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Animations: Windows to a Dynamic Mathematics 
 

Patrick W. Thompson 
 
Abstract 

Students have difficulty thinking of mathematics dynamically. Animations can be helpful in 
this regard, but only when the animations are designed to support teachers in holding conceptual 
conversations about important mathematical ideas. 

 
It is a longstanding problem that students conceive mathematical ideas statically. We see this 

problem vividly in their understandings of variables. For example, students commonly think “x” 
in 3x2 - 5=10 - x2  stands for the answer, when it is more productive to think, “Of all the values 
x can have, which one(s) makes this statement true?” Or, more precisely, to understand the 
equation as, “Given y1 = 3x

2 - 5 and y2 =10 - x
2 . What value(s) of x make y1 have the same 

value as y2?” This second way of thinking is behind understanding equations graphically (Figure 
1). 

 
Figure 1. Graphical Illustration of 3x2 - 5=10 - x2  
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As teachers, we see many things in Figure 1 that are not evident to students who are learning 
about depicting equations’ solutions graphically. In particular, 

 
x The variable x in 3x2 - 5=10 - x2  can have values that make the statement false. That’s 

how we get two graphs. If we limit ourselves only to values of x that make the statement 
true (what students often call “the answer”), our graph would be composed of two points.  

 
x Both graphs are composed of points having coordinates x, y1( )  or x, y2( ). Points of 

intersection tell us about solutions to 3x2 - 5=10 - x2 . But the intersection points are not 
solutions to the equation. Values of x are on the x-axis. Values of y1 and y2 are on the y-
axis. Intersection points have coordinates x, y1( )  and  x, y2( ) so that y1 = y2 for the 

same value(s) of x. 
 

We can help students see the nuances in Figure 1 by helping them envision a graph as 
emerging from the covariation of two variables (Moore & Thompson, 2015; Thompson & 
Carlson, 2017). This means they see the value of x as varying, the value of y1 as varying with the 
value of x, the value of y2 as varying with the value of x, and see that all vary simultaneously.  

However, it is difficult for students to understand diagrams like Figure 1 as depicting 
dynamic relationships. Instead, they commonly interpret graphs as if they are bent wire, 
associating their shapes with formulas having particular characteristics (e.g., “ x2” means bent 
up). You could use the animations linked here to help students develop ways of seeing dynamic 
relationships in static diagrams.  

I must quickly emphasize that what students understand from animations depends greatly on 
the conversation their teacher manages around the animations. Students cannot easily decide on 
what to focus when several things happen at once. The teacher must bring these things to their 
attention. For example, in the animation linked above, it is incumbent upon the teacher to point 
out, for example: 

x “Notice that values of x are shown with a black bar and not a point. Why do you suppose 
the animator designed it like this?” 

x “The value of x starts to the left of zero. Do you see the value of x getting larger or 
smaller as it varies toward zero?” 

x “Notice the value of y1 is shown with a bar along the y-axis. Why do you suppose it 
appears where it does? Did you expect it to appear somewhere else?”  

x After showing values of x and y1 varying together, say “The animation’s title says, “The 
value of y1 varies with the value of x. What does that mean? In what way does the value 
of y1 vary with the value of x?” 

http://pat-thompson.net/Presentations/2019SimultaneousGraphs
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x Before showing the graph of y1 versus x, say “We see the values x and y1 varying 
simultaneously.” How could we anticipate the graph of y1 versus x by watching the two 
varying together? (e.g., Look in the plane using your peripheral vision to focus on a 
location of the correspondence point having values of x and y1 as coordinates.) 

x After showing the graph of y1 versus x being generated, ask “What do you think is the 
purpose of those faint lines that meet where the graph appears?” 

x Before showing the two graphs generated simultaneously, ask “Can you imagine both 
graphs being generated at the same time? What will the display look like while they are 
being generated? What will the display look like after they’ve been generated?” 

x “What will be true when the values of y1 and y2 are the same for a value of x?” 
 

The animations linked to this article and the questions above illustrate three important points. 
 

1. For animations to be effective, students must attempt to anticipate what they will see 
before they see it, and then explain to themselves and to others what they have seen 
(Hegarty, Kriz, & Cate, 2003; Schnotz & Rasch, 2005). 

2. The animation must be designed to support reflective classroom conversations (Cobb, 
Boufi, McClain, & Whitenack, 1997)—conversations that take students’ meanings and 
understandings as objects of discussion, as opposed to steps for getting answers. 

3. Teachers must conceptualize the classroom conversation they wish to have. This includes 
important points to raise if they do not arise naturally. Moreover, the conversation must be 
organized around the mathematical ideas teachers wish students to learn (Thompson, 
2002). 

 
Animations can be an important aid in your instruction when your goal is to foster productive 

imagery. When learning new ideas or methods, students always learn more powerfully when 
they have imagery that helps them organize their activity. However, for animations to provide 
such support, you must think carefully about the mathematical thinking you hope to support. 

Lastly, using animations productively in your instruction requires significant time and effort. 
Devote the energy to incorporate an animation into your instruction only if the mathematical 
ideas it supports are ones you anticipate students will use repeatedly in their future learning.  
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