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ABSTRACT 

 
This article reports an investigation of 251 high school mathematics teachers’ meanings 
for slope, measurement, and rate of change. The data was collected with a validated 
written instrument designed to diagnose teachers' mathematical meanings. Most teachers 
conveyed primarily additive and formulaic meanings for slope and rate of change on 
written items. Few teachers conveyed that a rate of change compares the relative sizes of 
changes in two quantities. Teachers’ weak measurement schemes were associated with 
limited meanings for rate of change. Overall, the data suggests that rate of change should 
be a topic of targeted professional development. 
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1. Introduction 
We agree with Copur-Gencturk (2015), Zaslavsky (1994), and Thompson (2013) that 
how teachers understand a mathematical idea is an important factor in the mathematical 
understandings that students actually form. To the extent that teachers listen to and adapt 
to what they understand their students to mean, teachers who understand an idea they 
teach coherently provide greater opportunities for students’ to learn that idea coherently. 
Inversely, the less coherently teachers understand an idea they teach, the fewer are 
students’ opportunities to learn that idea coherently. 
 Rate of change is a central idea in the secondary mathematics curriculum. It is 
therefore important to understand the extent to which teachers’ meanings for rate of 
change are sufficient to support them in helping students make sense of rate of change 
and related ideas. 

Prior studies of secondary teachers’ meanings for slope, rate of change, and 
quotient typically focused on small numbers of teachers in an effort to model their 
meanings or to characterize their proficiency with these ideas (Ball, 1990; Coe, 2007; 
Fisher, 1988; McDiarmid & Wilson, 1991; Stump, 1999, 2001; Thompson, 1994b; 
Thompson & Thompson, 1994). Large scale investigations of mathematical knowledge 
for secondary teaching, such as the TEDS-M study of mathematical knowledge and 
pedagogical content knowledge did not release any items related to quotient, rate of 
change, fraction or measurement (Tatto, Peck, Schwille, Bankov, Senk, Rodriguez, 
Ingvarson, Reckase, & Rowley, 2012).  

Since little is known about secondary teachers’ meanings for the content they 
teach, we developed a diagnostic instrument, Mathematical Meanings for Teaching 
secondary mathematics (MMTsm), to help researchers and professional development 
leaders diagnose groups of secondary teachers’ mathematical meanings (Thompson, 
2016). Our aim was to help professional development leaders design interventions that 
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would address weaknesses in teachers’ meanings so that teachers can better help students. 
Studies of elementary teachers have demonstrated that teachers’ scores on assessments of 
Mathematical Knowledge for Teaching are related to improvement in their students’ 
performance (Hill, Ball, Blunk, Goffney, & Rowan, 2007). At the same time, while the 
aim of the MMTsm is diagnostic, using it on a large scale allows us to examine the 
prevalence of particular meanings and ways of thinking in larger populations of teachers. 
 Our development of the rate of change items on the MMTsm was guided by 
qualitative work that characterized students’ and teachers’ thinking about rate of change, 
quotient, and slope (Coe, 2007; Lobato & Thanheiser, 2002; Martínez-Planell, Gaisman, 
& McGee, 2015; Nagle, Moore-Russo, Viglietti, & Martin, 2013; Planinic, Milin-Sipus, 
Katic, Susac, & Ivanjek, 2012; Stump, 1999, 2001; Thompson, 1994a, 1994b; Thompson, 
Carlson, Byerley, & Hatfield, 2014; Thompson & Saldanha, 2003; Thompson & 
Thompson, 1994; Walter & Gerson, 2007; Zaslavsky, Sela, & Leron, 2002). Construction 
of quality items and rubrics required articulating productive meanings for rate of change 
that are useful in many contexts such as calculus, science and economics. We also needed 
specific descriptions of common unproductive meanings for rate of change. In addition, 
other studies provided evidence that many secondary teachers’ meanings for quotient are 
only productive in limited situations and suggested that investigation of teachers’ 
meanings for “elementary” ideas is important (Ball, 1990; McDiarmid & Wilson, 1991).  

This article reports 251 teachers’ responses to MMTsm items that focused on high 
school teachers’ meanings for measure, slope and rate of change. We were interested in 
whether teachers’ meanings for rate of change were additive, multiplicative, or both and 
how they coordinated additive and multiplicative meanings for slope. We examined 
whether teachers were able to differentiate between situations best modeled with 
subtraction versus division. We also were interested in the extent to which teachers’ 
meanings for rate of change appeared to be connected to meanings for quotient as a 
measure of relative size.  

1.1 Summary of Article 
 

2. Literature Review: Identifies common meanings for rate of change, slope, 
measurement, and quotient that have been identified in qualitative studies and were used 
to write items and categorize teachers’ responses. 

3. Methods: Discusses the participants in study, rubric creation, and explains why 
open ended items with multiple acceptable answers should not be used to evaluate 
individual teachers. 

4. Results: Includes six rate of change, slope and measurement items, associated 
rubrics, and teachers’ responses. The results indicate that a majority of teachers’ 
meanings for these concepts are only productive in limited circumstances. 

5. Looking across items: Shows the correlation between teachers’ measurement 
responses and multiplicative responses for rate of change and slope. Provides qualitative 
evidence of the limitations of chunky meanings for slope and rate of change. 

6. Conclusion: Teachers need more opportunities to develop productive 
mathematical meanings, including meanings for slope and rate of change, in 
undergraduate programs and professional development. 
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2. Literature Review  
 
2.1 Mathematical Meanings Versus Mathematical Knowledge 
 
 A. Thompson and P. Thompson (1996) used the phrase Mathematical Knowledge 
for Teaching (MKT) to describe teachers’ schemes for ideas they teach and which they 
hold at a reflected level. They described teachers’ reflected schemes as guides for their 
interactions with students whom they hope will develop the meanings and ways of 
thinking that the teacher intends. Silverman and Thompson (2008) expanded this scheme-
based meaning of MKT by examining how teachers might create what they called Key 
Pedagogical Understandings from a basis of their personal, well-formed schemes—
schemes which Simon (2006) called Key Developmental Understandings. A Key 
Pedagogical Understanding is a mini-theory that a teacher holds regarding how to help 
students create the schemes that the teacher intends. In other words, A. Thompson, P. 
Thompson, and Silverman used knowledge in the sense of Piaget and von Glasersfeld—
as schemes and ways of coordinating them that enable people to function adaptively in 
light of their goals and experienced situations. We see teachers’ schemes as more than a 
set of declarative facts that the teachers learned about students and mathematics. An 
example of a declarative fact is “when students add two fractions many add the 
numerators and denominators.” We want to model teachers’ more general schemes for 
fraction, measure, quotient and rate of change that would allow us to predict how teachers’ 
might respond in a large variety of situations and not just in a specific context such as 
teaching the procedure to add fractions. 
 Ball, Hill and colleagues (Ball & Bass, 2002; Hill, et al., 2007; Hill, Schilling, & 
Ball, 2004) used the phrase MKT differently than did A. Thompson, P. Thompson, and 
Silverman. Ball et al. observed elementary school teachers and documented the 
“mathematical knowledge and skill used in the work of teaching” (Ball, Hill, & Bass, 
2005, pp. 16-17). Schilling, Blunk, and Hill (2007) discussed the evolution of their 
understanding of what their instrument measured from “declarative knowledge” to “a 
kind of close reasoning”: 

When we began developing items in this domain, we hypothesized that teachers’ 
knowledge of students existed separately from their mathematical knowledge and 
reasoning ability. We thought of such knowledge as “declarative,” or factual 
knowledge teachers have of student learning. Results from these validation 
studies, however, suggest that this “knowledge” may actually contain both 
elements of mathematical reasoning and knowledge of students and their 
mathematical trajectories. From this standpoint, Knowledge of Content and 
Students is less declarative knowledge than a kind of close reasoning in which 
teachers engage, flexibly, about students and their work. (Schilling, et al., 2007, p. 
121).  

 
We believe teachers’ mathematical schemes and their ability to reflect on their schemes, 
are one of the most important factors in determining their success in reasoning about 
students and their work. The productivity and generalizability of their mathematical 
schemes will either constrain or afford teachers’ decision making in the mathematics 
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classroom. We see the specific declarative facts Ball, Hill, and Shilling identified as 
“doing work for” teachers in the classroom as one part of teachers’ mathematical 
schemes. Instead of designing items to measure teachers’ declarative knowledge about 
specific teaching situations, we designed items that would allow teachers to reveal their 
schemes for major concepts in the hope that understanding their schemes would help us 
understand how they might convey mathematics in a wide variety of teaching situations. 
The teachers’ more general schemes help us understand the teachers’ “close reasoning” 
they engage in when presented with teaching situations.  The difference in Thompson et 
al.’s and Ball et al.’s goals as well as different theoretical perspectives on knowledge led 
to different methods in studying teachers’ thinking (Byerley, Herbst, Izsák, Musgrave, 
Remillard, & Hoover, 2015).  
 In 2013, P. Thompson began to use the phrase mathematical meanings for 
teaching instead of the phrase mathematical knowledge for teaching for three reasons: (1) 
readers often failed to understand that he was using knowledge in the sense of Piaget and 
Glasersfeld and not in the sense of Ball and colleagues (Thompson, 2013, p. 85); (2) to 
Piaget, knowledge and meaning were largely synonymous and both were imbued with the 
idea of scheme (Montangero & Maurice-Naville, 1997), and (3) readers understood easily 
that meaning connotes something personal and that a person’s meanings are intertwined, 
whereas knowledge seemed less personal and more declarative, standing apart from the 
knower. We used the term meanings instead of knowledge because we did not want 
readers to think our diagnostic instrument was designed to measure whether or not 
teachers had mastered a set of declarative facts related to teaching mathematics.  

 In light of the above, we named our instrument Mathematical Meanings for 
Teaching secondary mathematics (MMTsm) because we wanted to assess the meanings a 
teacher holds for the mathematics they teach. We hasten to say that we intend 
mathematical meanings for teaching to be understood as a teacher-centric construct, not a 
normative construct. Put another way, every teacher has meanings for the mathematics 
they teach. An individual teacher’s meanings might be incoherent, superficial, coherent, 
or productive, but they are her meanings for the mathematics she teaches. We categorize 
teachers’ meanings according to how productive they are. We agree that “productive or 
unproductive is a more appropriate criterion than right or wrong, and final assessments of 
particular conceptions will depend on the contexts in which we evaluate their usefulness” 
(Smith, diSessa, & Roschelle, 1993, p. 147). We define “productive mathematical 
meanings” to be meanings that a teacher holds which would be productive for students’ 
long-term mathematical learning were they to hold them also. We acknowledge 
immediately two concerns: (1) whether a meaning is actually productive for students’ 
learning depends on schemes available to the students at the moment of instruction, and 
(2) determining whether or not a meaning is actually productive for students requires 
collecting empirical evidence from students. A particular meaning might seem productive 
from the perspective of a more advanced knower, but there could be unforeseen 
consequences when attempting to teach this meaning to someone first experiencing the 
idea. 
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2.2 Schemes and Meaning 
 
We use the definition of scheme offered by Thompson et al. (2014): 

 We define a scheme as an organization of actions, operations, images, or 
schemes—which can have many entry points that trigger action—and 
anticipations of outcomes of the organization’s activity. (p. 11) 
 

 Unlike knowledge which people often understand to mean knowing something 
that is agreed upon to be true, a teachers’ scheme can be productive in many situations or 
only in a few. For example, we cannot say thinking of a fraction as a part of a whole is 
untrue, but we can say this scheme is productive only in limited circumstances (Norton & 
Hackenberg, 2010).  

One hallmark of a productive meaning for an idea such as rate of change is having 
a meaning that can be used to understand a wide variety of contexts and problems. The 
MMTsm includes several items that address contexts that we see as involving slope or 
rate of change. Our theory of meanings predicts that, for a teacher who has disconnected 
meanings for slope and rate of change, different contexts that involve slope or rate from 
our perspective could trigger different schemes in a teacher’s thinking. Our theory also 
predicts that, for a teacher who has a coherent system of meanings for slope and rate of 
change, these same contexts would trigger different aspects of one scheme.  

Our theory of meanings has strong implications for issues of reliability and 
validity of assessments and their items. If teachers conveyed similar meanings on 
multiple items intended to measure meanings for rate of change, the set of items would be 
considered to have internal consistency reliability. An assessment that validly assesses 
subjects’ meanings with regard to ideas for which the population of subjects has a wide 
variety of disconnected meanings will likely have low internal consistency reliability. 
Subjects will respond differently to items that the assessment’s writers see as tapping the 
same idea. This is exactly the case reported by Carlson, Oehrtman, and Engelke (2010). 
They conducted hundreds of interviews to establish the validity of their instrument’s 
items with regard to their interpretations of students’ answers, but most students chose 
the best response on some items that targeted a key idea but not on other items targeting 
the same idea—they had disconnected ways of thinking about different contexts that (to 
Carlson, et al. (2010)) involved the same idea. To understand teachers’ meanings it is 
critical to look at their responses to a variety of rate of change items because we expect 
that their responses to one item will not be a strong predictor of their responses to other 
similar items unless they have strongly connected meanings for slope and rate of change. 
 The construct meaning is similar, at the surface, to the construct concept image. 
Tall and Vinner (1981) explained “the concept image consists of all the cognitive 
structure in the individual’s mind that is associated with a given concept. This may not be 
globally coherent and may have aspects which are quite different from the formal concept 
definition” (p. 151). Even (1993) used the constructs concept image and concept 
definition to describe how secondary mathematics teachers used their experiences with 
functions to determine whether or not a given formula or graph was a function. The 
teachers often did not use the modern mathematical definition of function to determine if 
a graph was a function. Meaning, as explained in Thompson, et al. (2014) has a different 
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theoretical foundation and therefore different entailments than concept image. Tall and 
Vinner spoke of cognitive structures associated with a concept. Meaning, to us, is more 
restricted. It is, to use Tall and Vinner’s language, the cognitive structures associated with 
(implied by) a person’s current understanding. Teachers sometimes had multiple 
meanings for slope that were consistent with the formula ∆y/∆x, but some meanings were 
more helpful than others in particular contexts as teachers understood them. 

2.3 Quantitative Meanings for Quotient, Measure, Covariation, and Rate of Change 
 
 In line with our stance that all meanings are personal, we attempt to convey the 
meanings of quotient, measure, covariation, and rate of change that we used in this study. 
We also explain why these particular meanings are productive and coherent for student 
learning. The meanings that we summarize here are described in greater detail in 
(Thompson, 1994a, 1994b; Thompson & Carlson, 2017; Thompson, et al., 2014; 
Thompson & Saldanha, 2003).  
 
2.3.1 Quotient  
 A quantitative meaning for quotient entails a multiplicative comparison of two 
quantities with the intention of determining their relative size. Determining the relative 
size of two quantities means thinking of and expressing the magnitude of one quantity in 
terms of a multiple of the magnitude of another. A person who understands a rate’s value 
as a quotient understands that a rate gives the relative size of changes in two quantities. 
 Many students and teachers understand quotient (without knowing the word) only 
as the numerical result of division, without having an affiliated sense that they have 
determined a relative size. Other students and teachers understand the word quotient only 
as the name of a figural configuration that involves a vinculum—a horizontal division bar. 
Some students and teachers think that the mathematical meaning of a quotient is bound to 
the context in which it is used, such as “3/4” being the slope of a line means “up 3 and 
over 4” (Stump, 2001). If they see “3/4” as referring to a part of a whole they may 
understand that 3 is a subset of 4. Several studies show that many school students’, future 
teachers’, and teachers’ meanings of division are non-quantitative and have little to do 
with ideas of relative size (Ball, 1990; Byerley & Hatfield, 2013; Byerley, Hatfield, & 
Thompson, 2012; McDiarmid & Wilson, 1991; Simon, 1993). A person with an image of 
multiplication as making multiple or partial copies of a quantity is positioned to 
understand the connection between multiplication and quotient as described by 
Thompson and Saldanha (2003).  
 
2.3.2 Measure 
 Thompson et al. (2014) characterized various schemes for measure by discussing 
levels of reasoning about magnitudes of quantities. They distinguished among six 
meanings of magnitude: gross perception of size, size as measure being a count of a 
specific unit, size as measure relative to a specific unit (Steffe Magnitude), size as 
independent of specific units (Wildi Magnitude), relative size of measures in specific 
units, and relative size independent of units (Relative Magnitude). The last four meanings 
of magnitude (Steffe Magnitude, Wildi Magnitude, and two forms of Relative Magnitude) 
are all based in multiplicative comparisons of quantities’ measures. The last three 
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meanings involve the understanding that the amount of a measured quantity is invariant 
across changes in unit. For example, people with a Wildi Magnitude Scheme understand 
that a container’s volume measured in gallons and liters is the same size even though the 
respective measures of the container’s volume are different. Further, they understand the 
reciprocal relationship of relative size—that because a gallon is 189/50 times as large as a 
liter, the measure of a container in gallons is 50/189 times the measure of the container in 
liters. Wildi Magnitude and Relative Magnitude schemes are foundational for mature 
understandings of rate of change and understanding intensive quantities in science. 
 
2.3.3. Variational and Covariational Reasoning  
 Both Confrey and colleagues and Thompson and colleagues have written 
extensively about the covariation construct (Confrey & Smith, 1995; Saldanha & 
Thompson, 1998; Thompson, 1990, 1994a, 1994b, 1994c; Thompson & Thompson, 1992, 
1994). In this study, we use Thompson’s meaning of covariation, expanded as in 
Thompson and Carlson’s (2017) framework for describing different levels of variational 
and covariational reasoning. This expanded framework includes a distinction introduced 
by Castillo-Garsow (Castillo-Garsow, Johnson, & Moore, 2013; 2012) between what he 
called “chunky continuous reasoning” and “smooth continuous reasoning”. A person 
reasons about a quantity or variable varying in “continuous chunks” by thinking that it 
attains a next value, that intermediate values exist, but without thinking that the quantity 
or variable actually attained any of those values. Thinking with smooth continuous 
variation is defined as, 

The person thinks of variation of a quantity’s or variable’s 
value as increasing or decreasing by intervals while 
anticipating that within each interval the variable’s value 
varies smoothly and continuously (Thompson & Carlson, 
2017, p. 440). 

Thompson and Carlson (2017) then defined smooth continuous covariation as a person 
conceptualizing the values of two quantities varying simultaneously, while also having 
conceived of the quantities values varying smoothly and continuously. 
 
2.3.4 Rate of Change  
 Thompson and colleagues described students’ productive rate of change schemes 
as emerging through the progressive coordination and integration of schemes for quantity, 
variation, covariation, change, accumulation, and proportionality (Silverman & 
Thompson, 2008; Thompson & Thompson, 1996; Thompson, 1994b; Thompson, Byerley, 
& Hatfield, 2013; Thompson & Thompson, 1994).  A mature meaning for rate of change 
involves imagining covariation of quantities as well as a relative size or relative 
magnitude scheme. This is consistent with Thompson and Carlson’s (2017) argument that 
“for students to conceptualize rates of change requires that they reason covariationally, 
but it also requires conceptualizations that go beyond covariational reasoning, such as 
conceptualizations of ratio, quotient, accumulation, and proportionality” (p. 441).  
Understanding constant rate of change entails imagining two quantities covarying such 
that an accumulation of changes in one quantity is proportional to the associated 
accumulation of changes in the other quantity (Thompson, 1994b). Students must 
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understand the difference between the amount of a quantity and the change in the amount 
of the quantity. They must make additive comparisons to determine the change in 
quantities and then multiplicatively compare those changes. Norton and Hackenberg 
(2010) provided evidence collected in teaching experiments with students that the 
development of productive meanings for rate of change and proportion are dependent on 
having meanings for fractions that are more advanced than part-whole meanings.  
 
2.4 Teachers’ Meanings for Slope, Rate of Change, Measure and Quotient  
 
 Prior studies give examples of a variety of meanings for slope, rate of change, and 
quotient that we used to create rubrics for categorizing teachers’ written responses to 
MMTsm items. The meanings we will highlight from this literature are chunky meanings 
for slope and rate, thinking about slope/rate as an index of slantiness/fastness, the 
disconnect between meanings for rate and division, and difficulty in creating a 
quantitative image of division by a fraction. We believe most teachers’ meanings for 
these ideas are multi-faceted and vary based on the situation they encounter. 
 
2.4.1 Chunky meanings for slope  
 Coe (2007) and Stump (2001) interviewed in-service and preservice secondary 
teachers who conveyed a chunky meaning for slope. While teaching a lesson on slope, 
Joe, a preservice teacher, defined slope as, “‘vertical change/horizontal change,’ and 
presented a graph of the line passing through the points (0,0) and (3,2). He emphasized 
that the slope as a fraction, 2/3, up 2, over 3” (Stump, 2001, p. 216). Joe conveyed a 
chunky, non-multiplicative meaning for slope and never said that for any sized change in 
x the change in y is 2/3 as large. We believe his language in interviews and teaching 
would convey to a student that the vinculum (division bar) serves to separate numbers 
that tell us how to move in horizontal and vertical directions. This meaning is limited to 
Cartesian coordinate systems and cannot be applied to polar coordinate systems. One 
consequence of the meaning for slope Joe conveyed was that a student in his class did not 
understand that “the two fractions 5/-6 and -5/6 could both represent the same slope” 
(Stump, 2001, p. 216 ). Joe noted in a post-teaching interview, “They think you are 
describing a movement as opposed to you describing a number, a measurement” (Stump, 
2001, p. 216 ). Another consequence of this chunky meaning for slope is that individuals 
experience difficulty in reasoning about the values of the points in between the two points 
at either end of the “chunk.” Thompson (2013) gave an example of a teacher who could 
not find the values of points on a line in between the two points she produced by moving 
up and over in chunks on a graph. For this teacher, “division did not produce a quotient 
that has the meaning that the dividend is so many times as large as the divisor—3/4 as a 
slope was not a number that gave a rate of change.” (Thompson, 2013, p. 81). 

 The three experienced secondary mathematics teachers whom Coe (2007) studied 
also conveyed chunky meanings for slope. Peggy was asked “why do we use division to 
calculate slope?” and she replied that she didn’t know because “she never really thought 
of it as the division operation” (Coe, 2007, p. 207). Peggy understood slope as directions 
on how to move up and over on a graph and did not imagine comparing the relative size 
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of numerator and denominator. A chunky meaning for slope is adequate to solve many 
textbook problems, such as graphing a line given the equation of a line. 

 
2.4.2 Slope as an index of steepness  
 Coe (2007) and Stump (2001) described teachers who employed a meaning for 
slope as an index of slantiness to various degrees of success. A teachers’ sense of 
slantiness does not have to involve comparing changes in x and changes in y, but simply 
associating particular numerical values with particular graphs based on repeated exposure 
to graphs of linear equations. One limitation of remembering what a particular slope 
“looks like” is the dependence on the graphs being displayed in a rectangular coordinate 
system whose axes are in the same scale. Natalie, a preservice teacher was unable to 
extend her index of slantiness meaning for slope to rate of change situations. At the 
beginning of the methods course, Natalie said, “Slope is a term used to associate the 
incline of a line with a numerical value” (Stump, 2001, p. 217). Despite the instructors’ 
emphasis on the connection between slope and real world comparisons of changing 
quantities such as distance and time Natalie choose to focus on steepness, inclined plane 
examples and developing “rise over run” as a measure of steepness in her lessons (Stump, 
2001, p. 221). Natalie was “resistant to including the notion of slope as a measure of rate 
of change in her work” (Stump, 2001, p. 221). The physical situations Natalie used in 
instruction included real-world examples such as inclined planes and ski slopes where 
steepness was visually apparent in the situation. She did not help students understand that 
slope could be thought of as the rate of change of any two quantities. 
 Mary, an in-service teacher who described slope as “how steep a line is” (Coe, 
2007, p. 115) was unable to use her meaning for slope to make sense of multiple 
questions involving basic applications of slope. Instead of saying that a decreasing, 
concave up graph was decreasing at an increasing rate, she said that the graph was 
decreasing at a decreasing rate. Her reason was that the tangent lines appeared less steep 
as x increased. She did not consider that the changes in y in the graph were negative, and 
simply looked at how steep the graph appeared, as if it were a hill. Though a slope of -2 
is smaller than a slope of -1, because -2  is less than -1, Mary saw a slope of -1 as less 
steep than a slope of -2 from the perspective of thinking about the slantiness of a hill. 
 
2.4.3 Teachers’ meanings for quotient 
 All three studies we found that investigated secondary teachers’ meanings for 
quotient showed that teachers had significant difficulties with the idea (Ball, 1990; 
Byerley & Hatfield, 2013; McDiarmid & Wilson, 1991). We hypothesize that teachers 
with weak meanings for quotient are less likely to think of rate of change and slope 
multiplicatively, and more likely to resort to chunky or “index of steepness” meanings.  
 McDiarmid and Wilson (1991) presented 55 alternatively certified secondary 
teachers with four story problems that prompted them to choose which story problem 
could be solved by dividing by ½. Only 33% were able to identify a quantitative situation 
that involved division by a fraction. In interviews, some teachers in their study could see 
no real world application for division by fractions. Similarly, Ball (1989) asked 
prospective teachers “to develop a representation—a story, a model, a picture, a real-
world situation—of the division statement 1 !

!
÷ !

!
” (p. 21). Five of nine prospective 
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secondary teachers and zero of nine elementary teachers responded appropriately (p. 22). 
If a quotient is considered to be the relative size of two quantities’ measures, it is 
irrelevant how one represents their measures.  
 Byerley and Hatfield (2013) asked 17 preservice secondary teachers who were 
taking an upper division teaching methods course to draw a picture representing a given 
division problem (7.86 divided by .39 equals 20.15). The results suggested that the 
preservice teachers did not have strong quantitative meanings of quotient as a measure of 
relative size. Two said “I don’t know.” Nine of 17 gave an explanation such as, “20.15 
times .39 is 7.86”, which suggests they understood division as reversing multiplication 
calculationally. This, by itself, does not imply that they understood 20.15 as a quotient—
that 7.86 is 20.15 times as large as 0.39. Six of 17 students represented the relative size of 
7.86 and .39 in an image to explain the meaning of a quotient. See Fig. 1 for an example. 

 
Fig. 1. Diagram depicting relationship between numbers in division problem. 

Only one of the seventeen preservice teachers in the study was able to explain why 
division was used to calculate slope. We hypothesized that without an image of slope as a 
measure of relative size of changes, students’ meaning for quotient would not help them 
explain the use of division in the slope formula.  
 
2.4.4 Teachers’ meanings for measure 
 Two previously reported MMTsm items provide information about teachers’ 
meanings for measurement (Byerley & Thompson, 2014; Thompson, et al., 2014). One 
item asked teachers to convert between liters and gallons given a conversion factor.  
 

 
Fig. 2. MMTsm item Gallons to Liters. © 2014 Arizona Board of Regents. Used with 
permission. 

The second item asked teachers to convert between measures in the imaginary units 
“Nerds” and “Raps” given a conversion factor (Fig. 3).  
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Fig. 3. Item Nerds and Raps. © 2014 Arizona Board of Regents. Used with permission.  

As of the publication of those articles, we had collected 100 secondary teachers’ 
responses during the MMTsm’s development phase. Only 24% of secondary mathematics 
teachers demonstrated the understanding that a fixed container measured in liters will 
have a larger measure than the same container measured in gallons (Byerley & 
Thompson, 2014). Fifty of 100 teachers appropriately converted between the imaginary 
units Nerds and Raps. Only 17% of the 100 teachers gave higher-level responses to both 
measurement problems. Most teachers did not imagine that since a gallon is larger than a 
liter, the number of gallons in a container must be smaller than the number of liters in the 
same container. Quantitative measurement meanings are critical for developing the 
ability to conceive of the change in one quantity measured in terms of the change in the 
other.  We hypothesize that a person who does not reason quantitatively about a 
measurement situation, is also less likely to develop a meaning for rate of change that 
entails measuring one change in terms of another change. Other researchers have also 
found that students’ and teachers’ difficulties with multiplicative situations are due to a 
lack of orientation to reason about the measures of the quantities in the problem (Lobato 
& Siebert, 2002; Simon & Blume, 1994a, 1994b).  
 We believe that responses on the measurement items reveal difficulty reasoning 
about measurement and are not simply due to “careless mistakes.” We received many 
responses similar to the one in Fig. 4 that indicated that teachers did not rush through the 
problem. Rather, their responses suggested that they considered the situation. 
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Fig. 4. A teacher who noted that gallons are larger than liters and yet said that the 
container would contain more gallons than liters. 

 We interviewed teachers on this item and discussed it in classes for calculus 
students and preservice secondary teachers. Many students and preservice teachers 
retained their original response that conflicted with a gallon being larger than a liter even 
after we asked the question, “Which is bigger? A gallon or liter?” The discussions 
included drawing an image of the situation, and asking them to reconsider their answers 
in light of the lack of consensus on the correct answer. In one class of preservice 
secondary teachers, it took approximately 40 minutes of discussion until everyone agreed 
that the container’s volume is (50/189)m. 
  
2.4.5. Teachers’ meanings for rate of change  
 At least four studies have investigated secondary teachers’ meanings for rate of 
change (Bowers & Doerr, 2001; Coe, 2007; Person, Berenson, & Greenspon, 2004; 
Thompson, 1994b). Data from each study supported the claim that many secondary 
teachers have meanings for rate that are chunky or indexical. This mirrors the findings on 
teachers’ chunky and indexical meanings for slope.  
 Brian, a secondary preservice teacher, described rate of change as “the amount 
something changes in a given time” (Person et al., 2004, p. 21). Using Castillo-Garsow’s 
language we notice Brian’s description conveys an image of completed chunks of change. 
Brian conveys that a rate of change is an amount of change. He did not convey 
comparing a measure of an amount of change with a measure of amount of time. Time 
does pass in the background, but Brian’s meaning for rate of change was not about 
multiplicative comparisons of two changes. Later, Brian described a constant speed with 
the idea of cruise control. Building on observations made by Stroud (2010), we notice 
that Brian conveyed the idea of speed as the number to which a speedometer points 
instead of as a relationship of relative size between number of miles traveled and number 
of hours elapsed. Thinking of speed as the number a speedometer points to is similar to 
thinking of slope as an index of slantiness-both are indexes that relate to an aspect of the 
situation.  
 Thompson (1994a) reported that senior and graduate mathematics education 
students had difficulties understanding the rate of change of a cone’s volume with respect 
to its height partially because they confused “changing” with “rate of change” and 
“amount and change with amount” (1994b, p. 257). One student, Adam, struggled to 
explain the relationship between two quantities because he identified the idea of “rate” 
with the idea of “change” (Thompson, 1994b, p. 261). Confusing rate with amount or rate 
with a change is consistent with schemes that do not entail considering the multiplicative 
comparison of two quantities. Bowers and Doerr (2001) reported over half of the fifteen 
secondary mathematics teachers in a university course inappropriately applied the 
formula d=rt in situations with non-constant rates of change (Bowers & Doerr, 2001, p. 
124). Despite the mathematical relationship between ∆d/∆t = r and ∆d = r∆t, we suspect 
that many people apply these formulas calculationally in different circumstances without 
connecting their quantitative meanings. 
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2.5 Connections between literature review and our methodology 
 
  The literature review reported conceptual analyses of productive meanings for 
rate of change, fraction, quotient, and slope. We used these conceptual analyses to design 
items and create rubrics for each item. In the results section we describe the rubrics we 
used to categorize responses to items. For the vast majority of responses, we found 
evidence that the response was consistent with one of the ways of thinking reported in 
prior qualitative research and categorized it accordingly. The majority of these qualitative 
studies relied on interviews or teaching experiments in which the researchers used 
multiple sources of evidence to infer a teachers’ meaning for slope or rate of change. We 
drew upon these descriptions of teachers’ thinking, in addition to our own teacher 
interviews, to help us infer a teachers’ potential meanings based on their sometimes terse 
written responses. 
 A summary of the most important constructs is in Table 1. 
Table 1  
Various Types of Reasoning about Slope, Quotient, and Rate of Change. 
Construct  Evidence of this reasoning 
Smooth continuous 
covariational reasoning 

 A slope of three means that as x and y covary, 
for any sized change in x the associated change 
in y is three times as large.  

Chunky covariational 
reasoning 

 A slope of three means that every time x 
changes by 1, y changes by 3. 

Slope is an index of 
steepness/rate is an index of 
fastness 

 Slope is a number we assign to a slant to 
describe how steep a line looks. 

Formulaic meaning for 
slope/rate of change 

 ∆y/∆x, rise/run, ∆d=r∆t, etc. 

Quotient is the result of a 
division computation. 

 When I use long division and follow the steps I 
get a quotient. 

Quotient is a measure of 
relative size 

 I can estimate the quotient (A/B) by comparing 
the measure of quantity A to the measure of 
quantity B.  

 
3. Methods 
 
 This section describes the methods used during the four-year NSF-funded Project 
Aspire to design and validate the MMTsm diagnostic instrument. The motivation for 
Project Aspire was to develop a diagnostic instrument that would identify teachers’ 
meanings in a way that would be useful for designing and evaluating professional 
development. The MMTsm was not designed for evaluating individual teachers’ 
competencies. Because the scoring of our items focuses on meanings and not competency, 
it would be unfair to judge a teacher on his or her responses. Professional development 
leaders receive a report of group outcomes on each item. No information about individual 
teachers is provided to them. The MMTsm has been used by several Math/Science 
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Partnership projects as a pre-post assessment to determine whether professional 
development had a positive impact on the group’s mathematical meanings. 
 

3.1 Item Development 
 
 One of the primary goals for the items was to give teachers the opportunity to 
convey the sense they made of an item, which then gave us grounds to discern meanings 
they employed in making that sense. The relationship between our theory of meanings 
and the methods are discussed in greater detail in Thompson (2016). It was important that 
teachers could interpret a question in their own way, and that the question would prompt 
them to display their meanings explicitly enough that we could interpret and categorize 
them confidently. We also had to create items that prompted teachers to use higher-level 
meanings if they were able to do so. For example, if we wanted to determine whether a 
teacher thought about slope as the relative size of the change in y and the change in x, we 
could not ask a question that could be solved by routinely using the slope formula.  
 Thompson (2016) summarized the process of creating items and rubrics for the 
MMTsm. We followed common instrument construction guidelines such as making many 
revisions to items based on interviews with teachers and pilot administration of the 
instrument. Feedback from our advisory board and other mathematicians and 
mathematics educators was also essential to item development.  

 

3.2 Rubric Development 
 
 In Summer 2012 we administered draft versions of the slope and rate of change 
items discussed in the results sections to 144 secondary mathematics teachers. We 
created rubric levels for items using a modified grounded-theory approach (Corbin & 
Strauss, 2007).  The modification was that we began our data analysis with the 
conceptual analysis of magnitudes and rates of change described in the literature review, 
as well as multiple descriptions of teachers’ meanings from prior qualitative studies.  
 We developed rubrics by grouping grounded codes used to describe responses 
into levels based on our interpretation of the mathematical meanings teachers expressed. 
By reading a teacher’s written response to an item we do not believe it is possible to 
model their meanings with the same assurance as if we interviewed the teacher. However, 
we did interview a subset of teachers to check whether the meanings we attributed to 
their written comments were consistent with the meanings they expressed later to us. 
Further, we hypothesize that teachers’ use the same meanings to respond to the items as 
they use while teaching. This is not to say that their written responses will exactly reflect 
what they say in classroom, only that their written and spoken descriptions of 
mathematics will be based on their meanings in either context.  
 When scoring responses we did not attempt to determine the depth of the teachers’ 
understanding of mathematics that they left unarticulated. Instead, we read the teacher’s 
response literally and asked, “If this is what they said to a class, what meanings for the 
mathematical idea might students construct?” We relied heavily on prior research on 
student thinking to make determinations about the meanings for particular ideas that 
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would be productive in the largest number of situations. For example, we pointed to Coe 
(2007) to demonstrate that a primary meaning for slope as an index of steepness is useful 
in more limited contexts than a multiplicative meaning for slope. We scored responses 
that conveyed that slope is an index of steepness at a lower level than responses that 
convey a multiplicative meaning for slope, even though we acknowledge that a meaning 
for slope as steepness is useful in some contexts. A lower level response should not 
necessarily be considered incorrect or without merit.  
 Advisory board members and consultants scored randomly selected subsets of 
teacher responses at multiple stages in rubric construction and refinement. Scorers 
included one or more statisticians, mathematicians, high school math teachers, and math 
education researchers. Scorers came from various institutions and foreign countries. The 
diversity ensured the items and rubrics could be used internationally. Translated versions 
of the instrument and scoring rubrics have been used successfully with over 400 teachers 
in Korea (Thompson, Hatfield, Yoon, Joshua, & Byerley, 2017; Thompson & Milner, in 
press; Yoon, Byerley, & Thompson, 2015). 
 

3.3 Sample and Scoring 
 
 In Summer 2013 and 2014 we administered a revised version of the MMTsm to 
251 high school teachers in two different states. The teachers were participating in Math 
Science Partnership professional development programs (NSF or state funded). The 
sample had 63 teachers with at least a mathematics BA, 81 teachers with at least a 
mathematics education BA, and 107 with a BA in another subject. Many of these teachers 
also had masters degrees in a variety of fields. The number of years they had taught high 
school math varied from one year to over fifteen years. 
 The Project Aspire team scored all teacher responses. To estimate interrater 
reliability (IRR) an outside collaborator scored 50 overlapping responses for each item. 
Non-perfect agreement was scored as disagreement. Items with complex responses had 
lower IRR than items with simple or numerical responses. Table 2 shows all items 
reported in this article had high levels of interrater reliability.  
Table 2  
Interrater Reliability Scores for MMTsm Items. 
 
Item Name 

Number of 
responses scored by 
two scorers 

Percent 
Agreement 

Cohen’s Kappa 

Gallons to Liters 50 .94 .917 
Nerds to Raps 50 .94 .905 
Meaning of Slope Part A 50 .84 .773 
Meaning of “Over” 
Part A 

50 .86 .814 

Meaning of “Over”  
Part B 

50 .9 .849 

Slope from Blank Graph  
Part A 

31 .968 .957 
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Increasing or Decreasing 
from Rate Part B 

49 .959 .926 

 
The interrater reliability is strong enough to support inferences about what types of 
meanings we could expect to find in a group of teachers. We do not use the instrument to 
diagnose individual teachers’ meanings. 
 
4. Results 
 

We present each item, its abbreviated scoring rubric, and the distribution of 
teachers’ responses on that item. The actual rubrics had numerous examples of responses 
at each level and detailed instructions on how to resolve tricky issues. After presenting all 
of the items and results we examine what the responses to the set of items convey about 
teachers’ meanings for slope and rate of change.  

 

4.1 Meaning of Slope 
 

We designed the item in Fig. 5 to reveal teachers’ meanings for slope. We wrote 
Part A anticipating that many teachers would say that 3.04 means that every time that x 
changes by 1, y will change by 3.04. We designed Part B to reveal teachers’ ability to use 
constant rate of change to determine the change in dependent variable for any change in 
the independent quantity. Because of the qualitative research on chunky thinking we 
wanted to see how teachers applied their meaning of slope when the change in x was not 
one.  

 
Fig. 5. The item Meaning of Slope was designed to reveal meanings for slope. ©2014 
Arizona Board of Regents. Used with permission. 

  The summary rubric for Meaning of Slope Part A is given in Table 3.  
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Table 3  
Abbreviated version of rubric for Part A of Meaning of Slope. © 2014 Arizona Board of 
Regents. Used with Permission. 
Level Example of what the response conveyed: 
A3-Relative 
Size 

x can change by any amount and y changes by 3.04 times the 
change in x. 

A2a-Chunky For every change of 1 in x, there is a change of 3.04 in y. 
A2b-Chunky 
graphical 

Slope gives information about how to move horizontally and 
vertically. For example: If x moves to the right 1 space, y 
moves up by 3.04. 

A1-Formula or 
One-Word 
description 

−	 Gave slope formula 
−	 Used a phrase such as “slantiness.”  
−	 Used “rise over run” without describing the changes. 

 
Level A2a responses are considered slightly more productive for students than A2b 

responses because the meaning of slope in Level A2a responses is not constrained to 
horizontal and vertical motion on a Cartesian graph. Level A1 responses gave a formula 
for slope or a one-word description of slope such as “slantiness” but did not describe 
changes in x and y. Because we are focused more on teachers’ meanings than their 
knowledge some responses scored at A1 have incorrect formulas such as ∆x/∆y or y/x. 
Even though the formulas are incorrect, the teachers are still considered to have conveyed 
a formulaic meaning for slope (Level A1). We scored responses that did not fit any other 
category at level A0. In cases where one teacher responded with multiple meanings for 
slope we categorized the response according to the highest level meaning. 

The most common meaning conveyed in our sample was a chunky, additive meaning 
for slope (See Table 4). 
Table 4  
Responses to Part A Meaning of Slope. 
Response Math 

Majors 
Math Ed 
Majors 

Other Majors Total 

A3-Relative size 3 3 4 10 
A2a-Chunky 27 18 37 82 
A2b-Chunky 
graphical 

24 47 41 112 

A1-Memorized 7 12 19 38 
A0-Other/ IDK 1 1 2 4 
No response 1 0 3 4 
Total 63 81 107 250 

• We included 250 teachers instead of 251 because one teacher did not 
state his major. 

• IDK means “I don’t know” in all tables. 
 
Only ten teachers of 250  conveyed a multiplicative, relative size meaning for slope 

(Level A3). Approximately 78% of teachers’ responses conveyed a chunky or additive 
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meaning for slope (Levels 2a and 2b). About 81% of teachers who majored in 
mathematics and 80% of teachers who majored in mathematics education conveyed a 
chunky, additive meaning. There is no evidence of a statistically significant relationship 
between response and degree type ( χ 2 (6,n = 242) = 10.71, p = 0.097 ). The eight teacher 
responses scored at level A0 or “no response” were excluded from the chi squared 
analysis because of low cell counts.  

Even though we view a multiplicative meaning for slope as the most productive for 
students, we do not view responses at level A1 and A2 as mathematically incorrect or 
unproductive in every respect. Many of the teachers during their summer professional 
development workshops used such meanings for slope to solve the majority of problems 
in common high school curriculums that they teach. Although we have not explored this 
issue, it is possible that students and teachers can develop multiplicative meanings for 
slope by building on chunky and formulaic meanings for slope. However, results to Part 
B of Meaning of Slope and on other items suggest chunky and formulaic meanings for 
slope are not adequate in some important contexts and teachers would benefit from 
receiving instruction about multiplicative meanings for slope.  

 
4.1.1 Results for Part B Meaning of Slope 
 Part B gave teachers an additional opportunity to convey a multiplicative meaning 
for slope. After many attempts at rubric and item revision, we only had 72% agreement 
for scores on Part B. The teachers’ responses gave interesting insight into their meaning 
for slope, but were hard to categorize reliably. We report limited results to show how 
many teachers with mathematically acceptable meanings in Part A struggled to explain 
slope when x did not change by one.  
 Approximately ten (8 %) of 120 teachers who gave chunky (level 2a/2b) 
responses to part A conveyed multiplicative meanings for slope in Part B. Approximately 
41 (34 %) of the 120 teachers who conveyed a chunky meaning on Part A gave a level 
zero response to Part B. Although level zero responses varied widely, they all failed to 
deal with the Part B prompt coherently. Level zero responses did not explain a meaning 
for slope, nor explain how to find a change in y given a non-unit change in x. This 
suggests that having a chunky meaning for slope is insufficient to deal meaningfully with 
situations where the input variable changes by something other than one.   
 

4.2 Relative Rates 
 
 Although additive and formulaic meanings for slope and rate seem to be sufficient 
to solve many common problems in the secondary curriculum , these meanings can lead 
to invalid models of physical situations. The response to the item Relative Rates (Fig. 6) 
shows one context where thinking of a rate of change additively is less productive than 
thinking of a rate of change multiplicatively. It is plausible that teachers who responded 
with a multiplicative comparison may have also reasoned additively about one second 
chunks and coordinated additive and multiplicative reasoning to chose j/s. We first 
discussed this item in Byerley and Thompson (2014). This article includes responses 
from 150 additional teachers.  
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Fig. 6. Item Called Relative Rates. © 2014 Arizona Board of Regents. Used with 
permission. 

We suspect that thinking of rate of change additively makes it more difficult to solve 
Relative Rates because the common additive choice “j – s” corresponds to the change in 
distance for a chunk of size one second. If the item had stated how many seconds had 
elapsed multiplying j-s by the number of seconds would have been an appropriate 
solution and additive reasoning might have been adequate.   

There are multiple ways of thinking about the problem that result in choice (a), so 
there is no way to determine precisely what type of thinking a teacher actually engaged in 
to pick (a). We do know based on interviews that some teachers who noticed and 
highlighted the word “any” still gave the response “j-s”. Despite the variety of potential 
solution paths, the interview data suggests that teachers who picked (a) were thinking 
about the situation additively. For example, some teachers thought of “j” as a changing 
quantity that represents Julie’s distance for any given amount of time. With j representing 
a changing quantity instead of the value of a fixed unknown rate, the additive response j-s 
made sense to these teachers. Another teacher drew a velocity versus time graph and 
thought of the total distance traveled as the area under the curve. They named the areas “j” 
and “s” so that the distance between them was equal to “j-s”. Some teachers appear to 
solve the problem for one-second intervals of time (see Fig. 7).  

 
Fig. 7. A teacher's response to Relative Rates. © 2014 Arizona Board of Regents. Used 
with permission. 

 Fig. 7 shows one consequence of having an additive meaning for rate of change 
(“1 unit of distance for each 1 unit of time”). For those with an additive meaning, speed is 
the distance travelled in a 1-unit interval (i.e. chunk) of time as opposed to the relative 
size of the measure of distance travelled and the measure of elapsed time to travel that 
distance. In interviews and prior research some teachers used the formula d = rt without 
considering quantitative relationships that this formula entails (Bowers & Doerr, 2001). 
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We included choices (b) and (d) for teachers who might expect to see a product as part of 
the answer (Bowers & Doerr, 2001). Table 5 Presents the Results for Relative Rates by 
Major. 
Table 5 
 Responses to Item Relative Rates. 
Response Math Majors Math Ed Majors Other Majors Total 
j/s times (e) 18 21 30 69 
j/s more (c) 4 8 8 20 
j-s (a) 36 44 56 136 
j*s (b or d) 2 6 9 17 
Other 2 2 3 7 
 No response 1 0 0 1 
Total 63 81 107 250 
 
The majority of the 250 teachers (54%) used an additive model (j-s) of a situation that 
requires a multiplicative comparison. Only 27% of teachers used multiplicative language 
as well as a multiplicative comparison. There is no evidence of a relationship between 
response and degree type ( χ 2 (8,n = 249) = 2.63, p = 0.955) . The teacher without a 
response to Relative Rates was excluded from the Chi-square analysis. 
 

4.3 Meaning of “Over” 
The phrase “∆y is a change in y over an interval of length ∆x” appears commonly in 
Precalculus and calculus textbooks. Here, “over” does not mean division. It means that a 
change in the value of y happened while the value of x varied through an interval. In early 
development of the MMTsm, we saw many teachers using the phrase “change in … over 
…”, but it was ambiguous whether they meant “change … while …” or they were 
describing a spatial arrangement, as in “a over b”. 

The word “over” often cues the use of slope or rate of change formulas wherein 
one number or expression is “over” another. This usage pattern allows teachers to choose 
the operation of division and solve many problems without having to conceptualize rate 
of change as a multiplicative relationship between changes in two quantities. The 
responses to the item Meaning of “Over” reveal teachers’ tendencies to be cued by the 
word “over” to model a situation with division (See 

Fig. 8). 

 A college science textbook contains this statement about a function f that gives a 
bacterial culture’s mass at moments in time. 

The change in the culture’s mass over the time period ∆x 
is 4 grams. 

 
Part A. What does the word “over” mean in this statement? 
 
Part B. Express the textbook’s statement symbolically. 
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Fig. 8. The item Meaning of “Over”. © 2014 Arizona Board of Regents. Used with 
Permission. 

 Thompson (2016) first presented results to this item to illustrate our methodology 
for writing items that reveal teachers’ meanings. Here, we use it to investigate teachers’ 
meanings for quotient and rate. This article reports additional responses, interview data, 
and examples of teacher work. 
 
4.3.1 Rubric for Part A Meaning of “Over”  
 The rubric is summarized in Table 6. The highest level response to Part A was 
“during” or similar. Level A2 responses conveyed the meaning of “over” as “elapsed 
time” or “amount of time”. Teachers who gave level A2 responses noted that “over” was 
better interpreted as having to do with the passage of time than as division. However 
substituting the word “elapsed time” into the sentence for over does not make as much as 
much sense as substituting the word “during.”   Level A1 responses conveyed that “over” 
meant division. Responses conveyed that over meant division in a variety of ways 
including words such as ratio or using mathematical symbols for division. Level A0 
responses were about something other than the teacher’s meaning for the word “over.”  
Table 6 
 Abbreviated rubric for Part A of Meaning of “Over”. © 2014 Arizona Board of Regents. 
Used with Permission. 
A3-During The response conveys that “over” means “during,” or otherwise 

refers to the passage of time while the culture’s mass is 
changing.  

A2-Elapsed 
Time 

The response conveys the meaning of “over” as the equivalent of 
“elapsed time” or “amount of time” but does not relate it to the 
culture’s mass. 

A1-Division The response conveys that “over” means division. 
 
4.3.2 Rubric for Part B Meaning of “Over” 
 Part B asked teachers to rewrite the sentence in mathematical notation. The rubric 
focused on whether the teacher wrote a difference or a quotient (See Table 7).  

 A college science textbook contains this statement about a function f that gives a 
bacterial culture’s mass at moments in time. 

The change in the culture’s mass over the time period ∆x 
is 4 grams. 

 
Part A. What does the word “over” mean in this statement? 
 
Part B. Express the textbook’s statement symbolically. 
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Table 7 
Abbreviated rubric for Part B Meaning of “Over”. © 2014 Arizona Board of Regents. 
Used with Permission. 

 
Level B2a responses represented a difference and took into account the passage of time in 
some way (See Fig. 9).  

 
Fig. 9. One type of higher-level representation of the situation in Meaning of “Over”. 

 Level B2b responses such as ∆m = 4 were considered to be mathematically 
acceptable, but distinct from B2a responses because the expressions did not incorporate 
the passage of time. 
 There were many variations of responses that involved quotients (Level B1). 
Some B1 responses additionally confounded mass with change in mass or used function 
notation inappropriately. The response “f(x) = mass/∆time” was considered B1 because it 
used division. We emphasized in scorer training that they were not grading a test and that 
mathematically incorrect statements should be ignored or noted separately if the mistakes 
were not relevant to categorizing the teacher’s meaning for the word over. We scored 
responses such as “f(x) = 4” at Level B0. Typically, we could not categorize level zero 
responses based on literature or our experiences and we took great pains to ensure any 
response we could make sense of was not categorized at level zero. 
 
4.3.3 Results for Meaning of “Over”  
 One hundred thirteen (113) of 251 teachers (45%) gave the higher-level response 
of “during” or equivalent (See  
Table 8).  
Table 8  
Responses to Part A and Part B for Meaning of “Over”  
Response B2a-

Difference 
B2b 
∆m=4 

B1 
Divide 

B0 
Other 

NR/IDK Total 

A3 “during” 12 6 46 40 9 113 
A2 1 1 14 15 2 33 
A1 “divide” 0 4 67 0 0 71 
A0 1 1 6 5  13 
NR/IDK 1 0 0 0 20 21 
Total 15 12 133 60 31 251 

B2a-Difference The teacher represented the difference of 4 grams in the 
culture’s mass at beginning and end of a time period.  

B2b-  ∆m=4 The teacher represented a change in the culture’s mass, but does 
not refer to the passage of time.(e.g. ∆m =4) 

B1-Quotient The response contains a quotient or an algebraically equivalent 
statement (e.g.,   m Δx = 4,    m = 4Δx ).  
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Table 8 also shows that 71 of 251 teachers (28.3%) said that “over” means division in 
response to Part A. This is not surprising, because “over” frequently means division in 
textbooks. However, it is surprising that only 18 of 113 teachers (15.9%) who said that 
“over” means during also represented the statement as describing a change in mass, and 
that 46 of 113 teachers (40.7%) who said that “over” means during used division to 
represent the statement symbolically. The latter teachers’ meanings for quotient did not 
contradict their notion of duration even though from our point of view one concept is 
multiplicative and the other is not. They were willing to say that a quotient of a change in 
mass and a change in time produces a change in mass. 
 We suspect that these teachers’ meanings for quotient are not multiplicative, that  
they see the vinculum as a symbol used to separate two numbers that are related to each 
other. They evidently experience no conflict in describing “over” as duration in words 
and as division symbolically. Furthermore, 40 of 113 teachers (35.3%) who appropriately 
described over as meaning “during” gave a level zero response when they attempted to 
represent the sentence symbolically.  
 The response from the teacher Naneh in Fig. 10 conveyed that the word “over” 
was part of the definition of slope, “change in y over change in x,” and thus meant 
division. Naneh’s work suggests that she translated parts of the sentence to mathematical 
symbols using key words. For example she seems to have written “∆x=4” as a direct 
translation of the last four words of the sentence. This translation does not take into 
account that, in the context of the complete sentence, ∆x refers to an unspecified interval 
of time and four is a number of grams. 

 
Fig. 10. Naneh’s response to Meaning of “Over” which Conveys "Over" is a Key Word 
Indicating Division. 

Naneh’s marks suggest strongly that she parsed the statement as (The change in) (the 
culture’s mass over the time period ∆x) (is 4 grams). Other teachers parsed it as (The 
change in the culture’s mass) divided by (the time period ∆x) is 4 grams. The only way 
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for teachers to avoid either reading is to constrain themselves by the fact that the result is 
four grams, and not four grams per time unit.  
 Notice that in Part B of Fig. 10, Naneh’s symbolic expression equates a quotient 
of two extensive quantities with four grams. We interviewed three teachers who said that 
a number of grams equals a quotient of mass and time. One expressed concern and two 
did not. When a teacher’s meaning for slope is primarily focused on the change in y, it 
allows room for him or her to understand the statement “∆mass / ∆time = 4 grams” 
unproblematically. To them, the vinculum does not signal a measure of relative size of 
changes. Rather, the vinculum signals that mass changed and time changed. There is no 
evidence that having a math or math education degree was a statistically significant 
predictor of representing the statement with subtraction or with division

. 
 

4.4 Slope from Blank Graph  
 

We designed the item, Slope from Blank Graph in Fig. 11 to see the extent to 
which teachers would use a meaning of slope as a relative size of changes in y and 
changes in x to estimate a numerical value of slope given a graph without labeled axes. 
We believe that if a teacher “understands the quotient ∆y/∆x as the measure of ∆y in units 
of ∆x, then he or she would be more likely to estimate the numerical value of m simply 
by physically measuring ∆y using ∆x as a unit” (Thompson, 2016, p. 443). 
There are two quantities P and Q whose values vary. The measure of P is y and the 
measure of Q is x. y and x are related so that y = mx + b. The graph of their relationship is 
given below, with x and y in the same scale. What is the numerical value of m?  

 
Fig. 11. Item Slope from Blank Graph. Diagram is larger in actual Item. © 2014 Arizona 
Board of Regents. Used with Permission. 

Thompson (2016) reported 96 teacher responses to this item from a pilot sample. Fifty-
two percent of the teachers in his sample gave an approximation of slope between two 
and three (the actual slope is 2.5). Being able to estimate slope from a blank graph is 
associated with higher scores on calculus tests about rate of change functions (Byerley, in 
preparation). 
 The Aspire team scored the responses to Slope from Blank Graph using the rubric 
in Table 9. 

(χ 2 (8,n = 250) = 9.756, p = .282)
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Table 9  
Rubric for Slope from Blank Graph. © 2014 Arizona Board of Regents. Used with 
Permission. 

 Responses scored at level three often conveyed that the numerical value was 
approximate and included explanations such as “it appears the length of the vertical 
changes is 2.5 times the horizontal change.” If a teacher gave both a formula and a 
numerical approximation they were scored at level three. No teachers in our sample 
computed a slope by assigning points to the graph using an arbitrary scale and then using 
the slope formula with those two points. The teachers with accurate approximations 
measured the change in y in the same measurement units as the change in x without 
subtracting x and y coordinates of two points.  
  Teachers who gave estimates outside of the range two to three provided a variety 
of reasons; their reasons were generally not appropriate in the context of the item. For 
example one teacher said “looks like m=1 since nothing in front of m.” Another said “m 
= ½ because that is what is missing from the equation if you solve for area of a triangle.” 
Table 10 
 Results of Slope from Blank Graph (n=158) 

Response Total 
Level 3: “2 to 3” 33 
Level 2: formula 71 
Level 1: Inaccurate 5 
Level 0 or IDK 17 
No Response 32 
Total 158 

Thirty-three of 158 high school teachers (21%) estimated a value of the slope 
from two to three. Consistent with findings by Coe (2007) and Stump (2001), almost half 
(71 of 158) of the teachers provided a symbolic formula for slope. 

 In addition to categorizing responses with the rubric we also noted whether the 
teachers’ formula was of the form ∆y/∆x or y/x. We considered the distinction between y 
and  ∆y important because in Thompson’s (1994b) study of advanced college 
mathematics students’ understanding of the Fundamental Theorem of Calculus, students 
who failed to distinguish between amount and change in amount struggled to understand 
the relationship between accumulation and rate of change. We found that 39 of 158 high 
school mathematics teachers (25%) confounded the change in a quantity’s value with the 
quantity’s value. The slope of the line can only be calculated with the formula y/x when 

3-Accurate 
approximation 

Any of the following: 
− The teacher estimated a value between 2 and 3. 

2-Formula Any of the following: 
− The teacher solved for m in y = mx + b, getting m = (y–b)/x. 
− The teacher wrote a mathematically valid formula that could 

be used to determine the value of the graph’s slope, such as 
∆y/∆x. 

1-Inaccurate 
approximation 

The teacher gave an estimate for the slope smaller than 2 or larger 
than 3. 
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the line intersects the origin. On many items teachers compared two amounts when a 
comparison of two changes would have been appropriate for the situation. 

 We did not interpret lack of response as a teacher not understanding the question. 
This item was near the end of the instrument; 28 of the 32 teachers who left the item 
blank also left questions after it blank. In an earlier pilot of the MMTsm, this item was 
was not at the end of the instrument and only 4 of 112 teachers left the question blank.  

 
4.4.1 Item validation for Slope from Blank Graph 
 In six item interviews we asked teachers and calculus students what “numerical 
value” meant and everyone responded that we meant a number, not a formula. For 
example, one calculus student said the question asked her “to actually find a number, but 
I don’t know how I’m going to do that right now.” This student knew an estimate was 
acceptable but could not provide one. One teacher wrote on his test, “no numbers are 
given so no numerical answer can be found” and another wrote, “I don’t see any 
numerical values.” A third teacher wrote “how can I find a numerical value when there 
are no numbers?” We did not have any interviews where someone said they were 
confused about the meaning of numerical value. 
  Some of the 71 teachers who gave a formulaic response (Level 2) might have 
been able to estimate the slope had they been pressed to do so by an interviewer. We can 
not infer from this item that teachers who did not provide an estimate could not provide 
an estimate if pressed to do so. However, their tendency to give a formula when asked for 
a numerical value has implications for teaching. We considered rewriting the item to 
make it clearer we were asking for an estimated numerical value, but we wanted teachers 
to be free to express the meanings they might convey in teaching. We were more 
interested in how teachers would respond to a somewhat vague item than if they could 
estimate slope from a blank graph after being told that a formula is unacceptable. Giving 
a formula is not incorrect, but it finesses the issue of slope as relative size of changes and 
could convey to students that symbolic answers are preferable even in contexts where a 
question asks for a meaning. 
 Many calculus students at a large public university have internalized the idea that 
slope cannot be determined without numbers. Calculus students were asked to “estimate a 
numerical value of slope” on a course test, after their instructors discussed in class how to 
estimate slope given a graph with blank axes scaled identically. The calculus test item 
had a similar image as the MMTsm item but was multiple choice and only one estimate 
of slope of the line was remotely plausible. Only 96 of 170 students answered the item 
correctly even after explicit instruction on how to answer the question.  
 

4.5 Increasing or Decreasing from Rate  
 

The Aspire team designed the item Increasing or Decreasing from Rate to require 
teachers to differentiate between the idea of an increasing rate of change and an 
increasing mass (See Fig. 12). This item is distinct from other items because it involves a 
non-constant rate of change and understanding instantaneous rate of change is useful to 
interpret the graph.  



Teachers’ Meanings for Measure, Slope, and Rate of Change  194 

 

 
Fig. 12. Item Increasing or Decreasing from Rate. © 2014 Arizona Board of Regents. 
Used with permission. (Spacing reduced and graph for Part B omitted to reduce size.) 

The purpose of Parts B and C, displayed on the next page after Part A, were to 
probe the possibility that teachers interpreted the graph in Part A as an amount function 
and picked (a) just because they did not attend to the unit labels on the axes—they did not 
realize the graph was for a rate of change function. 

In item-interviews during development of the MMTsm, some teachers showed a 
persistent tendency to confound mass with rate of change of mass due to their meanings 
for rate of change. If someone considers a rate of change to be a change in mass, it is 
more difficult to differentiate between an increasing bacterial mass and an increasing rate 
of change of bacterial mass with respect to time. In some teachers’ minds the rate of 
change of bacteria and the amount of bacteria are both extensive quantities directly tied to 
the number of bacteria. Secondary mathematics teacher Annie said that the function is a 
rate of change function but associated a positive slope on the rate of change graph with a 
positive rate of change. Annie also associated slope of zero on the rate of change graph 
with a value of zero for rate of change (See Excerpt 1). 

 
Excerpt 1. Annie's Explanation of Increasing or Decreasing from Rate. 

[Annie reads problem aloud, emphasizes grams/hour.] 
We interpret increasing .. umm…let’s see the function gives the rate of change in 
grams per hour… and so  umm…what we are going to look at I would look at the 
rate of change being positive or negative, if we have a positive rate of change the 
grams per hour the mass is increasing per hour, is getting larger, so I look at 
where I have a positive rate of change, and I try to identify where I have no rate of 
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change [highlights maximum at (1.25, 5) where the rate of change is 
approximately positive 5, but the acceleration is zero], this is telling me where the 
mass is staying the same, and then I have a negative slope so mass is getting small 
down to a zero rate of change so I’m not getting any smaller or larger… [Teacher 
chooses (a)] 
 
Interviewer: So just a little bit ago you said on the interval from 0 to 1.25 you said 
the change in the rate of change was positive.  
 
Annie: Positive, right. 
 
Interviewer: So the change in the rate of change of the bacterial culture’s mass 
was increasing, so that meant that the mass was increasing as well? 
 
Annie: Right, right. 
 

Annie’s realized that she was looking at a rate of change graph. She tended to think of the 
slope of the rate of change graph at a point as more relevant to the problem than the value 
of the rate of change function. Her agreement that an increasing rate of change 
corresponded to an increasing mass, and that the mass decreases where the graph’s slope 
is negative, is consistent with a meaning for rate of change of mass that is non-
multiplicative and easily confounded with the idea of change in mass. 
 Table 11 shows the results on Increasing or Decreasing from Rate.  

Table 11  
Results for Part A and Part C on Increasing or Decreasing from Rate. 

 Response to Part A 
 
 
 
 
 
 
Response 
to Part C 

 Chose 
(c) on 
Part A 
 

Chose (a) 
on Part A 

Chose 
(b) on 
Part A 

Other/ 
IDK 

Blank  Total 

Chose (c) on 
Part C 

86 35 0 3 0 124 

Chose (a) on 
Part C 

1 77 0 1 0 79 

Chose (b) on 
Part C 

0 3 11 1 0 15 

Other/IDK 0 2 0 17 1 18 
Blank  0 0 0 0 1 1 
Total 87 117 11 22 2 239* 

 *There are only 239 teachers in this table because one group took a shorter version of the 
MMTsm that did not include Increasing or Decreasing from Rate.  

Eighty-seven of 239 teachers (36.4%) chose (c) on Part A. Only one of these 87 
teachers changed his or her mind on Part C. On the other hand, 105 teachers kept their 
same non-(c) response after being asked to focus on the meaning of a point in Part B. 
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This suggests that teachers’ choices of non-(c) answers were not due to inattention to 
quantity labels on the axes.  

Table 12 focuses on 153 teachers who did not choose (c) on Part A. Fifty (50) of 
these 153 teachers said that the point represented a rate of change at a moment in time. Of 
those 50, only 26 changed their answer to (c).  The other 24 of these 50 teachers chose 
other than (c) even after stating that the point represents a rate of change at a moment in 
time. This suggests that although Part B drew their attention to the axes’ labels, their 
meaning for graphs and rate of change did not help them select (c). 

Table 12 
 Responses to Part B and Part C by teachers who chose other than (c) on Part A of 
Increasing or Decreasing from Rate. 

 Point means Rate 
of Change at 
Moment in Time 

Other Meaning of 
Point (e.g. Mass at 
Moment in Time) 

Blank 
/IDK 

Total 

Chose (c) on Part C 26 12 0 38 
Chose (a) on Part C 1 0 0 1 
Chose (b) on Part C 3 1 0 4 
Other/ IDK 16 85 4 105 
Blank  0 0 1 1 
Total 50 98 5 153 

 
Ninety-eight (98) of these 153 teachers (62%) identified the point in Part B as 

representing something other than a rate of change at a moment in time. Of these 98 
teachers, 12 changed their answer to (c). We suspect that these 12 teachers’ choices were 
motivated by something other than realizing the implications of the graph being of a rate 
of change function.  

Descriptions of teachers’ thinking from qualitative studies helps us hypothesize 
reasons for the teachers’ responses (Coe, 2007; Thompson, 1994b). Teachers who 
consider slope as an index of slantiness and not as a comparison of two changes could 
relate the word “increasing” with a graph that is slanted up. It is possible many teachers 
consider the shape of the graph instead of the quantities that covaried to make it (Moore 
& Thompson, 2015). Having an additive meaning for rate of change makes it more 
difficult to distinguish between a rate of change and an amount of change and could have 
caused Annie to say that a negative slope in the graph of rate of change of mass with 
respect to time implied a decreasing mass (Excerpt 1).  

 
5. Looking Across Items 
 
 In this section we look across items for consistencies and inconsistencies in 
teachers’ meanings and ways of thinking about slope and rate of change. The higher-level 
meanings on each rubric are related to an image of rate of change as multiplicative 
comparison of changes in two quantities. The lower levels of the rubric arose from 
grounded coding of teachers’ responses and are not the same across rubrics.  
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5.1 Relationship between Measurement Responses and Rate of Change Responses 
 
 Coe’s (2007) interviews suggested that teachers’ meanings for rate of change are 
loosely linked to their measurement schemes. This section investigates the hypothesis 
that teachers with weak measurement schemes do not convey multiplicative meanings for 
slope and rate that are based on a measure of the relative size of two changes. 

We use teachers’ responses to Gallons to Liters and Nerds to Raps (Fig. 2 and Fig. 
3) to quantify the strength of their measurement schemes. These items required teachers 
to convert between two units given a conversion factor. In this analysis we will group all 
low-level responses to Gallons to Liters and Nerds and Raps into one category. Ten of 
the 251 teachers left Gallons to Liters blank but answered Nerds to Raps. We replaced 
their score of “No response” with a zero (low-level) because Gallons to Liters was not 
near the end of the test and the majority of teachers had enough time to finish the entire 
test.  
 Table 13 compares teachers’ tendency to estimate a numerical value of slope by 
measuring ∆y with ∆x to their success on two measurement items. 

Table 13 
 Responses to Slope from Blank Graph Part A Compared to Number of Higher-level 
Responses to Measurement Items. 
 Number of Higher-level Responses to Two Measure Items 

Higher-level 
Responses to 2 
items 

Higher-level 
Response to 1 
item 

Higher-level 
Responses to 0 
items 

Total 

Estimate “2 to 3” 14 11 8 33 
A2 “formula” 16 22 33 71 
A1/A0/IDK 2 4 16 22 
No Response 7 12 13 32 
Total 39 49 70 158 
 
Scanning the columns of Table 13, we see that 35% (14/39) of teachers who answered 
two measurement items estimated an appropriate numerical value for slope. Only 5% 
(2/39) of teachers who gave two higher-level responses to measurement items said 
something incoherent on Slope from Blank Graph (Levels A1/A0/IDK). In contrast, only 
11.4% (8/70) of teachers who gave two low-level responses to the measurement 
questions estimated the slope of the line appropriately. Although some teachers with two 
low-level responses on the measure items provided acceptable formulas for slope without 
a numerical estimate, 22.9% (16/70) said something mathematically incoherent about the 
slope of the line. The association between responses to Slope from Blank Graph and 
responses to the two measurement items is statistically significant (JT = 4739.50, z = 2.41, 
p =0.0079). This result is consistent with the hypothesis that being able to imagine a 
measurement process was important for estimating slope from a graph with blank axes.  
 We briefly summarize the other results of comparing teachers’ measurement 
responses to their rate of change item responses as the tables were similar. The teachers 
with higher levels on the measurement tasks were more likely to convey multiplicative 
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meanings on other items. There is a statistically significant association between the 
number of higher-level answers to measurement problems and responses to Relative 
Rates (JT = 11538.00, z = 2.60, p = .005), Increasing or Decreasing from Rate (JT = 
11417.50, z = 4.3497, p < 0.0001), and Meaning of “Over” (JT = 11835.00, z = 3.15, p = 
0.0017).  
 The correlations are consistent with the hypothesis that meanings for 
measurement ideas are important for productive rate of change meanings. In all cases, 
teachers’ responses to two middle school items were more predictive of their rate of 
change meanings than holding a degree in mathematics or mathematics education. Our 
study cannot show that teachers developed more productive rate of change meanings 
because they had stronger measurement schemes. However, had we seen no relationship 
between responses to the items we could have inferred that something was wrong with 
our hypothesis or our items. As with the rest of the item responses, it was never the case 
that a high score on one item was highly correlated with a high score on another item. 
There were statistically significant correlations, but the correlations were not high enough 
to be meaningful. On the whole, the tables typically demonstrated a lack of connections 
between teachers responses to items. 
 

5.2 Limitations of Chunky, Additive Meanings for Slope and Rate of Change 
 

A number of teachers conveyed chunky, additive meanings for slope and rate on 
Meaning of Slope and Relative Rates. Few teachers used language that conveyed 
measuring one change in terms of another in slope or rate contexts. Further, the results of 
the two measurement items suggested that many teachers have measurement schemes 
that seem unlikely to support a meaning for rate of change that involves measuring one 
change in terms of another change.  This section uses qualitative data gathered as part of 
rubric and item validation to discuss the consequences of the prevalence of chunky, 
additive meanings for slope and rate in our sample.  

We hasten to say that our comments in this section are epistemological. We do 
not mean them as criticisms of teachers’ mathematical meanings. Instead, we address the 
implications for teaching and for coherent understanding that particular meanings and 
ways of thinking hold. 

  
5.2.1 Slope is the change in y  
 On Meaning of Slope some teachers confounded ∆y with slope. Kristen, a HS 
math teacher who has taught algebra nine times conveyed a chunky meaning for slope on 
Part A (Fig. 13) because the changes occur in chunks of one and 3.04. She has a MA in 
educational leadership and a BA in elementary education. 
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Fig. 13. Kristen’s chunky response to Part A (Left) and Part B (Right) of Meaning of 
Slope. 

The Part B response in Fig. 13 provides confirmation that, for Kristen, 3.04 is more 
strongly associated with the change in y than with a comparison of the relative size of 
corresponding changes in y and x. The response in Fig. 13 foregrounded the change in y 
and kept the change in x in the background. Kristen’s additive meaning for slope that 
confounded ∆y and ∆y/∆x prevented her from explaining the meaning of 3.04 for non-
unit changes in x.  
 Rani’s response (Fig 14) conveys that the meaning of slope is dependent on a one 
unit change in x. Rani had a BA in mathematics education and a MA in secondary 
education. She taught Algebra I and Algebra II 15 times each, Precalculus nine times, and 
differential equations nine times. 

  
Fig 14. Rani’s response that conveys that slope is the change in y. 

Labeling the change in y as m conveys that slope is not a comparison of two changes, but 
rather the change in y that is associated with a one unit change in x. Many teachers, like 
Kristin (Fig. 13), did not give a meaning of a slope of 3.04 when x did not change by one.  
 
5.2.2 Slope is the distance between two points 
  Chunky thinking leads to a variety of problems beyond confounding ∆y with 
∆y/∆x. Nari’s chunky responses conveyed that the only points on the line that “mattered” 
were the points obtained by the process of moving over and up in fixed chunks (see Fig. 
15). Nari is a HS teacher with a BA in mathematics education. She taught algebra once 
and Geometry once. Nari’s response is inconsistent with imagining that between any two 
points on the line there are infinitely many points.  
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Fig. 15. Nari’s chunky response to Meaning of Slope conveys that the points on the line 
only occur at fixed intervals.  

There are many consequences of thinking that points on the line only occur at 
fixed intervals. If points only occur at fixed intervals it is possible to conceptualize slope 
as the distance between two points on a line. Mike explicitly said that the slope is a 
distance between two points (see Fig. 16). 

  
Fig. 16. Mike’s additive response to Meaning of Slope conveys that slope is a distance 
between two points. 

Mike’s response in Fig. 16 conveys that slope gives directions on how to get from 
one point to the next and that 3.04 is a distance. Unfortunately, Mike’s meaning for slope 
as distance overpowered the visually obvious fact that the hypotenuse of the triangle is 
longer than either leg. We suspect that Mike’s meaning for slope as distance arose from 
taking the hypotenuse of a “rise over run” triangle as itself being the slope of a line. Mike 
taught Algebra I five times, Algebra II twice, and Geometry three times. He also has a 
PhD in education.  
 The tendency to isolate the meaning of slope from a quantitative meaning for 
division (Coe, 2007), is a potential explanation for viewing slope as a distance. Daniel, a 
university calculus student interviewed on Meaning of Slope as part of its rubric’s 
validation, repeatedly explained that slope was a distance. In the same interview Daniel 
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explained that “A divided by B” means “the amount of B’s that would fit into A” and he 
knew the slope formula contained division.  

Excerpt 2 shows that Daniel did not connect his meanings for division with his 
meanings for slope and that this disconnect allowed him to think of slope as a distance. 
\ 
Excerpt 2. Daniel Explains his Meaning for Slope of 3.04. 

Interviewer: So the slope is the length between the two points.  
 
Daniel: Right.  
 
I: Okay. So why do you divide the change in y and the change in x to get a length? 
 
D: Because, it’s… you’ve got the one x here and the other one here and so you are 
trying to find the way which they both get to each other basically. That’s… 
 
I: Okay. [Daniel laughs] Is that at all related to seeing how many B’s fit into A or 
is that like a separate thing in your brain? 
 
D: If you are doing the slope it’s different, I guess, I’m seeing it different in my 
brain, I guess it is because of the word slope gave this a different meaning.  
 
I: What does the bar in between them mean to you? 
 
D: I just… divide [laughs] 
 
I: Alright. It’s just that you were not using the how many times B fits into A 
language at all when describing the slope so that is why I was asking. 
 
D: Yeah. No, not with slope.  
 

Daniel connected slope and division after subsequent instruction, but the meaning he 
carried from high school into calculus was that the meaning of division in the slope 
formula differed from the meaning of division he learned in school. A teacher who 
conveys an additive, chunky meaning for slope allows students to assimilate the teacher’s 
instruction without connecting the idea of slope of a line to the idea of a quotient of 
changes. Instead, they think that the numerator gives the number of steps to take in one 
direction and the denominator gives the number of steps to take in another directions, and 
the vinculum merely separates them.  
 
5.2.3 Teachers’ slope and rate meanings are tied weakly to quotient 
 Other interviews confirm that some teachers did not connect their meaning of the 
vinculum in formulas for slope with their meaning of division. Ross has a BS in 
construction and a MSE in industrial engineering. He taught Algebra II for ten years, 
Precalculus for seven years, AB Calculus for 2 years and AP Statistics for 7 years. We 
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asked Ross, “Why do you divide to calculate the slope of the line?” Ross first repeated 
the definition of slope to himself and then explained:  
Excerpt 3. Ross's Explanation of the use of Division in the Slope Formula. 

The division can be used because we talk about the slope being the average rate of 
change and “average” is the total [taps fingers] uhh… the total of the observations 
divided by the number of observations. And then of course we have to make a 
distinction of what is… what we interpret the total observations and the number 
of observations, so if I want to talk about… i.e., for example, total distance 
traveled by some total time during the travel so umm…total distance traveled 
would be delta distance over delta time but we can also see this also as a ratio of 
the two differences.  
 

Ross associated slope with average rate of change and then average rate of change with 
arithmetic mean. He appeared to connect slope and division using the arithmetic mean 
formula. It is fairly common for secondary teachers to think average rate of change is 
computed using an arithmetic mean (Yoon, et al., 2015).  

The interviewer pressed Ross to explain his meaning for ratio in Excerpt 4. 
Excerpt 4. Ross's Explanation of his Meaning for the Word "Ratio." 

The problem I’m (pause) unfortunately from the different stuff I’ve been looking 
at now, we can unfortunately use the word ratio unfortunately to mean both a 
comparison of two different units to each other but also the terminology as a 
fraction a part to whole, there is this way we use ratio and fraction together, but 
the idea is you know, I’m just trying to get at the idea of what slope is, it is this 
ratio, for every change in this I do the change in this. The reason I don’t want to 
use the word fraction for this is because again we think of a fraction having the 
same units. You know, one fourth of a pie, two thirds of a gallon. But when I talk 
of a ratio of distance to time those are two different units. And so it’s for every 
change of this element I have a change in the other element. For every one hour, 
change of one hour I drive down the road I go an additional 65 miles down the 
road, so it is not a fractional concept like we normally think of it, it’s part to 
whole, because unfortunately when we see division you can also interpret that as 
fraction. But the fact is because we don’t have the same two units, it doesn’t fit as 
neatly with some of those notions we’ve been taught about the differences 
between fractions and ratios.  

  
Ross knew common meanings for ratio such as “comparison of two quantities with 
different units” and fraction such as “part of whole.” Ross’ statements about “the 
different stuff I’m looking at now” and “notions we’ve been taught about differences 
between fractions and ratios” suggest that he had recently been led to consider 
distinctions in meanings for fractions and ratios. He saw that in the case of slope, the 
comparison was often between changes in quantities measured with different units and 
this made him uneasy about his idea that ratios, slope, division and fractions all involve 
comparisons. Focusing on the units being the same or not appeared to keep Ross from 
elaborating on the structural similarities of various situations that use division. When two 
quantities are measured in the same unit their sizes can be compared directly. When two 
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quantities are measured in different units, such as miles and hours, the measures of the 
quantities can be compared.  
 Some responses to Meaning of “Over” illustrated how Daniel and Ross might 
have used slope hundreds of times to get a correct answer without needing to connect it to 
their meaning for quotient. The response in Fig. 17 conveys that the vinculum in a rate of 
change formula merely separates the numbers that tell how to move on a Cartesian graph.  

 
Fig. 17. Response to Meaning of “Over” where the vinculum merely separates two 
numbers that tell how far to move horizontally and vertically. 
 One problem with a disconnect between the idea of slope and quotient is that it 
allowed teachers to comfortably model one situation in Meaning of “Over” in two 
inconsistent ways. Many teachers understood that the word “over” could mean duration 
in some contexts but still believed the word over in symbolic contexts should be 
converted to a spatial arrangement of symbols.  
 James thought the word “over” could mean both division and duration in the same 
context. James had a BS in mathematics education and taught Algebra II, Geometry, and 
Precalculus two times each. We interviewed James to better understand why someone 
would say over meant both during and divide in the same statement. The interviewer first 
asked James to respond anew to a blank version of the item. We interviewed James six 
months after he took the MMTsm.  
Excerpt 5. James Discusses Part A of Meaning of “Over”. 

James: [Reads question carefully aloud.] [Over means] during or duration. 
You could also think of it as a ratio, so change in mass over, yeah so 
during or duration, so in your math class when they say “something over 
something,” they always mean a divide sign so a ratio.  
 
I: Do you think they are both saying the same thing? 
 
J: Well, yeah, I think that. Well yeah, they are saying. I think the during or 
duration is more saying conceptually what is going on, and the divided by 
or over I see the reason behind that, I think I’m more pointing out 
mathematically what we mean when we say over with no explanations as 
to why, it is just the way it is.  
 
I: So is the mass, the change in mass divided by the change in time, is that 
how you write the idea of duration? 
 
J: Can you repeat the question? 
 
I: Is the “delta mass divided by delta x” a mathematical way of saying 
duration? 
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J: I want to say the change in x is the way of saying duration. I want to say 
the change in x is representing duration. But maybe we could include the 
division sign. So no, I would not say that “delta mass over delta x” is a 
way of saying duration. So this is funny.  
 

On Part A James gave a remarkably similar response on the written test and the interview 
conducted six months later. After James responded to a blank item the interviewer 
showed him his original response in Figure 18.  

 

 
Figure 18. James’ Original Response to Meaning of “Over”. 
James recognized his problematic use of function notation in his original written work. 
However, he retained his use of division in his algebraic representation of the statement 
(Excerpt 6). 
 
Excerpt 6. James’ Interview on Part B. 

J: [James read Part B. James looked at his old answers from when he took 
the MMTsm six months earlier, found them all problematic and crossed 
them out and explained he used function notation incorrectly.] 
 
I: What would you say today? 
 
J: I like the idea of the function. I would keep the function.  
 
I: You can work it out on a paper. 
 
J: Yeah, just give me a second. The change in the culture’s mass…[pause] 
 
J: Change in mass over [divided by] change in x equals 4. That would be 
my new thing.  
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I: Four what? 
 
J: Four grams. [James showed no discomfort with a quotient being equal 
to 4 grams.]  
 

James accepted that “over” could mean both divide and during in the same situation by 
saying that “during” is the conceptual meaning and “divide” is the mathematical meaning. 
Even though James realized that divide and duration are not expressed in the same way 
mathematically. he did not say that a quotient being equal to four grams was 
problematic—even after the interviewer called attention to the units. James’s 
understanding that “over” always means divide in mathematical situations (because “that 
is just the way it is”) was so prominent that he kept the division sign despite the 
inconsistencies he noticed and discussed. A combination of James’ strong association of 
“over” and division, and his additive meaning for quotient, allowed him to 
inappropriately model an additive situation with division.  
 Taken as a whole, the responses to this study’s rate of change questions show a 
common lack of connection between a meaning for quotient as a measure of relative size 
and the meanings for slope and rate. The interviews show how this lack of connection 
might contribute to teachers’ difficulties in helping students develop coherent meanings 
for slope and rate of change.  
 
6. Conclusion 

6.1. Why attend to shortcomings in teachers’ meanings? 
 Most responses to the rate of change items in this article suggest that teachers held 
meanings for slope that are only useful in limited circumstances. This strongly suggests a 
need for attention to these ideas in preservice secondary mathematics education programs 
and additional professional development for inservice high school teachers. Only four 
percent of teachers described slope as involving multiplicative comparisons between two 
changes on Meaning of Slope. Many teachers gave chunky (77.6%) and formulaic 
(15.2%) descriptions of slope that are suitable in restricted contexts often encountered in 
textbooks, we found substantial qualitative and quantitative evidence in our study that 
these additive and computational meanings were unproductive in a variety of situations. 
We also found that some students and teachers with chunky or formulaic meanings for 
slope had other problematic meanings, such as slope is the distance between two points 
on line. 
 The data in this article demonstrates that many teachers have meanings for slope 
and rate of change that work poorly in many situations that are highly related to the 
secondary mathematics standards they are teaching. Approximately half of teachers 
appropriately determined where the mass of a bacterial culture was increasing given a 
rate of change of bacteria with respect to time graph. Only ten percent of teachers 
appropriately used subtraction instead of division to model a change in mass. Twenty-one 
percent of teachers successfully applied the concept that a fixed quantity will have a 
larger measure when measured with a smaller unit on both measurement problems. We 
also presented evidence that computational approaches to the measurement problems 
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were correlated with problematic responses on all rate of change items. Much of the 
qualitative work done by us and other researchers suggests that secondary teachers have 
meanings for quotient that are productive in limited circumstances and that their 
meanings for rate of change and slope are weakly tied to their meanings for quotient.  
 We emphasize that this study is not about teachers’ misconceptions. We agree 
with Smith, et al. (1993) that “now that misconceptions are recognized as a pervasive 
phenomenon in mathematics and science learning, research that simply documents them 
in yet another conceptual domain does not advance our understanding of learning” (p. 
125). Rather, our focus is on meanings that teachers have for mathematics they teach and 
their potential productivity for students’ learning.  

Although Smith et. al. explained why the field should move beyond researching 
students’ misconceptions they also explained the ways in which this research was a 
useful starting point. Research documenting unproductive and incoherent student 
thinking demonstrated the scope of the problem that needed to be addressed and 
prompted the development of curriculum, instruction, and research methods to improve 
student learning. We hope that faculty who teach mathematics and mathematics 
education majors will be prompted by our data to investigate and attend to their 
undergraduates’ mathematical meanings for rate of change, slope, and measurement. 
Mathematics faculty have been uniformly surprised by their mathematics and 
mathematics education majors responses to MMTsm items. They are surprised that their 
students’ answers strongly resemble responses from teachers in our study.  

Although rate of change is a foundational concept in calculus and important 
higher mathematics courses such as differential equations, earning a degree in 
mathematics and mathematics education was not correlated with higher-level responses 
to any of the items in this article. This suggests that a teacher can pass university-level 
mathematics classes, teach thousands of secondary textbook problems, and still struggle 
with meanings that are foundational to ideas they teach.  
 It is important to remind the reader again that our sample of 251 high school 
mathematics teachers was a convenience sample. It was not selected randomly. We 
therefore cannot claim that the sample is representative of any specific population. 
However, the sample is large for an educational study and the teachers in it were from 
many regions in their states. We therefore feel that there is a distinct possibility that the 
meanings we found are common within the United States, and therefore that it is possible 
that a high percentage of high school mathematics teachers are likely to convey meanings 
for slope and rate of change to students that are useful for solving common high school 
textbook problems, but not to understand situations quantitatively.  

6.2 Cultural Regeneration of Mathematical Meanings 
 The results of our study, if they apply broadly, demonstrate a serious problem 
with U.S. high school mathematics teachers’ mathematical meanings for teaching 
secondary mathematics. Results regarding other areas assessed by the MMTsm show that 
the problem is much broader than meanings for slope and rate of change (Musgrave & 
Thompson, 2014; Thompson, Hatfield, Byerley, & Carlson, 2013; Thompson, et al., 
2017; Thompson & Milner, in press; Yoon, et al., 2015).  

We urge readers not to view these results as a condemnation of teachers’ 
capabilities, but rather as pointing to a systemic, cultural problem within U. S. 
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mathematics education. Our cautionary note is in line with Stigler and Hiebert (1999), 
who saw the results of their video study as providing insights into cultures of teaching 
rather than as a critique of individual teachers.  

We interacted with many of the teachers who responded to our instrument. They 
all were highly motivated to improve their mathematics teaching, which was their reason 
for participating voluntarily in NSF Math/Science Partnership professional development 
programs. They wanted to talk about mathematics, and many teachers were disturbed that 
the questions we asked made them aware that their meanings were not sufficient to 
provide satisfactory (to them) answers. They also agreed that the meanings emphasized in 
the MMTsm are important for their students to develop. We therefore do not see our 
results as pointing to teachers’ individual failings. In fact, the first author was a secondary 
teacher who, despite a commitment to teaching conceptually, primarily conveyed chunky 
and formulaic meanings for slope and rate of change to her students. She would have 
appreciated the chance to learn about the limitations of the mathematical meanings she 
conveyed but this issue was not discussed in her mathematics education classes nor in her 
professional development experiences. 

The reason we believe that our results point to a systemic, cultural problem in U.S. 
mathematics is that the higher-level meanings we identified are rarely an explicit part of 
school mathematics or undergraduate mathematics curricula. Most mathematics and 
mathematics education majors take classes such as calculus and real analysis; textbooks 
for these classes commonly do not revisit quantitative meanings of measurement, slope, 
or rate of change.  

Based on personal interactions with teachers in our sample, we believe most of 
them want to teach well and worked hard in college to learn the mathematics that was 
expected of them.  We believe the problematic meanings teachers expressed on our 
instrument are meanings that they developed as school students and became reinforced by 
their experiences in teaching from mathematics textbooks that support, directly or 
inadvertently, the same meanings that they developed as students.  

Our results are related to what Lortie (1975) described as the cultural regeneration 
of schools. Lortie claimed that school students who identified positively with their 
schooling and with their teachers were likely to enter teaching, thus regenerating for 
future students the schooling experiences they internalized. While our data says nothing 
about why teachers enter teaching, it gives another perspective on the issue of cultural 
regeneration. It seems quite plausible that a process like the following regenerates the 
problem of mathematical meaning in U.S. school mathematics: 

• Many students leave high school with poorly formed meanings for ideas of the 
middle- and secondary-school mathematics curriculum. 

• Students take mathematics courses in college that are designed with the 
presumption that students have basic mathematical meanings they in fact do 
not have. 

• Instructors of these college mathematics courses presume students have basic 
mathematical meanings they in fact do not have, or do not know how to 
address students’ basic mathematical meanings given the constraints of the 
course. 
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• Students apply coping mechanisms (e.g., memorization) in college 
mathematics that allowed them to succeed in high school. 

• Students return to high schools to teach ideas they understood poorly as 
school students, rarely revisited in college, and for which they still have 
poorly-formed meanings. 

It is beyond the scope of this article to address the systemic problem we’ve 
described. Thompson (2013) outlines one research and political agenda that addresses 
this issue partially. We believe a cultural regeneration cycle can only be broken with  

• sustained, intensive professional development that is aimed helping teachers 
develop and teach for productive mathematical meanings,  

• parallel efforts to redesign preservice high school teacher preparation 
programs, and  

• a refocus of undergraduate mathematics programs on having students learn 
mathematics meaningfully.  

The professional development effort, in our opinion, must also focus on helping teachers 
select curriculum materials that cohere with their effort to re-conceptualize their 
mathematics in terms of supporting students’ construction of coherent mathematical 
meanings. This effort also should be informed by future research. We end with a partial 
list of potential research questions: 

  
1. Is this sample representative of teachers in other states? 
2. What is the relationship between what teachers convey on the written 

instrument and what they convey in teaching? 
3. Do teachers with productive mathematical meanings emphasize 

productive mathematical meanings in their instruction? 
4. Do teachers who orient their instruction to producing coherent 

mathematical meanings have students who learn mathematics coherently? 
5. To what extent can an individual teacher have a positive impact on high 

school students’ weak meanings? Must an emphasis on coherent meanings 
exist across grades to have a satisfactory impact? 

6. How might we design professional development to help teachers improve 
their meanings? 

7. Does taking science classes help teachers develop stronger meanings for 
rate of change and measurement? 

8. What modifications of undergraduate mathematics curricula and 
instruction might help teachers develop stronger mathematical meanings 
for teaching secondary mathematics? 
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