, a key moment in 
developing our theory was when we began framing the question as “How does a student think 
about measures within a frame of reference?” As we said earlier in this manuscript, we defined a 
fully conceptualized frame of reference by stating that “An individual conceives of measures as 
existing within a frame of reference if the act of measuring entails [three commitments].” In 
other words, the mental actions, behaviors, and skills that we traditionally associate with 
someone “understanding frames of reference” (whatever that means) have nothing to do with 
how one thinks about frames of reference and everything to do with how one thinks about 
quantities. 

In 1993 in his first article about quantitative reasoning, Thompson defined a quantity by 
saying that a “person constitutes a quantity by conceiving of a quality of an object in such a way 
that he or she understands the possibility of measuring it” (Thompson, 1993). He also added in 
an unpublished 1990 paper that this includes implicitly or explicitly thinking of appropriate units 
(Thompson, 1990). We find this to be a useful definition that provides a place to start thinking 
and talking about quantities, especially with younger children. However, curricula that seek to 
emphasize quantitative reasoning have highlighted further aspects of quantities, such as 
measuring a quantity in relation to a reference point (Carlson et al., 2013). 

Therefore, we define the idea of a framed quantity, which refers to when a person thinks of a 
quantity with commitments to unit, reference point, and directionality of comparison. As an 
example, consider a person who thinks about measuring how far Yolie has traveled as she walks 
her dog, understanding that appropriate units would be linear units such as feet, meters, and 
miles. This person is thinking about a quantity. In contrast, a person thinking about measuring 
Yolie’s displacement to the east from her front door in meters is conceiving of a framed quantity. 
Not only does this person’s mental construction have all the aspects of a conceptualized quantity, 
but it also shows a commitment to a unit (meters), reference point (front door) and directionality 
of comparison (displacement to the east yields positive measures). In other words, the quantity is 
so well defined that any measure value contains all the necessary information to understand its 
meaning. If x = Yolie’s displacement to the east from her front door (meters), then x = 3 means 
that Yolie is 3 meters to the east of her front door and x = -5 means that Yolie is -5 meters to the 
east of her front door (which could be interpreted as being 5 meters west of her front door if 
wanted, but also provides the same specific meaning without this reframing). No extra qualifiers 
are needed to make sense of the value, and there is a clear directionality of comparison: the value 
always says how much further in the eastern direction Yolie is than her front door. 

In Thompson’s 2011 paper he identified a number of dispositions that would aid students’ 
construction of algebraic thinking from quantitative thinking, including a disposition to represent 
calculations in open form, propagate information, think with abstract units, and reason with 
magnitudes. To this list we can now add that a disposition to think about measures within a 
frame of reference, and specifically with a direction of comparison, aids students in algebraic 
thinking. In constructing formulas students are often perplexed as to how to choose between a – 
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b and b – a, or a/b and b/a. This confusion can now be explained by thinking about how students 
do or do not commit to a directionality of comparison. Let us think about a student that is 
comparing the heights of husbands and wives in a study of couples. If the student sometimes 
frames the results of the comparison as “the husband is 6 inches taller than the wife” and other 
times “the husband is 2 inches shorter than the wife” then he is internally switching between two 
quantitative operations, which have corresponding formulas of h – w and w – h, where h 
represents the husband’s height and w represents the wife’s height, both in inches. Naturally such 
a student would have difficulty in developing a formula to compare heights. In contrast, another 
student may commit to a directionality of comparison by deciding the value of his measure will 
always describe ‘how much taller the husband is than the wife’. Since such a commitment entails 
always using the same quantitative operation, such a student will have far less obstacles to 
describing his process in symbolic form as h – w. 
 

Applications of the Frame of Reference Construct  
  

In our description of a conceptualized frame of reference and reasoning with multiple frames 
of reference, we deliberately used simplified tasks to illustrate the mental actions a person would 
have to take. However, we feel that the power of these constructs lie in their explanatory power 
in far more complex tasks. Below we illustrate two such tasks in detail, as well as sample 
responses from high school math teachers. 
 

The task in Figure 3 presents two functions with non-equivalent rules (i.e., f(x) = 15x-50/3 
and g(x) = 15x-65/3) to represent the same quantity (i.e., the distance between the two men). The 
fact that these two different functions can both represent the same quantity as a function of time 
creates difficulties for students (and teachers) trying to understand the scenario.  
 

 

Figure 3. Robin Banks Task. Adapted from Foerster, (2006). © 2014 Arizona Board of Regents. 
Used with permission. 

A person who can both conceptualize and coordinate frames of references, however, can see that 
this seeming paradox is resolved when one acknowledges that all measurements are taken from 
some reference point. Willie’s distance from the café is 65x miles where x is Willie’s travel time 
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in hours, and Robin’s distance from the café is 50x miles where x is Robin’s travel time in hours. 
However, the x’s in these expressions have different meanings because they are measured from 
different reference points: the moment when Willie left the café and the moment when Robin left 
the café. To make a comparison of these two distances requires coordinating the two frames and 
re-expressing either measure in the other’s frame. The distance between the men as described by 
f(x) is the result of re-expressing Robin’s distance from the café using Willie’s “stopwatch”, or 
frame, because at every point in time Robin has driven 1/6 hours more than Willie. Likewise, the 
distance between the men as described by g(x) stems from re-expressing Willie’s time using 
Robin’s “stopwatch”, or frame, because at every point in time Willie has driven 1/6 hours less 
than Robin.  
 

A 

 

B 

 

Figure 4. Sample responses to Robin Banks task 
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Figure 4 displays two sample responses to the Robin Banks task given by high school math 
teachers. In Figure 4A parts i) and ii) the respondent did not think about the quantities with 
respect to a reference point, and so had no way to answer part iii) meaningfully. In contrast, in 
Figure 4B we see in parts i) and ii) that the respondent conceptualized the quantities with respect 
to specific reference points, and was also able to correctly coordinate the two frames in part iii). 

Our frames of reference construct is also useful for examining individuals’ struggles with 
situations devoid of motion. As an example, consider the task in Figure 5 that asks the reader to 
compare consecutive changes in the interval [1, 2].   
 

 
Figure 5. Comparing Changes Task. © 2014 Arizona Board of Regents. Used with permission. 

A 

 

B 

 

Figure 6. Different Visualizations of the Comparing Changes Task 

This task proves challenging for people who do not think about changes within a frame of 
reference – specifically, people who do not maintain a directionality of comparison. Consider 
two hypothetical students: Dean who chooses option d) and Cathy who chooses option c). 
Assume both students understand the directionality of changes well enough to visualize changes 
as in Figure 6A.  

Dean says that the changes are negative and decreasing because he has inadvertently 
switched the direction of his comparison between deciding “the changes are negative” and “the 
changes are decreasing.” To determine that the changes are negative, he is engaging in a 
quantitative operation that we can formulize as [final y-value] – [initial y-value] and obtains a 
negative value for each. However, in deciding that the changes are decreasing, he is really only 
considering the magnitude of those changes, essentially switching his mental image to that 
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shown in Figure 6B and engaging in a quantitative operation that we can formulize as [initial y-
value] – [final y-value]. In comparison, Cathy says the changes are negative and increasing 
because she has maintained her directionality of comparison. For both her “changes are 
negative” and “changes are increasing” decisions, she engages in a quantitative operation that 
can be formulized as [final y-value] – [initial y-value]. We gain insight into individuals’ 
difficulties with this task by noticing a lack of commitment to directionality of comparisons. 
 

 

Figure 7. Sample response to Comparing Changes task 

Figure 7 displays a sample response to the Comparing Changes task given by a high school 
math teacher. Note that the teacher’s justification for his comment “changes are negative” refers 
to a directionality: “value is reducing.” However, his comment “changes are decreasing” uses the 
language “changes in value are becoming more and more slight”, which we see as a strong 
indication that the teacher suddenly switched to looking at magnitudes. 

Discussion 
The above are two examples where the constructs of a conceptualized frame of reference and 

reasoning with multiple frames of reference have explanatory power and potential for improving 
instruction. As we developed our descriptions of these constructs, we started to see applications 
in a variety of other domains. Below we give brief descriptions of some of these domains and 
where we see potential for future research and teaching. 

Personal experiences in teaching pre-calculus and calculus had shown us that students 
frequently conflate the value of a quantity and a change in that quantity, which leads to 
difficulties in understanding the ideas of change, slope, constant rate of change, and rate 
(derivative) functions. This confusion may be explained by a lack of attention to reference point 
for each measure; if a student does not commit to a reference point when measuring a quantity, 
there is little meaningful difference between the measure of the total quantity and a change in 
that quantity over a given interval. On the other hand, developing the idea that the total quantity 
is really a change from (a reference point of) zero provides parallel ideas with which to 
distinguish the two. Highlighting reference point commitment in teaching and discussion may 
help to alleviate this confusion. 

Students frequently categorize all motion within a false dichotomy of “real motion” vs. 
“imagined motion”, where an object is only “really moving” if it is moving with respect to the 
surface of the Earth, and the measure of its speed or velocity is only “real” if measured with 
respect to the surface of the Earth (Panse et al. 1994). This hinders their ability to deal with 
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relative motion tasks and has been a focus of study in physics education (Monaghan and Clement 
1999). For example, students cannot accept that a bike moving 15mph towards a sign is also 
moving 5mph with respect to a walker and moving backwards with respect to a car. While 
Monaghan and Clement worked on developing their students’ visual imagery, we believe that 
teaching students about conceptualizing all quantities as measured with specific reference points, 
and comparing quantities with specific directionalities of comparison, may prove beneficial. 

This common student struggle with “real” versus “imagined” motion stems from a lack of 
understanding of the fundamental physics principle of relativity (Bandyopadhyay 2009) that 
states that there can be no way of verifying that any reference frame (or object) is at absolute 
rest, and therefore the entire notion of absolute rest should be abandoned. We believe 
emphasizing that a reference point is mandatory for any measure to be meaningful can provide a 
backdrop for students to also accept that what we talk about as motion measure in the real world 
always comes with its implicit assumption of a reference point (the surface of the Earth), and that 
if all reference points are arbitrary then the surface of the Earth is as well. 

One of the most common struggles students have in physics is in understanding the concepts 
of velocity and acceleration. For example, researchers have found it extremely difficult to change 
the student perception that a positive acceleration means an object must be speeding up (when in 
fact it may be going from -5mph to -2mph, meaning it is slowing down but increasing in 
velocity). We have found in personal conversations that even professors who are known for their 
work in physics education have been teaching students that an object going from -10mph to -
20mph means that “the velocity is increasing in the negative direction” probably to deal with 
these types of misunderstandings. But not only are such descriptions physically and 
mathematically inaccurate, they result in descriptions that are incompatible with observations 
about change and rate of change that can be derived from calculus. We believe that teaching 
students about a commitment to directionality of comparison is far more consistent and fruitful 
way to approach these concerns. 

Panse et al. wrote a detailed description of seven alternative conceptions that students have 
about reference frames (Panse et al. 1994). Alternative conceptions 1, 2, 3, 4, and 6 are the 
consequences of seeing a reference frame as a physical object, while alternative conceptions 5 
and 7 are the consequences of not fully understanding the principle of relativity. As we 
developed our constructs we identified an eighth alternative conception: the idea that a frame of 
reference is useful primarily (or only) for an observer that remains at the origin of the frame’s 
coordinate system. We see the potential to reduce the number of students that develop all eight 
alternative conceptions in discussing frames of reference with students only in terms of three 
commitments on the part of the observer. 

We are grateful to an audience member at our presentation of this paper at the RUME 18 
conference, who offered the idea of electric potential as another concept we can reconceive 
through our constructs for frames of reference. It is true that students struggle with the idea of 
electric potential, and our minds immediately went to the struggles that physics and engineering 
students have with Kirchoff’s second laws for circuits. Briefly stated, Kirchoff’s second law 
states that the sum of the changes in electric potential around any loop in a closed circuit must be 
zero. Students often struggle with how to apply the rule because they feel a need to know where 
in the circuit the potential is “really zero” so that they can start their calculations there, not 
understanding that (like absolute rest) there is no such thing as absolute zero electric potential. 
These student difficulties may be alleviated by the same measures that help students to 
understand the principle of relativity in motion. 
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We believe that research on frames of reference and student thinking about frames of 
reference is warranted by the difficulties that students have with “typical” frames of reference 
problems. We think that the framework conceptualized frame of reference that we proposed 
offers new insight on student difficulties and contributes to a foundation for further research.  
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