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ABSTRACT 

This study investigates what teachers in U.S. reveal about their meanings for function 
notation in their written responses to the Mathematical Meanings for Teaching secondary 
mathematics (MMTsm) items, with particular attention to how productive those 
meanings would be if conveyed to students in a classroom setting. We then report South 
Korean teachers’ responses to see whether the meanings U.S. teachers demonstrated are 
shared with South Korean teachers. The results show that many U.S. teachers use 
function notation to name rules instead of to represent relationships. The data from South 
Korean teachers indicates that the problematic meanings in U.S. teachers’ responses are 
shared with a minority of South Korean teachers. The results suggest a need for attention 
to ideas regarding function notation in teacher education for pre-service teachers and 
professional development programs for in-service teachers. 
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1. INTRODUCTION 

Functions play a central role in mathematics, not just technically in terms of a 

definition, but conceptually in terms of ways of thinking. While the concept of function 

evolved in mathematics over centuries (Kleiner, 1989, 1993), discussions of their role in 

school mathematics began early in the 20th century (Hamley, 1934; Hedrick, 1921; 

Krüger, 2019). Discussions focused on representing quantitative relationships: 

“Functional thinking did not mean teaching the concept of function as we understand it 

today. Rather, it [focused] on a specific kinematic mental capability that can be described 

by investigating change, variability, and movement.” (Krüger, 2019, p. 33).	From this 

perspective, a focus on functions in secondary school mathematics entails ideas of 

variable, variation, and the co-variation of quantities. It is in more recent history that 

ideas of function as object, transformative process and relationship have emerged 

(Breidenbach, Dubinsky, Hawks, & Nichols, 1992; DeMarois & Tall, 1996a; Dubinsky & 

Harel, 1992; Harel & Dubinsky, 1991; Sfard, 1992).  

While research on students’ understandings of function is abundant, there is little 

research on students’ or teachers’ understandings of notational conventions by which 

functions are represented. Studies too numerous to mention use function notation in tasks 

without probing what the notation itself means to students or teachers. For example, 

DeMarois and Tall (1996b, 1996c) mention function notation as an aspect of a function 

concept but focus on students’ understandings of function as process or relationship and 

“Why do we say f of x when 
all we really mean is y?” 
(Algebra 2 teacher in a 
professional development 
workshop) 



 

 

the extent to which they retained meanings across graphical, symbolic, and verbal 

registers. We do not learn what students understood function notation to mean. Two 

studies closest to probing students’ meanings for function notation were by Carlson 

(1998) and Sajka (2003). We discuss Carlson’s and Sajka’s studies in more detail in the 

next section. 

The issue of how to represent a functional relationship generally dogged 

mathematicians for centuries. Our reading of Cajori’s history of function notation (Cajori, 

1929, entries 642-646) is that a driving desire was to name three things simultaneously 

and economically: (1) a deterministic relationship between two quantities’ values, (2) 

what today we would call the function’s argument—a value of the independent quantity, 

and (3) the value related to the argument under the named relationship. To this end, Euler 

introduced today’s convention in 1734 with the statement “If  𝑓(!
"
+ 𝑐) denotes a 

function of  !
"
+ 𝑐 …”2 (Cajori, 1929, entry 643).  

We unpack the conceptual sophistication and depth of Euler’s convention in the 

next section as a backdrop for our aim of highlighting meanings teachers hold for 

function notation as a potential source of difficulties experienced by students. A natural 

question is whether undesirable meanings students hold are epistemologically necessary 

in coming to understand function notation well (similar to children first thinking of 

fractions like so many pieces of a pie) or are these meanings possibly conveyed 

unintentionally to students by teachers who also hold them? 

 
2 Si 𝑓(!

"
+ 𝑐) denotet functionem quamcunque ipsius !

"
+ 𝑐 … 



 

 

It is for this reason we investigated these questions: (1) What meanings do high 

school teachers in the United States have for function notation, and (2) Are these 

meanings shared among teachers from the United States and South Korea? 

2. BACKGROUND 

We first offer a conceptual analysis of Euler’s proposal for representing the value 

of a function in relation to its argument before discussing past research on students’ 

understandings of function notation. We do this to highlight the complexity of 

understanding function notation productively.  

As we stated earlier, Euler’s proposal satisfied three requirements addressed 

separately in prior notational proposals—the notation “𝑓(!
"
+ 𝑐)” names the relationship 

between quantities’ values “f”, it specifies the function’s argument (i.e., a value of the 

independent quantity)3, and it represents the value of the dependent quantity in relation to 

the value of the argument. For this notation to be meaningful to a reader of it, she must 

hold three subsidiary meanings: a meaning for “relationship between two quantities 

values” that allows the relationship to be named, a distinction between what today we call 

“input” and “argument” of a relation, and a meaning for “the value of a dependent 

quantity in relation to a value of an independent quantity”. We borrow Thompson and 

Milner’s (2019) summary of this in the figures below. 

 
3 There is some ambiguity regarding whether “x” or “ !

"
+ 𝑐” in Euler’s statement should be considered a 

value of f’s independent quantity. We settle on “ !
"
+ 𝑐” because its value is what f maps to an element in its 

range. The ambiguity arises because “𝑓(!
"
+ 𝑐)” implicitly denotes a composite function. 



 

 

 

Figure 1. General meaning of function and function notation (Thompson 
& Milner, 2019, p. 56) 

 

Figure 2. Relationship between function notation and general meaning of 
function (Thompson & Milner, 2019, p. 56) 

Figure 1 is a common depiction of an image of a named relationship between 

values of two variables. Figure 2 is more subtle. It depicts how a function definition using 

function notation aligns with a general image of function while at the same time making 

it specific and re-usable. 

The distinction between input and argument is an important aspect of Euler’s 

notation. It affords the possibility of representing a composition of functions 

economically, and it supports an important flexibility of thought. For example, the cosine 



 

 

function is periodic with period 2π. But the period is with respect to cosine’s argument. If 

𝑓(𝑥) = cos	(3𝑥 + 2), then f has a period of 2π with respect to 3x + 2, not x. It is when 

3𝑥 + 2 varies by 2π that cosine repeats values. 

Finally, if a person has a fully formed scheme for function notation as depicted in 

Figure 2, she can invoke the scheme even with partial information about it. She can 

understand a phrase like “The function f …” as referring to the entire scheme, albeit with 

parts of the scheme unspecified. 

The ability to invoke one’s function scheme in the presence of partial information 

supports using function notation representationally. By this we mean having a meaning 

for uses of function notation that do not involve a computational rule. We can say, for 

example, “Let d(x) be the distance between the center of Earth and center of Mars x years 

after 00:00 January 1, 1900.” Even with this non-computational definition of d the 

meaning of d(52) is clear, as is the meaning of (𝑑(52.001) − 𝑑(52))/0.001. 

We began this section with a conceptual analysis of Euler’s notation as backdrop 

for discussing research on students’ and teachers’ understandings of function. This 

research has focused predominantly on the sophistication with which they conceived 

calculating a function’s values and less on the idea of function as a relationship between 

quantities’ values or on representations of such relationships. Even (1993) reported a 

large number of pre-service teachers thought “functions are equations and can always be 

represented by formulas” (p. 104). Similarly, Vinner (1983) found that 10th and 11th 

grade students think a “function is a rule of correspondence”, and that “function is an 

algebraic term, a formula, an equation, and arithmetical manipulations”(pp. 8-9). Hitt 



 

 

(1998) reported that teachers were likely to expect continuous functions to be defined by 

a formula.  

2.1. Research on understandings of function notation 

Carlson (1998) and Sajka (2003) reported students’ difficulties with function 

notation. Carlson included many tasks designed to reveal consequences of students’ 

meanings for function notation. College algebra students in Carlson’s study showed 

limited understanding of function notation. For instance, the students calculated 

𝑓(𝑥 + 𝑎)	given 𝑓(𝑥) = 3𝑥# + 2𝑥 − 4 by simply adding an a to the expression on the 

right side (i.e. 𝑓(𝑥 + 𝑎) = 3𝑥# + 2𝑥 − 4 + 𝑎). Carlson’s analysis, however, focused on 

the extent to which students were successful on the tasks without reverse-engineering the 

meanings for function notation that might have led to their behavior. Sajka’s (2003) case 

study involved a 45-minute interview with one high school student, Kasia, who had seen 

function notation for three years. Sajka’s case study employed DeMarois’s and Tall’s 

(1996b, 1996c) focus on function as process or concept, but included a clear focus on the 

student’s understandings of function notation itself. Sajka’s (2003) penetrating analysis 

of Kasia’s thinking showed Kasia moving from thinking “f” means “the beginning of a 

function formula” to thinking of “f(x)” as serving the same role as “y”, to “f(x)” as part of 

a statement which itself will lead to a graph, to confusion over the meaning of 

“𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)”, to thinking that “𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)” is an example of 

the distributive property. Sajka’s report that Kasia understood “f(x)” as the start of a 

function formula is in line with Thompson’s (1994) report of students thinking a function 

definition consists of the “f(x)” on the left side, the symbol “=”, and an algebraic 

expression on the right side. Thompson (1994) also pointed to this way of thinking as 



 

 

behind the common mistake of mismatched letter on the left and letter on the right, such 

as 𝑓(𝑥) = 𝑛(𝑛 + 1)(𝑛 + 2). 

Musgrave and Thompson (2014) and Thompson and Milner (2019) shifted focus 

from students’ to teachers’ understanding of function notation. Musgrave and Thompson 

(2014) and Thompson and Milner (2019) found that, for many teachers, function notation 

served as a label or a name for the defining formula rather than a representation of one 

quantity’s values in relation to another quantity’s values. While students meaning of 

function notation as a label might be a root of so many reports of students’ difficulties 

with it (e.g., Carlson, 1998; Dreyfus & Eisenberg, 1982; Vinner & Dreyfus, 1989), it is 

important to investigate the possibility that teachers hold similar meanings. 

In this study, we offer further support for findings of other studies related to 

students’ or teachers’ difficulties in understanding of function (Carlson, 1998; Dreyfus & 

Eisenberg, 1982; Even, 1993; Gray & Tall, 1994; Hitt, 1998; Musgrave & Thompson, 

2014; Sajka, 2003; Sfard, 1991; Sierpinska, 1992; Vinner, 1983; Vinner & Dreyfus, 

1989). We then extend the literature by exploring teachers’ meaning for function 

notation.  

Teachers’ use of function notation can give information about sources of students’ 

or teachers’ difficulties in understanding of function; in particular, we hypothesize that 

many teachers name rules rather than construct representation of functions in terms of 

using function notation. Teachers need to develop a rich understanding of a particular 

mathematical idea to support students’ conceptual learning of the idea (Silverman & 

Thompson, 2008). Tallman and Frank (2018) showed that a teacher’s lack of awareness 

of conceptual affordances led to incoherent instructional actions. In exploring 



 

 

consequences of this study, we point to potential problems for these teachers in 

supporting students to develop fluency with function notation and an image of function 

notation as a representational tool.  

3. THEORETICAL PERSPECTIVE 

We use Thompson (2013a)’s construct of meaning to investigate what teachers 

are revealing about their thinking from their responses on the MMTsm items. We then 

present our perspective on a productive meaning that allows student to build a strong 

understanding of function notation. 

3.1. Meanings  

According to Piaget, to understand is to assimilate to a scheme (Skemp, 1962, 

1971; Thompson, 2013; Thompson & Saldanha, 2003). Thus, the phrase “a person 

attached a meaning to a word, symbol, expression, or statement” means that the person 

assimilated the word, symbol, expression, or statement to a scheme. A scheme is an 

organization of actions, ways of thinking, images, or schemes (Thompson, Carlson, 

Byerley, & Hatfield, 2014). When we say assimilate we mean the ways in which an 

individual interprets and make sense of a text, utterance, or self-generated thought. 

According to Piaget, new schemes emerge through repeated assimilations, which early on 

require functional accommodations and eventually entail metamorphic accommodations 

(Steffe, 1991).  

Thompson (2013a) said meaning is the space of implications of an understanding. 

For example, a teacher can understand function notation f(x) as multiplication. This is her 

understanding of function notation in the moment. Then, she could think about f(2) as “f 

times 2” when first looking at f(2). This is an implication of her understanding in the 



 

 

moment. The teacher’s meaning in the moment of an understanding is the space of 

implications of that understanding, or, as Dawkins (2018) rephrased it, the space of 

inferences made available once one holds an understanding. 

While we cannot access the teachers’ mathematical meanings directly, we can 

delimit categories of responses according to particular mathematical meanings that we 

discern from them. We categorize teachers’ response based on meanings we believe 

might underlie the response based on the best available evidence of interviews and prior 

qualitative work. We assume that, for the most part, meanings that teachers used to 

construct their responses to an item are meanings that would guide their decisions in the 

classroom. Our focus on teachers’ meanings as a root for their actions allows us to think 

of meanings students might construct based on meanings we attribute to teachers.  

3.2. Productive meanings for teaching function notation 

By productive meanings for teaching we mean meanings a teacher holds that 

would be productive for students’ long-term learning were the teacher to convey them. 

Being productive for student learning is not the same as being mathematically correct. 

For example, a formal definition of function, “a subset of the cross product of two sets 

such that every member of one set appears as a first element in a pair and no member of 

the second set appears as the second element in two pairs” is mathematically correct. 

However, it is generally accepted that this meaning will not be productive for high school 

students. On the other hand, a meaning for continuous function that it has a graph which, 



 

 

in principle, can be sketched without taking pencil off paper is mathematically incorrect4, 

but could be productive for high school students.  

We presented our perspective on productive meanings for teaching function 

notation in Figure 2. Function notation f(x) represents the function’s values in relation to 

values of the independent variable x in the context of a relationship named “f”. We may 

use “f(u)” or “f(x)” to represent the value of the function f regardless of whether we know 

a rule of assignment for it. We will say someone uses function notation representationally 

when he uses function notation to represent the value of a function in relation to values of 

its argument, without mentioning an actual rule of assignment.  

4. METHOD 

This study focuses on teachers’ responses to two function notation items on the 

MMTsm. analyzing 252 U.S. and 366 Korean secondary mathematics teachers’ responses. 

We then investigate relationships within each item as well as between the two items in 

order to see ways in which teachers thought of function notation. We include interviews 

with three teachers to illustrate the spectrum of responses.  

4.1. Subjects 

During the development phase of the MMTsm, several advisors and reviewers 

wondered if US teachers’ problematic responses to items reflected unreasonable 

expectations for teachers’ mathematical understandings. We wanted to see whether the 

difficulties we were seeing in US teachers’ responses are shared with another country. 

 

4 For example,   cannot be sketched, even in principle, without taking pencil off paper, yet is 

continuous on its domain. 

y =
1

x
, x ≠ 0



 

 

We thought that the different results from another country would show whether it is 

reasonable to expect secondary teachers to give high level responses to the items.  

The Project Aspire team administered a translated version of the MMTsm to 366 

Korean secondary teachers in summer 2015 (264 high school5, 102 middle school) and 

the English version to 252 US high school teachers in summers of 2013, 2014, and 2015 

(see Table 1). The 366 SK (South Korea) teachers were taking a qualification program6 at 

four locations: Seoul, a suburb of Seoul, Southwest South Korea, and Southeast South 

Korea. The 252 US high school teachers volunteered to participate in NSF Mathematics 

and Science Partnership summer professional development projects taking place in the 

Southwest and Midwest U.S. They took the MMTsm as part of their professional 

development program.  

Table 1. US and SK teachers, school level by major 

 Math Majors MathEd Majors Other Major Total 
Korea High School teachers 81 175 7 263 

Korea Middle School teachers 33 49 19 101 
U.S. ≥Calc teachers* 29 24 21 74 

U.S. <Calc teachers, ** 34 59 85 178 
Total 177 307 132 616 

* ≥Calc means U.S. high school teachers who taught calculus or higher at least once 
** <Calc means U.S. high school teachers who never taught calculus 
*** Two Korean teachers and one U.S. teacher did not report their degrees. 
 

In Table 1, “Math Majors” means that a teacher reported having either a bachelor’s or 

master’s degree in mathematics whereas “MathEd Majors” mean that a teacher reported 

having either a bachelor’s or master’s degree in mathematics education. “Other Majors” 

 
5 In Korea, middle school teachers teach mathematics to grade 7th-9th students and high school teachers 
teach mathematics to grade 10th-12th students. 
6 In Korea, all teaches who have taught more than three years must take a qualification training program to 
earn “1st class” teacher certificates. 



 

 

mean that a teacher reported degree(s) that were neither mathematics nor mathematics 

education. We separated U.S. teachers into teachers who taught calculus at least once and 

teachers who never taught calculus. U.S. teachers having taught calculus will have taught 

content similar to Korean high school teachers, and U.S. teachers who never taught 

calculus will have taught content similar to Korean middle school teachers. Korean 

teachers taught for an average of 4.3 years (some switched from middle to high or vice 

versa during this time). The 252 high school teachers in the U.S. taught at least one high 

school mathematics class (algebra and above). The U.S. high school teachers were asked 

to write how many times they had taught each subject and recorded the total number of 

high school classes taught in the assessment. On average the U.S. high school teachers 

had taught 26.2 year-long classes, which corresponds to approximately 5 or 6 years.  

When we administered the MMTsm, we asked US and SK teachers to volunteer 

for an interview. Seventeen teachers (eight SK and nine US teachers) agreed to the 

interview. We conducted two task-based clinical interviews with the 17 teachers to see 

why they wrote the responses they did (Goldin, 1997). The difference between US and 

SK interviews was that SK teachers’ interviews included looking at their original 

responses from a prior administration of the MMTsm whereas US teachers were asked to 

explain their responses after taking the MMTsm again. We will present item interviews 

with three teachers (two US and one SK teachers) because we think the three teachers’ 

interviews illustrate the spectrum of responses from all 17 teachers after analyzing all 

interviews. In the following section, we present function notation items in the MMTsm.  

4.2. Tasks 



 

 

The first item, “Understanding Independent Variables” (see Figure 3) is designed 

to reveal how teachers thought of the left side of a function definition in relation to the 

right side in the context of a function definition.  

 

Figure 3. The item, “Understanding Independent Variables” © 2015 
Arizona Board of Regents. Used with permission. 

We had observed that students and teachers often think of function notation 

idiomatically, “c ( v )” is a four-character name. If a teacher thinks of function notation as 

a label for the formula that is on the right hand side of a function definition, we anticipate 

that he or she thinks w must always have t within parentheses and q must always have s 

within parentheses because t and s are part of the respective function name.  

We categorize teachers’ responses in terms of what letters they inserted in each 

blank to complete the definition of c. The categorizations and sample responses are 

shown in Table 2. We categorize IDK (I don’t know) and NR (No response) separately. 

However, we will exclude IDK and NR responses from the data presentation in the next 

section because NR and IDK do not give us insight into teachers’ meanings for function 

notation. 



 

 

Table 2. Categorizations and Responses to the item “Understanding 
Independent Variables”  

Level Categorization Sample teacher’s response 
3 

All four spaces filled with the letter v 

 
2 

Filled one, two or three spaces with v 

 
1 

Filled blanks with s and t 

 
Others 

- Filled something in blanks other than s, t, or v 
- The scorer cannot interpret the teacher’s response.  

 
 

IDK I don’t know 

 
NR No response  

 

The second item, “Hari’s Rock”, is shown in Figure 4. The purpose of “Hari’s Rock” is 

to see how teachers use function notation when prompted to use function notation to 

represent a dynamic situation. We added “at a non-constant rate” because, in earlier trials, 

many teachers assumed the radius increased at a constant rate and hence wrote a linear 

relationship such as .  r = k ⋅ t



 

 

 

Figure 4. The item, “Hari’s Rock” © 2015 Arizona Board of Regents. 
Used with permission. 

The rubric for the second item focuses on two features of teachers’ responses: where to 

use function notation, and how to use variables. We separate these features because they 

convey different information about teachers’ function schemes. The two features are 

scored independently.  

Our first focus in analyzing responses to the item “Hari’s Rock” is to see whether 

a teacher uses function notation spontaneously to represent a quantity (namely, the 

radius) for which he or she does not have an explicit rule of assignment. For instance, 

teachers can use “r(t)” to represent the value of the radius regardless of whether they 

know a rule of assignment for it (see Figure 2). We anticipate many teachers would use 

function notation on the left side for the simple reason that this is “what one does” when 

using function notation, e.g. write “A(t)” instead of “A”, and that many teachers would 

not think to use function notation to represent the radius’ value. 

Our second focus is on whether teachers used variables consistently on both sides 

of the equal sign (e.g.,  vs. ). We categorize a response as 

“Used variables inconsistently” when this was clear in their responses. The new rubric is 

in Table 3. We categorize IDK (I don’t know) and NR (No response) separately, but we 

A(t) = π r(t)2( ) A(t) = πr 2



 

 

exclude IDK and NR responses from the Table 3 because one dimension correlates 

automatically with IDK or NR on the other. 

Table 3. Rubric for “Hari’s Rock” item. © 2015 Arizona Board of 
Regents. Used with permission. 

 Used variables consistently Used variables inconsistently 
Level 3: Used function 
notation on both sides 
of the definition   

Level 2: Used function 
notation only in the 
defining rule 

 
 

Level 1: Used function 
notation on left side 
only  

 

 
Others 

 
 

 

Given our stance of categorizing teachers’ responses in terms of meanings rather than 

correctness, we are not concerned with the accuracy of the model a teacher generated. 

Rather, we focus only on the teachers’ use of function notation. For instance, we would 

consider  as a demonstration of using function notation on left side only even 

though the given formula does not accurately describe the area of the ripple. However, 

the statement only uses function notation only on the left side of the function 

definition and does not use function notation to represent the circle’s radius in the 

defining rule (i.e. a function to account for the non-constant rate of change for the length 

of the radius with respect to the time elapsed). Thus, “ ” fits Level 1 in Table 

3. 

A(r) = 2πr

A(r) = 2πr

A(r) = 2πr



 

 

To us, using function notation in both sides of the function definition in Level 3 

suggests that the teacher intentionally utilizes function notation representationally – to 

represent a relationship between quantities whose values vary, but for which there is no 

known rule for the relationship (see Figure 2). Level 2 responses contain function 

notation only in the defining rule. We see Level 2 responses being less productive for 

students’ understanding of function notation than Level 3 responses because it fits a 

scheme wherein the “A” in “A(t)” means the same as “A” used as the name of a variable. 

We categorize Level 2 responses higher than Level 1 (function notation on left side only) 

because in writing “r(t)” the teacher is using function notation representationally. Level 1 

responses fit a common meaning of “use function notation” as “write A(t) instead of A” 

(or “f(x) instead of y”).  

We feel the use of function notation in the defining rule is more significant than if 

teachers only used function notation on the left (Level 1 responses) because a teacher’s 

definition such as  in Table 3 conveys to students that radius is a function 

of elapsed time without the need for a function rule.7 We view the use of function 

notation in the defining rule as indicating teachers’ spontaneous use of function notation 

representationally.  

The difference between Level 2 and Level 1 lies in whether a teacher used 

function notation to represent the radius’ length. In many Level 1 examples, the teacher 

tries to create a rule to represent the non-constant rate of change, such as r(t)=t2, instead 

of simply using function notation to represent that variation. In constructing the rubric for 

 
7 We ignored the fact that this teacher used “t” both as upper limit of the integral and as the variable within 
𝑟#(𝑡)𝑑𝑡. 

π r '(t)dt
0

t

∫{ }2



 

 

this item, we hypothesized that teachers’ attempts to determine an explicit rule to 

describe the changing radius corresponds to a view of function as a rule and an inability 

to use function notation representationally. This aligns with previous research regarding 

meanings for function as a rule (Even, 1993; Sajka, 2003; Vinner, 1983). 

The focus on whether teachers used variables consistently aligns with the first 

item in that we anticipate that teachers who used variables inconsistently thought of the 

left hand side (“A(t)”) as the name of the function, imposing no constraint on variables 

used in the right side. For example, if a teacher wrote “A(t)” on the left side, but used “r” 

in the defining rule, we consider that he or she used variables inconsistently (e.g. 

 ). The rubric for this item gives the benefit of the doubt regarding some 

usages of the letter “r”. If a teacher defined the area as a function of time, but still 

included “r” in the rule such as , we interpret that the teacher used “r” as a 

parameter and thus used variables consistently. However, we view “t” always as a 

variable to be consistent with conventional usage of “t” for varying time. Thus, the Level 

1 example   from Table 3 is coded as using variables inconsistently. We used 

the Chi-square test to analyze the relationship between the first and the second items as 

well as the relationship between the two features of the second item,.  

Inter-rater agreement scoring for SK responses was conducted by having the first 

author and Korean scorers score 30-response subsets. Inter-rater agreement scoring for 

US responses was conducted by having members of the project team score 30-response 

subsets. “Agree” meant a perfect match in scores. Inter-rater agreement for the first item 

was 93.3% for SK responses (0.845 Cohen’s Kappa) and 88.0% for US responses (0.828 

A(t) = πr 2

A(t) = πr2t

f (r) = rt



 

 

Cohen’s Kappa). Inter-rater agreement for the second item was 80.0% for SK responses 

(0.725 Cohen’s Kappa) and 96.0% for US responses (0.945 Cohen’s Kappa).  

Two items shown in this study are among three function items discussed in 

Thompson and Milner (2019). Thompson and Milner (2019) showed the disparity 

between US and SK teachers’ responses in the two items, but did not deeply examine 

ways that teachers used function notation in the two items. We re-analyze the two items 

by (1) revising the scoring rubric for the second item, (2) investigating the relationship 

between the two items, and the relationship between the two dimensions of the second 

item, (3) presenting teachers’ interviews to validate the items and the rubrics. We 

substantially change the rubric for the second item by creating two dimensions: whether 

or not to uses function notation to represent varying quantities, and how to use variables. 

The change allowed us to better understand teachers’ use of function notation.  

5. RESULTS 

Our primary focus is to see meanings US teachers demonstrated, so we first 

present the distribution of U.S. teachers’ responses on the two items, the relationship 

between the items, the relationship between the two dimensions of the second item. We 

then report the results from South Korean teachers’ responses to see whether US 

teachers’ meanings are shared with SK teachers. We also discuss interviews with teachers 

who took the two items. 

5.1. U.S. teachers’ responses 

We gave the tasks in Figure 3 and Figure 4 to US high school mathematics 

teachers. All of 253 US teachers saw the first item “Understanding Independent 

Variables”. Only 241 US teachers saw the second item “Hari’s Rock”. We first present 



 

 

results from each item, and statistical analyses of the relationship between the items. We 

then display the relationship between the two features of US teachers’ responses on the 

second item. 

5.1.1. The first item “Understanding Independent Variables” 

Table 4 presents results from the first item “Understanding Independent 

Variables”. We exclude IDK (I don’t know) and NR (No response) responses from the 

table. There are 16 IDK (3 US≥Calc and 13 US<Calc) and 14 NR (2 US≥Calc and 12 

US<Calc) responses on the second item.  

Table 4. U.S. Results for the first item “Understanding Independent 
Variables” 

 Level 3 
(v throughout) 

Level 2 
(Mix of v, s, and t) 

Level 1 
(s and t) 

Others Total 

US ≥Calc 32 5 25 7 69 
US <Calc 53 7 74 20 154 
Total 85 12 99 27 223 
 (38.1%) (5.4%) (44.4%) (12.1%) (100.0%) 

* Cells contain number of respondents total and percent of row total in the last row.  
 

Approximately 43% of US ≥Calc teachers (32 of 74) filled the letter v in all four spaces. 

In addition, about 30% of US <Calc teachers (53 of 179) placed the letter v in all four 

blanks. Teachers in Level 3 seemed to think that “v” represents a value in the domain of 

“c”, called the argument of the function “c”—the value at which to evaluate the function 

“c”.  

It seems that a large percentage of both levels of US teachers were insensitive to 

the role of independent variables (s, t or v). About 41% of US ≥Calc teachers (30 of 74) 

and 45% of US <Calc teachers (81 of 179) used s or t in at least one blank (Level 2 or 



 

 

Level 1), which shows their tendency to keep the letter within parentheses in a function 

definition with the function name in which it occurred.  

A large majority of US teachers seemed to think that “v” in c(v) is a part of the 

function name and they were therefore free to use other letters in the function’s defining 

rule. Thompson (1994, 2013b) suggests a reason for the teachers who used s or t at least 

one blank in Level 2 and Level 1. Teachers thought of function notation as a four-

character symbol that is used in place of the letter “y” (Thompson, 2013b). Teachers who 

filled the blanks with s or t might consider “w(t)” as one symbol because they thought 

they could replace “w(t)” with “y”.  

5.1.2. The second item “Hari’s Rock” 

Table 5 present results from the second item “Hari’s Rock”. We exclude IDK (I 

don’t know) and NR (No response) responses from the table. There are 18 IDK (6 

US≥Calc and 12 US<Calc) and 11 NR (1 US≥Calc and 10 US<Calc) responses on the 

second item.  

Table 5. Results for the second item “Hari’s Rock”  

  Level 3 
(FN both 

sides) 

Level 2 
(FN right 
side only) 

Level 1 
(FN left 

side only) 

Others Total 

 
US ≥Calc 

Use variable consistently 19 6 29 6 60 

Use variable inconsistently 2 0 5 0 7 

 
US <Calc 

Use variable consistently 20 11 64 23 118 

Use variable inconsistently 5 0 21 1 27 

 Total 46 17 119 30 212 
  (21.7%) (8.0%) (56.1%) (14.2%) (100.0%) 

* Cells contain number of respondents total and percent of row total in the last row. 

Only 241 US teachers saw the “Hari’s Rock” item. The first columns in Table 5 present 

teachers who used function notation in both sides (Level 3) to represent a relationship 



 

 

between quantities whose values vary. About 28% of US ≥Calc teachers (21 of 74) used 

function notation to represent the area and radius. Approximately 15% of US <Calc 

teachers (25 of 167) used function notation on both sides.  

Responses were scored at Level 2 if a teacher used function notation to represent 

the radius increasing at a non-constant speed. Teachers in Level 3 or Level 2 used 

function notation to represent the value of a function in relation to values of its argument 

when they did not know a rule of assignment for the radius. To conduct statistical tests of 

the relationship between the two dimensions we combined Level 3 and Level 2 because 

teachers in both levels used function notation representationally. The results of the 

relationship between the two features will be presented in section 5.1.4.  

Approximately 36% of US ≥Calc teachers (27 of 74) gave Level 3 or Level 2 

responses to “Hari’s Rock” item, using function notation to represent the radius that 

increases a non-constant rate. About 22% of US <Calc teachers (36 of 167) responded 

with function notation on the right side or both sides.  

In addition, about 46% of US ≥Calc teachers (34 of 74) gave Level 1 responses, 

using function notation only to represent area. Approximately 51% of US <Calc teachers 

(85 of 167) responded with function notation only on the left side such as , 

which indicates they used function notation to represent the area because of the prompt 

“use function notation” in the item.  

Table 5 presents 34 responses that have clear evidence that the teachers used 

variables inconsistently. Of 34 US teachers who used variables inconsistently, 26 

responses were in Level 1, where teachers used function notation only to represent the 

area. One example of these was . This suggests that the 26 US teachers used 

A(t) = π t 2

f (t) = πr2



 

 

function notation such as f(t) as a label to replace the word “Area”, since the function 

definition did not actually provide a rule dependent only on the varying quantity “t”.  

We hypothesize that many teachers in Level 1 used function notation like “A(t)” 

as a four-character label, only because of the prompt “use function notation”, and 

therefore wrote A(t) to represent the area. This would be consistent with students’ and 

teachers’ difficulties of writing y = A(t) = a rule (Even, 1993; Hitt, 1998; Sajka, 2003).  

There was no evidence that having mathematics or mathematics education degree 

was a statically significant predictor of using function notation to represent in the second 

item (𝜒#(2, 𝑛 = 212) = 2.03372, 𝑝 = .36). 

5.1.3. The relationship between the two items 

With regard to the relationship between the two items, we combined Level 2 and Level 1 

in the first item “Understanding Independent Variables”, and combined Level 3 and 

Level 2 in the second item “Hari’s Rock”. Table 6 compares US teachers’ tendency to fill 

the blanks with letters to their use of function notation representationally. To conduct 

statistical tests we combined US ≥Calc and <Calc teachers.  

Table 6. Responses to “Understanding Independent Variables” compared 
to responses to “Hari’s Rock” from US teachers 

Count Used function 
notation in the 
defining rule 

Used function 
notation only to 
represent area 

Others Total 

Filled the blanks  
with the letter v 35 35 6 76 

Filled the blanks  
with the letter s or t 23 53 17 93 

Others 5 31 7 43 

Total 63 119 30 212 
 



 

 

Table 6 shows a link between US teachers’ use of consistent variables and idea of 

using function notation representationally. Approximately, 56% US teachers (35 of 63) 

who used function notation in the defining rule in the second item filled all blanks with 

the letter v. About 57% of US teachers (53 of 93) who typed “s” or “t” in the blanks used 

function notation only to represent the area.   

The association between responses to Understanding Independent Variable and 

Hari’s Rock from US teachers was statistically significant 

. These strong associations are consistent with the 

hypothesis that teachers who used function notation only to represent the area thought of 

“f(t)” as a label because they were likely to use variables inconsistently in Understanding 

Independent Variables.  

5.1.4. The relationship between the two features on Hari’s Rock 

When analyzing the two dimensions’ relationship in the second item, we first 

exclude IDK (I don’t know) and NR (No response) responses from each table because 

IDK or NR on one dimension correlates automatically with IDK or NR on the other. 

Table 7 shows the relationship between the two features of US teachers’ responses on 

Hari’s Rock.  

χ2 (4,n = 212) = 19.037, p < 0.0008( )



 

 

Table 7. US teachers’ use of variables by their use of function notation on 
“Hari’s Rock” 

 Used function 
notation in the 
defining rule 

Used function 
notation only to 

represent the area 

Others Total 

Used variables consistently 56 93 29 178 

Used variables inconsistently 7 26 1 34 

Total 63 119 30 212 
 

According to Table 7, the two features were associated. The first column of Table 7 

shows that 89% of US teachers (56 of 63) who used function notation to represent the 

radius increasing at a non-constant rate used a consistent letter in the notation and the rule 

of the function. Similarly, the second row of Table 7 tells us that 76% of US teachers (26 

of 34) who used variables inconsistently used function notation only to represent the area. 

The association between the two features of Hari’s Rock from US teachers’ responses 

was also statistically significant . These statistical 

results are consistent with the hypothesis that teachers who used function notation only to 

represent the area (such as A(t)) think of t as a part of the function’s name instead of an 

independent variable. We hypothesized that if they thought of A(t) as one symbol, they 

might think “A(t) =” is just another way of writing “y =” (Thompson, 2013b). 

5.2. South Korean teachers’ responses  

As mentioned earlier, we present SK teachers’ responses on the two items to see 

whether meanings that US teachers demonstrated are shared with SK teachers. Table 8 

shows results from the first item “Understanding Independent Variables”. We exclude 

IDK (I don’t know) and NR (No response) responses from the table. There are 3 IDK (2 

χ 2 (2,n = 212) = 7.716, p < 0.0211( )



 

 

HS and 1 MS teachers) and 16 NR (5 HS and 11 MS teachers) responses on the second 

item. 

Table 8. Results for the first item “Understanding Independent Variables” 

 Level 3 
(v throughout) 

Level 2 
(Mix of v, s, and t) 

Level 1 
(s and t) 

Others Total 

Korea HS 203 1 14 39 257 
Korea MS 65 0 6 19 90 
Total 268 1 20 58 347 
 (77.2%) (0.2%) (5.8%) (16.7%) (100.0%) 

* Cells contain number of respondents total and percent of row total in the last row.  
 

Approximately 77% of SK high school teachers (203 of 264) and about 64% of SK 

middle school teachers (65 of 102) filled the letter v in all four spaces. Approximately 6% 

of both SK high school teachers (15 of 264) and SK middle school teachers (6 of 102) 

filled s or t in the blanks (Level 2 or Level 1). It seems that both SK high school and 

middle school teachers were sensitive to the role of independent variables (s, t or v).  

Table 9. Results for the second item “Hari’s Rock” from SK teachers 

  Level 3 
(FN both 

sides) 

Level 2 
FN right 
side only 

Level 1 
(FN left 

side only) 

Others Total 

 
Korea HS 

Use variable consistently 86 77 21 48 232 

Use variable inconsistently 0 0 11 0 11 

 
Korea MS 

Use variable consistently 24 15 18 23 80 

Use variable inconsistently 0 2 5 0 7 
 Total 110 94 55 71 330 
  (33.3%) (28.5%) (16.7%) (21.5%) (100.0%) 

* Cells contain number of respondents total and percent of row total in the last row. 

All 366 SK teachers saw the “Hari’s Rock” item. We exclude IDK (I don’t know) and 

NR (No response) responses from the table. There are 14 IDK (9 HS and 5 MS teachers) 

and 22 NR (12 HS and 10 MS teachers) responses on the second item.  



 

 

Recall that teachers in Level 3 or Level 2 used function notation 

representationally. Approximately 62% of SK high school teachers (163 of 264) and 40% 

of SK middle school teachers (41 of 102) gave Level 3 or Level 2 responses to “Hari’s 

Rock” item, using function notation to represent the radius that increases a non-constant 

rate.  

We also conducted the statistical tests for SK teachers to see the relationship 

between the two items as well as the relationship between the two features of the second 

item.  

Table 10. Responses to “Understanding Independent Variables” compared 
to responses to “Hari’s Rock” from SK teachers 

Count Used function 
notation in the 
defining rule 

Used function 
notation only to 

represent the area 

Others Total 

Filled the blanks  
with the letter v 173 35 43 251 

Filled the blanks  
with the letter s or t 4 5 5 14 

Others 27 15 23 65 

Total 204 55 71 330 
 

Table 10 shows SK teachers’ use of consistent variables and idea of function notation to 

represent varying quantities were also linked in SK responses. Approximately, 52% of 

SK teachers (173 of 330) used function notation in the defining rule on “Hari’s Rock” 

and filled the blanks with the letter v on “Understanding Independent Variable”. Looking 

through the first column of Table 10, we see that 85% of SK teachers (173 of 204) who 

used function notation in the defining rule in the second item filled all blanks with the 

letter v. Only 2% of SK teachers (4 of 204) who used function notation to represent the 

varying radius filled the blanks with s or t.  



 

 

Scanning the first row of Table 10, we see that 69%of SK teachers  (173 of 251) 

who filled the blanks with the letter v used function notation to represent the radius 

increasing at a non-constant rate. The association between responses to Understanding 

Independent Variable and Hari’s Rock from SK teachers was statistically significant (

, p < 0.001).  

Table 11. SK teachers’ use of variables by their use of function notation 
on “Hari’s Rock” 

 Used function 
notation in the 
defining rule 

Used function 
notation only to 

represent the area 

Others Total 

Used variables consistently 202 39 71 312  
Used variables inconsistently 2 16 0 18  
Total 204 55 71 330 
 

According to Table 11, the two features of the second item were also associated in our 

sample of SK teachers. The first column of Table 11 shows that 99% of SK teachers (202 

of 204) who used function notation to represent the radius increasing at a non-constant 

rate used a consistent letter in the notation and the rule of the function. In contrast, the 

second row of Table 11 tells us that 89% of SK teachers (16 of 18) who used variables 

inconsistently used function notation only to represent the area. The association between 

the two features of Hari’s Rock from SK teachers’ responses was statistically significant (

). 

SK teachers’ responses show that the meanings US demonstrated in the tasks 

were shared with a minority of SK teachers. SK results also tell us it is not unreasonable 

to expect secondary mathematics teachers to give high level responses, contrary to the 

χ 2 (4,n = 330) = 24.010

χ 2 (2,n = 330) = 71.598, p < .0001



 

 

misgivings of our consultants and advisors. In addition, SK teachers’ responses also 

allow us to think about the level of US teachers who taught calculus at least once (US 

≥Calc teachers). U.S. teachers teaching calculus will have taught content similar to 

Korean high school teachers because calculus is in the high school curriculum in South 

Korea, but not in the U.S. SK middle school teachers’ responses were more sensitive to 

the role of independent variable than were US ≥Calc teachers in our sample. SK middle 

school teachers’ responses were also more likely to use function notation to represent 

varying quantities than were US ≥Calc teachers if we see teachers in Level 3 and Level 2 

on the second item in our sample.  

5.3. Interviews with three teachers 

The first author interviewed 17 teachers (eight SK and nine US teachers) about 

their responses in the two items. We present item interviews with three teachers (two US 

and one SK teachers) to illustrate the spectrum of responses we found in all 17 teachers.  

Figure 5 shows Teacher 1 (US)’s responses to the two items.  

Response to Understanding Independent Variables Response to Expressing the Varying 
Area 

 

 

Figure 5. Teacher 1's responses to the two items. 

Teacher 1 filled the blanks with s and t in Understanding Independent Variables. Her 

response to Expressing the Varying Area was . She used function notation 

only to represent the area and used variables (t and r) inconsistently. We interviewed 

A(t) = πr 2



 

 

Teacher 1 to better understand why someone might use variables inconsistently when 

defining a function.  

Excerpt 1. Teacher 1’s interview of Understanding Independent Variable 

I: What’s your interpretation of this item? 
  
T1: Um so I am looking at two functions become a piecewise defined 

function. Um I am thinking and looking at the two functions w is a 
function of t and q is a function of s. Umm… anything that relates to q 
should have s in the parenthesis in the blanks and then anything that 
relates to w should have t. Since I am wondering if these two functions 
are coming from elsewhere with different inputs, so c(v) would be q(s) 
and w(t) combined.  

 

Teacher 1’s response in Excerpt 1 tells us that she thought q(s) was one inseparable 

symbol instead of thinking q is a function’s name and s is an independent variable on 

Understanding Independent Variables. Although she said q is a function of s, she thought 

q always accompanies with s, and viewed q(s) as one entity. Teacher 1 demonstrated her 

meanings for function notation when talking about her response to Hari’s Rock (see 

Excerpt 2).  

Excerpt 2. Teacher 1’s interview of Hari’s Rock 

T1: (After writing , and then added  after ) I am not sure I 
am satisfied with my answer, but I think I’m done. But I am not quite 
sure… I am not totally sure how else I would express this.  

  
I: What’s your interpretation of this item? 
  
T1 Yes, I was thinking about rock dropping and the area of the circle I am 

thinking is , the area of the circle. When I am using function 
notation I am thinking A(t) because of the area with respect to time. 
The issue that I couldn’t come up or couldn’t figure out the rest of this 
was if the radius is increasing at a non-constant speed like due to time 
how can I make radius in terms of time? And I guess it made me like 

doesn't show the input of t, r is changing with respect to 
time. Would this be a situation where there would be multiple 
equations to represent the same situation or do I change the radius to 

A = πr2 (t) A

πr2

A(t) = πr2



 

 

be time, um but there are some relationships between time and radius, 
so I didn’t feel satisfactory.  

  
I: You feel like… there is the relationship between time and radius, but 

you have no idea how to represent the relationship. Am I right? 
  
T1: Yes. 
  
I: I saw you changed your answer A to A(t). Could you explain why you 

changed your answer? 
  
T1: Sure, first it (referring to the item) says use function notation, so I was 

trying to represent with function notation. It started with A. I was just 
noting the area of the circle which was what I was starting. Umm it 
says the area as a function of elapsed time, so using t to represent 
time. So I knew that the area was the function of time and I couldn’t 
figure out what I wanted to do with r. I guess I could now change r to 
t although radius is not necessarily equal to time but there are some 
relationships between r and t that I want to represent. Since I don’t 
know what’s causing what relationship time and radius have. I don’t 
exactly know how to factor time into the equation. 

 

When taking Hari’s Rock, Teacher 1 first wrote , and then added  after . 

Her final answer was . She used function notation only to represent the area on 

the left hand side and used t in the function notation and r in the defining rule. Her 

statement “when I am using function notation I am thinking A(t)”  and “I was just noting 

the area of the circle which was what I was starting” is consistent with our hypothesis that 

teachers who used function notation only to represent the area think of A(t) as one 

symbol, and A(t) is a label for the formula on the defining rule.  

It is worth noting that Teacher 1 expressed a need to relate radius and time and 

said she did not know how to do it. One reason might have been that to use function 

notation Teacher 1 needed a defining formula, and function notation did not serve as a 

representational tool for her without knowing a defining formula. 

A = πr2 (t) A

A(t) = πr2



 

 

Teacher 2 (US)’s responses to the two items were in the highest levels according 

to the rubrics (see Figure 6).  

 

Response to 
Understanding 
Independent 
Variables 

 
Response to 
Expressing the 
Varying Area 

 
Figure 6. Teacher 2's responses to the two items. 

Teacher 2 filled the blanks with v on Understanding Independent Variables and wrote 

 where f(t) gives the radius of time t. We interviewed Teacher 2 to see 

whether teachers who wrote highest-level responses demonstrated coherent meanings.  

Excerpt 3. Teacher 2’s interview of Understanding Independent Variable 

I: What’s your interpretation of this item? 
  
T2: Oh, I feel like I might be missing something. So the function c is 

properly defined. So, I mean this is q, so I would use q if my variable 
is between 0 and 1, and I would use w if my variable is greater and 
equal to 1. So, I mean I don’t know I put v’s everywhere. (laughing) 
But since we are defining c of v, it seems the variable like it ought to 
be v. So the same domain restrictions would apply to w and q. 

 

A(t) = π f (t)( )2



 

 

Excerpt 3 shows Teacher 2’s awareness that (1) the letter inside of the parenthesis 

represents a variable, (2) the letter denoting the variable of a function should be 

consistent with the letter used in the defining rule, and (3) Teacher 3 used “w” and “q” as 

function names. Her interview on the second item also displays her coherent meanings 

for function notation (see Excerpt 4).  

Excerpt 4. Teacher 2’s interview of Hari’s Rock 

I: What’s your interpretation of this item? 
  
T2: Oh, well it seems… wanting me to show that I understand that the 

radius isn’t constant so I have to do a function for the radius. And you 
know obviously area equals  radius squared, but the radius 
is…Given that there is no more information about how radius relates 
to time, I thought I just need to do a function then of time. 

  
I: That’s why you wrote f(t)? 
  
T2: Yes. 
  
I: To represent the varying radius? 
  
T2: Yes. 
  
I: You wrote also A(t). Could you tell me know why you wrote A(t)? 
  
T2: Because it wants the area as a function of elapsed time, so I wrote A 

for the area and t is for time as my variable. 
 

Teacher 2’s responses in Excerpt 4 indicate that Teacher 2 used function notation as a 

means to represent varying quantities in the case where an explicit rule is unknown. She 

also demonstrated that she was aware that t on both sides represents the independent 

variable for the function defined.   

π



 

 

Teacher 3 (SK) filled the blanks with x in Understanding Independent Variables, 

and expressed his confusion because he did not know an explicit rule for the radius in 

Hari’s Rock (see Figure 7). 

Response to 
Understanding 
Independent 
Variables 

 

The teacher’s scratch work: What is wrong with this for the function that is defined 
on [0,1]…?? 

Response to 
Expressing the 
Varying Area 

 

The teacher’s response: ?? I don’t know how the circle is increasing. 
Figure 7. Teacher 3's responses to the two items. 

Teacher 3’s responses to the two items indicate his inclination of using x in function 

notation and finding out rules when thinking about functions. Unlike the two teachers 

(Teacher 1 and Teacher 2) we presented earlier, Teacher 3’s interview included looking 

at his original responses from a prior administration of the MMTsm. Teacher 3’s 

responses in Excerpt 5 show his reasoning on the first item. 

Excerpt 5. Teacher 3’s interview of Understanding Independent Variables 

I: Could you explain your response to me? 
  
T3: Doesn’t this item want me to say it doesn’t matter to use different 

letters? 
  
I: What does that mean?  



 

 

  
T3:  This (referring to w function) is defined from 1, and this (referring to q 

function) is defined from 0 to 1, so it (referring to c function) is 
defined well, isn’t it? But, c is defined in two parts, so I used the same 
letter. Ah, it is written c(v). Oh, there is v. Don’t I have to fill the 
blanks with v? 

  
I:  Could you explain to me why you filled the blanks with x?  
  
T3: At that time when I was taking this item? Was I in a hurry? Anyway I 

thought the intention of this item was…this (referring to w function) is 
in terms of t, this (referring to q function) is in terms of s. And the 
domains were connected, so I have to use one letter, my favorite letter. 
If I had seen v here (pointing to v in c(v)), I might have written v, 
but…Maybe I didn’t see this (referring v) because I was in a hurry.  

 

Teacher 3 expressed his tendency to use x as the letter inside of the parenthesis in Excerpt 

5. He did recognize that the independent variable for a function is a place holder for a 

value and can be changed as long as a parallel change is made in the function’s rule of 

association. At the time of taking the MMTsm, he did not recognize that the variable in a 

function definition should be consistent.  It seemed my questions perturbed him during 

the interview because he eventually noticed that v was the argument to c.  

Teacher 3 also said why he did not answer the second item in Excerpt 6.  

Excerpt 6. Teacher 3’s interview of Hari’s Rock 

I: Could you explain your response to me? 
  
T3: I didn’t understand this item at all. I asked teachers who took this item 

as soon as it was over. They said they chose any function in terms of 
time. But, I thought I needed a formula that represents how the circle 
is increasing. The radius is increasing at a non-constant rate, so I 
thought this item was asking me to find out how the radius is 
increasing. For example… (reading the item again) Does this 
(pointing to “the radius is increasing at a non-constant rate”) mean 
that t and r are not directly proportional? For example, if I think of 
any function, I can take or and apply the area formula r = t 2 r = t



 

 

. Can this be one of correct answers? I feel comfortable with a 
specific function.  

 

Teacher 3’s response in Excerpt 6 indicates that Teacher 3 did not answer the second 

item because he could not come up with a formula that represent the radius increasing at 

a non-constant rate. His statement in this excerpt shows that his meaning for function is a 

formula such as or . It seemed that Teacher 3 first tried to come up with a 

rule when asked to use function notation. This teacher was also very explicit about how 

his own comfort level played into his actions. He used “x” in Understanding Independent 

Variables not because it was relevant to the function definition but because “it was his 

favorite variable”, and he wanted to find a specific rule for how radius and time varied in 

Hari’s Rock because “he feels comfortable with a specific function”. It seemed he had a 

concept image of function notation that always includes “f ( x )” as a four-character name 

(Tall & Vinner, 1981). Though other teachers did not indicate the same self-awareness of 

their own motivations, their responses indicated that many other teachers might have felt 

comfortable only when using specific function rules on the right-hand side of a function. 

6. DISCUSSION 

6.1. Discussion of the results 

Prior research focused largely on students’ and teachers’ conception of calculating 

a function’s values. In this study we shifted our focus to ways in which teachers used 

function notation. We were particularly interested in whether teachers used function 

notation to represent a relationship between varying quantities.  

Teachers’ responses to the two items in this study suggest that more than half of 

US teachers held unproductive, and sometimes incoherent meanings for function 

πr2

r = t 2 r = t



 

 

notation. The results show that attending to teachers’ meanings for function notation 

revealed useful information about teachers’ understanding of functions. From the first 

item, about 57% of US  ≥Calc and 70% of US <Calc teachers’ responses suggest that 

they think of the left side of a function definition, e.g., c(v), is a name for the rule on the 

right side (see Table 4). This is contrary to thinking of function notation as a method to 

encapsulate a number of entailed meanings (see Figures 1 and 2). U.S. teachers’ 

responses to the second item, in which 64% of US ≥Calc, and 78% of US <Calc teachers 

did not use function notation representationally, are consistent with responses to the first 

item. It seems they used function notation as a label to replace the word “Area” 

The association between responses to Understanding Independent Variable and 

Hari’s Rock from US teachers’ responses was statistically significant. The association 

between the two features of Hari’s Rock from US teachers’ responses was also 

statistically significant. Those results and the interviews with teachers strongly suggest 

that (1) many U.S. teachers held a meaning for function notation as a label to replace a 

word such, as A(t) to replace “area”; (2) teachers treated function notation “A(t)” as a 

variable name because they used different letters inside of function notation and in the 

defining rule, and (3) many U.S. teachers thought every function has to be defined by a 

rule.  

We focused on meanings that teachers have for function notation. Our focus on 

meanings allowed us to explain what might lead to teachers’ common mistakes of 

function notation. For example, teachers' use of mismatched letter on both sides such as 

𝐴(𝑡) = 𝜋𝑟# might come from thinking of function notation as a four-character symbol. 



 

 

They might consider “A(t)” as one symbol because they thought they could replace “A(t)” 

with “y”.  

Our perspective on productive meanings for teaching function notation helped us 

think about potential productivity for students’ long-term learning. Suppose a teacher’s 

meaning for function is a formula. The teacher’s use of function notation always 

accompanies with a computational rule. His students might think if there is no rule, there 

is no function. We think using “f(x)” representationally (i.e. using “f(x)” to represent the 

value of the function f in relation to a value of x regardless of whether we know a rule of 

assignment for it) would be productive for high school students because it supports 

students in developing a meaning for function beyond that of a rule. Additionally, we 

believe that the representational power of function notation could resolve thinking of f(x) 

as a label because students can understand that f(x) represents a value of one quantity 

with respect to the value of a second quantity according to a relationship between them 

named f. This suggests a need for attention to ideas of function notation as a means to 

represent one quantity’s values in relation to another quantity’s values in teacher 

education for pre-service teachers and professional development programs for in-service 

teachers. 

SK teachers’ responses showed it is reasonable to expect secondary mathematics 

teachers to give high level responses to our tasks, contrary to claims by our consultants 

and advisory board, and suggests the state of US high school teachers’ meanings for 

function notation is problematic. Approximately 80% of SK high school teachers, 64% of 

SK middle school teachers, 43% of US≥Calc teachers, and 30% of US<Calc teachers 

filled the letter in the function notation that is consistent with the letter used in the 



 

 

defining rule of the function. In addition, 62% of SK high school teachers, 40% of SK 

middle school teachers, 36% of US≥Calc teachers, and 22% of US<Calc teachers used 

function notation to represent a varying quantity that increases at a non-constant rate. It 

demonstrates that SK middle school teachers were more likely to understand the role of 

independent variables and to use function notation representationally than were US high 

school teachers who taught calculus at least once in our sample. SK data shows that US 

teachers’ difficulties when reasoning with function notation are not due to 

epistemological obstacles to understanding meanings of function notation. The SK data 

suggests that US teachers’ problematic responses are a systemic aspect of mathematics 

education in the U.S. Thus, it is plausible that US teachers convey problematic meanings 

to students unintentionally.  

6.2. Limitations 

Teachers in this study were not selected randomly and so cannot be taken as 

representative of all U.S. and South Korean teachers. Thus, generalization of the results is 

not possible. However, the sample is large for an educational study. We therefore think it 

is possible that many U.S. teachers are likely to convey to their students’ meanings for 

function and function notation that are useful only in limited situations or are 

counterproductive for future mathematical learning. 

6.3. Our attention to teachers’ meanings and future research 

Thompson (2013a) outlined ways to address the systematic inattention to meaning 

in U.S. mathematics education, explaining that addressing this problem will require a 

long-term effort. Attending to the representational power of function notation would be 



 

 

one way to help teachers develop and teach productive meanings for function (see Figure 

1 and Figure 2).  

We acknowledge that a teacher’s meanings do not determine his or her actions. 

However, we cannot expect a teacher to help students develop a productive mathematical 

meaning when the student’s teacher does not have that meaning. Holding productive 

meanings for ideas teachers teach is a necessary condition for them to convey those 

meanings to students, but it is not a sufficient condition.  

We do not claim all teachers would express their meanings demonstrated in the 

MMTsm in their classrooms. However, our data supports our claim that teachers’ 

responses in the MMTsm reflect meanings that can support or constrain what they might 

express during their lesson, and that these meanings can be characterized by responses to 

our items. We are continuing to investigate this claim by observing teachers’ classrooms 

to see the relationship between what teachers write on the MMTsm items, what they say 

and do in teaching, and meanings students construct in trying to understand what teachers 

intend.  
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