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CHAPTER I 

SIGNIFICANCE OF STUDYING THE GRAPHING CALCULATOR 

AND MATHEMATICS STUDENTS 

 The graphing calculator is finding its way into 

students' hands and into mathematics curricula.  It is a 

resource which both students and instructors are 

enthusiastic about using in learning and teaching 

mathematics.  According to Hembree and Dessart (1992), 

"The integration of the calculator into the curriculum 

where it plays a central role in the learning process is 

a worthy goal for the research of the 1990s." (p.31)  

Research into the effective use of the graphing 

calculator in educational settings is needed to gain 

insight into claims that the graphing calculator and its 

associated teaching methodology are of practical use to 

students. 

Cognitive Technology 

 "A cognitive technology is any medium that helps 

transcend the limitations of the mind in thinking, 

learning, and problem-solving activities" (Pea, 1987, 

p.91).  It is the ability of a cognitive technology to 

directly influence students' thinking that distinguishes 

it in the students' cognitive environments.  This 



influence allows the computer and graphing calculator to 

be considered cognitive technologies. 

 The actual effect of students' use of any cognitive 

technology may not coincide with the intentions of the 

designer.  Examination of students' use of the graphing 

calculator may show that students' thinking and learning 

travels along different paths than those expected by the 

calculator's designers or by educators. 

 By externalizing elements of their thought processes 

students extend their reasoning beyond the limitations of 

the mind.  "A common feature of...cognitive technologies 

is that they make external the intermediate products of 

thinking, which can then be analyzed, reflected upon, and 

discussed" (Pea, 1987, p.91).  The designers of the 

graphing calculator externalized their thinking when they 

produced the calculator.  Students may externalize and 

analyze their thinking when they verify relationships 

between functions by entering them into the graphing 

calculator.  Similarly, students may externalize their 

thinking by writing calculations and interpretations with 

pencil on paper, or with chalk on a board. 

 The ever present availability and general use of 

various cognitive technologies in mathematics instruction 

shows that instruments of mathematics instruction are 

neither new nor necessarily singular in nature.  The 

variety of cognitive technologies can be demonstrated in 

tools of calculation.  "From ancient times instruments 



have been used in calculation.  Working on paper is 

actually a rather recent invention.  In antiquity and in 

the middle ages people worked with counters on a board, 

or with beads on an abacus" (Freudenthal, 1967, p.69). 

 These cognitive technologies did not and do not 

exist apart from the communities in which they are 

created and used.  They are products of the intelligence 

that created them, as well as, products defined by the 

communities that choose to accept and use them.  "In 

terms of cultural history, these tools and the practices 

of the user community that accompany them are major 

carriers of patterns of previous reasoning.  They may 

contribute to patterns of distributed intelligence 

configured in activity" (Pea, 1993, p.53). 

 The graphing calculator was created by the 

electronics industry and its construction and functioning 

is dependent upon the mathematical logic used in its 

creation.  The ability of the graphing calculator to 

persist depends on peoples willingness and ability to 

recognize it as useful.  Thus the graphing calculator is 

both a reflection of a particular community's 

mathematics, and a potential stimulus for, a possibly 

different, community's mathematics. 

 This role of cognitive technologies, such as the 

graphing calculator, in affecting not only the 

mathematical environment, but mathematics itself has a 

considerable cultural impact.  Noss (1988) asserts that 



"the technology which is at the disposal of a given 

culture directly influences the kinds of mathematics 

which are indigenous, spontaneous or frozen into that 

culture." (p.254)  A type of mathematics that seems to be 

frozen into our culture is paper-and-pencil mathematics.  

Nine year old students are expected to spend hours of 

their time practicing the long division algorithm.  

Later, these same students will be expected to spend time 

calculating data points and filling in tables from which 

they can eventually draw graphs.  Just as standard 

calculators offer an alternate to the long division 

algorithm, graphing calculators are bringing additional 

choices into mathematics instruction involving functions 

and graphs. 

 It is thus apparent that a necessary task of 

mathematics educators is to examine new, or potential, 

cognitive technologies to discover how they might effect 

or alter the mathematical content being taught.  Inherent 

in this examination is the need to carefully consider the 

teaching approach within which a particular cognitive 

technology is being employed. 

 Each cognitive technology used in mathematics has an 

effect that might build on the current structure of 

mathematics.  "The design of artifacts, both historically 

by others and opportunistically in the midst of one's 

activity, can advance that activity by shaping what are 

possible and what are necessary elements of that 



activity" (Pea, 1993, p.50).  Computers, in general, 

allow mathematicians to use complex algorithms which 

otherwise would have been too difficult or problematic to 

implement.  The computer as a cognitive technology has 

extended the domain of mathematics. 

 Mathematics is thus cumulative.  Yet, at any given 

time, there exists some criteria for what people consider 

proper mathematics.  The limits of this definition are 

challenged by the advent of each new cognitive 

technology, the result often being that the criteria for 

proper mathematics changes.  "An answer to the question 

'what is mathematics?' dictates the kinds of problems and 

methods that are acceptable in the community and 

determines what parts of the past are included or 

excluded in the present paradigm" (McCleary & McKinney, 

1986, p.51).  As long as the long division algorithm is 

considered as an element of proper mathematics, by 

influential members of society or by educators who have 

some degree of influence over schools, then nine year old 

students will study it. 

 Due to the prevalence of computers and electronic 

equipment in industry, today's students will probably be 

expected to use computers as a routine tool.  These 

students "need to learn a different mathematics than 

their forefathers.  Standard school practice, rooted in 

traditions that are several centuries old, simply cannot 

prepare students adequately for the mathematical needs of 



the twenty-first century" (Steen, 1990, p.2).  So, the 

question is "What mathematics, what teaching approaches, 

and what use of computers and electronic equipment will 

be appropriate to these students needs?"  

 Educators interpret what methods of using computers 

and electronic equipment in teaching are appropriate.  

This interpretation effects the way cognitive 

technologies are used, and this use, in turn, changes the 

effects the cognitive technologies can have.  Studies of 

the effects cognitive technologies have on education 

yield similar results.  Thus, "we affect computers when 

we study their use, reflect on what we see happening, and 

then act to change it in ways we prefer or see as 

necessary to get the effects we want" (Pea, 1987, p.95).  

We may examine a method of teaching children to multiply 

using the computer.  The available program might respond 

with a flashing light when the student answers 

incorrectly, then supply the correct response.  Research 

might reveal that students easily lose interest in this 

program.  As a result of these findings, educators might 

then rewrite the program to include sound effects and 

pictures that attract and keep the attention of students.  

Alternately, educators may find the need to reevaluate 

their perceptions of what it means for students to learn 

multiplication. 

 "Implementation of new technologies also forces 

reconsideration of traditional questions about control 



and the social structure of classrooms and organizational 

structure of schools" (Kaput, 1992, p.516).  The social 

interaction necessary in cognitive situations created by 

the presence of new cognitive  technologies may prove to 

be quite different from that required in current 

educational settings, presuming that teachers' objectives 

are to change what students can and do learn in that 

setting.  Teachers may have to reevaluate and modify the 

way they teach, so that they may more effectively 

communicate and use the new technologies to teach 

students. 

 Students will probably need to use computers 

routinely in most jobs and professions, so it should be 

an integral part of student environments.  "It needs to 

be thought of as both a tool and a medium for 

instruction, not as something that is added on to the 

existing curriculum in appropriate places" (Glass, 1984, 

p.13).  In this case, students should frequently 

interact, not only with the products of the computer, but 

also, with the computer itself. 

 The graphing calculator as a cognitive technology 

has the potential to help students transcend the 

limitations of learning.  This potential may be dependent 

on the teaching methodology being employed in any given 

classroom.  Whether or not students gain understanding of 

functions and graphs by using the graphing calculator may 

be a direct product of the teaching methodology. 



What is Understanding? 

 Understanding is a goal in any instructional 

setting.  What is meant by "understanding" is thus the 

key to creating concrete instructional goals.  The kind 

of understanding this researcher will be looking for in 

students will therefore shape perceptions of students' 

activities. 

 Skemp (1978) discusses two kinds of understanding: 

"instrumental understanding" and "relational 

understanding".  A student with only instrumental or 

procedural understanding is equipped with rules, but no 

reasoning to support the rules.  A student with 

relational or conceptual understanding knows what actions 

to take and why.  

 Each of these types of understanding have their 

proponents.  By considering mathematics instrumentally 

and relationally Skemp (1978) points out positive aspects 

of each.  Instrumental mathematics is often based on 

quick rules and methods.  These can be much easier to 

understand and can produce immediate rewards to students 

who get correct answers with minimal effort.  

Alternately, because its methods are used for particular 

reasons, which the student comprehends, relational 

mathematics is more adaptable to new tasks and easier to 

remember. 

 The differences in the long-term (two years) effects 

of instrumental and relational learning for two students, 



were noted by Wearne and Hiebert (1994).  The first 

student "practiced as many as thirty problems each day, 

usually without a story context.  The goal of instruction 

was efficient, correct computation" (p.273).  This 

student was able to correctly solve a second-grade story 

problem involving addition of whole numbers, but was not 

prepared to use her strategy to solve problems involving 

addition of decimals in the fourth-grade.  She had to 

learn new rules in order to solve the new problem.  The 

second student "spent more time developing place-value 

ideas, using these ideas to develop procedures for 

combining numbers, and then sharing procedures with other 

members of the class" (p.273).  This student was able to 

solve the problem involving decimals by modifying the 

meaningful strategies she developed in the second grade. 

 This researcher considers students with a 

relational/conceptual understanding of mathematics to be 

better prepared to continue learning mathematics.  So, in 

this context, the goal of instruction is to aid students 

in constructing a relational/conceptual understanding of 

mathematics.  Not all instructors exhibit this goal in 

their methods of instruction.  Discussions of student 

behaviors, in this paper, will make specific references 

to the type of understanding observed in students. 

 Since students always construct understanding from 

their experiences, past and present, a consideration of 

student understanding in the classroom must take into 



account the multiplicity of materials to which students 

have access.  These include textbooks, the instructor, 

the graphing calculator, notes, and other students. 

 This study particularly examines students 

understanding of functions and graphs.  Ayers, Davis, 

Dubinsky, and Lewin (1988) assert that "understanding the 

concept of function includes the ability to...form a 

mental representation of the (possibly mental) action of 

the function....Thus the process...must be consciously 

understood or encapsulated into a single, total entity." 

(p.247)  The student's process of constructing 

understanding can thus be viewed as involving the 

creation of an internal representation of the concept of 

function. 

 This process of students' construction of 

understanding can be viewed in terms of both external and 

internal representations.  External representations are 

used in communication and may include pictures, language, 

physical objects, and written symbols.  For example, 

functions can be represented by graphs and in written 

form as tables or algebraic equations.  The assumption in 

instruction is that there is some relationship between 

the internal and external representations.  Thus, in 

order to understand functions students must construct 

internal representations of functions from exposure to 

external representations of function definitions, 

actions, and rules. 



 Multiple representations within the representation 

of graphing is recommended by McDermott, Rosenquist, and 

van Zee (1987).  Students were given three different, but 

identically shaped, motion graphs.  They were expected to 

obtain velocity information from each graph, but the 

differences between the graphs required that the desired 

information be extracted from different features of each 

graph.  "Being confronted with all three types of motion 

graphs at the same time helps impress upon the students 

the difference in the ways that the same information is 

conveyed in each graph." (p.511)  Students, in this 

situation, may be able to form multiple internal 

representations of the situation, then find relationships 

or connections between the internal representations.  

These students are building conceptual understanding. 

 "What evidence we have seems to indicate that it is 

the need for formalisation, rather than merely the 

feedback involved, that is seminal in influencing 

learner's conceptions" (Noss, 1988, p.260).  The computer 

or graphing calculator offers an environment within which 

the student can communicate only in so far as the student 

is able to adhere to the rules guiding what the computer 

or graphing calculator can understand.  These rules may 

be explicit enough that students can procedurally 

determine how to interact with the computer or graphing 

calculator.  This environment also offers students the 

opportunity to formalize their intuitions about various 



applications into the mathematical language of functions 

and graphs.  The student, who may need to be guided to 

recognize this opportunity, is then able to take 

advantage of a dynamic and responsive environment, which 

may inspire learning about functions and graphs with 

understanding. 

 When students are learning the formal language of a 

computer system or program they have the opportunity to 

consider the actions of the computer.  This reflection 

"can lead to interiorization and can stimulate the 

construction of a mental representation of this process" 

(Ayers, Davis, Dubinsky & Lewin, 1988, p.249).  This 

external representation may thus contribute to students' 

understanding of functions and graphs. 

 Another perspective of mathematical competence is 

described by Moschkovich, Schoenfeld, and Arcavi (1993).  

"Competence in the domain consists of being able to move 

flexibly across representations." (p.97)  A student with 

conceptual understanding is thus expected to be able to, 

internally or externally, display this understanding 

regardless of the representation being accessed. 

 Students use what they already know and the 

representations to which they are exposed to construct 

understanding.  Students' constructions are made in the 

context of their local environments.  So, "understanding 

also can be constructed around representations in 

conversations that include negotiation of the meanings of 



symbols and enrichment of the ways in which their 

reference to concepts can be understood" (Greeno, 1991, 

p.197).  Students may negotiate meanings through 

conversations with instructors or with other students.  

So while students' understanding is constructed 

individually, the source material for this understanding 

may be negotiated interactionally. 

Function - Definitions 

 A single definition of function does not take 

advantage of the variety of external representations 

available to the student.  Individual definitions are 

valuable as descriptions of particular situations and 

help to describe other representations.  "Several 

representational systems can be used to display a 

function.  These include ordered pairs, equations, 

graphs, and verbal descriptions of relationships" 

(Leinhardt, Zaslavsky & Stein, 1990, p.35).   

 Students' exposure to multiple representations of 

function is conducive to their gaining understanding.  

So, researchers and students alike may benefit from an 

awareness of "the historical development of functions, 

first as dependence relations describing real-world 

phenomena, then as algebraic expressions, then as 

arbitrary correspondences, and finally as sets of ordered 

pairs" (Cooney & Wilson, 1993, p.146).  Although a 

particular textbook will generally define and use a 



specific aspect of functions, no textbook contains 

definitions of or references to all of them. 

 Functions are sometimes defined as dependence 

relations.  "One variable is a function of a second if at 

least one value of the first is determined whenever a 

value is assigned to the second.  The variable to which 

values are assigned is called the independent variable, 

and the other is called the dependent variable" (Rees & 

Sparks, 1961, p.66).  As the name implies this definition 

highlights the dependence or relationship between the 

variables. 

 Functions can also be defined as algebraic 

expressions.  "An algebraic expression like x+2 [is 

called] a function of x because its value depends on that 

of x in such a way that to each value of x there 

corresponds a definite value of x+2....We call every 

algebraic expression a function of all the variables 

which occur in it" (Fine, 1961, p.88).  This definition 

specifies one particular variable as the function, and 

focuses on the relationship between the other variables 

and the "function".  Dependence between the variables is 

still apparent.  Yet, this definition implies that the 

specific purpose of creating or examining the dependence 

relation is to determine values of the function, and that 

values of the other variables are incidental to this 

goal.    



 Correspondences are also used to define functions.  

"A function from a set A to a set B is a rule of 

correspondence from A to B which assigns to each element 

of A exactly one element of B" (Ohmer & Aucoin, 1966, 

p.115).  This definition describes a function as a 

relationship between two sets, rather than describing the 

relationship between specific variables.   

 Finally, a function can be defined as a set of 

ordered pairs.  The textbook used for the class which 

participated in this study used this definition of 

function.  "A function is a relation with the property:  

If (a,b) and (a,c) belong to the relation, then b = c.  

The set of all first entries of the ordered pairs is 

called the domain of the function, and the set of all 

second entries is called the range of the function" 

(Demana & Waits, 1990, p.18).  This definition is 

particularly applicable in the context of graphing.  When 

a function is represented by ordered pairs the language 

of algebra is easily translated to the visual 

representation of a two-dimensional graph. 

 These function definitions contain different words 

but have a basic commonality.  They represent, not stark 

changes in, but a gradual refining of the concept 

definition.  Vinner (1991) asserts that concept 

definitions are arbitrary and that "a concept name when 

seen or heard is a stimulus to our memory" (p.68).  What 

the concept definition brings forth from memory is an 



associated, non-verbal, "concept image", and each concept 

image is relative to the individual thinking about the 

concept. 

 The specifics of a concept definition are relevant 

in cognitive tasks, in that, an individual's concept 

image may be overly generalized or restrictive.  

Examination of the concept definition might refocus the 

problem solver's attention on aspects of the concept 

definition that were not taken into account in the 

formation of the original concept image. 

 Students also gradually refine their concept of 

functions and graphs as they gain experience with them.  

This dynamic process involves "challenging our old 

assumptions....They are part of the culture....yet they 

must give way to more fundamental perspectives if we are 

to discover what doesn't work -- and why....unwarranted 

assumptions must be dropped" (Ferguson, 1980, p.28).  

When students are initially exposed to functions and 

graphs they perceive them in ways that may have to be 

reconsidered as they gain experience, knowledge, and 

understanding.  Their concept images are thus refined.  

In this context, when students use graphing as a method 

to understanding functions it helps them create concept 

images more aligned with the graphical representation. 

 Relationships between variables are fundamental to 

functions. "To develop understanding required for 

effective application of algebra, students need to 



encounter and analyze a wide variety of situations 

structured by relations among variables" (Fey, 1990, 

p.70).  Since students easily form misconceptions based 

on the limitations of particular applications, each 

application they encounter gives them the opportunity to 

dispel misconceptions acquired from earlier applications.  

When graphing, students have the opportunity to examine 

functional relationships between variables.  Instruction 

which focuses on these relationships may help students to 

form robust concept images.  The graphing calculator 

offers students the facility to quickly graph several 

similar functions together and examine the results of 

small changes in variables. 

The Importance of Functions and Graphs 

 There is a close link between functions and graphs.  

Graphs are visual representations of functions.  

"Functions and graphs represent one of the earliest 

points in mathematics at which a student uses one 

symbolic system to expand and understand another.  

Graphing can be seen as one of the critical moments in 

early mathematics.  By moments we mean sites within a 

discipline when the opportunity for powerful learning may 

take place" (Leinhardt, Zaslavsky & Stein, 1990, p.2). 

 The goal, then, of instruction is to create an 

environment which facilitates powerful learning.  The 

graphing calculator provides an environment in which 



"relationships among functions can be readily observed, 

conjectures can be made and tested, and reasoning can be 

refined through graphical investigation" (Dugdale, 1993, 

p.115).  The graphing calculator allows students to 

advance through this exploratory process much more 

quickly and accurately than they could using pencil and 

paper.  Kieran (1993) concurs that "the capability of 

computers to dynamically display simultaneous changes in 

graphical, algebraic, and tabular representations 

suggests a mathematically rich environment for learning 

about functions" (p.189). 

 Graphs can help students find meaning in particular 

functional relationships.  Students can examine 

relationships between function variables.  They can 

examine changes in graphs caused by the addition of a 

constant to a function equation.   "Functions establish 

the conformation of particular relationships between 

changing entities, and graphs help to display selected 

portions of the relationship" (Leinhardt, Zaslavsky & 

Stein, 1990, p.46).  

 It is critical to student understanding that 

educators create and use good graphic examples.  "The 

selection of examples is the art of teaching mathematics.  

Making available for consideration by the student an 

example that exemplifies or challenges can anchor or 

critically elucidate a point" (Leinhardt, Zaslavsky & 

Stein, 1990, p.52).  Examples can aid the student in 



accessing and forming various internal representations.  

One advantageous feature of graphing calculators is that 

students can rapidly construct and modify many examples 

of a family of functions. 

 The ability of students to constructively use visual 

information and intuition justifies graphing as a part of 

the curriculum.  Additionally, "one of the motives for 

studying concepts used in graphing is that it may help us 

understand the nature of the more general concepts of 

variable and function and the role that analogue spatial 

models play in representation" (Clement, 1989, p.77).  By 

discovering what students find easy or difficult about 

graphing, researchers may come closer to understanding 

similarities and differences between the representations.  

These findings may aid instructors in directing 

instructional methods and content. 

 Demana, Schoen and Waits (1993) agree that functions 

are of great importance in the curriculum and, more 

specifically, define the goal "for students to achieve 

in-depth understanding about important classes of 

functions." (p.28)  Additionally, they not only advocate, 

but insist that students use computers or graphing 

calculators with their pronouncement that "this 

understanding would need to come from exploring numerous 

graphs quickly with the aid of technology." (p.28) 

 The importance of functions and graphs is supported 

by the National Council of Teachers of Mathematics (NCTM) 



"Curriculum and Evaluation Standards for School 

Mathematics" (1989), hereafter referred to as "the 

Standards".  According to the Standards a curriculum 

should be designed, in part, to assure that students are 

able to 
model real-world phenomena with a variety of 
functions; represent and analyze relationships using 
tables, verbal rules, equations, and graphs; 
translate among tabular, symbolic, and graphical 
representations of functions; recognize that a 
variety of problem situations can be modeled by the 
same type of function; and analyze the effects of 
parameter changes on the graphs of functions 
(p.154). 
 

Why Graphing Calculators Might Help 
Students Understand Functions 

 Students are active learners who build knowledge for 

themselves.  They construct internal representations and 

understanding from their experiences in the world and in 

the classroom.  Ideally, autonomy and reflection are 

aspects of this learning process.  Instructional 

activities and the actions of the teacher are also part 

of the students' experiences. 

 Personal autonomy is the most important aspect of 

the student's construction process.  Since the graphing 

calculator is inexpensive and available to all students 

it offers each student the opportunity to explore 

mathematically and construct knowledge, at any place or 

time, in their own way.  Yet, the type of knowledge being 

constructed at any given time is dependent on the goals 

of the student, and on the student's approach to 



learning.  The student's goals and approach may be 

effected by the goals and approach of the teacher.  While 

the student has the opportunity to explore mathematically 

by using the graphing calculator, the opportunity also 

exists for the student to merely learn the mechanics of 

operating the graphing calculator.  

 Reflection is important in that the student can 

access the constructive process through reflection.  The 

student can consider possible reasons for assuming that 

certain changes in a function will consistently cause 

particular types of changes in graphs.  The student can 

create hypotheses about these reasons, then test the 

hypotheses using the graphing calculator. 

 Instructional activities and the actions of the 

teacher are important because they may offer problematic 

situations from which the student can construct 

knowledge.  "Materials typically characterized as 

instructional representations are of value to the extent 

that they facilitate the negotiation of mathematical 

meanings and thus individual students' construction of 

mathematical knowledge" (Cobb, 1989, p.39).  Similarly, 

Ruthven (1992) notes that ideal cognitive tools help 

students by supporting cognitive growth.  "Indeed, this 

is an important element of the rationale for using 

calculators in the mathematics classroom: that they offer 

not simply a mechanism for calculating and drawing but a 

medium for thinking and learning" (p.95).  The goal of 



teaching is then to help the student to understand how to 

learn, rather than teaching about mathematical 

structures.  

 Fey and Heid (1984) also found that "many students 

who are not good at the manipulative aspects of symbolic 

algebra can use good quantitative reasoning when 

interpreting the results of computer-generated 

computations or graphs." (p.28)  Thus, for some students, 

access to graphing calculators permits them to use modes 

of reasoning of which they are already capable, while 

keeping them in an algebraic context. 

 Studies of the differences in expert and novice 

behaviors with respect to problem solving show that 

experts and novices 
differ not merely in [sic] amount of their knowledge 
but also in the types of conceptions and 
understandings that they bring to a problem and in 
the strategies and approaches that they use.  
Expert-novice studies suggest that the performances 
of beginning learners often can be understood in 
terms of the inappropriate or inefficient models 
that these learners have constructed for themselves 
(Wilson, 1992, p.215). 

These studies thus concur that students' mathematical 

conceptions evolve with experience. 

 Instructors teaching about function thus need to 

recognize that "it is also important to equip students 

with a capacity for recognizing their own misconceptions, 

or drifting conceptions, and for learning how to recover 

from them" (Dugdale, 1993, p.125).  Instruction needs to 



be designed to encourage students to check their results, 

and to examine topics from multiple perspectives. 

Purpose of the Study 

 The purpose of this study is to examine the use of 

graphing calculators as an aid to student understanding.  

This study explores the relationship between college 

algebra students' use of graphing calculators and their 

understanding of functions and graphs.  The study takes 

into account the curriculum and the instructional methods 

within which the graphing calculators are employed. 



 

 

CHAPTER II 

REVIEW OF THE LITERATURE 

Students' Understanding of Functions and Graphs 
What Students Know About Functions 
and Graphs 

 Determining what it is that students actually know 

and are learning about mathematics is an important part 

of the educational process.  In order to decide what 

instruction is successful and which students are 

successful in learning about functions and graphs 

researchers must know what it is that typical algebra 

students already know. 

 Students appear to have little difficulty with 

graphical manipulation that involves mechanical 

operations, processes or algorithms.  This may be due to 

the considerable practice they have had in these areas.  

Mokros & Tinker (1987) noted that 
there is ample evidence that students even at the 
college level can have the ability to produce graphs 
from ordered pairs, while being extremely deficient 
in their ability to interpret graphs.  Yet, 
observers have noted that students as young as 10 
years old accurately use graphs in an MBL 
[Microcomputer-Based Labs] setting. (p.370) 

Thus, while many students have difficulty interpreting 

some graphical information, there is evidence that 

instruction can alleviate this problem. 



 Students' ability to easily identify some 

information from graphs, yet exhibit difficulty 

interpreting other aspects of graphs may in part be due 

to their view of mathematics as a group of procedures and 

algorithms, and in part due to their level of experience 

with functions and graphs.  Early interpretation of 

graphs involves "a strong tendency among students to view 

graphs as pictures rather than as symbolic 

representations"  (Mokros & Tinker, 1987, p.371).  This 

tendency could be due to students' past experiences with 

pictures as objects rather than as symbolic 

representations of phenomena. 

 The difficulty that students have interpreting 

graphs as symbolic representations and the ability of 

experience to alleviate the problem has been somewhat 

verified by Mokros and Tinker (1987).  "We know that 

children have a great deal of trouble with graphing 

distance and velocity, but that their problems are easily 

ameliorated through exposure to MBL." (p.379) 

 The ability of students to overcome their 

difficulties with graphing may be due to a shift from a 

quantitative to a qualitative interpretation of graphs.  

"A qualitative interpretation of a graph in its fullest 

sense requires looking at the entire graph (or part of 

it) and gaining meaning about the relationship between 

the two variables and, in particular, their pattern of 

covariation" (Leinhardt, Zaslavsky & Stein, 1990, p.11).  



Global features of a graphical representation tend to 

require qualitative interpretation.  A student examining 

a global feature, such as the interval of increase, of a 

graph representing plant size over time looks at the 

general trend of the graph rather than at the particular 

plant size at a given time. 

 Mokros and Tinker (1987) studied the effects of MBL 

on students' abilities to communicate using graphs.  On a 

pretest given to students, "easy" items were identified 

as "those that 75% or more of the students answered 

correctly on the pretest. [Easy items] were typically 

those that involved very direct translations from a 

written description of a phenomenon to a depiction of it 

on a graph." (p.376)  Middle school students were able to 

easily identify particular data or characteristics given 

a graph of a situation.  These "easy" items probably 

required quantitative interpretation of local features of 

the graph rather than qualitative interpretation of 

global features. 

 Monk (1992) examines the responses of students 

presented with Across-Time (global) questions and finds 

evidence of two weaknesses, both of which reflect 

quantitative interpretation.  "The first is that they 

have a Pointwise view of the function....The second is 

that their way of conceiving of the function-as-a-whole 

is overly naive and perhaps static and monolithic.  They 

tend to think (or hope) that there is, ready-at-hand, a 



simple governing rule which tells about most of the 

patterns of behavior they seek." (p.187)  This desire to 

identify a "rule" may be a product of the focus of 

instruction the students have received.  These students 

are using local aspects of graphs, and seeking procedures 

and algorithms rather than conceptual understanding. 

 There is evidence that students tend to gain only a 

procedural understanding of functions and graphs.  

Dreyfus and Eisenberg (1983) determined that "while 

teachers believe students are taught the function 

concept, they seem, in fact, only to assemble loosely 

connected mechanical procedures and algorithms which they 

become more or less proficient in applying." (p.124)  

This may be partly due to a curriculum that has 

historically focused on mathematics as a collection of 

procedures and algorithms, and accepted students' 

procedural understanding as an adequate indicator of 

learning. 

 It is reasonable to assume that students may be able 

to link their intuitions with the graphical 

representations with which they are already comfortable.  

"Findings on enhanced student performance on time-based 

graphs seem to support empirically the notion that 

intuitions that are based on students' knowledge of real-

world situations operate successfully when reasoning in 

the graphing domain" (Leinhardt, Zaslavsky & Stein, 1990, 

p.29).  Students presented with a graph of plant growth 



over time are likely to be able to correlate the rising 

then leveling off of the graph with actual plant growth.  

These students may be stepping beyond the realm of 

procedure and algorithm and demonstrating conceptual 

understanding. 

 Students who are presented with graphs with unmarked 

axes, or who do not have access to algebraic data, seem 

to make more and better use of their intuition about 

functional relationships.  Goldenberg, Lewis, and O'Keefe 

(1992) interviewed students attempting to identify 

functions from a graph and noted that "when numbers 

weren't in the way, students used visual information and 

intuition quite insightfully." (p.251)  Some of the 

interviewed students quickly recognized and verbalized  

general relationships between changes in one variable and 

concurrent changes in the function under investigation.   

Alternately, students who were able to extract numerical 

information from the graph, tended to first create 

tables, then use the tables to create formulas.  Perhaps 

the difference for students was that, without numbers to 

work with, they no longer felt constrained by the 

procedural mathematics they had been taught and were able 

to use their intuitions and more global aspects of the 

graph. 
Student Difficulties With and Misconceptions 
About Functions and Graphs 

 Students appear to be participating in mathematics 

as observers of what they perceive as many unrelated 



phenomenon.  "They view algebraic data and graphical data 

as being independent of one another.  Moreover, they do 

not even look for unifying interrelationships between the 

various mechanical procedures" (Dreyfus & Eisenberg, 

1983, p.131).  Not only are these students accepting a 

procedural view of mathematics, they are unable to 

exhibit competence because they cannot move flexibly 

across representations which they do not even recognize. 

 Many students may be satisfied with a procedural 

approach to algebra, yet others may find problems while 

attempting to look beyond algorithms.  Goldenberg (1988) 

observed students who may have been searching for 

conceptual understanding.  "Students often made 

significant misinterpretations of what they saw in 

graphic representations of functions.  Left alone to 

experiment, they could induce rules that were misleading 

or downright wrong." (p.137)  Thus, instructors must be 

aware of common misconceptions when presenting students 

with opportunities to construct conceptual understanding 

of functions and graphs. 

 Another example of difficulties which may arise out 

of students' lack of conceptual understanding of 

functions and graphs involves matching functions with 

their graphs.  Leinhardt, Zaslavsky, and Stein (1990) 

observed that "when equations were not presented in the  

y = mx + b format, students had difficulty matching them 

with their graphs." (p.36)  These students may be 



exhibiting a lack of procedural understanding, as well as 

conceptual understanding, in that they appear to be 

unable to convert the given equation into the form with 

which they feel most comfortable, or they may not realize 

that the equation can be written in alternate forms. 

 Students difficulty matching functions and graphs 

may be, in part, due to their disconnected notions of 

functions, graphs, and real-world phenomena.  In a study 

of graphing errors, McDermott, Rosenquist, and van Zee 

(1987) found "that many are a direct consequence of an 

inability to make connections between a graphical 

representation and the subject matter it represents." 

(p.503)  As previously discussed students who are unable 

to move across various representations exhibit a lack of 

conceptual understanding. 

 Students attempting to make a connection between a 

phenomena and a graph sometimes assume a more literal 

connection than exists.  "There does seem to be an 

impulse on the student's part to act as if the graph were 

much more literally a picture than it is.  This has come 

to be called Iconic Translation" (Monk, 1992, p.176).  A 

student exhibiting Iconic Translation may consider a 

graph representing speed and distance of a car as being a 

picture of the road on which the car is driven. 

 Some students exhibit a "Pointwise" view of 

functions.  They "seem to conceive of the information in 

a function as made up of more or less isolated values, or 



of input-output pairs" (Monk, 1992, p.183).  Students who 

are looking at a function as a collection of points may 

have difficulty conceiving of the function's graph as 

other than a straight line.  Dreyfus & Eisenberg (1983) 

found that "the idea that only a linear function can 

contain two points was very strong in the students.  Yet, 

these same students, when given three collinear points in 

the plane, stated that an infinite number of graphs of 

functions could contain them, and they easily provided 

examples." (p.130)  These students developed this 

misconception due to an emphasis on "the statement that 

through two points in the plane there exists one and only 

one straight line." (p.130) 

 These students have difficulty interpreting aspects 

of the graphs which require whole-graph conceptions.  "In 

general, students seem to have a difficult time grasping 

concepts that arise from variables not actually shown on 

the graph" (Leinhardt, Zaslavsky & Stein, 1990, p.42).  

McDermott, Rosenquist, and van Zee (1987) "found that 

students frequently do not know whether to extract the 

desired information from the slope or the height of a 

graph." (p.504)  As long as students lack conceptual 

understanding of graphing they will continue to have 

difficulty ascertaining which features of the graph 

contain the information they require. 

 Students often view graphs in ways which do not take 

into account individual points.  Philip Lewis invented 



the program RandomGrapher because "students can, in fact, 

lose track of the points when they face a continuous 

curve, and that the consequence includes failure at tasks 

that require consciousness of the points" (Goldenberg, 

Lewis & O'Keefe, 1992, p.238).  Students need to be 

cognizant of points while being able to recognize global 

features of functions and graphs as well. 

 Another difficulty that students have, which is 

related to scaling, involves their interpretation of 

parabolas as having "shape".  The various shapes that 

students see are an illusion created by viewing parabolas 

in windows of varying dimension.  Goldenberg (1987) 

concurs and notes that "students typically use 'shape' of 

a parabola (on a constant scale and in a fixed-sized 

window) to determine the A coefficient.  Thus, though 

they learn strategies for solving their problem, the 

strategies are based on an underlying notion - that 

parabolas may have different shapes - that is erroneous." 

(p.203) 

 Increased experience with graphs may aid students in 

understanding concepts related to scale.  Kaput (1993) 

recognizes "the fact that the understanding of scaling is 

normally very limited among today's students and teachers 

may simply be an artifact of our very limited use of 

graphs." (p.294)  Students who are able to work with 

numerous graphical examples may develop a more complete 

understanding of scaling.  This quantity of experience 



could be easily obtained by students with the aid of the 

graphing calculator. 

 Students who do not yet possess conceptual 

understanding of functions also sometimes exhibit 

difficulty with the concept of translation.  "Translating 

a function is not defined: translation applies to a 

graph.  But the beginning student -- the one for whom 

function sense is an issue -- is not likely to have a 

clear sense of what is being translated" (Goldenberg, 

Lewis & O'Keefe, 1992, p.242).  The experience students 

gain with functions and graphs, perhaps using the 

graphing calculator, may ease the effects of this 

potential misinterpretation. 

 A common functional misinterpretation, made by 

students, involving graphs, is "the common conclusion 

that the graph of a linear function moves to the left as 

the constant term increases" (Goldenberg, 1988, p.162).  

Students' use of the graphing calculator does not appear 

to alleviate this particular misinterpretation. 

 Students who use graphing calculators have the 

opportunity to modify the constants in an equation as 

well as the variables.  By doing so students can gain 

insight into the relationship between changes in 

constants and the resultant graphs.  Yet, this feature 

can lead to misinterpretation of the role of variables in 

functions.  Goldenberg (1988) maintains that "because the 

variable and the constants switch roles in many graphing 



packages, the unthinking use of such software may further 

obscure rather than clarify this difficult concept [of 

variable]." (p.152)  Instruction must take care to 

establish the differences between these concepts in 

students' minds. 

 Students approach learning about functions and 

graphs with misconceptions and construct misconceptions 

while constructing understanding.  "Educators should be 

aware of, and attempt to minimize, common misconceptions 

among students using function-plotting tools" (Dugdale, 

1993, p.101).  When students avoid common misconceptions 

they have more time to focus on and gain understanding of 

interesting mathematics. 
What Students Need to Know About 
Functions and Graphs 

 Students' understanding of functions and graphs is 

obtained through experience and through avoiding or 

reconciling common errors and misconceptions.  Typically, 

instruction in graphing has included drawing simple 

graphs by hand, based on data in tables, and determining 

information about particular points.  "Various recent 

efforts to improve students' understanding of graphs have 

emphasized the need to move beyond plotting and reading 

points to interpreting the global meaning of a graph and 

the functional relationship that it describes" (Dugdale, 

1993, p.104).  Students need increased exposure to graphs 

with an emphasis on the functional relationships that 

they represent. 



 Textbooks have typically included very little 

graphing content.  Demana, Schoen, and Waits (1993) 

surveyed mathematics textbooks and found that for grades 

1-6 only 1-2% of textbook pages included graphing 

context.  For grades 7 and 8 graphing content was found 

on only 3% of textbook pages. 

 In grades 1-6 "emphasis is on plotting given pairs 

on given coordinate systems or naming the coordinates of 

given points.  Students are not expected to generate 

pairs from given information or to construct and scale 

their own coordinate system in order to graph certain 

data....no mention is made of a connection between a 

numerical relationship and a graph, and no situations 

involving continuous curves are encountered" (Demana, 

Schoen & Waits, 1993, p.15). 

 Demana, Schoen, and Waits (1993) found that even in 

grades 7 and 8 students are rarely expected to construct 

graphs.  Most of the content in these grades (68.5%) is 

concentrated on the rectangular coordinate system, and 

students are exposed to the notion that a line is 

continuous and infinite.  In graphing exercises variables 

are continuous, but inequalities and nonlinear equations 

are not discussed. 

 A study by Bright (1980) on the learning of function 

concept in college algebra resulted in the following 

recommendations.  "Do not use just algebraic formulas and 

rectangular graphs as representations of functions but 



include line-to-line graphs, mapping diagrams, and sets 

of ordered pairs.  Do not graph just algebraic formulas, 

but also include practice with graphing of a situation 

for which there is no formula.  Do not emphasize just the 

process of drawing a graph but also the process of 

analyzing a graph that is drawn." (p.83)  This is 

important because students can draw graphs with a little 

procedural knowledge of the task, yet by analyzing graphs 

they have access to the global aspects represented 

therein. 

 The instructional requirements associated 

specifically with functions and graphs reflect the 

underlying concepts which instructors expect students to 

understand.  Similarly, specific elements of 

understanding are required for interpretation of 

particular examples.  Clement (1989) identifies what a 

student must be able to do in order to understand the 

concept of a bicycle moving at a particular speed at a 

particular time.  "Here, the subject must: (a) have 

adequately developed concepts for speed and time; (b) be 

able to isolate these variables in the problem situation; 

and (c) understand that the specified values occur 

together." (p.78)  The process of learning requires 

students to construct understanding of concepts based on 

the understanding they already possess. 

 Students' prior knowledge is an important aspect of 

their construction of understanding.  Burrill (1992) 



recognizes the inherent need to possess a certain variety 

of conceptions in order to comprehend the graph of a 

polynomial function.  "Students must have developed some 

intuition about the degree of a polynomial, its factors, 

and their relation to the graph." (p.17)  This intuition 

will help students to recognize the relationship between 

a polynomials zeros, an equations roots, and a graphs 

intercepts. 

 Dugdale (1993) advocates graphing experiences for 

students developing function concept.  "Experiences with 

graphs are considered important because of their 

potential for providing a qualitative basis for students' 

conceptualizations of graphs that describe functional 

relationships between variables." (p.102)  Students with 

a qualitative view of a concept are demonstrating 

conceptual understanding. 

 The graphing calculator allows comparison between 

functions and answers to questions about graphs.  

"Because graphs are easily obtained, it is reasonable to 

emphasize that finding all the real solutions of f(x) = 0 

is the same as finding all the x intercepts of the graph 

of f" (Demana, Schoen & Waits, 1993, p.32).  With the aid 

of the graphing calculator students can make conjectures 

about the x intercepts of f and compare them with the 

solutions of f(x) = 0. 

 Students need to have the this opportunity to 

experience multiple representations of the concept of 



function, and multiple graphical examples of functions.  

Instruction may need to focus on providing this 

opportunity.  In order to promote conceptual 

understanding "a strong sense of the graphical and 

algebraic landscape needs to be developed in the student, 

including a sense of where to look for critical 

information" (Leinhardt, Zaslavsky & Stein, 1990, p.54). 
Computer-Aided Instruction, Computer-Based 

Education, and Microcomputer-Based Labs 

 Computer-Aided Instruction (CAI), Computer-Based 

Education (CBE), and Microcomputer-Based Labs (MBL) all 

have their advocates in the technological industries that 

create them and the instructional industries that use 

them.  What are the justifications for this advocacy?  

How are these media being used to aid in students' 

mathematical understanding?  Are students benefiting from 

these educational tools and techniques?  

 The position that computers are able to stimulate 

learning was put forth by Glass in 1984.  Computer 

technology was gaining popularity with the general 

public, as demonstrated by the growth in sales of 

electronic hardware in general.  Widespread use of 

computers had moved into the home and into the schools.  

According to Glass the active participation of the 

learner and the man against machine challenge were strong 

motivational factors supported by computers.  Further, 

when using the computer "a failure is not repeated, does 



not go unheeded, and is not displayed for all to see.  

Moreover, the computer opens doors and motivates all 

students, particularly the gifted, to achieve greater 

learning independence and greater creativity." (p.13)  

Thus, the computer was viewed as a stimulus to student 

motivation and creativity. 

 The ability of the computer to provide instant 

feedback on a continuous basis instigated Noss (1988) to 

consider it as an aid to mathematical education.  The 

"particular facility of the computer to focus the 

learner's attention and simultaneously to provide 

feedback seems to provide a promising framework for 

thinking about teaching mathematical ideas in a computer-

based context." (p.263) 

 The idea of using computers to teach mathematics in 

the realm of graphing was not new.  Mokros and Tinker 

(1987) found that MBL was a powerful aid in teaching 

about graphing.  They suggested four reasons for the 

success of MBL in the graphical setting.  "MBL uses 

multiple modalities; it pairs, in real time, events with 

their symbolic graphical representations; it provides 

genuine scientific experiences; and it eliminates the 

drudgery of graph production." (p.369)  The interest of a 

student using MBL is thus stimulated in an environment in 

which the student has control over, and experiences the 

mathematics being represented.   "This ability of the 

computer to allow users to interact in a personally 



powerful way is the common thread that runs through the 

various cultural manifestations of the computer in 

society" (Noss, 1988, p.257). 

 Some of the appeal of MBL resides in the fact that 

students in the MBL setting are given an opportunity to 

experience intrinsic feedback.  Feedback, according to 

Thompson (1985), "becomes intrinsic to mental actions 

only when the outcome of the actions is compared with an 

expectation." (p.200)  In the MBL setting, students can 

initiate feedback about their way of thinking about a 

problem or concept by comparing the results of their 

actions on the computer with their expectations of those 

results.  "Intrinsic feedback is characteristically 

direct, relevant and diagnostic.  It can provide maximum 

visual feedback to students about their responses to 

problem solving tasks" (Sfondilias & Siegel, 1990, 

p.131). 

 Intrinsic feedback is the guiding factor in an 

environment, which advocates exploration and problem 

solving, know as an intrinsic model.  An important aspect 

of this model, intrinsic feedback guides students as they 

investigate and manipulate the environment.  Within this 

framework "the computer medium can change the character 

of traditional representations from display 

representations to action representations" (Kaput, 1993, 

p.295).  The computer offers students the opportunity to 

quickly modify graphic representations.  They can then 



focus on the results of specific changes to the 

functions. 

 In a study by Heid (1988) students believed that 

using the computer helped them to develop conceptual 

understanding.  They felt that their attention was 

refocused because the computer alleviated the need to 

concentrate on manipulation, they gained confidence in 

the results of their reasoning, and the computer helped 

direct their focus to global features of problem solving.   

These experiences aided the students in detaching 

themselves from a procedural approach, and moving toward 

a conceptual approach to mathematical problem solving. 

 Students involved in a study, conducted by Tall and 

Thomas (1991), using the Dynamic Algebra module exhibited 

conceptual understanding which exceeded that of a control 

group.  Evidence of differences in understanding of the 

module users and control students was based, partially, 

on the following observations.  Module users attempted to 

explain and justify their thinking, while control 

students exhibited more concern with operations.  Module 

users were able to take a global view of the problem and 

demonstrated an implicit understanding of processes, 

while control students often allowed operations in the 

notation to influence their choice of processes.  "The 

experiments show that the students using the Dynamic 

Algebra Module are more versatile in their thinking than 



the students following a traditional course" (Tall & 

Thomas, 1991, p.144). 

 This study is particularly significant for two 

reasons.  First, the only difference between the 

instruction given to the students was a single three week 

period in which the module users received instruction in 

algebra using the Dynamic Algebra module and the control 

students received no algebra instruction at all.  Second, 

after more than a year the module users "were still 

performing significantly better than those who had not 

experienced such work" (Tall & Thomas, 1991, p.136).  

Therefore, the benefit gained by the module users can be 

directly attributed to exposure to the module and not to 

a difference in teaching approaches used in separate 

classrooms. 

 Not all studies have determined that students using 

some kind of computer instruction are getting benefits 

beyond those of a traditional curriculum.  Diem (1982) 

conducted a study which substituted microcomputer 

instruction for traditional methods in a college algebra 

course.  The computer-aided instruction was "designed to 

teach the student how to find and graph the solution set 

of linear inequalities with two variables." (p.iv)  

Computer programs were created with this goal in mind. 

 The conclusions of the Diem study did not support 

the notion that CAI, or more specifically this collection 

of programs, was of more or less benefit to students than 



traditional instruction.  "The conclusion of greatest 

importance in this study is that the students using CAI 

versus those who use traditional methods of study, showed 

no significant differences in achievement in College 

Algebra at the .05 level." (p.38)  The possibility exists 

that both forms of instruction were inherently the same 

and that this caused the close similarity in levels of 

achievement.  This can occur if computer programs are 

written which effectively mimic the traditional textbook 

without using the inherent features of the computer which 

can help instruction transcend the limitations of the 

traditional methods. 

 In 1985, Bangert-Drowns, Kulik, and Kulik conducted 

a meta-analysis of 42 studies in order to determine the 

effects of CBE on student achievement.  The studies 

involved were chosen based on certain unifying 

characteristics.  All of the studies were conducted 

within junior and senior high classrooms.  Each study 

examined quantitative data obtained by comparing 

evaluations of students instructed using the computer 

with evaluations of students taught by traditional 

methods.  The aptitudes of students being compared were 

similar.  There were no instances of one group being 

taught specifically to the test which might skew the 

comparison results.  Finally, each of the studies could 

be easily obtained. 



 The studies analyzed were conducted in classes on a 

variety of subjects, and included several different types 

of computer instruction.  More than half (22 studies) 

were conducted on mathematics classes.  "Seventeen 

studies (or 40%) investigated computer-assisted 

instruction (CAI).  Sixteen studies (38.1%) provided an 

evaluation of computer-enriched instruction (CEI).  

Finally, nine studies (21%) examined the effectiveness of 

computer-managed instruction (CMI)" (Bangert-Drowns, 

Kulik & Kulik, 1985, p.63). 

 The results of the meta-analysis showed that, 

"computer-based teaching raised final examination scores 

in the typical study by 0.26 standard deviations" 

(Bangert-Drowns, Kulik & Kulik, 1985, p.65).  Results 

based on the type of computer instruction used reveal 

some vast differences.  Classroom instruction using CAI 

and CMI resulted in increases in scores of about 0.4 

standard deviations.  Instruction involving CEI also 

resulted in increased scores, but this increase (0.07 

standard deviations) was not as substantial.  Thus, 

instruction that focuses on, rather than sporadically 

uses the computer seems to be more effective in teaching. 

 In a study involving second to sixth grades 

students, Mehan (1989) found that students' successfully 

used the microcomputer when it was a "functioning part of 

the classroom environment." (p.13)  Rather than being a 

separate piece of equipment that students might 



sporadically learn about, it was integrated not only into 

the classroom but into the curriculum.  This integration 

effected the organizational nature of classroom 

instruction and of student-teacher interaction. 

 It is increasingly apparent that the creators of CAI  

programs need to be sensitive to the particular needs of 

the students for which the instruction is created.  

Goldenberg (1988) came to similar conclusions after 

conducting clinical studies of perceptual differences 

between students and mathematically literate adults.  

These studies revealed that CAI needs to take care not to 

make difficult topics seem more obscure, while taking 

into consideration the fact that graphing can increase 

students' access to significant and challenging 

mathematics. 

Graphing Calculators 
How Graphing Calculators May Aid Students 
Studying Functions and Graphs 

 The graphing calculator is a specific instructional 

aid available to students studying functions and graphs.  

"One of the advantages of graphing calculators over 

computer-based function graphing software is that every 

student has access to the tool, both at school and at 

home" (Kieran, 1993, p.225).  This continuous access to 

the graphing calculator allows students to explore 

relationships at their convenience and potentially 

without interruption. 



 Students exploring graphs are presented with 

opportunities to make unexpected discoveries.  "The 

unrelenting forcefulness inherent in the character of a 

good graphic presentation is its greatest virtue.  We can 

be forced to discover things from a graph without knowing 

in advance what we were looking for" (Wainer, 1992, 

p.14).  Instructors can facilitate constructive discovery 

by directing students to experiment with specific types 

of graphing activities. 

 Kieran (1993) recognizes that newer approaches to 

graphing basically concentrate on three types of 

activities.  Students may be presented with unscaled 

graphs and expected to focus on interpretation of global 

features.  Students may investigate the effects of 

changes in function parameters by studying families of 

graphs.  Graphs may be used to examine applications while 

problem solving.  The graphing calculator offers an 

environment in which students can easily use each of 

these approaches.  Instruction which directs students to 

use the graphing calculator in these ways may facilitate 

students' understanding about functions. 

 In order to use graphs effectively students must be 

able to  discern the valuable global aspects of the 

representation.  "When automated graphing makes it 

possible to ask students to induce the effect of the 

constant by performing many graphing experiments, 

attention is drawn to the graph as a whole" (Goldenberg, 



1988, p.157).  Students can use the graphing calculator 

to quickly create a variety of related graphs that help 

to specifically bring global aspects into focus. 

 Students may investigate the effects of changes in 

function parameters by studying families of graphs.  

Kieran relates "that one of the greatest benefits of 

graphing calculators is the feasibility of discovery 

lessons based on finding patterns in the student-

generated graphs of related functions." (p.226)  In 

particular, the instructor can encourage students to 

consider and discuss how a function's graph changes when 

a constant is added or subtracted.  The instructor then 

guides the discussion so that students avoid 

misconceptions and discover the correlation between 

changes in the function and changes in the graph.  The 

graphing calculator facilitates this kind of discovery by 

replacing students' need to calculate points with the 

opportunity to concentrate on relationships between 

functions. 

 By using the graphing calculator (or by graphing on 

the computer) students are easily able to analyze aspects 

of functions, and to develop intuitions that are not 

otherwise readily accessible.  "Specifically, the 

[graphing] software allows students to operate on 

equations and graphs as objects, and that may facilitate 

the development of the object perspective in ways not 

possible before the existence of such technologies" 



(Moschkovich, Schoenfeld & Arcavi, 1993, p.98).  Students 

can consider a function, then create a second function by 

adding a constant to the first function.  The functions 

are then treated as objects with the addition of the 

constant as a transforming operator that converts the 

first object into the second object. 

 By viewing the function as a whole students are able 

to discover meaning in functional situations that are 

difficult to readily understand.  One of these situations 

is the presence of discontinuities.  Dugdale (1992) found 

that graphic display can aid students in finding meaning 

in discontinuities.  "Instead of being concerned only 

with one particular x value (where the function is 

undefined), the student...[uses] the behavior of the 

entire function, with particular attention to the 

function near the undefined value." (p.115)  By drawing 

the students attention to global aspects of the function, 

graphs can bring local aspects effectively into focus. 
What Students Need to Know to 
Effectively Use Graphing Calculators 

 For students to effectively use the graphing 

calculator they must have some particular skills.  "To 

use the power of graphing calculators to produce 

informative graphs of functions and relations, students 

need skills in algebraic estimation" (Burrill, 1992, 

p.16).  Students need to be able to discern reasonable 

domain and range values for functions they intend to 



graph.  They also need to be able to estimate plausible 

scales for the axes. 

 Without a good estimation of scale students may find 

themselves looking at the display of the graphing 

calculator and wondering why the display is empty.  They 

also may be presented with correct graphs that do not 

appear as expected.  Students need to understand possible 

reasons for these situations. 

 Graphs which appear other than expected result when 

the specific requirements of the graphing calculator are 

not carefully considered.  These graphs often display 

what seem to be visual illusions.  "Included among the 

causes of these illusions are the interaction between the 

position and orientation of the graph and the shape of 

its window, and the interaction between the scale of the 

graph and the scale of the window" (Goldenberg, 1988, 

p.142). 

 Scaling factors can cause distinctive changes in the 

display of a particular graph.  Moskowitz (1994) notes 

that "graphs can be manipulated to be on the verge of 

deception; the circle equation yields graphs that look 

nothing like a circle." (p.242)  Students need to be 

aware of the inconsistency of entering the equation for a 

circle into their calculator and getting the visual image 

of an ellipse.  When faced with this result students have 

the opportunity to analyze and investigate the source of 

the discrepancy, or to work toward the realization that 



what they thought was discrepant in fact reflected an 

inappropriate interpretation or preunderstanding. 

 Investigation can lead to the realization that the 

cause of an unexpected graph often involves scale.  This 

is an especially important consideration for students to 

acknowledge in that "students seem to prefer symmetrical 

scales on their axes even when these obscure important 

features of the function they are viewing" (Goldenberg, 

1988, p.168).  Perhaps this preference can be overcome if 

students analyze the consequences.  The graphing 

calculator allows students to investigate the effects of 

numerous changes in scale and thus in the graphing window 

more quickly than they could if they were graphing by 

hand. 

 The experience of observing the scale dependent 

change in shape of the graph "creates a 'conceptual 

demand' that may affect the kind of mental images a 

student is able to construct" (Leinhardt, Zaslavsky & 

Stein, 1990, p.17).  Students' understanding is affected 

by this construction.  The student should eventually be 

able to discern which features of the graphical 

representation are and are not affected by changes in 

scale. 

 Another consideration related to scale is that 

"scale is the only attribute of a graph that raises or 

lowers the significance of the distinction between a 

point and a dot" (Goldenberg, 1988,  p.165).  Some 



students carefully scrutinize the square pixels on the 

screen and misinterpret them as representing points of a 

function.  This can lead to the notion that a continuous 

graph is actually a set of squares or rectangles linked 

together, or induce students to believe that there are 

"holes" in a particular graph.  Students can "verify" 

that these holes exist merely by magnifying a particular 

region of the graph.  This kind of misinterpretation 

needs to be confronted early in instruction in order to 

equip students with skills at estimation of appropriate 

scale. 

 Another skill that students need to acquire early 

when using the graphing calculator is the ability to 

rewrite equations in terms of one variable.  "With most 

current graphing calculators, to graph functions students 

must enter a rule after the 'y =' prompt" (Burrill, 1992, 

p.17).  Instruction which uses the graphing calculator 

will necessarily focus on this skill early in the 

curriculum. 
Possible Benefits for Students 
Using Graphing Calculators 

 When students effectively use the graphing 

calculator, it aids them in a variety of ways.  Research 

has revealed and verified some of the benefits to 

students of using the graphing calculator.  As has 

already been discussed the graphing calculator reduces 

the amount of calculation required by students and 



enables students to focus their attention on global 

issues related to functions.   

 Dugdale (1993) found similar results after 

performing a study in which high-school students were 

given the opportunity to explore the "relationships among 

three fundamentally different graphs and the situation 

that they collectively describe." (p.111)  Students were 

given direction, size, and speed graphs and created a 

video game using all three.  Students' initial methods 

basically involved creating the game situation, then 

debugging.  Experienced students were observed working on 

a small section of the problem, comparing the results 

with the graphs, debugging, adding another section, 

checking again, and debugging.  "They found building and 

debugging a series of small sections more rewarding 

because it provided early and frequent feedback and 

transformed the larger problem into a series of more 

easily addressed smaller problems" (Dugdale, 1993, 

pp.111-112). 

 It is not surprising that students prefer methods 

that supply frequent feedback, since "use of feedback 

from a graphic calculator can reduce uncertainty and thus 

diminish anxiety" (Ruthven, 1990, p.448).  Students who 

are confident about the results of their investigations 

are much more likely to engage in mathematical 

exploration. 



 Student confidence in the ability of the graphing 

calculator to aid them in understanding mathematics was 

seen to be directly related to teacher confidence in the 

Graphic Calculators in Mathematics development project in 

Britain.  This project supplied students in a two year 

upper secondary mathematics course with continuous access 

to graphing calculators.  Classes in which the teacher 

had strong reservations about students using the graphing 

calculator contained more students who chose previous 

calculating tools than classes wherein the teacher was 

supportive of the graphing calculator. 

 Preference did not have an effect on students' 

abilities to competently use the graphing calculator.  

"After one school term, nearly all the project students 

were making confident and spontaneous use of the 

calculating and graphing facilities of the advanced 

[graphing] calculator" (Ruthven, 1992, p.92). 
What Instructors Need to Know to 
Effectively Teach with Graphing 
Calculators 

 In order for the graphing calculator to be 

effectively used by students, educators must be aware of 

certain considerations and of some of the possible visual 

illusions that the graphing calculator can produce. 

 Some computer systems incorrectly create misleading 

graphs.  Demana and Waits (1988) discovered a graphing 

program that "connects the last point plotted to the left 

of an asymptote with the first point plotted to the right 



of the asymptote.  This is the classic mistake many 

students make when graphing rational functions." (p.178)  

Students and instructors must be aware of the possibility 

of errors like this occurring when they use graphing 

calculators.  A great variety of obvious or subtle errors 

can also occur if the graphing calculators batteries are 

failing.  

 Instructors must also be aware that students may 

misinterpret graphs based on, what Goldenberg (1988), 

describes as "such irrelevant perceptual features as the 

angle at which a linear function intersects the frame of 

the graph." (p.152)   Similarly, students tend to 

misinterpret the distance between two curves by 

considering it to be "in a direction roughly normal to 

the bisector of the perceived angle between the curves." 

(p.152) 

 Students must also consider the constraints put on 

their graphs by certain elements of real world problems.  

Difficulty can arise if a student does not take into 

consideration that the graph of a problem involving 

growth over time is only relevant for positive values of 

time.  "A complete graph of a problem situation is a 

graph that indicates all of the points and only the 

points corresponding to the problem situation" (Demana, 

Schoen & Waits, 1993, p.27). 

 Functions, even when properly displayed can lend 

themselves to graphic illusions.  An illusion that can 



appear in graphs of linear functions involves varying the 

constant in the function equation.  Depending on the 

angle at which the graphs intersect the window edge and 

the shape of the window the original graph may appear to 

move either horizontally or vertically. 

 Parabolas lend themselves easily to several graphic 

illusions.  Two parabolas placed at different heights 

within the window appear to have different shapes.  As 

with many graphs, the shape of a parabola also seems to 

change if the scale in the window is modified.  Students 

viewing the graph of a parabola also may get the 

impression that the function represented by the graph is 

bounded, even though it is obvious from the algebraic 

representation that it is not. 

 Another visual illusion which may contribute to 

student misinterpretations involves the pixels on the 

screen.  Students may note that different slopes produce 

varying amounts of jaggedness to the graph.  Students who 

interpret this jaggedness as an accurate depiction of the 

points of the function may make incorrect inferences 

about aspects of the function. 



 

 

CHAPTER III 

METHODOLOGY 

Methods of Determining What Students Know 

 In order to decide what instruction is successful 

and which students are successful in any given program 

requires ways to determine, at given points in time, what 

it is that students know. 

 Processes for determining what students know are 

created and executed at varying levels within 

instructional programs and within research programs.  

Within the context of the classroom, students are often 

required to demonstrate proficiency in the subject matter 

by successfully completing homework assignments and 

exams.  The examination process is also a part of 

students' experiences when they take standardized tests.  

Additionally, students are sometimes asked to participate 

in the examination process, outside of the personal 

arena, in support of research programs. 

 Written, standardized tests are not the only source 

of information on students abilities and progress 

available to researchers.  While these tests are 

prevalent, they often supply only quantitative data on 

student abilities.  In this situation students who get 

high percentages of problems correct are considered 



proficient or as "knowing" the material.  These tests are 

unable to offer succinct, qualitative information about 

the thought processes students use when problem solving 

mathematically.   Often, researchers gain useful 

information about the thought processes of students 

through interview and observation.   

 In an interview the researcher is given the 

opportunity to question a particular student, at a 

particular time, about their reasoning while solving a 

specific problem.  In this way, the researcher can gain 

insight into the student's thought processes during a 

problem solving situation, regardless of whether or not 

the student reasons the problem to a correct solution. 

 Although student interviews can be very successful 

in providing researchers with insight into students' 

thought processes, care must be taken not to unduly 

influence student responses.  This can occur if the 

wording of the researcher's questions directs the 

student's thinking toward a particular solution.  

Students who are accustomed to being in situations where 

they feel threatened by authority figures may respond 

with what they believe the interviewer wants. 

 Another type of study is labeled an "educational 

ethnography, participant observation, qualitative 

observation, case study, or field study" (Smith, 1978, 

p.316).  This observation of students, without 

interaction and questioning, can reduce or eliminate the 



researchers influence on student responses to problem 

solving.  In an observational setting the researcher 

attempts to make determinations about a student's 

thinking based, in part, on information the student 

volunteers, the student's interaction with peers, the 

student's interaction with the instructor, and the 

student's posturing within the classroom setting.   

 Regardless of which setting the researcher uses to 

gain information about what students know, "it is 

absolutely essential that the researcher keep in mind 

that what he sees as 'the' problem imposes nothing of 

necessity upon the problem solver" (Thompson, 1982, 

p.154).  When constructing their own knowledge students 

make determinations about how to interpret the problems 

presented to them based on their experience.  Since 

researchers experiences have been different than those of 

the student being observed, their interpretations of the 

problem may be vastly different.  The researcher's task 

is to continuously examine the student's behavior based 

on what is known about the student, rather than what is 

known about the problem. 

 In order for researchers to effectively determine 

what effect using the graphing calculator has on 

students' understanding of functions and graphs it is 

important for them to keep in mind what is already known 

about students' understanding in this area.  This helps 

to create a context for observation in general.  In 



particular, it remains important for researchers to 

remember that each student, even in the same classroom 

setting, is approaching the subject from a unique, 

personal perspective. 

Relevance of Individual Students' Perceptions 

 When observing a student in the classroom the 

researcher must be aware of the differences between the 

student's and the researcher's perceptions of the problem 

being solved.  It is evident that students, who construct 

their understanding from their personal experiences, are 

in no way affected by the observer's interpretation of 

the problem. 

 A similar analysis can be applied to the effect of 

the environment on students' experiences.  Students' 

experiences are affected by their environment, and it 

follows that their constructions are influenced as well.  

It is the student's personal perceptions of the 

environment, as opposed to the researcher's perceptions, 

that are relevant.  The researcher needs to keep in mind 

that "a student's experience...is wholly inaccessible to 

an observer and hence that there need be no 

correspondence between what the researcher and the 

student see as the student's environment" (Thompson, 

1982, p.152). 

 The researcher's attention must thus continuously 

return to questions of students' perceptions of problems 



and of their environments.  Analysis of student behavior 

in problem solving relies on the answers to questions 

such as:  "What was the instructor's intent when 

presenting this problem?" and, "How did the student 

interpret this problem?"  The researcher is thus required 

to determine both the problem the instructor intended and 

the problem the student solved. 

 In attempting to interpret a student's perception of 

a problem the researcher must try to understand the 

conceptual environment from the student's perspective.  

It is from within this personal environment that the 

student draws information in order to interpret and solve 

the given problem.  The researcher naturally assumes that 

the student's "activity is rational given his or her 

current understanding and purposes at hand.  The trick is 

to imagine a world in which the child's activity does 

make sense" (Cobb, 1989, p.32). 

 In order to imagine the conceptual environment in 

which the student's actions make sense the researcher 

must attempt to examine the problem from the student's 

point of view.  Barnes (1992) recommends questions which 

may aid the researcher in determining who the students 

under observation are:  "Who are these individuals, and 

what are their everyday lives like?  How do they 

understand the world?  What matters to them?  What kinds 

of change might they wish for, and what do they need to 

know?" (p.150)  Answers to these questions supply a 



starting point for researcher interpretation of a 

student's perceptual environment. 

 "The process of accounting for students' 

mathematical activity therefore involves coordinating 

analyses of their mathematical and social cognitions" 

(Cobb, 1990, p.205).  By gaining insight into a student's 

understanding and perceptions the researcher prepares to 

build models of possible student conceptual environments.  

In this sense, a model "refers to a conceptual system 

held by a particular knower at a particular time" 

(Thompson, 1982, p.153).   

 Beginning with the information known about who a 

particular student is the researcher attempts to analyze 

the situation from the student's perspective.  By 

examining the requirements and restrictions of the 

specific situation, the researcher tries to determine 

what logical action to take in order to act like the 

student under observation.  By reflecting on the 

reasoning behind a student's behavior the researcher can 

build a model of the student's conceptual system.  The 

researcher can then use the model to view the 

mathematical situation from the student's perspective. 

Relevance of the Classroom Environment 

Classroom Culture 

 In an educational setting students' conceptions are 

formed in the context of the classroom.  "Teachers have 



to teach, pupils have to learn and the didactic contract 

determines, mostly implicitly, where in this 

teaching/learning social relation lies the exact 

responsibility of each partner as far as the mathematical 

content is concerned" (Artigue, 1992, p.111).   

The cultural environment that develops and is established 

within the classroom, as a result of this contract, 

creates a context for classroom communication between 

instructor and students, and between students. 

 It is the purpose of the researcher, as observer, to 

"identify and account for aspects of a culture by 

analyzing regularities and patterns that arise as, say, a 

teacher and students interact during mathematics 

instruction" (Cobb, 1989, p.33).  These patterns result 

from the classroom culture and affect the type and 

quality of instruction that can occur within the 

classroom environment. 

 In order to best describe the effects of a classroom 

culture on the instructional environment, the researcher 

must find the foundation of the patterns that arise 

during classroom interaction.  "The implicit rules or 

social norms that the participants appear to be following 

can be formulated as a first step in explaining their 

mutual construction of the observed patterns" (Cobb, 

1990, p.207).  Some social norms that may direct class 

discussions include: 
listening and trying to make sense of explanations 
given by others; indicating agreement, disagreement, 



or failure to understand the interpretations and 
solutions of others; attempting to justify a 
solution and questioning alternatives in situations 
where a conflict between interpretations or 
solutions has become apparent (Cobb, 1990, p.208). 

 Communication in the classroom is characterized by 

the types of interactions which are deemed culturally 

acceptable by both the students and the instructor.  

McDermott, Gospodinoff, and Aron (1978) "suggested that 

it is necessary to determine the adequacy of any 

description of the form and content of concerted behavior 

in terms of whether it is (1) formulated, (2) posturally 

positioned, (3) oriented to, and (4) used to hold members 

accountable for certain ways of proceeding." (p.267)  In 

some settings a student spontaneously asking a question 

about the reasoning behind using a particular formula in 

solving a problem might be considered appropriate.  In 

another culturally oriented setting this same behavior 

might be considered as an inappropriate disruption, or an 

inappropriate line of questioning, or both. 
Graphing Calculator Effect on 
Classroom Culture 

 In examining the effects of the graphing calculator 

on instruction and students' understanding it is 

important for the researcher to keep in mind that a 

graphing calculator "in a classroom is a social practice 

and not a technology....It is what people do with the 

machine, not the machine itself, that makes a difference" 

(Mehan, 1989, p.19).  The researcher must thus examine 



the effect the graphing calculator has on the formation 

of classroom culture and practices. 

 Mehan (1989) classifies the "relationship between 

microcomputer [or graphing calculator] use and classroom 

organization under two headings: (1) the impact on 

temporal and spatial arrangements and (2) curriculum - 

what teachers teach and how they teach it." (p.6)  These 

relationships may potentially bring about significant 

changes in the mathematics offered to students. 

 The number of students who have access to the 

graphing calculator at any given time will greatly effect 

the way it can be used.  The opportunity exists for all 

students to interact simultaneously with the graphing 

calculator, making it a tool that students might be able 

to use in class with minimal disruption. 

 The amount of class time that the students use or 

save by using the graphing calculator may also be 

relevant.  Students may spend excessive amounts of time 

entering data, or may be relieved of trivial calculations 

by using the graphing calculator. 

 The change in curricular emphasis which is possible 

with student access to the graphing calculator could be 

significant.  By devoting more time to graphing 

instructors might find it necessary to reduce emphasis on 

or remove other topics from the curriculum.  Alternately, 

instructors might find that emphasis on graphs helps 

students to assimilate other topics more rapidly. 



Relevance of a Calculational or 
Conceptual Orientation in Instruction 

 The way in which an instructor teaches has a large 

effect on the type of understanding that students are 

likely to strive for and obtain.  Thompson, Phillip, 

Thompson, and Boyd (in press) have recognized and 

elaborated on two types of orientations in mathematics 

teaching, "calculational" and "conceptual."  An 

instructor teaching from either one of these orientations 

is demonstrating that instructor's own conceptions of 

mathematics. 

 An instructor teaching from a calculational 

orientation views mathematics as consisting of 

calculations and procedures designed specifically to 

obtain numerical answers.  This instructor's goal is to 

help students gain a procedural understanding of the 

mathematics being taught.  Instruction in this classroom 

is likely to focus on the processes of computation and 

algorithmic thinking.   

 Discussions in a classroom which is calculationally 

oriented will focus mainly on sequences of calculation.  

The instructor may ask students to explain the reasoning 

behind their problem solutions but will accept 

descriptions of sequences of calculations which do not, 

in fact, convey reasons.  Students may be completely 

unaware of the instructor's reasons for deciding that a 

particular solution is correct. 



 A particularly influential difficulty with a 

calculational orientation to mathematics instruction 

stems from the inability of students who lack 

understanding to gain from explanations of particular 

problems.  Thompson, et. al. (in press) observed "that 

the only students able to follow a calculational 

explanation are those who understood the problem in the 

first place, and understood it in such a way that the 

proposed sequence of operations fits their 

conceptualization of the problem." (p.10)  Since the 

calculational explanation describes what was done to 

solve the problem and not why, students are less likely 

to gain understanding that may be useful in other problem 

situations. 

 An instructor teaching from a conceptual orientation 

views the problem situation as an opportunity for 

students to reason and to discuss and analyze their 

understanding.  This instructor expects student 

explanations to reflect their conceptions of the 

situation and to be supported by reasons.  Although 

students may describe the calculations involved in their 

problem solutions they are also expected to explain the 

reasoning they use in choosing their calculations and 

procedures.  This instructor helps students to focus on 

the meaning behind the numbers and the quantitative 

relationships drawn from the problem situation. 



 Students in a conceptually oriented classroom are 

guided to reflect on their thinking in a way that 

promotes conceptual understanding of mathematics.  Since 

classroom discussion focuses on reasoning, students are 

consistently given the opportunity to gain knowledge of 

and reflect on their mathematical conceptions.  Students 

with these experiences are likely to gain a conceptual 

understanding of the mathematics being taught. 

Analysis of Qualitative Data 

 Analysis of qualitative data requires examination of 

information at a variety of levels.  This examination can 

take the form of notes which reflect on different aspects 

of the data's content by characterizing the data from 

specific and limited perspectives. 

 By examining the data from several different 

perspectives the researcher can gain insight into the 

different levels of information contained therein.  Smith 

(1978) refers to a possible first-level interpretation of 

the data as a "descriptive narrative."  At this stage in 

data analysis the researcher might create highly 

descriptive, observational notes of events, statements 

and activities that took place during the study.  This 

level of data interpretation is characterized by factual, 

non-interpretive description of what transpired during 

the observation. 



 Smith (1978) describes the next level of analysis as 

the "theoretical-analytical-interpretive" level.  At this 

stage in data analysis the researcher might assemble 

"interpretive" or "theoretical" notes associated with 

each of the existing observational notes.  These notes 

describe and elaborate on the significance of the 

observational notes.  They also specify what particular 

interpretations of the data support the theories the 

researcher has formed.  This level of data interpretation 

is characterized by the interpretation of and 

significance it lends to the data, which leads to and 

supports the theories the researcher is creating.   

 Meta-theoretical issues, which form a basis for the 

researcher's positions in the data interpretation, 

comprise the resources for the third-level of data 

analysis advocated by Smith (1978).  At this level the 

researcher might assemble more general notes which 

illuminate the rationale for the way the results will be 

expressed.  Some of the metatheoretical issues which 

Smith considers particularly relevant include: 
1. The root metaphor within which one works - 

mechanical, organic, formal, or contextual. 
2. The inner or outer perspective one chooses, 

that is, a stance from the subject's point of 
view or the outside observer's point of view. 

3. A theory which is more limited in scope and 
time to a local context versus one that is more 
general. 

4. A level of abstraction that is more descriptive 
and concrete or more abstract and interpretive. 

5. A model of explanation that is more covering 
law versus one that is configurational or 
contextual. 



6. A theory that is more action oriented and more 
ethical versus one that is more descriptive and 
analytical. (p.365) 

 By examining these issues and their relevance to the 

data being analyzed the researcher can verify the 

internal consistency of the viewpoint expressed by the 

theories which result from the study. 



 

 

CHAPTER IV 

STUDENTS' USES OF GRAPHING CALCULATORS 

 This study was designed to determine how students' 

understanding of functions and graphs is affected by 

their use of graphing calculators. 

 This chapter will show that students' use of 

graphing calculators essentially had no positive effect, 

and some negative effects, on what students learned and 

understood about mathematics.  In regard to negative 

effects, students were often distracted from class 

discussions because they fiddled with their calculators, 

or focused on procedures for operating the calculator 

when they might have spent their time more productively 

thinking about a situation or an idea. 

 This chapter will also suggest that potential 

benefits to students of using graphing calculators were 

overwhelmed by the momentum of the instructor's and 

students' existing conceptions of and orientations to 

mathematics.  Also, though the original intent of this 

study was to determine the effects of graphing 

calculators on students' understandings, it quickly 

became evident that what they thought about in this class 

was influenced greatly by the instructor's knowledge of 

and orientations to mathematics and it's teaching.  



Students' distractions were not due to their use of 

calculators per se.  Rather, they were supported by the 

instructor's orientation to rules and procedures, and his 

general lack of focus on forging conceptual connections 

among the various activities in which they engaged.  

Thus, an opening section which illustrates the 

instructor's stultifying effect on classroom discourse 

(and hence students' thinking) is included to inform the 

reader of the general atmosphere in which students' 

calculator usage occurred. 

 Students' focus of attention may have been to 

produce answers, as exhibited by their diligently 

applying procedures presented in the course toward the 

goal of finding answers.  Even with this focus, they 

often did not recognize the point at which their 

manipulations produced answers. 

Context of the Observation 

 Instruction in the class which participated in this 

study involved the teaching of algebra from two 

perspectives.  Students were taught to manipulate 

functions algebraically and to examine the intersections 

of function's graphs.  The course maintained the 

traditional focus on algebraic manipulation, while adding 

the requirement that students use graphing calculators to 

find solutions to the same problems by analyzing graphs. 



 The observation took place in a college algebra 

class given at a two-year community college.  The course 

was designed for students who planned to take a three 

semester calculus series.  The college strongly 

encouraged students to use graphing calculators in their 

mathematics classes, and supported instructors in 

attempting to integrate graphing calculators into their 

curricula by conducting seminars for instructors on how 

to use features of graphing calculators. 

 Thirty-one students were enrolled in the class which 

participated in the study.  The class was scheduled three 

times a week for fifty minutes.  Other sections of the 

same course were scheduled twice a week for seventy-five 

minutes. 

 Material covered during the observation included 

parts of a unit on logarithmic and exponential functions, 

a unit on matrices, and part of a unit covering conic 

sections.  The required text for the course was College 

Algebra: A graphing approach, second edition, by Demana, 

Waits & Clemens (1992).  The authors of the text assumed 

that students would "have regular and frequent access to 

a graphing utility for class activities as well as 

homework." (p.viii) 

The Physical Setting 

 The classroom environment was stark.  Desks were 

arranged in rows of five, closely packed into a long, 



narrow room.  The linoleum floors guaranteed 

amplification of any noise in the room--creating an 

apparent chaos whenever students shuffled their chairs or 

bookbags.  A series of chalk boards extended from the 

door across the front of the room and ended at a 

projection screen hanging in the corner.  An overhead 

projector sat in front of the screen, and was available 

throughout the observation. 

 The room could accommodate about forty students.  

Even with ample room to spread out, students consistently 

crowded into the end of the room closest to the door.  

This was particularly odd, in that, on occasion, the door 

was left open creating a glare on the chalk board that 

made it difficult to see from that side of the room. 

The Students 

 Students at this two-year college generally either 

acquire vocational training, or earn credits which they 

will later be able to transfer to the state university.  

In a survey given by the instructor at the start of the 

semester, students were asked why they were taking this 

class.  (All references to this survey will include data 

for thirty of the thirty-one students, since a survey was 

not available for one student.)  Twelve students stated 

that the class was required for transfer to the state 

university.  Sixteen students made similar responses by 

stating that the course was the prerequisite needed for 



their major.  Ten of these students stated specific plans 

to continue on to calculus.  One student responded with 

"I like math", and one student did not respond. 

 It can be inferred from the students' reasons for 

taking the class that most of the students planned to 

continue on for a bachelor's degree.  Fourteen students 

gave their major as undecided.  One student indicated an 

educational goal which did not require a four-year 

degree. 

 Nearly all of the students had recently completed  

coursework in mathematics.  Twenty-three students took a 

mathematics course the previous semester.  Six students 

took a course two semesters before the present one, and 

one student had not taken a mathematics course in two 

years.  More than half (eighteen) of the students had 

taken intermediate algebra as their last course, which 

was the prerequisite course specified by the college.  

Four students responded as having previously taken this 

same college algebra course, while only two students 

listed it as their last course taken. 

 Students enrolled in the college algebra course were 

allowed to choose the course by self placement.  The only 

stipulation was that they were required to have 

previously taken intermediate algebra with a grade of "C" 

or better.  This course may have been taken at the 

community college, the high school, or another accredited 

institution. 



 Students at the college were encouraged to purchase 

the TI-82 graphing calculator.  The intention of the 

college was that students would continue to use the same 

graphing calculator throughout their mathematics courses 

at the college.  The college ensured that the TI-82 was 

accessible to students unwilling or unable to purchase 

it.  The TI-82 was available for students to use at the 

library.  The college also loaned the TI-82 to students 

on financial aid, or students could rent the TI-82 for a 

minimal fee. 

 Student response to the need for graphing 

calculators was excellent.  At the time of the survey 

(during the first week of class) nineteen students had 

already purchased a TI-82.  Most students had some kind 

of calculator, and all but three had a graphing 

calculator.  Tom noted that by the end of the first week 

every student had purchased a TI-82. 

 Most students in this class were unfamiliar with 

graphing calculators.  In response to the survey, sixteen 

students said that they knew nothing, twelve students 

said that they knew little, and two students responded 

that they knew a "fair amount". 

 All thirty-one students attended class regularly.  

Regular attendance in itself is not an indication of 

students' interest in the course.  Students were aware 

that attendance was required for the course and that more 

than three absences during the semester was considered 



excessive.  They were also informed that the instructor 

could drop any student from the course due to excessive 

absence. 

 Students were generally on time.  Although the class 

was scheduled for fifty minutes, the first and last five 

minutes of each class period was generally characterized 

by chattering and shuffling of papers and course 

materials, leaving forty minute class periods. 

 Nearly all of the students consistently had pencils, 

notebooks, textbooks and graphing calculators on their 

desks, throughout each class session.  This was 

surprising in that the textbooks were rarely used in 

class.  Graphing calculators were used sporadically, and  

several students used them throughout parts of the 

lecture which did not make reference to them. 

 Students took notes diligently any time Tom wrote 

something on the chalk board.  They generally did not 

take notes while Tom discussed what he had written or 

gave a verbal presentation of the material. 

The Instructor 

Background 

 The course instructor, Tom, had an undergraduate 

degree in mathematics.  He also had a master of arts 

degree in mathematics and a master of science degree in 

computers in education.  Tom stated that he had completed 



more than ninety units beyond the BA and that these 

included courses in education. 

 Tom had taught mathematics at the community college 

for twenty years.  He spent the last six years teaching 

beginning and intermediate algebra in a program involving 

CAI.  Students in these classes were expected to use the 

computer for drill and practice.  The instructors 

involved in creating this program felt that these courses 

tended to favor questioning by the more advanced 

students.  The program was intended to allow these 

advanced students to progress at their own pace, while 

creating more time in-class for other students to 

interact one-on-one with the instructor and peer tutors.  

The introduction of peer tutors into the classroom was 

intended to encourage students, who did not learn the 

material on their own, to ask questions.  The CAI program 

also included simulations of statistics applications and 

some graphing experiments. 

 After being involved in the CAI program Tom was 

quite enthused about teaching a class which based it's 

instruction on heavy student use of graphing calculators.  

This was his second semester teaching a college algebra 

course using graphing calculators. 

 Tom's experience with a CAI program and his 

coursework in computers in education suggested an 

interest and commitment to using new cognitive 

technologies in teaching.  Tom's department supported and 



strongly encouraged the mathematics instructors at the 

college to develop curricula which made extensive use of 

graphing calculators. 

Knowledge and Orientation 

 Tom's beliefs and attitudes about mathematics may 

have affected the students' views about mathematics 

and/or their focus in this course.  The attitudes Tom 

expressed were, therefore, significant aspects of the 

students' learning environment. 

 Tom showed that he did not expect students to 

understand the meaning of the mathematics he was teaching 

when he responded to students' questions.  It was not 

uncommon for Tom to respond to students' questions with 

"just do it for now" or "trust me." 

 Tom's attitude about what constitutes and is 

evidence of understanding in a student was illustrated by 

his statement that "anytime you put down the graph it 

shows you understand about how things intersect, about 

how things work."  Tom appeared to be referring to a 

procedural understanding of how to obtain an answer, 

rather than an understanding of the meaning in the 

problem.  This is in alignment with Tom's focus on rules 

and procedures which imply his intention to advocate 

procedural rather than conceptual understanding. 

 Tom's orientation to teaching and learning 

mathematics was highly calculational (Thompson, et al., 



in press).  This means that he tended to view mathematics 

as consisting of calculations and procedures designed 

specifically to obtain numerical answers.  He also tended 

to provide students with calculational explanations for 

how to solve problems and did not discuss the meanings 

behind either the manipulations or parts of the problem 

situation.  Instruction in his classroom reflected a 

calculational view by focusing on the processes of 

computation and algorithmic thinking. 

 Tom's homework assignments were consistently 

calculationally oriented.  They typically consisted of 15 

to 25 problems, most of which were practice exercises.  

Problems in a given assignment often were drawn from 

distantly-related topics (e.g., logarithms and 

probability density functions) and were discussed in 

class only in terms of answer-getting procedures. 

 Tom's focus on "answer-getting" rules and procedures 

appears to have affected students' abilities to determine 

the validity of and understand the underlying meaning 

behind their problem solutions.  Students were often 

unable to determine what values of a particular function 

solution were relevant to a problem the class was 

investigating. 

 Another prominent characteristic of Tom's teaching 

was his loose use of mathematical terms and incoherent 

English.  Definitions were sometimes "properties," 

equations had both solutions and answers (e.g., in 



3x+2=5, x is a solution, while 5 in an answer), a 

solution is found "somewhere" in a matrix, and sentences 

were often half said when he began a new thought.  It was 

not always clear what effect Tom's language use had on 

students (they appeared used to it), but it was certainly 

not conducive to reflective, thoughtful analysis of 

ideas.  Sometimes the relationship between Tom's 

imprecise use of language and students' learning was 

clear.  When Tom asked students what they were looking 

for when solving the system of equations 2x+3y=6, x-y=3, 

a student responded, with certainty, that what they were 

looking for was the "answer to one of the variables." 

 Lastly, Tom's orientation to mathematics learning 

was not only calculational, it was highly prescriptive.  

For example, students were barred (literally) from using 

subtraction to eliminate variables in simultaneous 

equations because "this is the addition method," and to 

eliminate a variable in any but the second equation was 

illegal.  When eliminating variables in a matrix 

representation the "x's," which were to always be in the 

first column, were eliminated first, then the "y's," in 

the second column, next. 

 Tom's teaching was in alignment with the textbook, 

which also represented mathematics as a collection of 

procedures and rules.  Students' inability to gain 

insight into functions was mainly due to the lack of 

conceptual analysis of functions within the course. 



 A vignette illustrates two aspects of Tom's 

instruction.  It illustrates his tendency to direct 

students to focus on "answer-getting" rules and 

procedures as the mode of activity he intended students 

to internalize.  It also illustrates Tom's tendency to 

divert students' away from their thinking and 

questioning, to his prescribed way of looking at a 

particular problem. 

Vignette - April 13, 1994 - Day two of the study. 

 This class day was designated, on the weekly 

schedule for this course, as part of a unit on 

logarithmic and exponential functions.  This unit 

followed units on polynomial functions and rational 

functions.  Approximately one and one-half weeks was 

allotted for this unit. 

 Tom asked for questions on the homework from the 

textbook.  A student asked Tom to demonstrate a solution 

to a problem that was not assigned as homework.  This 

problem was stated in the textbook with instructions to 

"solve each equation algebraically.  Support your answer 

with a graphing utility."  The specific equation was 

logx(1-x)=1. 

1. Tom:  The rest of them [the homework problems] are 

pretty easy, if you use the properties [Seven 

"properties of logarithms" are presented as two 



theorems in the textbook.]  What would be a starting 

point for solving this problem? 

2. Sue:  The rules [referring to the "properties" in 

the textbook]. 

3. Tom:  Look at your rules [referring to the 

textbook]. 

4. Fred:  Change the base. 

5. Tom:  [Writes logax=y on the chalk board.  This is 

not on the list of properties.]  Like that? 

6. Fred:  No, isn't there more than one way? 

7. Tom:  [Interrupting.]  When you change the bases? 

That's not what I was thinking of.  What were you 

thinking of? 

8. Fred:  X to the first. 

9. Tom:  That's like definition...[Writes x=ay then 

evidently applies "logax=y <=> x=a
y" to logx(1-x)=1 

and writes 1-x=x1, and 1-x=x, then 1=2x, thus 

x=1/2.]  A lot of problems can be solved using 

definitions.  You don't have to use a lot of the 

properties.  You just have to rewrite it without 

logs. 

 Tom's focus on properties and definitions 

illustrates a general calculational approach to teaching.  

Tom focused students' activities on locating an 

applicable "rule" which could be used as a starting point 

to mechanically solving problems.  Tom's orientation 

supported students' inclinations that mathematics is 



purely mechanical and that the way to get an "answer" is 

to search for an applicable rule or property. 

 The vignette also illustrates one of many instances 

in which students who were trying to pursue a particular 

line of thinking were diverted by Tom toward a prescribed 

procedure.  Such shifts often left students wondering 

about Tom's reason for shifting the focus of the 

discussion.  Students might have inferred that they were 

thinking incorrectly, that they were supposed to use a 

prescribed method even if they did not understand it's 

rationale, or that there is only one way to solve 

particular problems. 

Classroom Observations 

 Instruction and discourse in the classroom revealed 

students' attitudes, approaches, and orientations to 

mathematics involving functions and graphs.  Although 

specific conversations did not tend to convey strong 

evidence of students' understandings and perceptions, 

several general themes arose.  This section is organized 

into subsections which describe and characterize 

students' tendencies not to make connections between 

multiple representations of function, their orientations 

to applications problems, and their incomplete 

understanding of the relevance of domain to 

interpretations of situations.  Descriptive examples 



characterize the quality and focus of students' discourse 

in regard to these themes. 

Multiple Representations 

 The variety of external representations of function 

a student is exposed to may aid the student in building 

an internal representation of function.  A student who is 

in the process of forming an internal representation of 

function may make use of external representations, such 

as algebraic equations and graphs.  Instruction which 

provides students with the opportunity to examine 

multiple external representations of functions may thus 

be considered desirable as a way to provide students with 

materials from which to build internal representations.   Although t

algebraic functions and their associated graphs 

represented the same situations. 

 Students generally did not demonstrate an 

understanding of the effects changes in elements of an 

equation had on the graph of the function.  Even though 

shifts in graphs had been previously discussed in an 

earlier unit of the course students were uncertain about 

the relationship between a shift in a graph and the 

corresponding change in an algebraic equation.  In one 

instance students could not determine what aspect of an 

algebraic equation needed to change in order to 

accommodate the shift of a graph of a parabola in the xy-

plane.  They did not readily recognize the relationship 



between the graphic representation of a function and the 

algebraic representation of the same function. 

 Students also did not appear to recognize that they 

could verify the results of their problem solving by 

comparing results obtained from examining the problem 

through different representations.  Although students 

often solved the same problem situation by both graphic 

and algebraic methods they did not "check" their 

solutions by directly comparing these results.  They 

checked answers only by substituting their answers back 

into the original equations. 

 Even after several months of instruction using 

graphing calculators students were not moving flexibly 

across representations of function.  They were not making 

connections between function equations and qualities of 

the equation's graphs.  A classroom discussion about the 

parabola y=x2/8 illustrates one student's inability to 

use exposure to multiple representations of functions, 

and experience with functions and graphs to correctly 

interpret from a function equation what the corresponding 

graph would look like. 

 Tom wrote the equation y=x2/8 on the chalk board and 

asked if the parabola it represented would "be a real 

thin, narrow one or kind of open out wide."  The student, 

Lena, responded that the parabola would be "wide."  She 

explained her reasoning to a student after class by 

saying that she knew from having seen a lot of parabolas 



that they were wide.  Lena's understanding of the 

parabola was based on her experience that equations of 

parabolas always looked something like y=x2 and that the 

graphs of parabolas always looked the same.  She was 

confident in her misconception that all parabolas are 

"wide".  She was so confident about her observation that 

she was not swayed by Tom's offering two options for the 

shape of parabolas -- thin or opening wide.  She also 

didn't consider other factors that might make any 

parabola "appear" wide or narrow, such as changing the 

scale of her graph. 

 Students also had difficulty seeing the relationship 

between a system of equations and the associated matrix 

representation for the system.  Matrices were used to 

represent systems of equations in the format AX=B, where 

A was the coefficient matrix, X was the variable matrix 

and B the matrix of constants.  Class discussion of 

matrices, matrix operations, and row elimination spanned 

several days and included practice on paper and using the 

graphing calculator.  (The graphing calculator was 

designed so that operations used for row elimination on 

paper could be simulated on the calculator.  This process 

was actually more confusing to Tom and the students than 

paper and pencil manipulations.)  Even after several days 

practice with matrices students were unable to describe 

what was being represented by each matrix in AX=B.  In 



some cases, students believed that the matrix X 

represented the algebraic expression x-y. 

 Students often solved systems of equations in two 

variables by graphing the equations and using the values 

of points of intersection of the graphs as solutions to 

the system.  Students' inability to see the relationship 

between function equations and graphs often prevented 

them from understanding whether all points of 

intersection were applicable to the problem situation.  

In one problem, graphs of the equations x+y=17 and xy=52 

intersected at (4,13) and (13,4).  Students were unable 

to determine which or both of these solutions constituted 

the answer to the problem situation.  Once they had 

started solving the problem by "graphing" they no longer 

recognized a relationship between their "answer," which 

applied exclusively to the graph, and aspects of the 

original equations. 

Applications 

 Application problems are intended to offer students 

opportunities to use mathematics in situations that occur 

in the world around them.  Although students may not have 

had personal experiences with each application problem, 

they may still connect problem situations with the kinds 

of mathematical problems they experience in class.  

Applications problems lend themselves to conceptual 

discussions of the source of mathematical equations and 



the meanings behind each element of these equations.  The 

relevance of a function's domain to interpretations of 

situations may also be illuminated for students by their 

engagement with applications. 

 Students typically did not recognize that functions 

could represent real life situations.  Although they 

occasionally were able to create function equations from 

concrete situations they didn't analyze or interpret 

aspects of functions as they applied to the original 

situation.  Once they had equations, they forgot about 

the original situation and applied answer-getting 

procedures to the "new" mathematics problem. 

 In a particular application involving tickets to a 

baseball game sold at differing prices to students and 

non-students, the class was able to set up two 

descriptive equations.  One equation, x+y=452, described 

the student tickets sold and non-student tickets sold 

summing to the total number of tickets sold.  The other 

equation, .75x+2y=429, described the sum of the money 

collected for student tickets sold at $.75 each and non-

student tickets sold at $2 each for a total income of 

$429. 

 Even though students could state facts like x was 

"the number of student tickets sold" they were unable to 

describe the equations in terms of the functional 

relationships between the number of student tickets sold 

and the number of non-student tickets sold.  Instead of 



describing the dependence relationship between x and y in 

either equation, students repeated descriptions of the 

equations such as "x plus y is 452."  The class was also 

unable to recognize that there was a relationship between 

the two equations which dictated that the equations would 

only be satisfied simultaneously for particular numbers 

of students and non-students. 

 As soon as students had the equations x+y=452 and 

.75x+2y=429 they forgot about the original situation and 

began discussing whether to solve the "new" problem by 

elimination or substitution. 

 When students graphed equations 2y+2x=100 and 

xy=301, then used the values of points of intersection of 

the graphs as solutions to the system of equations they 

had difficulty interpreting their solutions.  Students 

either accepted the points as answers or expressed 

confusion.  When the equations were graphed, the 

intersection of the equations graphs were found at (7,43) 

and (43,7).  Students were unable to create even a simple 

problem situation that might account for both possible 

solutions, or allow them to eliminate one or both as 

possible solutions. 

Domain and Range 

 Domain, range, and scale are closely linked in the 

graphing environment.  Students must be aware of the 

domain and range of the problem they are solving in order 



to accurately size the graphing calculator's viewing 

window.  Students who use graphing calculators to learn 

about functions and graphs should be constantly aware of 

the importance of using an appropriate window and of the 

relevance of domain and range, especially in application 

problems. 

 Since attention to domain is an important aspect of 

the problem solving situation, students should be 

continuously cognizant of the domain of each problem they 

analyze.  This was not consistently the case for students 

in this class.  Students often displayed an inability to 

analyze problem situations in order to determine the 

domain relevant to their problem. 

 In some problem situations students were easily able 

to eliminate answers which were unreasonable given the 

problem situation, while in other problems they expressed 

uncertainty.  Students examining the possible lengths for 

the side of a box with a particular volume were easily 

able to determine that the length of the side could not 

be negative.  Alternately, students attempted in another 

problem to justify a negative value for time, because the 

event had started in the past.  Since students often lost 

track of the original problem, once equations were 

created and the process of "finding the answer" began, 

they also tended to forget to analyze their results for 

meaningfulness to the original problem situation. 



 The graphing calculator's default window, the ten-

by-ten window, was referred to as the "regular window."  

When students were told to change the size of the 

graphing calculator's window they were able to do so and 

spent a lot of time on this task.  Yet, while students 

easily found points of intersection between two graphs 

within the regular window they tended to guess at changes 

in the window dimensions when looking for unseen points. 

 For example, students' were unable to understand the 

relevance of and determine the domain of this application 

problem from a takehome test:  "The half-life of Antimony 

111 is 2.9 hours.  If the formula P=(1/2)t/2.9 gives the 

percent (as a decimal) remaining after time t (in hours), 

sketch P versus t."  The problem required students to 

supply domain, range, and asymptote data and indicate an 

appropriate window. 

 Lane asked Tom if the domain and range applied to 

"just to the sketch of P versus t," in the first 

quadrant, or to "the whole curve," for the graph of 

P=(1/2)t/2.9.  Most students were unable to distinguish 

which portion of the graph represented the actual problem 

situation.  Only six of 24 students responded correctly 

to all parts of the quiz question, including domain and 

range.  The rest of the students indicated data that 

represented incomplete solution of the application 

problem.  A typical student response was to indicate the 



domain of the entire graph [-_,_] rather than the domain 

[0,_] of the application problem. 

 Students' determination that the domain was the 

domain of the graph, rather than the domain of the 

problem situation characterized their tendency to 

overlook elements of problem situations due to 

preoccupation with solution methods.



 

 

 

CHAPTER V 

CONCLUSIONS 

 This study began in search of a success story, both 

for students and for graphing calculators.  It ends with 

a more realistic view of the intricacies of the 

educational environment, the consequences of a particular 

mode of instruction, and the impact of random usage of a 

cognitive technology on students' understanding. 

 The course was directed by an instructor, whose way 

of teaching algebra was a product of years of experience.  

That this experience came without the aid of graphing 

calculators came to be seen as an aside to the teacher's 

instructional orientation.  Rules and procedures were 

generously doled out to students.  Like bread and water, 

these staples seemed to sustain students, but without 

flavor or conceptual nourishment. 

 Students in this classroom used this course as a 

stepping stone to the next level of mathematics they 

would need for their various fields of study.  Students 

approached the subject from personal perspectives which 

often manifested themselves in blind adherence to 

prescribed procedures.  Even when students appeared to be 

asking for insight and understanding of a problem 



situation, they were easily diverted back to rules and 

procedures.  This malleability of students' purpose and 

focus indicates that they may need to be told quite 

specifically how to examine a subject if they are going 

to be expected to derive any meaning from it. 

 The instructor and the college were in the process 

of enthusiastically searching for the best ways to use 

graphing calculators.  They were hopeful about the 

ability of the graphing calculator to aid students in 

understanding graphs and functions.  The students wanted 

the graphing calculator to help them too.  This 

enthusiasm may help both students and instructors to 

consider and examine more effective ways of using the 

graphing calculator to teach mathematics. 

 Some of what the students didn't understand was so 

basic that it seemed to result from experiences beyond 

the few months they had spent in Tom's classroom.  On the 

other hand, in many cases their lack of understanding 

might have been avoided by subtle changes in classroom 

discourse and the focus of instruction. 
Summary of What the Study Looked for 

Versus What It Found 

 This study looked for relationships between 

students' uses of graphing calculators and their 

understanding of functions and graphs.  Observations 

revealed that students had some procedural understanding 

of how to use graphing calculators and how to solve 



problems using the "method of the day," but no conceptual 

understanding of functions and graphs. 

 Although cognitive technologies "make external the 

intermediate products of thinking" (Pea, 1987, p.91), 

student did not and were not directed to use the graphing 

calculator in this way.  Students often did not know that 

intermediate results in their problem solution were not 

"answers".  An inability to recognize when the problem 

solving process was completed seems to indicate that 

students lacked a conceptual understanding of mathematics 

and problem solving for some time.  The question that 

follows is "did they ever know, in any mathematics class, 

how to determine when they actually were finished with a 

problem other than that they had reached 'the last 

step'?" 

 Pea (1987) also pronounced that "a cognitive 

technology is any medium that helps transcend the 

limitations of the mind in thinking, learning, and 

problem-solving activities." (p.91)  He may have based 

his statement on an image of motivated, reflective, 

knowledgeable students being taught by a knowledgeable 

reflective instructor.  Students in this course did not 

appear to transcend any mental limitations, even though 

they used the graphing calculator. 

 Were students expected to accept and did they accept 

rules with no reasons, or did they view mathematical 

problem solving as a series of actions motivated by 



reasoning?  Tom's instruction presented mathematics as a 

context to do something rather than as a context to 

reason.  Students were affected by Tom's view, even when 

they wanted to understand.  Students generally accepted 

rules without reasons and sometimes looked for 

understanding, but were easily directed to accept rules 

and prescribed methods for solving problems. 

 Understanding of function means to create an 

internal representation of function.  These students did 

not appear to create internal representations for 

function.  They expressed knowledge of a variety of 

disjointed rules and procedures for manipulating 

equations and graphs, which did not imply an underlying 

representation of function.  To these students a function 

was something that needed to be rewritten using "rules," 

"procedures," and "definitions" in order to get an 

"answer." 

 "Mathematical competence can be expressed in 

students being able to move flexibly across 

representations" (Moschkovich, Schoenfeld & Arcavi, 1993, 

p.97), such as algebraic and graphic representations of 

function.  Yet, the examples and teaching methods used in 

this course often tried to force the graphic 

representation to simulate the algebraic representation 

in terms of procedures.  The two representations then did 

not elucidate the meaning behind the function but were an 

avenue on which students had to force-fit rules and 



procedures in order to get the expected answers.  

Students used the answers as something to shoot for 

rather than as pieces of information which, when 

determined, enriched their understanding of a situation, 

or as products of methods which themselves could be 

analyzed in terms of their logic and validity. 

 "Good graphic examples are critical since they can 

exemplify or challenge, and thus anchor or critically 

elucidate a point" (Leinhardt, Zaslavsky & Stein, 1990, 

p.52).  The examples presented by Tom in class seemed to 

have been chosen somewhat randomly, without conceptual 

coherence.  On many occasions the examples discussed were 

borrowed from the textbook and thus represented the 

textbook authors' perspective of what constituted good 

examples.  Other examples discussed in class included 

homework problems about which students had questions.  

These examples were haphazard, although some of them 

offered opportunities (not taken) to dispel 

misconceptions and discuss meaning. 

 Even though a goal of instruction is to teach 

students how to learn, rather than about mathematics, 

this class did not teach students how to learn.  This 

class focused strongly on students learning rules and 

following procedures rather than thinking about concepts 

or about thinking. 

 Both Tom and the students should be able to check 

results and examine topics from multiple perspectives.  



The opportunity to do so exists within this curriculum 

and within class discussions.  Checking results was 

rarely brought up in class -- instances of doing so arose 

sporadically.  Most checking involved substituting 

results into the original equations to verify that 

answers "worked."  A better way to check would have been 

to work through a problem using more than one 

representation, then comparing results.  Students also 

were rarely prompted to check their results for 

reasonableness. 

Recommendations 

 Students taught by an instructor with a 

calculational orientation to teaching do not build 

conceptual understanding.  They also gain only limited 

procedural understanding.  The focus of instruction needs 

to be on helping students to understand more than how to 

get answers. 

 Instruction must be monitored statement by statement 

by the instructor to ensure a thoughtful adherence to a 

conceptual approach to teaching.  This is not easy, but a 

worthy goal.  Given the complexity and depth of the 

topics discussed in any mathematics course, it is 

important for the instructor to be continuously aware of 

the needs of the students and the ways in which the 

students can be aided in learning.  Teaching thus 



requires the instructor to continuously monitor reactions 

and responses to students' questions and perceived needs. 

 Students need to know that the best methods for 

solving a problem arise from understanding it deeply, and 

that understandings are personal, not prescribed.  They 

also should understand that a solution to a problem is 

not unique to the particular method used to determine it.  

In this way students are led to see that there is meaning 

beyond the procedures and algorithms used to solve 

problems.  They will also have the opportunity to be 

confronted with and examine the fact that mathematics is 

not separate from their personal world of sense and 

understanding.  The students in this study did not have 

these opportunities, and made few connections. 

 Application problems cannot help students to gain 

understanding of functions if the students are not taught 

to analyze and interpret all aspects of the mathematics 

involved.  Students in this study were unable to see the 

connections between parts of the problem and the 

mathematics being used to represent those parts, since 

the course did not focus on these connections.  Without 

this analysis and interpretation, mathematics will become 

a separate, disconnected topic which students approach 

procedurally.  Discussions which take the real-world 

aspects of problems into consideration will naturally 

focus on important elements of problem situations, such 

as domain, rather than merely steps in solution methods. 



 Instructors need to be especially careful when using 

terminology, especially for the first time, and need to 

develop consistency in their use of language. 

Possible Implications of the Study 

 This study's examination of students' using graphing 

calculators illustrates the contrast between the hopeful 

expectations, for students' understanding, submitted by 

graphing calculator advocates, and the reality of 

instructional environments and students' understandings.  

A concise list of insights which may have been implied by 

this study may proved helpful to instructors, students 

and researchers. 

1. The graphing calculator is only a cognitive 

technology if students use it to enhance their learning 

and understanding of functions and graphs.  Otherwise, it 

is only an answer-getting gadget. 

2. Students gain neither procedural nor conceptual 

understanding of functions from using the graphing 

calculator procedurally. 

3. Students often try to understand and find meaning in 

the mathematics they are learning.  It is by repeatedly 

being directed otherwise that they tend to allow a 

gradual abandonment of this goal. 

4. As long as students are given to believe that 

mathematics is made up of numbers and letters without 

meaning they will have difficulty creating conceptual 



understanding.  Application problems are important at 

every step of the learning process. 

5. Application problems cannot help students to gain 

understanding of functions if the students are not taught 

to analyze and interpret the situation itself initially, 

and to reflect on all aspects of the mathematics involved 

in relation to the situation being modeled. 

6. Students must be helped to see the connections 

between parts of problems and the mathematics being used 

to represent those parts.  Otherwise, the mathematics 

will become a separate, disconnected topic which students 

approach procedurally. 

7. Students need to know that they have both the 

freedom and the responsibility to approach a problem in 

any way that makes sense to them, and for which they can 

build justifications for the sense that it makes. 

8. Instructors must be especially alert to statements 

or actions, by themselves or by students, that do not 

contribute to a conversation's overall conceptual 

coherence.  Constructive contributions are those that 

contribute to an emerging image of "what is going on 

here, and what are we trying to do?" and establishing 

meaningful connections between current and past 

activities. 

 These implications may aid instructors, students, 

and researchers in thoughtful consideration of the 

implications of instruction involving graphing 



calculators.  If thinking and learning are motivated, 

even through studying students' use of the graphing 

calculator, then perhaps the graphing calculator truly 

can be recognized as a cognitive technology. 
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ABSTRACT



 
 
 
 
 

ABSTRACT 
 
 

This thesis examines the use of graphing calculators as 

an aid to student understanding, by exploring the 

relationship between college algebra students' use of 

graphing calculators and their understanding of functions 

and graphs.  The study was carried out as a classroom 

observation of thirty-one students in a college algebra 

course at a two-year college.  The course emphasized 

solution methods involving graphing calculators.  The 

curriculum and the instructional methods within which 

graphing calculators were employed were considered in a 

qualitative analysis of classroom discourse.  The study 

found that students did not seem to recognize 

relationships between multiple representations of 

function, were unable to meaningfully describe elements 

of equations they created for applications problems, and 

were unable to determine relevant domain and range 

information in problem situations.  This research implies 

that procedural, answer-getting uses of graphing 

calculators do not help students understand functions and 

graphs. 
 


