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We describe an approach to introductory Calculus that supports students in connecting their conceptions 
of derivatives and integrals by incorporating the FTC as a central idea from the first day of the course. To 
accomplish this goal we re-conceptualize the idea of differential, introducing it before the notion of 
derivative in the context of constant rate of change in linear variation. In doing so, we view changes in 
variables happening continuously, as opposed to happening in increments. 

Several authors have built introductory calculus courses based on the concept of infinitesimal as 
introduced in Robinson’s (1966) nonstandard analysis. Three prominent examples are Henle 
(1979), Rogers (2005), and Keisler (2012). They argued, and we agree to a certain extent, that an 
approach to calculus based on infinitesimals is more intuitive for students than is the more 
common approach that is based on limits.  

Another point of entry into the calculus is through the use differentials in place of derivatives 
(e.g., Dray & Manogue, 2010; Rogers, 2005). Rogers’ meaning of a differential seems, to us, to 
be very much like Robinson’s infinitesimal. Dray and Manogue’s use of differentials seems to be 
driven by notational simplicity that they provide. We cannot tell with certainty what Dray and 
Manogue mean by a differential, but it seems they meant differential to be a small change in a 
quantity. Regarding common meanings of differential in calculus textbooks, we surveyed 17 
classic and contemporary calculus textbooks; most of them do not mention differentials at all for 
single variable calculus, and the few that do, define differential after having fully developed the 
derivative, and they define the differential dy as dy=f’(x)dx. 

Existing approaches to calculus based on the ideas of infinitesimals, limits, or differentials fail to 
address an important common shortcoming in calculus students’ thinking: students tend to think 
of variables statically. To them, variables do not vary. Calculus, to students who conceive 
variables statically, is divorced from ideas of variation, covariation, accumulation, and rate of 
change—the very ideas that the inventors of the calculus intended to address. White and 
Mitchelmore (1996), Jacobs (2002), Carlson et al. (2002), and Trigueros and Jacobs (2008) 
demonstrated the insidious effects on students’ understandings of and ability to model dynamic 
situations and pointed to students’ static conceptions of variables as being at the root of their 
difficulties. 

Our final concern with approaches that support students’ tendencies to think about variables 
statically is that the Fundamental Theorem of Calculus (FTC) is fundamental neither to students’ 
understandings of derivatives nor to their understandings of integrals. Instead, derivatives are 
about slopes of tangents, integrals are about areas bounded by a curve, and the FTC, coming after 
both derivatives and definite integrals, is about neither slopes nor areas. There is nothing 
fundamental about the FTC in students’ thinking. 
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Here we outline our approach to developing the calculus so that it (i) explicitly addresses 
students’ problematic, static meaning of variables, and (ii) supports students in connecting their 
conceptions of derivatives and integrals by incorporating the FTC as a central idea from the first 
day of the course. To accomplish this goal we needed to re-conceptualize the idea of differential.1 

The fundamental theorem of calculus frames our entire course. We explain to students at the 
outset that the entirety of calculus addresses two foundational problems, namely: 

1. You know how fast a quantity is changing at every moment; you want to know how much 
of it there is at every moment. 

2. You know how much of a quantity there is at every moment; you want to know how fast 
it is changing at every moment. 

We found that US college students and Israeli high school students are not prepared to think 
about these foundational questions profitably. Their image of function is typically a one-number-
in one-number-out function machine, and they cannot use function notation representationally. 
Also, in line with earlier research, students think of variables statically. To them, a variable’s 
value varies by substituting different numbers in its place—one number at a time. Accordingly, 
their understanding of the continuum (the real number line) is that it is composed of integers, a 
smattering of rational numbers, and 7-10 irrational numbers. Finally, their understandings of 
quantity are limited largely to lengths, areas, and volumes, where areas and volumes are 
conceptually one-dimensional (Thompson, 2000). As such, continuous variation is not part of 
their image of a real-valued variable and it requires a concerted effort on students’ part to 
construct continuous variation as a way of thinking. 

We address students’ ill-preparedness in many ways, focusing on their conceptions of the 
continuum and on envisioning variables as varying continuously. The image of continuous 
variation also is an important part of our materials on the concept of function. We also develop 
the idea of constant rate of change in the guise of linear variation. It is in the context of linear 
variation that we introduce the idea of differential. When two quantities x and y change at a 
constant rate with respect to each other, then changes in y vary in proportion to changes in x. Or, 
dy=mdx. That is, we view changes in variables happening continuously, as opposed to changes in 
variables happening in increments. To this 
end, we talk about ∆x as the length of intervals 
that partition the x-axis, but we speak of the 
value of x varying continuously through any 
∆x-interval interval. The value of dx is the 
difference between the “current” value of x 
and the beginning (denoted left(x)) of the ∆x-
interval that contains the current value of x. 

                                                
1 Background for this approach may be found in (Kouropatov & Dreyfus, 2013, 2014; Thompson, 
1994; Thompson, Byerley, & Hatfield, 2013; Thompson & Silverman, 2008). 
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That is, a differential in x is a variable whose value varies through the interval (0,∆x], repeatedly. 
Therefore, dy is a variable whose value varies through the interval (0,mdx], where m is the 
constant rate of change that relates changes in y with changes in x within the ∆x-interval that 
contains the current value of x as it varies. 

We hasten to point out that we introduce the idea of differential as soon we introduce linear 
variation. We do not base the idea of differential on the idea of derivative. 

We then define the concept of a moment of a variable as a small interval containing a value of the 
variable. The idea of a moment is best illustrated by the case where the variable is time: taking a 
photo with the shutter being open for a small interval of time – a moment. Anything moving 
within the camera’s range of view will create a small blur, and this will be true no matter the 
shutter’s setting. The generalization to variables other than time is that all variation is blurry. 
Thus, a moment in a variable’s variation is an interval.  

We dwell on the idea of a moment in a variable’s variation to introduce the idea of rate of change 
at a moment, meaning that a function has a rate of change that is essentially constant over a small 
interval of the function’s independent variable. Since the rate of change is essentially constant 
over an interval, the change in the function over that interval is essentially equal to dy, where 
dy=mdx, as dx varies through that interval. It is with this image that we introduce the idea of a 
rate of change function rf  for a function f, meaning that every value of rf gives the rate of change 
of f at a moment of f’s independent variable. With the concept of rate of change functions, we are 
positioned to build a function whose values approximate values of f by accumulating changes in 
dy as x varies, starting from a reference point. We use the term accumulation function for 
functions that arise by their values having accumulated at some rate over small intervals of their 
independent variable. 

It should be obvious that our approach entails developing integrals as accumulations from rate of 
change functions as the first major concept of the calculus. It is in this respect that we see the 
FTC as being at the core of the course from the outset. With this entry it is intuitively immediate 
that the rate of change of an accumulation function at any moment of its independent variable is 
the value at that moment of the rate of change function from which it is built. 

The idea of integral becomes crystalized for students when we introduce the idea of a value of 
one function being essentially equal to the value of another—that making ∆x so small that 
making it smaller produces no practical change in the estimate of the function’s value. 
“Practical”, of course, depends on context. 

The second fundamental problem of calculus, knowing how much of a quantity you have at every 
moment and wanting to know how fast it is changing at every moment, entails reversing the 
process of creating accumulation functions from rate of change functions. The major insight that 
is required is to realize that any value of a function that gives an amount of a quantity at every 
moment must have accumulated at some rate over moments of the function’s independent 
variable. That is, if f(x) is an amount, then that amount accumulated from some reference point a, 
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and therefore 
  
f (x) = f (a)+ r(t)dt

a

x

∫  for some rate of change function r. Put another way, the 

FTC becomes the motive for finding a method of deriving rate of change functions from 
accumulation functions. 

This course evolved at Arizona State University over the past five years, and an electronic 
textbook for it now exists. The ideas have also been experimented with high school students in 
Israel. During the current academic year, a controlled experiment was carried out at ASU to 
compare students’ learning in our and traditional approaches. In Fall 2015 two full-time faculty 
taught sections of Math 270T, traditional Calculus 1 (n=180, 68) while one full-time faculty and 
one graduate student taught two sections of Math 270R, our revised Calculus 1 (n=114, 35). The 
sections were undifferentiated in the schedule of courses so we believe that there was no selection 
bias among students. Thompson met with the instructors in summer 2015 to construct a 12-item 
pre-post test. All instructors agreed that the final set of questions addressed a broad spectrum of 
important understandings that students should have at the course’s end. Students took the pretest 
in their first recitation meeting. The pretest was embedded in each instructor’s final exam; thus, 
all students who took a 270 final exam took the pretest a second time. 

Table 1 shows that there were no significant differences in pretest scores between students in 
270R and 270T (p<0.23) and a highly 
significant difference in their posttest scores 
(p<0.001). Scheffe post-hoc tests showed no 
difference between traditional sections and 
no difference between revised sections, but 
each traditional-revised comparison showed a 
significant difference (p<0.001). There were 
no significant differences among sections in terms of percent of students who passed the 
derivatives mastery test. 

Individual interviews of students in both treatments also showed distinct differences in the quality 
of their understandings. Also, students who dropped 270R did so largely because its emphasis on 
meaning and meaningful reasoning did not fit their expectations of a mathematics class. Star and 
Smith (2006) reported a similar result in the University of Michigan’s implementation of Harvard 
Calculus. Addressing students’ expectations in 270R will be an important goal in the future. 

We close by pointing out that our meaning of differentials dy and dx, as changes in quantities that 
are related linearly, is at the heart of our approach. It is by establishing powerful meanings of 
constant rate of change, linearity, and differentials that we incorporate the FTC in deriving 
accumulation from rate of change and in deriving rate of change from accumulation.  
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