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ABSTRACT  
   

Past research has revealed that both students and teachers have difficulty 

understanding and using the sine and cosine functions. They also hold weak 

understandings of ideas foundational for learning trigonometry (e.g., angle measure and 

the unit circle) and disconnected conceptions of the various contexts of trigonometry 

(e.g., unit circle and right triangle). This dissertation reports results of an investigation 

into the understandings and reasoning abilities involved in learning ideas of angle 

measure and the sine and cosine functions. The data was collected using a teaching 

experiment methodology. The instructional sequence was designed to support precalculus 

students in constructing understandings of angle measure and the radius as a unit for 

measuring an angle. Students were then supported in reasoning about how an angle 

measure and a distance vary in tandem. The instruction leveraged these reasoning 

abilities to introduce the sine and cosine functions in a unit circle context.  Findings from 

the investigation revealed the importance of students’ conceptualizing measurable (and 

varying) attributes of a situation (quantities) when conceptualizing angles and their 

measures. The idea of angle measure, and particularly the radius as a unit for measuring 

an angle, was also found to be foundational for learning and using the sine and cosine 

functions. When conceptualizing the sine and cosine functions, students needed to reason 

about how an angle measure and a varying distance change in tandem to model the 

periodic behavior between these two quantities. A process conception of function was 

also necessary for understanding and using the sine and cosine functions. This study’s 

findings characterized the critical role that quantitative and covariational reasoning 

played in students developing the dynamic imagery needed to generate a sine or cosine 



  iv 

graph representing periodic motion. Finally, there was a wide variation in the students’ 

willingness to engage in making meaning of the context of a problem. The findings 

revealed that if a student relies on imitating others’ actions and carrying out non-

quantitative procedures, and is not willing, curious, or confident enough to engage in 

meaning making, the student will likely have difficulty understanding new ideas. 
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Chapter 1 

Introduction 

This dissertation describes an investigation into three students’ understandings of 

angle measure and trigonometric functions1. Trigonometry and trigonometric functions 

have been an important part of the high school and undergraduate mathematics 

curriculum for the past century. In addition to numerous mathematical topics (e.g., 

Fourier series and integration techniques), various topics of science are reliant on 

trigonometric functions (e.g., projectile velocity and modeling wave behavior). 

Trigonometry and trigonometric functions also offer one of the earlier mathematical 

experiences that combine geometric, symbolic, and graphical reasoning about functions 

that cannot be calculated through algebraic computations. Though trigonometry has been 

a central part of mathematics and science curriculum for over a century, it is often the 

case that students and teachers have difficulty reasoning about topics dependent upon 

trigonometric functions (Brown, 2005; Fi, 2003; Thompson, Carlson, & Silverman, 2007; 

Weber, 2005). To further complicate this issue, few studies have investigated the 

reasoning abilities needed to understand and use trigonometric functions. 

Students’ difficulties relative to trigonometric functions may be related to the 

approach that curricular materials take when introducing the sine and cosine functions. In 

many mainstream textbooks used in the United States, trigonometric functions are 

explored in multiple contexts (e.g., triangle trigonometry and unit circle trigonometry). In 

                                                 
1 This investigation into student reasoning specifically focuses on the sine and cosine 
functions. Thus, this dissertation’s use of the phrase trigonometric functions is in 
reference to the sine and cosine functions. 
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each of these contexts, textbooks present different purposes for using trigonometric 

functions  (e.g., determining the side of a triangle or finding a coordinate). It is also the 

case that curricula typically treat these contexts as unrelated or only slightly related. For 

instance, right triangle trigonometry is often used as a lead into unit circle trigonometry, 

but curriculum does not appear to leverage common foundations to these contexts (e.g., 

angle measure) in order to develop coherence between each context. This treatment of 

trigonometry may hinder students from developing understandings that contain strong 

connections across the various trigonometry contexts. As Thompson (2008) has recently 

argued, curriculum should be designed such that it builds on meanings and foundations 

that are common across the various contexts in order to promote students in constructing 

coherent and flexible understandings of trigonometric functions. A major focus of this 

study stems from the consideration of building on common meanings and foundations 

between the various trigonometries. 

This dissertation was designed to provide new research knowledge into students’ 

learning of angle measure and trigonometric functions (areas where little research has 

been done) by investigating students solving instructional tasks in an undergraduate 

precalculus course. The instructional sequence for the study was designed to support the 

subjects (three students) in learning and using foundational ideas of trigonometry to 

reason about trigonometric functions. The activities also intended to promote students 

developing understandings of angle measure, the radius as a unit of measurement, and the 

unit circle. Due to the design of the instructional sequence, this investigation seeks to 



   3 

 

offer insights into students’ conceptions of trigonometric functions and their conceptions 

of topics that are foundational to learning trigonometry. 

Statement of the Problem 

The NCTM Standards have called for connections between the various 

trigonometry contexts (NCTM, 1989, 2000), but trigonometry remains a highly difficult 

topic for students and teachers to grasp (Brown, 2005; Thompson, 2008; Thompson, et 

al., 2007; Weber, 2005). Furthermore, mathematics educators and curriculum developers 

have given limited attention to trigonometry in spite of the continuing difficulties 

encountered by students (Brown, 2005; Weber, 2005). The scholars that have given 

attention to trigonometry commonly identify that an increased focus needs to be given to 

developing understandings that are foundational to trigonometry and promoting 

coherence between the multiple contexts of trigonometry (Brown, 2005; Thompson, 

2008; Thompson, et al., 2007; Weber, 2005).  

The difficulties that students encounter in developing coherent trigonometric 

understandings are likely multifaceted. First, trigonometric functions require 

sophisticated reasoning relative to the function concept. Trigonometric functions are 

often one of a student’s initial experiences with functions that cannot be computationally 

evaluated. Reasoning about trigonometric functions relies on reasoning about function in 

a manner that one can anticipate input values to a function being evaluated and output 

values being produced without performing numerical computations. The action of 

conceptualizing function as a process has been revealed to be a difficult task for students 

(M. Carlson, 1998; M. Carlson & Oehrtman, 2004; Harel & Dubinsky, 1992; Oehrtman, 
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Carlson, & Thompson, 2008; Sierpinska, 1992; Thompson, 1994b). Trigonometric 

functions offer the opportunity to develop and promote students reasoning in this way; 

yet, mainstream mathematics curricula do not appear to address or develop this 

foundational way of reasoning.  

The sine and cosine functions may also be a difficult topic for students due to 

their limited conceptions of topics foundational to understanding these functions. As a 

result of these limited understandings, students do not have the tools necessary to 

construct meaningful and coherent understandings of the sine and cosine function. For 

instance, it is necessary that students construct conceptions of angle measure and the 

radius as a unit of measurement such that these conceptions support connected 

understandings of trigonometry (Moore, 2009). As Weber (2005) suggests, students also 

must be able to leverage the geometric objects of trigonometry (e.g., the unit circle and 

right triangles) to support their reasoning about the relationships formalized by the sine 

and cosine functions. 

This investigation attempts to study these conjectures and research findings more 

deeply in order to contribute to the limited body of research literature on students 

developing understandings of trigonometry. The insights gained into how students’ 

understandings develop are intended to identify the critical reasoning abilities necessary 

for learning ideas of trigonometry, while also informing the future design of trigonometry 

curriculum. 

Research Questions 

The primary research question driving this study is: 
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- What understandings of trigonometric functions do students develop during a 

trigonometry instructional sequence that emphasizes quantitative and 

covariational reasoning? 

Supporting research questions derived from the theoretical foundation and design of the 

study include the following: 

- What roles do quantitative reasoning and covariational reasoning play in students 

developing understandings of trigonometric functions? 

- What understandings of the topics foundational to trigonometric functions (e.g., 

angle measure and the radius as a unit of measure) do students develop during the 

trigonometry instructional sequence?  

- How do understandings of these foundational trigonometry topics influence 

students’ conceptions of trigonometric functions? 

Outline of the Study 

The theoretical perspective of radical constructivism (Glasersfeld, 1995) forms 

the foundation for this study. The central premise of radical constructivism is that an 

individual’s knowledge is fundamentally unknowable to any other individual. An 

individual constructs knowledge from experiences and reflecting on these experiences, 

where these experiences are entirely unique to the individual. An implication of this 

stance is that a researcher can only construct models of a student’s understandings, where 

the researcher’s goal is to construct, test, and refine models of a student’s understandings. 

The model is considered viable when the student acts in ways consistent with the model 

of the student’s understandings. However, there is no one-to-one correspondence between 
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the model of a student’s understandings and the student’s understandings. Thus, the 

researcher is always striving to test the model of a student’s understandings in order to 

determine where this model breaks down and requires further modifications. 

In order to accomplish the iterative process of constructing a model of students’ 

understandings, this dissertation used a teaching experiment methodology (Steffe & 

Thompson, 2000) to gain insights into students’ conceptions of trigonometric functions 

and angle measure. The subjects (Amy, Judy, and Zac) of this study were three students 

enrolled in an undergraduate precalculus course at a large public university in the 

southwestern United States. The precalculus classroom was part of a design research 

study where the initial classroom intervention (M. P. Carlson & Oehrtman, 2009) was 

informed by theories on the processes of covariational reasoning and quantitative 

reasoning, as well as select literature about mathematical discourse and problem solving 

(M. Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; M. P. Carlson & Bloom, 2005; Clark, 

Moore, & Carlson, 2008; Smith III & Thompson, 2008). The principle investigator of the 

precalculus curriculum design project was the professor of the precalculus course. 

The three students from the precalculus course volunteered to participate in a 

teaching experiment with the researcher (myself) acting as the students’ instructor during 

the study. Six ninety-minute teaching experiment sessions were conducted with the three 

students. Additionally, multiple interviews were individually conducted with each student 

throughout the study. The interview sessions, which served as one-on-one teaching 

experiment sessions, offered a setting where the researcher tested models of each 

student’s understandings that were constructed based on the students’ actions during the 
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teaching experiment sessions. Upon completion of the study, the data was analyzed using 

the principles of qualitative data analysis outlined by Strauss and Corbin (1998). Also, 

the system of ideas driving the instructional design formed a foundation for the data 

analysis, where this analysis offered insights into the critical reasoning abilities needed to 

understand angle measure and the sine and cosine functions. 

Chapter 2 provides the theoretical perspective for the study, as well as an 

overview of the research literature on trigonometry, covariational reasoning, and 

quantitative reasoning. Chapter 3 presents the methodology for data collection and data 

analysis used for this study. Chapter 4 presents a summary of the findings from an 

exploratory study into students’ conceptions of angle measure. Chapter 4 also outlines the 

instructional sequence used in the study’s teaching experiment, while describing the 

instructional activities in the context of the findings from the exploratory study and a 

conceptual analysis of trigonometry. Then, chapters 5-7 present the results and analysis 

of each student’s actions during the study. Chapter 5 provides a detailed narrative of 

Zac’s thinking over the course of the study. Chapters 6 and 7 summarize the progress of 

Amy and Judy, respectively. Finally, chapter 8 outlines this study’s findings by 

describing and comparing the students’ ways of thinking. Chapter 8 also presents the 

limitations of the study, and provides suggestions for curriculum and instruction. This is 

followed by offering future directions for building on and extending the research in this 

study. 
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Chapter 2 

Theoretical Perspective And Literature Review 

This chapter presents the theoretical perspective for the study. Glasersfeld’s 

radical constructivism (1995) and Piaget’s theory of genetic epistemology (Chapman, 

1988; Piaget, 2001) informed the design, implementation, and analysis of data for this 

investigation. This chapter also discusses the relevant research literature on learning and 

understanding angle measure and trigonometric functions, which has commonly 

documented that students and teachers hold limited and fragmented understandings of 

these concepts. 

Theoretical Perspective 

The study is based on the radical constructivism premise that all learning begins 

and ends with the learner (Glasersfeld, 1995). This approach to learning views the 

classroom as a place for exploration that involves all participants asking questions, 

creating conjectures, making discoveries, and building understandings, where each 

student’s knowledge is considered fundamentally unknowable to any other individual. An 

individual gains knowledge, or knowing, through experiences that are unique to the 

individual; in a class of thirty students, thirty different sets of experiences will occur. It is 

through an individual’s reflection on their experiences that knowing is achieved, but this 

knowledge is not of anything and there is no one-to-one correspondence of knowledge 

and what it is about. Knowledge is what comes together through the processes of an 

individual altering his or her knowing (mental schema) in response to a cognitive 

perturbation or disequilibrium. The process of an individual reorganizing and 
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constructing cognitive structures and connections between these structures in response to 

a perturbation is referred to as accommodation (Glasersfeld, 1995). 

It may appear that attributing learning completely to the learner creates a 

roadblock in teaching, as this stance can be interpreted as implying the role of the teacher 

is non-essential. Contrary to such an interpretation, this stance can be interpreted to imply 

that the act of teaching does not involve the direct transmission of thoughts. A teacher has 

influence on the classroom by acting as a catalyst for learning and it is the role of a 

teacher to create situations in which learning can happen through repetitive reasoning and 

reflecting on this reasoning. I also note that radical constructivism can be interpreted as 

dismissing a teacher lecturing in class. Again, I believe this is a misinterpretation. A 

teacher lecturing is often necessary in a classroom in order to provide various formalisms 

(e.g., the notation of sin(!) ), but the learner is best prepared for lecturing when he or she 

has the mental structures available to process the information described by the teacher. 

The cognitive structures and foundations must be in place such that the students will be 

able to reflect on, make sense of, and construct meaning from the teacher’s utterances and 

actions. 

Reflection is a major aspect of learning and possibly the most important aspect of 

building knowledge (Piaget, 2001). Contrary to empiricists who deny the mind and its 

operations, and thus reduce all knowing to the reception of “sense data,” reflection 

attributes learning to the ability of the mind to “stand still” and attempt to make sense of 

an experience. Ernst von Glasersfeld (1995) described reflection as: 
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[T]he mysterious capability that allows us to step out of the stream of direct 

experience, to re-present a chunk of it, and to look at it as though it were direct 

experience, while remaining aware of the fact that it is not. (p. 90)  

In addition to the idea of reflection, Piaget, Glasersfeld, and others have identified 

the notion of abstraction, which is made possible through the comparison, separation, and 

connection of experiences. Ernst von Glasersfeld (1995) attributes John Locke with a 

description of abstraction: 

This is called Abstraction, whereby ideas taken from particular beings become 

general representations of all the same kind; and their names general names, 

applicable to whatever exists conformable to such abstract ideas. (p. 91) 

Through the mental activities of reflection and abstraction, the reorganization and 

construction of cognitive structures is achieved. Again, it is important to emphasize that 

these processes are completely dependent on the individual and are unseen by any other 

observer. Also, note that a student’s experiences depend on the current model of knowing 

or schema of the student, where this current model defines the experience. 

The necessity of reflection and abstraction implies that the purpose of instruction 

is to create opportunities for individuals to participate in (mental) actions and reflect on 

these actions such that mathematical structures and meanings can be constructed. 

Instruction must create situations in which students face perturbations in their reasoning 

(what observers may call incorrect or undeveloped reasoning) and become aware of and 

resolve these conflictions. An individual becoming aware of and facing these conflictions 

requires reflecting on one’s own thinking, a difficult and unnatural action. 
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The unnaturalness of reflecting on one’s own thinking and actions is most seen in 

the natural occurrence of students incorrectly applying learned procedures. For instance, 

given the equation 

 

(x ! 3)(x + 2) = 9, it is not uncommon that students solve x ! 3 = 0  

and x + 2 = 0  to arrive at an answer. In such a case, attention is not given to why the 

procedure is applied or what the application of the procedure does. Instead, it may be the 

case that students know that the procedure has worked before (e.g., problems solving the 

product of two linear expressions equal to zero), and that the problem appears to be the 

same (to the student). Thus, the procedure is applied without understanding the 

mechanism of the procedure. Students’ actions such as this emphasize the necessity of a 

conceptual understanding that supports the application of procedural solutions. Also, it is 

not simply enough for a teacher to show procedures or reveal mathematical constructs. 

Although a teacher can show a procedure, this by no means implies the student will 

interpret the procedure as the teacher intends. The students must have experiences such 

that a need arises to develop their own understandings in a coherent manner consistent 

with the instructional purposes. 

Background for the Investigation 

The research literature on student thinking in trigonometry is sparse, with Markel 

(1982) describing trigonometry as “forgotten and abused” due to the little attention given 

to trigonometry in mathematics education research and teaching. The lack of focus on 

students’ conceptions of trigonometry may be due to the somewhat small portion of 

mathematics curriculum that trigonometry fills, though the amount of students taking 

courses that contain trigonometry has steadily increased over the past century (Brown, 
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2005). The research that is available focuses on both teachers’ and students’ 

understandings of trigonometry. 

In addition to the limited research on student thinking in trigonometry, this 

investigation is guided by research on quantitative reasoning (Smith III & Thompson, 

2008; Thompson, 1989, 1993) and covariational reasoning (M. Carlson, 1998; M. 

Carlson, et al., 2002; Oehrtman, et al., 2008). Also, research on the function concept 

(Harel & Dubinsky, 1992) influenced this study. Due to the limited research available in 

trigonometry, research on quantitative reasoning, covariational reasoning, and the 

function concept formed a significant foundation for this study. 

In general, quantitative reasoning (Smith III & Thompson, 2008) refers to a 

student imagining a situation, conceptualizing measurable attributes (called quantities) 

within this imagined situation, and constructing relationships between these quantities. 

The mental structure that results from a student constructing quantitative relationships 

provides a foundation for the student to reflect upon and develop mathematical 

understandings. Quantitative reasoning also emphasizes that calculations and formulas 

emerge from and reflect relationships between quantities. This type of reasoning has been 

shown to be critical for understanding important topics of mathematics, such as the 

fundamental theorem of calculus (Thompson, 1994a) and rate of change (Thompson, 

1994c).  

Reasoning about the rate of change of two quantities is a mental activity that 

entails coordinating the values of two quantities that are changing in tandem. A mental 

activity such as this is referred to as covariational reasoning (M. Carlson, et al., 2002). 



   13 

 

Such reasoning ranges from identifying a general correspondence between two quantities 

to reasoning about the rate of change of one quantity with respect to another quantity. 

Covariational reasoning has been suggested to be critical for success in calculus (M. 

Carlson, 1998; M. Carlson, et al., 2002; Oehrtman, et al., 2008) and research has revealed 

that students often have difficulty engaging in covariational reasoning and constructing 

the relevant quantities of a situation to covary (M. Carlson, et al., 2002; Moore, Carlson, 

& Oehrtman, 2009). The following section further explores relationships between the 

function concept, covariational reasoning, and quantitative reasoning in the context of 

learning angle measure and the sine and cosine functions. 

Function, Covariational Reasoning, and Quantitative Reasoning 

Trigonometric functions are frequently one of a student’s first mathematical 

experiences in which he or she is required to reason about a relationship between the 

(varying) values of two quantities that does not lend itself to being computed by hand. 

Thus, developing a conception of trigonometric functions as processes is essential for 

reasoning about these relationships. As Dubinsky and Harel (1992) describe, 

A process conception of function involves a dynamic transformation of quantities 

according to some repeatable means that, given the same original quantity, will 

always produce the same transformed quantity. The subject is able to think about 

the transformation as a complete activity beginning with objects of some kind, 

doing something to these objects, and obtaining new objects as a result. (p. 85) 

A student with a process conception of function does not see a function or an expression 

as a call to evaluate, but rather they see a function or expression as representing a 
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relationship or a mapping that is “self-evaluating.” In other words, a student with a 

process conception can anticipate the evaluation of input values and the resulting output 

values without actually performing the computations. This is precisely the reasoning 

needed to conceptually understand trigonometric functions, as these functions cannot be 

computationally evaluated in an efficient manner without the aid of a calculator or 

memorized values. 

Contrary to a process conception of function is the case that a student is limited to 

reasoning that is reliant on performing specific actions such as calculations. If this is the 

dominating function conception a student holds, reasoning about trigonometric functions 

becomes a daunting task. A student can memorize a subset of the input-output values for 

trigonometric functions, but this may not promote an image of trigonometric functions as 

accepting an input and producing an output. According to Harel and Dubinsky (1992),  

An action…conception of function would involve, for example, the ability to plug 

numbers into an algebraic expression and calculate. It is a static conception in that 

the subject will tend to think about it one-step at a time (e.g., one evaluation of an 

expression). (p. 85) 

A student with an action conception of function focuses on procedures and calculations 

when reasoning about functions. Rather than reasoning about the quantities of a situation, 

these students are quick to perform calculations without considering the contextual 

meanings of these calculations. A student with an action conception of function is unable 

to look past specific computations in order to view a function as accepting inputs and 

producing outputs, regardless of the algorithm or representation. An action conception 
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inhibits the student’s ability to reason dynamically about the relationship between two 

quantities (M. Carlson, 1998; M. Carlson, et al., 2002; Oehrtman, et al., 2008), such as 

imagining a varying angle measure and a varying length. 

A self-evaluating, or process view of function supports a student’s ability to 

coordinate intervals of inputs and outputs and reason dynamically about an input-output 

relationship. The “cognitive activities [of an individual] involved in coordinating two 

varying quantities while attending to the ways in which they change in relation to each 

other” are referred to as covariational reasoning (M. Carlson, et al., 2002, p. 354). The 

mental actions involved in covarying quantities have been found to be important for 

understanding the function concept (M. Carlson, et al., 2002; M. Carlson & Oehrtman, 

2004; Oehrtman, et al., 2008). Thompson (1994b) further described that the groundwork 

for reflecting on a set of possible inputs in relation to a set of corresponding outputs is 

laid when students are able to imagine an expression being evaluated continually as they 

“run rapidly” over a continuum. 

In addition to the description of covariation provided by Thompson (1994b), 

Saldanha and Thompson (1998) argued that images of covariation are developmental. In 

other words, a student first coordinates two quantities’ values (e.g., think of an angle 

measure and then a length, repeat). Then, as a student’s image of the covariational 

relationship develops, her or his understanding of covariation begins to involve imagining 

continuous and simultaneously changing quantities (e.g., as an angle’s measure changes, 

one has the realization that a length also changes simultaneously). Here, continuous 

covariation implies an image that includes an understanding that all intermediate values 
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of the quantities are obtained as the two quantities change in tandem. Furthermore, 

continuous covariation implies that for any interval of input considered, that interval can 

be divided into subintervals where the quantities covary continuously. The ability to 

imagine continuous changing quantities also parallels a process conception of function in 

that the student is able to imagine or anticipate simultaneous changes without having to 

determine the changes in one quantity and then the changes in the other quantity; the 

student does not actually think of all intermediate values, but he or she has the 

understanding that all of the intermediate values occur independent of calculating these 

values.  

A study by Carlson et al. (2002) gained additional insights into the complexity of 

students’ mental actions when engaging in covariational reasoning. Initially, the authors 

identified multiple behaviors in undergraduate students as the students attempted to 

interpret and represent dynamic function situations. In order to classify the different 

behaviors exhibited, a framework that consists of five mental actions and five levels of 

covariational reasoning was developed (Appendix A). The five mental actions are 

specific to behaviors exhibited. However, the mental actions alone were found to be 

insufficient in classifying the collection of behaviors a student exhibited. For instance, 

students engaged in higher mental actions but were unable to unpack these actions in 

lower mental actions. Thus, in order to describe a student’s covariational reasoning 

ability relative to a situation or problem, the framework was extended to include five 

levels of covariational reasoning that parallel the five mental actions. A student is said to 

reason covariationally at a certain level when they are able to reason not only using the 
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mental action associated with that level, but also with all mental actions associated with 

lower levels (e.g., Level 3 implies MA1-MA3 abilities). 

In an attempt to link the mental actions of the framework presented by Carlson et 

al. (2002) to trigonometric functions, consider the situation of tracking a point on the end 

of a fan blade rotating counterclockwise, with the point starting in the standard position 

(e.g., the 3 o’clock position). Specifically, consider the covariation of the distance 

traveled by the point and the point’s vertical distance above the center of the fan. A 

student exhibiting behavior corresponding to Mental Action 1 (MA1) would focus on the 

coordination of quantities. Such a student may describe that as the distance traveled by 

the point changes, the vertical distance also changes. If the student’s description were to 

also include a coordination of direction of change (e.g., as the distance traveled increases, 

the vertical distance from the center of the fan also increases), this would be indicative of 

MA2. MA3 refers to coordinating amounts of change. This would involve actions 

considering specific changes in the distance traveled and identifying the corresponding 

changes of vertical distance. Next, MA4 includes a focus on the average rate of change 

of one quantity with respect to the other quantity. This action could include a number of 

behaviors. For instance, a student may consider how the average rate of change of 

vertical distance with respect to distance traveled varies over successive intervals of 

distance traveled. Lastly, a behavior associated with MA5 would be describing the 

instantaneous rate of change over an interval of the domain. In the fan situation this 

would include a description that the rate at which the vertical distance is increasing with 

respect to the distance traveled is decreasing (in the first quadrant). Graphically, this 
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description may include a student sketching a smooth, concave down graph. Note that 

this mental action alone does not entail an understanding of rate, as a student who is 

describing rate may not be able to unpack this concept in terms of MA3 behaviors. Such 

instances of student reasoning were observed by Carlson et al. (2002). A summary of 

these mental actions and their verbal manifestations relative to trigonometric functions 

can be found in Appendix A. 

The problems presented to the students under study by Carlson et al. (2002) were 

set in a context. Thus, the students were asked to reason covariationally about quantities 

they constructed from an imagined situation. Although it was not the focus of the 

investigation by Carlson et al., the students in the study constructed mental images of the 

problem situations, where the quantities composing these situations possibly impacted the 

students’ abilities to reason covariationally. For instance, relative to this study, if a 

student conceived of the openness of an angle as a static quantity rather than a varying 

quantity, it is hopeless for the student to conceive of a dynamic situation consisting of a 

changing angle measure. The manner in which a student conceives of a situation and the 

quantities composing a situation is at the heart of quantitative reasoning.  

Quantitative reasoning (Smith III & Thompson, 2008; Thompson, 1989) refers to 

a type of reasoning that is situation sensitive and places an emphasis on students 

constructing conceptual objects (quantities) that can be reasoned about. Quantitative 

reasoning emphasizes the mental actions of a student making sense of a situation, 

constructing an image of the quantities of a situation, and reasoning about relationships 

between these quantities. A mental structure that consists of quantities and relationships 
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between quantities creates a foundation that the student can reflect upon, and this 

reflection can result in mathematical reasoning and conceptual development. 

Thompson (Thompson, 1989) argued that quantitative reasoning can lead to 

students constructing mathematical understandings, but warned that this type of 

reasoning is not necessarily natural or prevalent in mathematics curriculum and 

instruction. For instance, tools of algebra are often taught as an approach to complicated 

mathematical problems, where these tools are used to both simplify and solve the 

problem. Yet, this approach can result in the separation of the actual context of the 

problem (i.e., the relationships and intuitive properties of the situation) from the process 

of solving the problem. Although this may become a natural process for some, it is not an 

appropriate or natural approach for those who view these formalities of numerical and 

algebraic manipulations as “magical” and devoid of a situational reference. Furthermore, 

in a situation where algebraic manipulations are nontrivial or not possible, such as within 

the contexts of trigonometry and the use of trigonometric functions, reasoning about a 

problem’s context becomes necessary to develop deep and connected understandings. 

To further explain quantitative reasoning’s role in reasoning about trigonometric 

functions and angle measure, a few working definitions of quantitative reasoning are 

given and explained using various topics of trigonometry. As Thompson (Thompson, 

1989) explained, the definitions presented are intended to be constructs of a system 

composed of notions of quantitative and algebraic reasoning. It is important to note that 

this system of working definitions does not allege to represent the way people reason 



   20 

 

quantitatively. Rather, it is one model that works in describing the cognitive processes 

and conceptual structures that enable quantitative reasoning2. 

A quantity is defined as a conceived attribute of something, where the attribute is 

conceived such that it admits a measurement process (e.g., the something could be an 

image of a problem’s context or a mathematical object, such as a graph) (Thompson, 

1989). Relative to the focus of this study, an angle is an object that has a measurable 

attribute of openness. The place at which a quantity lies is subtle in this definition. Rather 

than existing in the experiential world independent of a student, a quantity is a conceptual 

entity. A quantity is constructed and this construction consists of a situation, an object of 

a situation, and an attribute of the object that admits an explicit or implicit measurement 

process, which includes the result of the measurement3. This definition of quantity 

implies that a student has cognitively identified an object or objectified a phenomenon 

that has attributes that can be measured, where this measure may or may not vary. This 

cognitive object can and will differ from individual to individual; a student may conceive 

of an angle’s openness such that they do or do not imagine measuring along an arc 

subtended by the angle. 

Quantification is the process by which a student assigns values to measurable 

attributes (Thompson, 1989). In other words, quantification is a process of either the 

                                                 
2 This study investigates the way students reason (or not reason) quantitatively within the 
context of trigonometry. The nature of this reasoning will differ from student to student, 
as well as topic to topic. 
 
3 An implicit or explicit measurement act implies that it is not actually making the 
measurement that results in a quantity. Rather, it is the conceived ability to make the 
measurement, whether or not it is carried out, that results in a quantity. 
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direct or indirect measurement of a quantity. It is in the process of quantifying an 

attribute that a quantity becomes conceptualized. In order for a student to comprehend a 

quantity, the individual must have a mental image of an object and attributes of this 

object that can be measured, an implicit or explicit act of measurement that produces the 

quantity, and a value, which is the result of that measurement. It is in this last 

characteristic that the process of quantification occurs. Quantification is the mapping of a 

result of a measurement process to the characteristic. In other words, quantification is the 

function relationship between the result of measuring and the attribute that is measured. 

The result of measurement, whether it is an implicit or explicit result, is not the attribute 

itself. Rather, it is a result of a measurement of the attribute. For instance, a measurement 

of two radians is not the arc length subtended by an angle; it is a result of measuring the 

arc length subtended by an angle in a number of radius lengths. 

It is necessary to briefly describe what the terms result (of measurement) and 

value refer to when describing the role of mapping a result to a characteristic. If taken 

literally, the term result implies a number (e.g., 3.3 or 2!). However, result is used here in 

a more general sense. Result can be used to reference both determined and undetermined 

(or indeterminate) values. In addition to referring to an explicit value such as 3.3, the 

term result could refer to an imagined value. For instance, in the process of measuring a 

quantity, it is possible that one may not have the necessary physical tools to measure the 

quantity, but mentally they are able to imagine a measurement process resulting in 3.3 of 

something. This is especially the case with angle measure. Although a student may not 
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always have a protractor at hand, a student can imagine measuring the openness of an 

angle with the result representing a number of something (e.g., radians). 

The term value refers to the result of a quantification process applied to the 

quantity. In other words, a value is the result of the function relationship created in the 

quantification process. For instance, if a student conceives of the number 2.2 as the result 

of measuring a subtended arc in a number of radius lengths, then the number 2.2 has 

become a value. However, this definition of value can cause confusion, as it creates the 

question, “What do we call a number or a variable that does not appear to be the result of 

a measurement process?” Thus, a number or a variable that is not the result of a 

measurement will be referenced as a number, as it has remained a number without a 

related measurement process. A number or variable that is conceived as a result of an 

implicit or explicit measurement process will be referenced as a value from this point 

forward.  

An additional definition of use is that of a quantitative operation. A quantitative 

operation can be defined as the conception of two quantities being taken to produce a 

new quantity. An example of a quantitative operation is dividing an arc length by the 

length of a radius to create a multiplicative comparison that is the angle measure in 

radians. It is important to contrast a quantitative operation and an arithmetic, or 

numerical, operation. A numerical operation is the operation used to calculate a 

quantity’s value while a quantitative operation is the operation by which a quantity is 

created. For instance, an angle of measure 3.1 radians could double in openness, resulting 

in performing the arithmetic operation of 3.1 !2  and obtaining a measure of 6.2 radians. 



   23 

 

However, the 6.2 radians can still be conceived as the result of a quantitative operation, 

the ratio of arc length to the length of a radius.  

In direct relation to the conception of a quantitative operation is the conception of 

a quantitative relationship. A quantitative relationship is the image of three quantities, 

two of which determine the third by a quantitative operation. The difference between the 

conceptions of a quantitative operation and a quantitative relationship is the focus a 

student places on the result of operating. The conception of a quantitative operation 

focuses primarily on the operation. In other words, the attention is placed on a 

calculation. However, the conception of a quantitative relationship focuses on the result 

and its relationship to its operands. The attention is placed on a relationship, rather than a 

calculation. Consider the following distinction between a quantitative operation and a 

quantitative relationship using an arc length, the length of a radius, and the measure of an 

angle’s openness in radians. In order to determine the measure of an angle’s openness in 

radians, one determines the ratio of arc length to the length of a radius (e.g., a quantitative 

operation). However, a student’s conception of the relationship between the three 

quantities may change. For instance, a student may conceive of the ratio as defining how 

many radius lengths lay along the arc length or they may conceive of the ratio as defining 

a magnitude that is so many times the magnitude of a radius. Or, the individual may 

conceive of the ratio as merely a calculation that is performed when attempting to 

determine a number of radians. 

With these definitions in place, quantitative reasoning is defined as the analysis 

of a situation into a quantitative structure. A quantitative structure is the network of 
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quantities and quantitative relationships constructed, which forms a foundation for 

reasoning and reflection. Quantity-based arithmetic consists of quantitative reasoning, 

determination of appropriate operations (inferred according to relationships among 

quantities) to calculate quantities’ values, and the propagation of calculations. Also, 

quantity-based algebra can now be described as the same as quantity-based arithmetic, 

except representations of situations are under-constrained in terms of quantities’ values 

(i.e., there is not enough numerical information to propagate calculations), some value or 

values are represented symbolically, and formulas are propagated instead of values being 

propagated.  

Overall, quantitative reasoning stresses the importance of students conceiving of 

situations and measurable attributes of a situation as a foundation for mathematical 

reasoning. Although each individual in a classroom develops unique understandings and 

images, this is not to say that students cannot develop understandings and images that are 

consistent with the instructional goals. Instruction must account for this initial 

development of situations and quantities that the students are to reason about, as research 

has revealed that students often have difficulty constructing situations consistent with the 

purpose of a problem (Moore, et al., 2009). 

Allowing students the opportunity to construct a situation in which they can 

conceptualize quantities and their relationships also enables formulas and functions to 

emerge in a meaningful way. By first promoting the cognitive development of quantities 

and their relationships such that these images include how the quantities covary, formulas 

and representations of functions can emerge as a reflection and generalization of these 
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relationships (Moore, et al., 2009). This is opposed to the approach of developing a 

formula or function and then attempting to attach meaning and understandings to the 

formula. The approach that functions be a reflection of a student’s understanding of a 

situation is necessary for trigonometric functions. The symbolic representations of 

trigonometry functions do not lend themselves to algebraic computations; a student must 

first be able to relate trigonometric functions to a context (e.g., the unit circle or a right 

triangle) if they are to understand trigonometric functions beyond a memorized set of 

values. Also, the student must conceptualize these contexts in ways that the formalisms 

of trigonometry can emerge from images of quantitative structures that include covarying 

quantities. In the case that a student does not construct a mental image consistent with the 

instructional goals, it is likely that the student will not reason correctly when attempting 

to relate the relevant quantities of the situation (Moore, et al., 2009).  

Note that a process conception of function is also related to the type of reasoning 

that can occur when conceiving of a situation composed of quantities. To say more, a 

student’s initial act of constructing measurable attributes of a situation can lead to an 

image of these quantities taking on indeterminate values. Also, if a student’s image of a 

situation is dynamic in that he or she can imagine the two quantities varying in tandem 

previous to tracking or calculating numerical values, a student has an image from which 

he or she can formalize “a dynamic transformation of quantities according to some 

repeatable means that, given the same original quantity, will always produce the same 

transformed quantity” (Harel & Dubinsky, 1992). With a properly developed image of a 

situation, the foundations are laid for a self-evaluating view of function that supports the 
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ability to coordinate entire intervals of inputs and outputs. However, for this type of 

reasoning to occur, it becomes critical that a student orients to a problem by constructing 

a mental image of the problem’s context that promotes this reasoning (Moore, et al., 

2009). 

Quantitative Reasoning in Problem Solving 

Quantitative reasoning refers to a student identifying and conceptualizing 

quantities that compose a situation, which is an action central to contextual problem 

solving. When engaged in a novel contextual problem, the mental processes of creating a 

mental image occur. Objects of this mental image may be imagined and attributes of 

these objects can be identified and quantified. These mental actions (which are unique to 

each individual) of constructing an image of the problem’s context may be part of the 

orientation phase of problem solving (M. P. Carlson & Bloom, 2005). 

Carlson and Bloom’s Multidimensional Problem Solving Framework (2005) 

emerged from a study that examined the mental process and knowledge influencing 

mathematicians’ problem solving actions. Analysis of the data revealed four distinct 

phases of problem solving: orienting, planning, executing, and checking. The orientation 

phase is the phase in which a problem solver situates himself to a problem and constructs 

an initial mental image of the problem’s context. During this phase the solver engages in 

sense making, organizing and constructing. Within the planning phase, conjectures about 

the solution’s approach are created and tested. During the planning phase, the sub-cycle 

of conjecture—imagine—verify takes place. This sequence can be defined as follows: a) 

construct a conjecture, b) imagine how the solution will play out, and c) evaluate the 
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viability of the conjectured approach. This sub-cycle allows the problem solver a more 

efficient approach to the problem because it avoids formally executing each conjecture. 

The executing phase involves the problem solver making formal constructions and 

carrying out computations. The checking phase can be described as a process of 

verification. During this phase, the problem solver analyzes the reasonableness of his 

solution and computations. This results in a rejection (and a cycle back to orienting or 

planning) or an acceptance (and a move to a new solving cycle if the problem is not 

completed). 

Before continuing, it is noted that for descriptive purposes the problem solving 

process is discussed in a somewhat linear progression. However, this is not necessarily 

how the problem solving process unfolds. As observed by Carlson and Bloom (2005), a 

problem solver may jump from phase to phase in any manner and is not restricted to, for 

example, only participating in orienting once and then moving on without participating in 

later orienting actions. 

According to Carlson and Bloom (2005), the various engagement processes of 

orientation can be categorized as sense making, organization, and constructing. 

Resources, heuristics, and affect all have an influence on these behaviors. Resources are 

formal and informal knowledge, facts, and procedures used during the problem solving 

processes. Heuristics include actions such as the use of constructing a diagram or 

attempting a parallel problem. Affect is a description of beliefs and attitudes of the nature 

of mathematics, problem solving, testing, etc. that the problem solver holds. Examples of 

affect are enjoyment, confidence, frustration, and mathematical integrity. Mathematical 
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integrity refers to the nature of a problem solver’s action of determining when a solution 

is correct, a problem is solved satisfactorily, or his or her understanding is sufficient.  

Another aspect of orientation is sense making. Sense making is defined as the 

process in which a problem solver reads and interprets a problem4. During sense making, 

a problem solver identifies characteristics of an object and a situation to be modeled. 

These characteristics are possibly attributes of an object that will need to be quantified 

during future mental actions. Also, the problem solver may simply build a mental image 

of the physical situation being interpreted (e.g., a dog chasing a fox). During sense 

making, the problem solver also identifies what questions are to be answered and the 

problem solver develops the image of some goal, or goals, to accomplish. 

While not a specific focus of this dissertation, goal(s) identification and self-

reflection on these goals can have a significant impact on problem solving behaviors. The 

goals identified can shape the path a problem solver takes and contribute to determining 

the characteristics of an interpreted situation a problem solver identifies as being or not 

being important. Furthermore, as a problem is interpreted and solved, goals may be 

refined, new goals may be built, and existing goals may be abandoned. This is another 

example of the non-linear and possibly iterative nature of problem solving. Important to 

note is the influence of mathematical conceptions and beliefs about mathematics on goal 

identification. For instance, if a problem requires the creation of a symbolic 

representation of a function, a problem solver’s conception of function can significantly 

                                                 
4 Note that the descriptions that follow are directed at problems that are context based. 
Also, a problem is defined as a non-routine task that requires the student to reason 
beyond applying procedures comfortably (an exercise). 
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influence the problem solver’s interpretation of the problem’s goal. In relation to beliefs, 

if a student views mathematics as only consisting of formulas and calculations and a 

problem asks for an algebraic function, it may be the case that quantifying a situation 

may not occur (except at an undeveloped level) as this may not be mathematics to the 

problem solver. Or, if a problem solver’s view of mathematics is obtaining correct 

solutions, they may focus on the result of their solution rather than the actual solution 

process. 

Another mental action that may occur during sense making is accessing existing 

concepts and experiences in an attempt to relate them to the interpreted situation. The 

word experiences is not used haphazardly here; rather than solely use the word concepts, 

which may only imply mathematical concepts to the reader, experiences is used to add 

attention to physical experiences and observances. For instance, in a question regarding 

building a box and creating volume, the solver may recall an image of a past experience 

of building and forming a box. Or, a student may recall an observable action or 

calculation made by him or herself, or another individual, during a similar problem or 

situation. 

Carlson and Bloom (2005) emphasized that the orientation phase formed a critical 

component of an individual’s problem solving behaviors; however, the authors did not 

provide a fine grained description of what is being imagined and constructed in the mind 

of the solver during this phase. The authors also noted that the strong abilities of the 

mathematicians under study made many of the mental actions in problem solving 

unobservable, particularly during the orientation phase. Thus, this dissertation attempts to 
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offer insights into the possible mental actions involved in the orientation phase and how 

these are connected to quantifying a situation and constructing understandings of 

trigonometric functions and angle measure. This study explores the role of quantitative 

reasoning during the problem solving processes of the students when solving the tasks 

composing the instructional unit on trigonometry. 

Research Literature on Trigonometry 

Although limited, the research available on students’ and teachers’ conceptions of 

trigonometric functions revealed valuable insights that informed the design of this study. 

A common observance is that both students and teachers hold limited and fragmented 

understandings of trigonometric functions and topics fundamental to trigonometry. 

Students’ Understandings of Trigonometry 

The research literature on students’ understandings of trigonometric functions is 

sparse, but there have been multiple studies that present findings pertinent to this 

investigation (Brown, 2005, 2006; Weber, 2005). These studies on student thinking have 

revealed students holding limited and narrow understandings. Students have also been 

labeled as having a fragile conception of angle measure (Brown, 2005). 

In an attempt to gain insights into student thinking in trigonometry, a study 

conducted by Weber (2005) compared a lecture-based course versus experimental 

instruction in the context of two undergraduate trigonometry courses. The experimental 

instruction focused on investigating trigonometric functions by physically (or mentally) 

constructing situations and making (or estimating) measurements from these 

constructions. This experimental instruction rested on the stance that when students 
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reason about the values of trigonometric functions or expressions, a student must have a 

developed image of the geometric processes5 used to obtain those values regardless of the 

context. The stance taken by Weber is consistent with the suggestions of quantitative 

reasoning; students must develop conceptions of the objects and quantities they are asked 

to reason about. In the case of Weber’s study, the students who received the experimental 

instruction were found to develop deeper and more connected understandings of 

trigonometric functions.  

The students composing the traditional, lecture-based group of Weber’s study 

(2005) were often unable to discuss various properties of trigonometric functions or 

estimate their output values for various input values. The author identified that these 

students were unable to construct the geometric objects needed to reason about 

trigonometric functions. For instance, the students in the traditional group were unable to 

approximate sin(!) for various values of !. Instead, the students claimed that they were 

not given enough information to accomplish this task and that they needed an 

appropriately labeled triangle. The author also revealed that the students in the lecture-

based course frequently spoke of the sine function as a cue for finding an answer rather 

than as a function or process between the values of two quantities. 

Weber (2005) also observed that when the students were asked why sin(x) is a 

function, none of the students from the lecture-based class were able to provide a 

meaningful answer. This finding is consistent with the research literature that has 

revealed students having difficulty reasoning about function as a process (M. Carlson, 

                                                 
5 Angle measure did not appear to be an explicit focus of the experimental instruction. 
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1998; M. Carlson & Oehrtman, 2004; Harel & Dubinsky, 1992; Oehrtman, et al., 2008; 

Sierpinska, 1992; Thompson, 1994b). Relative to the experimental course, three of the 

four students described the sine function in terms of a process between an input and 

output quantity. Weber attributed the students’ improved performance and reasoning to 

their use of the unit circle. That is, students who showed improved performance often 

revealed reasoning that was based in the context of the unit circle. However, he noted that 

not all approaches to trigonometric functions that use the unit circle will result in 

improved student understandings. He stressed the importance of students understanding 

the process of creating the unit circle in relation to the corresponding trigonometric 

functions. This important suggestion by Weber may explain why Kendal and Stacey 

(1997) found that students who were taught using a unit circle model learned less than 

those using a right triangle model, or Brown’s (2005) finding of students having 

difficulty relating a point on the unit circle to the graph of the sine or cosine function.  

In general, the reports on students’ trigonometric understandings have revealed 

students encountering many difficulties when reasoning about trigonometric functions. 

Students are often observed having limited cognitive connections between the various 

contexts of trigonometry. Students also appeared to lack the foundational understandings 

necessary to build these connections. These foundational understandings include 

conceptions of angle measure, the radian as a unit of measurement, and the role of the 

unit circle in trigonometry. These findings suggest that more time needs to be devoted to 

developing the foundational understandings necessary for trigonometry and that 

investigations are needed to determine how to promote coherence between the various 
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trigonometric contexts. As Weber (2005) suggested, careful attention must be given to 

promote students constructing the unit circle and its relationship to trigonometric 

functions such that this context becomes a reasoning tool. This suggestion can be applied 

to any understanding considered foundational to trigonometry and trigonometric 

functions (e.g., angle measure and the radian).  

Teachers’ Understandings of Trigonometry 

Multiple studies have described teachers’ understandings of trigonometry as 

narrow, limited, and entrenched (Akkoc, 2008; Fi, 2003, 2006; Thompson, et al., 2007; 

Topçu, Kertil, Akkoç, Kamil, & Osman, 2006). These investigations observed teachers 

lacking meaningful understandings of the radian as a unit of angle measure and found 

that teachers were much more comfortable with degree angle measures. For instance, Fi 

(2003, 2006) observed that secondary teachers used procedures that were not meaningful 

when converting between radian and degree angle measures. Also, the teachers were 

unable to describe a meaning of radian measure beyond these conversion procedures. 

Multiple studies (Akkoc, 2008; Fi, 2003, 2006; Tall & Vinner, 1981; Topçu, et al., 2006) 

have reported that teachers do not view ! as a real number when discussed in a 

trigonometry context. Rather, these teachers were observed graphing ! radians as equal to 

180 (as a number, not degrees), where other teachers described ! as the unit for radian 

measure (e.g., a radian is so many multiples of !).  

Akkoc (2008) also reported that the pre-service teachers with the most developed 

conception of the radius as a unit of measurement used the unit circle to relate various 

concepts of trigonometry, while teachers with less developed understandings relied on 
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using a right triangle (devoid of a circle) to explain concepts of trigonometry. The author 

suggested that the geometric underpinnings of trigonometry and the introduction of the 

cosine and sine functions in the context of right triangles might be the root of teachers’ 

degree dominated images of angle measure. The degree is the typical unit of angle 

measure used in right triangle trigonometry, which becomes the image that dominates an 

individual’s way of reasoning. In response to this finding, Akkoc suggested that 

instructional activities promote conceptions that enable understanding the radian as a unit 

of measurement. 

In response to the limited and fragmented understandings of trigonometry often 

constructed by teachers, Thompson, Carlson, and Silverman (2007) engaged teachers in 

tasks designed to necessitate their re-conception of the mathematics they teach. The 

authors focused on using length (or magnitude) as a foundational concept. For instance, 

angle measure was developed in terms of an arc length’s fraction of a circle’s 

circumference in order to promote the teachers constructing a process for measuring an 

angle. The teachers’ activity on the tasks implied that they held strong commitments to 

their current high school curriculum and the meanings they had attached to that 

curriculum. Specifically, the teachers were attached to introducing trigonometry using 

right triangles, rather than angle measure and the unit circle. The teachers also maintained 

a belief that trigonometry is mainly about solving for measurements of a triangle. These 

understandings, regardless of their incoherence, dominated what the teachers imagined 

themselves teaching even after the authors’ brought the incoherence of these meanings to 

the teachers’ attention. This emphasizes the importance of remaining attentive at all times 
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to the conceptions students (who may end up becoming teachers) build, especially at the 

outset of a mathematical topic. 

A commonality between each of the above research reports is that teachers we 

found to be strongly committed to meanings that did not reflect coherent understandings 

of trigonometry. These reports revealed that a majority of the teachers lacked the 

foundational understandings necessary for trigonometry, which possibly contributed to 

the incoherence of their meanings. A majority of the teachers constructed a very limited 

conception of the radian as a unit of measure and the teachers’ images of angle measure 

were frequently dominated by degree measures6. These images did not appear to promote 

the reasoning necessary for meaningful and connected understandings of trigonometric 

functions. 

Summary of Chapter 

This chapter provided an overview of the theoretical perspective that forms the 

foundation for this study, which stems from a combination of radical constructivism and 

Piaget’s theory of genetic epistemology. A central component of this theoretical 

perspective is that an individual’s knowledge is unique and fundamentally unknowable to 

any other individual. In such a case, the goal of the researcher becomes building models 

of a student’s knowledge, testing these models, and subsequently refining these models. 

This chapter also addressed areas of research that offer insights into various 

reasoning abilities deemed critical to understanding trigonometric functions. Because the 

sine and cosine functions cannot be trivially calculated through numerical calculations, it 

                                                 
6 Other than the Thompson, Carlson, and Silverman (2007) report, no studies reported on 
teachers’ images of degree measurement. 
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is important that students construct a process conception of the dynamic relationships 

formalized by trigonometric functions. The ability to covary two quantities has also been 

shown to be a critical and complex reasoning ability that students must apply when 

learning concepts of precalculus and calculus. This study attempts to leverage the 

research on covariation and function to promote students constructing meaningful and 

flexible understandings of trigonometric functions. 

In order to engage in covariational reasoning, a student is expected to reason 

about dynamic relationships between two quantities. This implies that the student first 

constructs each quantity he or she is to reason about, which likely occurs during the 

orientation process of problem solving. Quantitative reasoning provides a model of a 

student conceptualizing quantities and relationships between these quantities. Also, 

quantitative reasoning stresses the value of engaging students in situations that offer them 

the opportunity7 to construct quantitative relationships and reflect on these relationships 

in a manner that they develop understandings and ways of reasoning consistent with 

instructional goals. Also, a student that constructs quantitative structures composed of 

relationships between varying quantities is prepared to create formulas and mathematical 

representations (e.g., graphs) that reflect these relationships. 

This chapter concluded by providing a synthesis of the research available on 

teachers’ and students’ understandings of trigonometry. The limited research available 

has identified both teachers and students as holding very fragmented and limited 

understandings of trigonometric functions. Additionally, students and teachers were 

                                                 
7 Merely offering contextual situations does not imply that students will engage in 
quantitative reasoning. 
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observed lacking foundational reasoning abilities necessary for understanding 

trigonometric functions, although few research studies have investigated the role of these 

foundational understandings. The next chapter provides the methodology for this 

dissertation, which intended to gain insights into the reasoning abilities and foundational 

understandings needed to construct meaningful conceptions of the sine and cosine 

functions, as well as angle measure. 
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Chapter 3 

Methodology 

The primary goal of this research was to investigate precalculus students’ thinking 

and learning in the context of angle measure and the sine and cosine functions for the 

purpose of improving trigonometry instruction. If an intention of research is to improve 

mathematics instruction, it is necessary to gain insights into the conceptions students 

develop and the ways of reasoning they exhibit as they encounter instructional activities. 

These insights can then be used to improve instruction and future research ventures for 

the purpose of informing ongoing efforts to improve student learning.  

This investigation into precalculus students’ thinking and learning was carried out 

using a teaching experiment methodology (Steffe & Thompson, 2000) with three students 

that included a sequence of clinical interviews (Clement, 2000), teaching sessions, and 

exploratory teaching interviews (e.g., one-on-one teaching experiment sessions). This 

chapter describes the subjects and setting for this study. This is followed by an 

explanation of the methods for data collection, which includes a description of the 

theoretical principles driving each of the data collection methods. The chapter concludes 

with a description of the methods used to analyze the data. 

Subjects and Setting 

The subjects8 for this study were three precalculus students from a large public 

university in the southwest United States. The students were chosen on a volunteer9 basis 

                                                 
8 The three subjects will be referenced as students from this point forward. Details of 
each student are provided in each chapter dedicated to the student. 
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and they were monetarily compensated for their time ($20/hr.). The precalculus 

classroom from which the students were chosen was part of a design research study 

where the classroom intervention (M. P. Carlson & Oehrtman, 2009) was informed by 

theory on the processes of covariational reasoning and select literature about 

mathematical discourse and problem solving (M. Carlson, et al., 2002; M. P. Carlson & 

Bloom, 2005; Clark, et al., 2008). The head researcher of the precalculus redesign project 

was the professor of the class, which met for 75 minutes twice each week over a fifteen-

week period. The classroom instruction consisted of lecturing, whole class discussion, 

and collaborative activity. Each module’s design was based on a conceptual analysis of 

the cognitive activities conjectured to be necessary for developing understandings of the 

module’s topic. Specific topics of focus for the course were rate of change, 

proportionality, functions, linear functions, exponential functions, logarithmic functions, 

rational functions, unit circle trigonometry, and right triangle trigonometry. Enrollment in 

the precalculus redesign course was voluntary and, upon enrollment, the students could 

not distinguish the redesign course from the other precalculus sections at the university. 

Pre-Interviews 

The researcher conducted a 60-minute pre-interview with each student prior to the 

beginning of the teaching experiment sessions. The intention of these interviews was to 

gain information about each student’s reasoning abilities and understandings of angle 

measure by having them solve various tasks involving angles and their measure. The pre-

                                                 
9 The human subjects approval letter can be found in Appendix G. 
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interview followed the design of a clinical interview (Clement, 2000) and Goldin’s 

(2000) principles of structured, task-based interviews. 

Teaching Experiment 

The primary methodology for this study was a teaching experiment (Steffe & 

Thompson, 2000) conducted by the researcher. In principle, a teaching experiment not 

only tries to identify the beginning and ending points of student progress, but also the 

construction and reorganizations made by the student that enables this progress. The 

teaching experiment involves a sequence of teaching episodes that include: one or more 

students (this study has three), a teaching agent (the researcher), a witness of these 

episodes, and a method of recording what occurs during each episode.  

The teaching experiment sessions for the study took place separate from the 

course in which the students were drawn. The students did not attend the precalculus 

course during the study, but instead met as a group with the researcher (myself) for six 

90-minute sessions. Each teaching experiment session was videotaped and digitized and 

all student work from the teaching experiment sessions was collected. 

A teaching experiment methodology was chosen in order to offer the researcher a 

first hand experience of the students’ reasoning and development. According to Steffe 

and Thompson (2000), teaching experiments allow the researcher to experience 

constraints of the language and actions of students and of students’ mistakes, especially 

those that persist regardless of the researcher’s best efforts to both uncover and advance 

student thinking. The use of the word experience is not meant to imply that the researcher 

has direct access to the students’ realities, as the students’ mathematical realities are 
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entirely independent of those of the researcher. Rather, Steffe and Thompson use 

experience to refer to the researcher’s experiences that allow insights into the students’ 

mathematics, where a student’s mathematics is fundamentally unknowable to the 

researcher. These insights or interpretations by the researcher of the students’ 

mathematics allow the researcher to construct models of the students’ mathematics, 

which Steffe and Thompson define as the mathematics of students. This distinction 

emphasizes the autonomy of individuals, where the most basic goal of a teaching 

experiment is to build, test, and refine tentative models of each student’s mathematics, 

which are based on the researcher’s interpretations of the students’ actions and behaviors.  

The teaching experiment methodology described by Steffe and Thompson (2000) 

enables a bridge between research and teaching. Rather than suppressing conceptual 

analysis in investigations into students’ sense making, teaching experiments take the 

stance that students are in a constant mode of construction and the researcher’s goal is to 

understand these constructions and how they are made. This contradicts classical 

experimental design in which students’ mathematical achievement is often focused upon 

in a manner that does not consider the unique meanings constructed by the students 

involved in the experiment. 

Due to students being in a constant mode of construction, a teaching experiment is 

not only designed to test hypotheses, but also continually generate them (Steffe & 

Thompson, 2000). Although one does not begin a teaching experiment without major 

hypotheses to test (e.g., a developed image of angle measure and the unit circle enables 

the construction of coherent understandings of trigonometric functions), these hypotheses 
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are forgotten during the teaching sessions of the experiment. This is done in order to 

continuously adapt to the constraints presented when interacting with students. The 

researcher attempts to generate hypotheses during interactions with the students with the 

goal of trying to promote the maximal development in each student participating in the 

experiment. Just as a researcher attempts to create perturbations in the students, a 

student’s actions may lead to perturbations in the researcher’s models of the student’s 

mathematics that the researcher must consider and pursue. 

The continual generation of hypotheses also allows the formulation of new 

situations of learning not considered in the initial design of the teaching experiment. As 

Steffe and Thompson (2000) articulate, this allows the researcher to push the boundaries 

of the students’ mathematics to where students make what the researcher considers 

essential mistakes. This highlights the purpose of a teaching experiment: determining the 

reasoning a student can engage in (regardless of correct or incorrect) and the possible 

mental actions behind the student’s reasoning. The continual generating and testing of 

hypotheses also stresses the importance and difficulty of the role of the researcher. The 

researcher will often engage in interactions with students where he or she will not know 

the direction the interactions are heading. Because of this, the researcher must engage in 

interactions such that he or she makes no intentional distinctions between his or her 

knowledge and a student’s knowledge. The researcher’s attempt to immerse himself in 

the interactions with the students stresses the importance of the role of a witness, as the 

witness’s perspective may offer unique insights not considered by the researcher.  
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The continual hypothesis generating, testing, and reconstructing also highlights 

the recursive nature of Steffe and Thompson’s teaching experiment methodology (2000). 

A researcher’s inferences of a student’s mental actions inform further interactions and 

interventions with the students, which may result in more crystallized models of each 

student’s mathematics. But, it is important to note that although these models of students’ 

mathematics may become more precise over time, the models are never to be interpreted 

as one-to-one representations of the students’ thinking and knowing. Rather, the models 

are merely models that work in explaining possible cognitive processes behind the 

students’ actions. These models remain viable as long as they explain the students’ 

contributions. However, it is always the case that researchers should attempt to build 

models that supersede current ones. A model of a student’s mathematics should never be 

thought of as perfect, as this would contradict the notion of the students being 

autonomous individuals. 

Relative to this study’s implementation of the teaching experiment methodology, 

the researcher met with a colleague previous to each teaching experiment session. The 

colleague also witnessed each teaching session. These meetings were used to discuss and 

document the instructional goals of the lesson and the design of the lesson in light of 

these instructional goals. These instructional goals and design decisions were informed 

by the hypotheses of each student’s understandings that the researcher developed by 

reflecting on video data between sessions. This allowed the witness to develop a model of 

how the lesson was originally planned to unfold. The witness took notes on the behaviors 

exhibited by the students during each teaching experiment session. He also noted when 
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the instruction appeared to deviate from the planned lesson and what he initially believed 

caused this deviation. 

The researcher also met with the witness to debrief after each teaching experiment 

session. This debriefing included discussing and documenting what were seemingly 

important moments of the teaching session and the students’ behaviors that were 

noteworthy during the lesson. The researcher and witness also discussed and documented 

apparent deviations from the intended lesson and why the researcher made these 

deviations. This allowed an immediate documentation and later retrospective analysis of 

the reasoning for various instructor moves during the teaching sessions relative to the 

models of students’ mathematics generated by the researcher. These discussions were 

critical in helping the researcher to articulate and validate the rationale for the 

researcher’s decisions.  

The behaviors of the students that were identified by the researcher and witness 

during the debriefing sessions were then analyzed in more detail between teaching 

experiment sessions by reviewing the video recording of the session. This recording was 

not transcribed between sessions due to time constraints, although instances that were 

identified as particularly revealing of a student’s reasoning were (conceptually) analyzed 

in order to generate hypotheses of the student’s mathematics. The implications of these 

hypotheses were considered relative to the future instructional goals, thus informing the 

design of the next instructional session and the exploratory teaching interviews. These 

sessions also facilitated the researcher’s documentation of the reasoning that led to the 

design and selection of instructional tasks for the subsequent lessons. This documentation 
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and generation of instructional tasks enabled testing and modifying hypotheses of the 

students’ mathematics while attempting to promote continued development in the 

students’ understandings.  

Exploratory Teaching Interviews 

In addition to the teaching experiment sessions conducted with the three students 

in a classroom setting, teaching experiment sessions were conducted with each individual 

student at critical points during the study. These  interviews were also videotaped and 

digitized with all student work collected. 

As discussed by Steffe and Thompson (2000), and illustrated in practice by 

Thompson (1994c), a teaching experiment offers a way to use teaching as a scientific 

method of investigation where models of students’ mathematics are generated and tested. 

A sequence of one-on-one teaching experiment sessions was implemented in order to 

gain additional insights into the developing conceptions of the students and to test 

hypotheses (developed previous to the interviews and on the fly during the interviews) of 

each student’s understandings. As the classroom sessions included all three students 

interacting with each other and the researcher, the researcher could only gain glimpses 

into each student’s understandings. Thus, the individualized interviews were designed to 

gain deeper insights into each student’s thinking. The study conducted by Thompson 

(1994c) illustrates the benefits of using a sequence of such interviews. In order to 

characterize the nature of these interviews and distinguish them from multi-student 
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teaching experiment sessions, I propose to call this type of interview created by Steffe 

and Thompson an exploratory teaching interview10. 

As outlined by the teaching experiment methodology (Steffe & Thompson, 2000), 

the exploratory teaching interviews involved the posing of tasks and instruction based on 

each student’s actions. This approach enabled the researcher to make decisions during the 

interview for the purpose of pushing the student to a point of disequilibrium by 

presenting situations to test the models of the student’s mathematics. Included in this 

approach is presenting situations in which the student’s current ways of thinking may 

result in the student encountering perturbations as a result of their current understandings. 

This approach allowed the researcher to determine possible limitations to the student’s 

current ways of thinking that may not be revealed in other interview or classroom 

situations. It also provided an opportunity for the researcher to make instructional 

decisions aimed at promoting further development of the student. However, it is noted 

that these instructive actions of the researcher did not occur until the researcher deemed 

that the student was unable to proceed on the task or had completed the task using her or 

his current way of thinking. 

Through this approach to the interviews, student development outside of the 

classroom sessions was unavoidable. However, the main intention of this study was not 

to solely judge the effectiveness of the instructional unit; that is, the overall intention of 

this study was not to conclude that the lesson worked or did not work. Rather, the main 

intention of this study was to gain insights into each student’s reasoning abilities and 

                                                 
10 The use of the term exploratory teaching interview will also enable the reader to 
differentiate between the one-on-one interview settings and the group settings. 
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conceptions. Relative to this goal, these interviews played a critical role in this 

investigation by offering the researcher additional insights into the students’ reasoning 

and ways to promote the students’ development. 

Lastly, due to the approach of considering each student’s knowledge as entirely 

unique, the tasks of each exploratory teaching interview were unique to the interviewee. 

The tasks were chosen based on the models of that student’s mathematics that were 

generated during the group sessions. This included designing tasks to gain insights into 

the student’s current ways of reasoning, where her or his reasoning breaks down, and the 

student’s ability to construct knowledge that allows her or him to overcome the obstacles 

encountered as a result of her or his current ways of reasoning. The researcher also 

documented his rationale for the design of each task relative to the conjectured models of 

the student’s mathematics. This documentation allowed a retrospective analysis that 

included considering the tentative models of the students’ mathematics that informed the 

instructional and interview design.  

Data Collection and Analysis Overview 

The data collected for the study included: 

- Videotaped teaching experiment classroom sessions (six 1.5-hour sessions), 

briefing, and debriefing sessions 

- Videotaped pre-interviews (sixty minutes per student) 

- Videotaped exploratory interviews (totaling approximately four hours per student) 

- Student written work from the teaching experiment sessions and interviews 

- Precalculus Concept Assessment (pre-course and post-course) and course grades 
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Each interview and teaching experiment session was videotaped. The teaching 

experiment sessions included two cameras, in addition to a computer feed capture. One 

camera was an overhead shot of the students’ table that captured the gestures of each 

student. The second camera captured the behaviors of the researcher and all work 

produced on whiteboards. The computer feed captured all instructional moves that 

utilized dynamic applets.  

All interviews were conducted in an interview room with two cameras. One 

camera captured a view from above the table that enabled the chronological 

documentation of each student’s written work. The second camera was directed at the 

student in order to capture each student’s gestures. 

The quantitative aspect of this data utilized the performance of all students in the 

precalculus classrooms relative to the Precalculus Concept Assessment (PCA) and their 

course grades. The PCA (M. Carlson, Oehrtman, & Engelke, 2010) consisted of 25 

multiple-choice questions focused on various reasoning abilities deemed critical for 

success in calculus (e.g. the function concept and rate of change). This instrument had 

been validated to reveal a correlation between success in calculus and student PCA 

scores. The quantitative data collected from all students provided information about the 

reasoning abilities and understandings of the students relative to the other participants in 

the course. This allowed the researcher to gauge the abilities of the study’s students 

relative to those of the other students in the course. 

The qualitative data was coded following an open (generative) and axial 

(convergent) coding approach (Strauss & Corbin, 1998) in order to both develop and 
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refine the models of students’ mathematics. Specifically, the data was coded in an 

attempt to identify emerging student behaviors and patterns or connections between these 

behaviors. First, this grounded approach consisted of identifying episodes of a student’s 

behaviors and actions that offered insights into the student’s reasoning and thinking 

relative to the topics of instruction. These episodes were used to generate tentative 

models of the student’s mathematics. Next, these tentative models were tested by 

searching and analyzing the data for evidence that either supported or contradicted the 

generated models. This analysis resulted in the refinement, extension, or reconstruction of 

the hypothesized models of each student’s mathematics. 

This approach of analyzing the data reflects both the generative and convergent 

purposes of this study. Very little has been documented regarding how students reason 

about the topics of trigonometry; hence, it was highly important that the researcher 

remained open to the continual refinement and reconstructing of the hypotheses 

developed. It was in this process of identifying contradictory or supportive evidence that 

hypotheses of a student’s understandings were altered. 

In order to generate hypotheses of a student’s understandings, instances believed 

to reveal insights into a student’s reasoning and understanding were analyzed in an 

attempt to determine the mental actions that contributed to the emerging behaviors. In 

other words, a conceptual analysis, as described by Thompson (2000), was performed 

using the data collected. The mathematical constructions and interactions that occurred 

between the students and researcher were examined in an attempt to model and 

understand the thinking of the student. However, these generated models were not 
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replications of the understandings of the student. That is, the generated models were only 

hypotheses that worked in explaining the behaviors and actions of the students. Because 

each individual’s knowing is completely unknowable to any other individual, the 

generated models only offered explanations of how the students may have been thinking, 

opposed to claiming how they were thinking. It is through the analytical processes of 

generating, refining, extending, and reconstructing hypotheses that the researcher hoped 

to achieve validity in the model of each student’s mathematics.  

Data Analysis Procedure 

This section describes the approach to data analysis that involved the generation, 

refinement, extension, and reconstruction of models of the students’ mathematics. The 

collected data was first organized in a chronological order of its production and an initial 

analysis consisted of viewing all video data in the order by which the data was produced. 

During this first viewing of these videos, notes were recorded that provided an overview 

of each student’s behaviors and reasoning. This baseline viewing of the data resulted in a 

low-level preliminary analysis of the data. 

After this preliminary analysis, all interview video data was transcribed and 

reanalyzed. At this stage the analysis was more fine-grained and included transcribing the 

student’s and researcher’s utterances, gestures, and characteristics of speech. Capturing 

each student’s gestures was especially important when attempting to identify the mental 

images and quantities they constructed. For instance, a student’s hand gestures often 

offered insights into the attributes of a situation they were describing. 
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The process of transcribing was used as a preliminary level of analysis. During 

the transcription process, the researcher developed an initial model of each student’s 

understandings and reasoning when attempting to determine a student’s utterances and 

what they meant by those utterances. When transcribing the videos, the initial notes from 

the first analysis of the data were elaborated and refined. As a result, a more detailed set 

of notes that were grounded in a careful transcription of the video data was created. 

Next, with the textual product from the transcription available, the data was 

analyzed in a chronological order in an attempt to describe the possible reasoning and 

understandings that contributed to the student’s actions and utterances. During this stage 

of the analysis, each student’s actions were analyzed separately. Relative to the classroom 

sessions, instances previously deemed to reveal insights into a student’s reasoning were 

reanalyzed in an attempt to identify the mental actions driving a student’s products. 

Relative to the interview sessions, a line-by-line conceptual analysis was conducted in an 

attempt to identify the mental actions behind a student’s behaviors. Furthermore, the 

perspectives of quantitative and covariational reasoning provided a lens for this analysis, 

as well as the system of ideas driving the instructional sequence. 

With specific classroom instances and interview behaviors analyzed, connections 

were then sought between a student’s actions. This was achieved by comparing and 

contrasting a student’s actions over the course of the study for consistencies in her or his 

reasoning, conceptual development, and the possible implications of various ways of 

reasoning. As an example, the data was analyzed to determine the student’s conception of 

the radius as a unit of measurement. This analysis first consisted of identifying and 
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analyzing specific instances that offered insight to this conception. Then, these models of 

the student’s mathematics were compared and contrasted, while also identifying the role 

these conceptions played in the student constructing understandings of other topics. The 

result of this approach to the analysis of the data also generated insights about the role 

that the instructional sequence played in affecting a student’s emerging understandings. 

Finally, the models of each student’s mathematics were compared and contrasted. This 

analysis shed light on the critical reasoning abilities needed for constructing connected 

and coherent understandings of angle measure and trigonometric functions. 

Summary of Chapter 

This chapter described the research methodology of this investigation into 

precalculus students’ conceptions of the sine and cosine functions and topics foundational 

to trigonometry. A teaching experiment (Steffe & Thompson, 2000), which included a 

series of exploratory teaching interviews, was implemented in order to provide the 

researcher opportunities to construct and refine models of students’ mathematics. A 

majority of the data analysis included selective conceptual analysis of the teaching 

experiment sessions and a line-by-line conceptual analysis of the students’ actions during 

the interview sessions. This analysis enabled the researcher to document the progress of 

the students over the course of the instructional sequence. 

The next chapter presents the findings from an exploratory study of students’ 

conceptions of angle measure. Illustrations of how the exploratory study informed the 

teaching experiment design are highlighted and the instructional activities used during the 

teaching experiment are described in terms of the activities’ intended outcomes. 
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Chapter 4 

Exploratory Study And Instructional Design 

This chapter provides an overview of an exploratory study into three students’ 

conceptions of angle measure. The findings from this study are presented along with 

discussions of how these findings informed the instructional sequencing and tasks used in 

the study. This includes providing a detailed conceptual analysis of the ideas of angle 

measure, and the sine and cosine functions. The chapter concludes by presenting the 

instructional goals of the study and specific tasks that were designed to achieve these 

goals. 

Exploratory Study 

An exploratory study was conducted previous to this dissertation in order to gain 

insights into three precalculus students’ understandings of angle measure. The following 

section briefly describes the methodology of this exploratory study and then provides a 

summary of the findings of the study. 

The methodology used during the exploratory study was mostly consistent with 

the methodology of this dissertation, which was described in detail in chapter 3. Clinical 

interviews (2000) were conducted with each student before the teaching experiment 

sessions and immediately after the teaching experiment sessions. A teaching experiment 

(Steffe & Thompson, 2000) was conducted with the three students and consisted of three 

65 minute sessions. The three sessions occurred within a time period of eight days. An 

exploratory teaching interview (one-on-one teaching experiment session) was conducted 

with each student between the first and second teaching experiment sessions. The focus 
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of these interviews was on angle measure (in degrees). During these interviews each 

student encountered the same interview tasks, while the researcher’s questioning varied 

depending on each student’s actions. All interview tasks used in the exploratory study can 

be found in Appendix B. 

Subjects and Setting 

The exploratory study was conducted with three students from an undergraduate 

precalculus course at a large public university in the southwest United States in which the 

researcher (myself) was the instructor. The students were chosen on a volunteer basis and 

monetarily compensated. The precalculus classroom from which the students were drawn 

was part of a design research study where the classroom intervention (M. P. Carlson & 

Oehrtman, 2009) was informed by theory on the processes of covariational reasoning and 

select literature about mathematical discourse and problem solving (M. Carlson, et al., 

2002; M. P. Carlson & Bloom, 2005; Clark, et al., 2008). The classroom instruction 

consisted of direct instruction, whole class discussion, and collaborative activity. Specific 

topics of focus were proportionality, functions, linear functions, exponential functions, 

logarithmic functions, rational functions, unit circle trigonometry, and right triangle 

trigonometry. 

All three students were full-time students at the time of the study and all three 

students were males (Brad, Charles, and Travis). The first student, Travis, was in his mid-

twenties and an architecture student. The second student, Brad, was in his late teens and a 

computer systems engineer major. The third student, Charles, was in his late teens and a 

psychology major. 
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Results 

This section presents an overview of the findings from the exploratory study. 

First, quantitative data is presented to situate the students within the precalculus 

classroom from which they were chosen. Then, analysis of the qualitative data is used to 

discuss each student’s thinking exhibited during the study. 

Course assessment. Brad received a ‘C’ for his final course grade, Travis 

received a ‘C’ for his final course grade, and Charles received an ‘A’ for his final course 

grade. Overall, two students from the course received a grade of ‘D’, five students 

received a ‘C’, three students received a ‘B’, and three students received an ‘A’. 

Pre-interviews. All three students revealed a loose coordination of arc length and 

angle measure upon entering the exploratory study. Both Travis and Brad measured an 

angle by constructing a circle and calculating the arc length measured in inches that 

corresponded to one degree. This way of reasoning (e.g., an arc length per one degree) 

offered obstacles when describing the measure of an angle relative to circles of different 

radius lengths. For instance, they had difficulty describing a meaning for angle measure 

when multiple circles were centered at the vertex of an angle. 

The third student, Charles, attempted to recall a formula that related an arc length 

and an angle measure in order to determine the measure of an angle. He recalled a 

formula that was correct symbolically ( s = r! ), but this formula did not emerge from his 

conception of a quantitative relationship. He was unable to justify the formula and 

eventually described an incorrect unit of measure for one of the variables (a degree 

measure for !). Also, he did not attempt to explain the formula relative to a quantitative 
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relationship or operation. Charles then described that angle measures are found by using a 

formula or trigonometric functions. Charles provided the only mention of trigonometric 

functions by any of the students during the pre-interview, and he described trigonometric 

functions as providing an angle measure based on a coordinate on the unit circle. 

However, he was unable to expand on this statement. 

Exploratory teaching interviews. The exploratory teaching interviews occurred 

after the first teaching session, which introduced measuring angles in a number of 

degrees. During the interviews, both Travis and Brad first provided explanations of angle 

measure that referenced an arc length, a circumference, and an area of a circle. Their 

explanations vaguely referenced the quantities and how these quantities were related. 

Contrary to this, Charles immediately identified angle measure as determining the 

fraction of a circle’s circumference subtended by the angle and that any circle could be 

used to determine this measure. He also described the unit circle (which had not been 

introduced to this point) as the easiest circle to use because the coordinates of the circle 

are related to the arc length. But, he was unsure how to use these coordinates, which was 

consistent with his description of coordinates on the unit circle during the pre-interview. 

As the interviews progressed, each student refined his image of angle measure 

and its relationship to a subtended arc length and circumference of a circle. The students 

altered and refined their descriptions as they encountered situations where they needed to 

find various measurements by creating circles and using other given measurements. 

Furthermore, after the students completed the problems, the researcher often provided the 

students a calculation in open form and asked the students to interpret the expression 
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previous to calculating the value of the expression. This resulted in the students 

comparing how they could use the various calculations to solve the problem and how the 

provided expressions were related to the quantities of the situation. 

For instance, the researcher asked the students to explain how another student 

might use the expression of 
22.3
360

+
3.1
16

 to solve a problem asking for the relative 

measurement (e.g., the percentage of a circle’s circumference subtended by an angle) of 

an angle that measures 22.3 degrees plus 3.1 quips11. This resulted in the students 

describing each term of the expression relative to a quantitative relationship (e.g., 

22.3/360 corresponds to the percentage that 22.3 degrees is of 360 degrees), while 

relating these values to a percentage of a circle’s circumference. The students’ conception 

of angle measure as subtending a percentage of a circle’s circumference was spontaneous 

and not promoted previous to the interviews. This image of angle measure became a 

powerful aid for the students, as they were frequently observed reasoning about angle 

measure in this manner to complete the interview tasks. The students’ percentage image 

appears to have promoted their reasoning about a fractional amount of a whole (e.g., 24% 

of a total 100%). 

The students’ actions during the exploratory study also revealed the importance of 

their ability to distinguish between linear measurements and angular measurements of arc 

length and circumference. As the students refined their images of angle measure such that 

these images included an explicit distinction of the two measurements, they were seen 

generalizing their statements about a subtended arc length’s percentage of a circle’s 

                                                 
11 Sixteen quips (a fictitious unit) rotate through the circumference of a circle. 
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circumference to include any unit of measurement and any circle used to measure the 

angle. For instance, Brad described that the percentage of a circle’s circumference (e.g., 

26%) subtended by an angle was not reliant on the unit of measure and that this 

percentage could be used to determine the angle measure in any unit. Also, the ability to 

distinguish and relate linear and angular measurements enabled all three students to 

describe how a varying radius would change the angular and linear speeds of an 

individual riding a Ferris wheel at 2.5 revolutions per minute. Consider Excerpt 1 for the 

Brad’s description. 

Excerpt 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

KM: So if we maintain the same angular speed, what happens as the radius 

increases? 

Brad: You’ll still have to travel, well, if you’re looking at angular speed and 

your radius is increasing then your radial speed is going to stay the 

same, you’ll still have to keep that to make it. But, as your looking at 

it, your linear speed, in order to keep that exact same radial speed, 

you’d have to increase your linear speed. 

KM: Ok, so you’ll have to increase, and if we shrunk the radius? 

Brad: You’d have to decrease. 

KM: Decrease. Ok, but lets say we kept the same linear speed…as we 

increase our radius what happens to our… 

Brad: You’d have to decrease your radial speed. 

KM: Decrease your radial speed. Ok, good, and if we decrease the radius? 
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14 Brad: You’d have to increase your radial speed. 

 
It appears that Brad was able to coordinate the relationship of angular speed, or radial 

speed, to the linear speed of the individual. This reasoning enabled him to consider 

multiple lengths of a radius while distinguishing linear measurements from angular 

measurements. 

Post-interviews. The post-interviews were conducted after the last teaching 

experiment session. The second session focused on the use of a radian as a unit of angle 

measure. The third session explored circular motion (e.g., graphing the relationship of a 

traversed arc length and a vertical distance above the center of the circle) and the unit 

circle as the result of using the length of a radius as a unit of measurement. 

All three students initially defined angle measure in terms of a subtended arc 

length’s percentage of the corresponding circle’s circumference. They further described 

that this percentage remained constant as the radius of the circle increased or decreased. 

This image of angle measure supported the students describing that the ratio of the linear 

measure of arc length and circumference would not change when using various circles to 

measure the angle.  

As the students engaged in the activities that required reasoning about the radius 

as a unit of measure (of an angle or a vertical distance), they also spontaneously reasoned 

about radian measures as a percentage of the length of a radius. Initially, each student 

used a multiplicative relationship between arc length and circumference to determine an 

angle measure in radians, opposed to using a comparison between the arc length and the 

length of a radius. In response, the researcher posed the question of the meaning of a 
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number of radians (e.g., what does 0.628 radians mean?). Travis explained that the 

measure represented a percentage of “all the radians…6.28” and then added that the 

measure was also a percentage of one radius (e.g., 62.8%). As he continued, he described 

that the angle measure can be found by dividing the arc length by the length of a radius to 

find “how many radii were in the arc length.” Charles also explained a radian measure in 

terms of a percentage of a circle’s circumference. After prompting from the researcher, 

he described the measurement as the ratio of arc length to the length of a radius, where 

this ratio remained constant regardless of the size of the circle used. Brad described 

radian measures in terms of an arc length’s percentage of the entire circumference, while 

also describing that he could calculate a radian measure by dividing the linear 

measurement of arc length by the linear measurement of the radius to find how many 

radius lengths rotate along the arc.  

Each student reasoned about a relationship between an arc length and a radius 

when discussing the radian as a unit of measure, but the students were most frequently 

observed reasoning about radian measurements as conveying a percentage of a circle’s 

circumference subtended by an angle of that measure. This may have been a result of 

emphasizing angle measure as a fraction of a circle’s circumference during the 

introduction to angle measure. In addition, it may have been an easier construction for 

students to relate arc length to circumference given that the circumference of a circle is 

an arc length; relating the length of a radius to an arc length requires conceiving of the 

magnitude of the radius as a unit for measuring a subtended arc. 
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As an example of the students’ propensity to reason about a percentage of a 

circle’s circumference, each student utilized ratios that represented a percentage of a 

circle’s circumference (e.g., 
s
2!r

=
"
2!

) in order to determine a formula relating the arc 

length subtended by an angle, the radius of the corresponding circle, and the angle 

measure in radians. Then, after simplifying their formulas and obtaining s = !r  or ! =
s
r

, 

each student discussed that their simplified formula stemmed from a radian measure 

conveying the number of radius lengths rotating along an arc length. Thus, it appears that 

the students constructed a relationship between an angle measure in radians and the 

length of a radius, but an image of angle measure as a percentage of a circle’s 

circumference was more prominent in their reasoning.  

Table 1 

The Ferris Wheel Problem (Exploratory Study) 

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 

rotation. April boards the Ferris wheel and begins a continuous ride on the Ferris wheel. 

If the platform to board the Ferris wheel is 8 feet off of the ground, sketch a graph that 

relates the total distance traveled by April and her vertical distance from the ground. 

 
The students’ solutions on The Ferris Wheel Problem (Table 1) also offered 

various insights into the students’ abilities to leverage reasoning about a varying arc 

length. First, each student had no difficulty identifying the number of radians, degrees, 

and feet that corresponded to one minute of elapsed time. The students’ ability to reason 
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about a varying arc length enabled them to construct a relationship between an elapsed 

time and a traversed arc length, while relating the traversed arc length to angle measure. 

When prompted to graph the April’s (the rider) vertical distance above the ground 

versus the distance traveled, each student did not develop an image of a vertical distance 

consistent with the researcher’s intentions. Each individual correctly identified the 

minimum vertical distance from the ground as 8 feet. However, Charles explained that 72 

feet was the maximum vertical distance (the diameter of the Ferris wheel). Brad 

identified 36 and 42 feet as maximum vertical distances (the radius of the Ferris wheel 

and an incorrect addition of the radius and 8 feet). Travis explained that 64 feet was the 

maximum vertical distance (the difference of the diameter of the Ferris wheel and 8 feet). 

As the students continued to work the problem, each identified the proper maximum 

value for the vertical distance. Their correction came as a result of identifying the initial 

vertical distance and the diameter of the Ferris wheel on a diagram of the situation. The 

inconsistencies in the students’ images of the problem’s context emphasize the 

importance of a researcher remaining attentive to a student’s constructed mental image. 

When graphing the relationship between the vertical distance from the ground and 

the total distance traveled, all three students initially drew incorrect graphs relative to 

concavity, but each graph was correct in terms of directional change. Each student 

justified his graph by reasoning that as the total distance increased, the vertical distance 

from the ground increased and then decreased (MA2). When asked to explain the 

curvature of the graph, each student then refined his explanation to include amounts of 
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change (MA3) based on the graph, opposed to a diagram of the situation. That is, they 

gave correct explanations relative to the relationship conveyed by their graphs. 

As an example, after Charles drew a graph that was concave down for the first 

three-quarters of a revolution, he explained that his graph was concave down because the 

vertical distance was increasing and the change of vertical distance was decreasing as the 

total distance increased. Charles’ explanation of the concavity of his produced graph was 

correct, but the graph itself was incorrect over the first quarter of a revolution (e.g., his 

graph was concave down opposed to concave up). Also, Charles did not refer to a 

diagram of the situation to explain the covariational relationship (and neither did the 

other two students without prompting). In response to Charles’ actions, the researcher 

asked Charles to explain the shape of the graph using a diagram of the Ferris wheel 

(Excerpt 2). 

Excerpt 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Charles:  So, as the total distance is increasing (tracing the arc length), we 

notice that height is increasing but for every successive change of 

total distance (making marks at equal changes of arc length), lets say 

right here it’s eight, well if I drew a bigger one, I’d be able to show it 

more precise.  

KM: Here, go ahead and, uh, I’ve got some extra pieces of paper. Go ahead 

and if you want to draw it on there somewhere (handing him a sheet 

of paper) a little bigger. 

Charles: (Drawing a larger circle and drawing a vertical-horizontal crosshair 



   64 

 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

in the middle of the circle) So, as, I guess we can assume this is 

ninety degrees (referring to the compass) we can make an angle 

(attempts to use protractor on compass)… 

KM: So what are you trying to do right now? 

Charles: Well I see, this thing moves (referring to the compass), I’m trying to 

show that, um, I’m trying to make, well I could use the protractor, 

I’m just trying to change, show successive change in input. 

KM: Could you use the Wikki Stix to do that? 

Charles: Well, actually, yes I can. 

KM: So, you’re trying to show successive changes in what? 

Charles: In input, which would be the total distance (marks a distance on a 

Wikki Stix mumbling to himself, then marking off successive arc 

lengths on the circle). Ok, so, for every change in total distance, right 

here (referring to changes in arc length), he, well, hmmm. 

KM: What makes you go hmmm? 

Charles: Because I was thinking the last time I did, this represented right 

(referring to the top-half of the circle), hmm. 

KM: So what’s making you go hmm now? 

Charles: Because it seems as total distance increases (referring to the arc 

length), the actual change in the height is increasing instead of 

decreasing. 
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Charles first explained that as the total distance increased, the height of the individual 

also increased (lines 1-3). Next, Charles attempted to identify successive changes of arc 

length by relating arc length to angle measure (lines 9-12 & 14-16). Charles continued by 

using a Wikki Stix (a piece of waxed string) to mark equal changes of arc length, which 

resulted in him questioning his original graph (lines 20-23), and eventually concluding 

that the changes in height should be increasing rather than decreasing over the first 

quarter of a revolution (lines 28-30). By using a diagram, Charles was able to describe 

the correct relationship between total distance and vertical height using amounts of 

change (MA3), which led to him correcting the graph representing this relationship. 

The graph first drawn by Charles was possibly created without reasoning about 

amounts of changes of height and amounts of changes of total distance. Rather, Charles 

drew a curved graph, possibly because of an iconic transfer of the shape of the Ferris 

wheel or an assumption that there was a varying rate of change, and he then interpreted 

the graph relative to amounts of change. His description of the graph was correct in both 

instances. However, in the first instance, his graph molded his description of the two 

quantities; in the second instance, his reasoning about amounts of change of the two 

quantities within the context of the situation drove the construction of the graph.  

Charles’s actions highlight the role of quantitative reasoning and covariational 

reasoning in representing the relationship between two quantities. In order to represent 

the (correct) relationship between two covarying quantities, a student must construct an 

image of the situation and attributes that are consistent with the instructional intentions. 

These attributes can then become conceptual objects the students can reason with in a 
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manner that results in meaningful descriptions and representations. Charles’s actions also 

points out the difficulty of covarying two quantities. Although his descriptions remained 

attentive to the quantities he was relating (e.g., arc length and vertical distance), he was 

unable to produce a correct graph (from the researcher’s perspective) until he focused on 

specific intervals of arc length within his image of the situation (e.g., a diagram). 

Summary of Findings 

Initially, two students were observed holding a loose coordination between angle 

measure and arc length that enabled them to identify an arc length corresponding to one 

unit of angle measure for a particular circle. The third student did not reason about angle 

measure relative to arc length beyond attempting to recall a formula. 

As the students solved various problems, their conceptions of angle measure 

continually developed and all three students began reasoning about angle measure in 

relation to the arc length and circumference of a circle. Specifically, the students 

conceived of angle measure as the percentage of a circle’s circumference subtended by 

the angle, regardless of the size of the circle. As the students continued through the study, 

this way of reasoning became more dominant. As one example, the students 

predominantly reasoned about radian measurements conveying the percentage of a 

circle’s circumference subtended by an angle. But, as the researcher questioned the 

students, they also described radian measurements as a number of radius lengths, or as a 

fraction of the radius, along a subtended arc length. 

Another finding from the exploratory study was the importance of the students 

distinguishing between and relating a linear measurement of arc length and a 
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corresponding angle measure. This ability supported the students in reasoning about 

angle measure corresponding to a circle of any radius. In addition, distinguishing between 

a linear measurement and angular measurement appears to have aided the students in 

using multiple units of measurement while describing circular motion. For instance, 

given a constant angular speed, the students were able to describe how the linear speed 

would vary for a varying radius. 

Lastly, the students’ ability to reason about a varying arc length appears to have 

created a foundation for them to reason about relationships between quantities in the 

context of circular motion. The students were able to covary an arc length and a vertical 

distance to construct graphical representations that formalized these relationships. Also, 

by leveraging a diagram of a problem’s context, the students were able to support and 

modify their graphical representations (their initial graphs were not rooted in this 

reasoning). In the case of each student, reflecting on a diagram of the situation resulted in 

their modifying their images of the situations and the mathematical representations of 

these images. 

Implications of the Exploratory Study 

Consistent with the findings described in the research literature on trigonometry 

(Akkoc, 2008; Brown, 2005; Fi, 2003, 2006), the students in the exploratory study 

initially held underdeveloped conceptions of angle measure. The researcher conjectured 

that the students involved in this dissertation would hold similar understandings of angle 

measure upon entering the study. In order to address this issue, a similar pre-interview for 

the dissertation was used to gain insights into each student’s initial conception of angle 
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measure. Also, a two-day instructional sequence12 on angle measure was designed based 

on the findings from the exploratory study and the pre-interviews conducted during the 

study. 

The students’ conceptions of angle measure informed the design of the angle 

measure activities used during the study. For instance, the students’ initial method of 

reasoning about an arc length per unit of angle measure presented obstacles when the 

students were presented with circles of differing radius lengths. In light of this finding, 

the instructional activities were altered to include opportunities for the students to reason 

about circles of multiple sizes. For instance, the activities were changed such that each 

student was given a different sized circle, and the students were asked to compare their 

solutions relative to their different sized circles. 

Another finding that informed the design of this study was the students’ 

propensity to reason about radian measures conveying the percentage of a circle’s 

circumference subtended by an angle. Each student also reasoned about a radian measure 

corresponding to the multiplicative relationship between a subtended arc and a radius, but 

they predominately conceived of radian measures in terms of a percentage of a circle’s 

circumference. This finding led the researcher to design additional tasks that promoted 

the students conceptualizing the radius as a unit of measure. The researcher also 

frequently prompted the students in this study to reason about the multiplicative 

relationship between a subtended arc and the length of a radius. 

                                                 
12 The instructional sequence is presented later in this chapter. 
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The exploratory study also illustrated the importance of a student constructing and 

refining her or his image of a problem’s context in ways that promote reasoning 

consistent with the instructional goals. As the students solved problems during the 

exploratory study, they frequently alternated between reasoning about the context of the 

problem and executing calculations or constructing mathematical representations of 

relationships (e.g., formulas and graphs). This iterative process resulted in the students 

refining their image of the problems’ contexts and the quantitative relationships within 

these contexts. The students’ actions stress the importance of a researcher or teacher 

remaining attentive to the mental image a student constructs and the continually evolving 

nature of this image. Also, this observation highlights the role quantitative reasoning 

played in the design of this study. A main intention of the study was to gain insights into 

the mental images the students constructed (and modified), and the relationship of these 

images to the students’ thinking and understandings.  

Conceptual Analysis and Instructional Design 

The findings gained from the exploratory study, as well as the insights gained 

from the research literature presented in chapter 2, informed the initial design of the 

instructional sequence used during this study. The intent of the instructional sequence 

was to offer the students opportunities to construct meaningful and coherent 

understandings of trigonometric functions and angle measure in the contexts of the unit 

circle and right triangles. 

The term coherent (and variants of this term) is commonly used in mathematics 

education. Students are expected to develop coherent understandings and curriculum is 
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expected to promote coherence. Yet, coherence and coherent remain ill-defined in 

mathematics education and curriculum development (Thompson, 2008). Recently, the 

National Mathematics Advisory Panel (NMAP) described coherent as, “effective, logical 

progressions from earlier, less sophisticated topics into later, more sophisticated ones” 

(2008, p. xvii). As Thompson notes, such a definition can be taken to imply that the 

NMAP places an emphasis on topics, rather than ideas, meanings, or larger ways of 

reasoning. In such an approach, it becomes easy to treat topics as segmented and mostly 

independent goals of learning (e.g., linear functions, then exponential functions, then 

trigonometric functions), as opposed to identifying larger ways of reasoning (e.g., 

quantitative and covariational reasoning) that can encompass these topics. 

A distinction of “less sophisticated topics” and “more sophisticated” topics is a 

natural part of curriculum design, but coherence results from the “development of 

meanings of each and the construction of contextual inter-relationships among them” 

(Thompson, 2008, p. 47). For instance, placing a lesson on angle measure before an 

introduction to trigonometric functions is a “logical progression” of topics. However, the 

mere introduction of angle measure before trigonometric functions does not result in 

coherence. Rather, coherence is the product of the meanings driving the lesson on angle 

measure creating a foundation for understanding trigonometric functions. Moreover, 

coherence should extend beyond sequential topics and include developing ways of 

reasoning that are advantageous across mathematical topics. 

This approach to achieving coherence is much more easily stated than achieved, 

particularly because curricula coherence cannot be considered independent of a group of 
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learners. Conceptual analysis (Thompson, 2008) offers a learner-centered tool to help 

achieve the difficult goal of coherence. Two interrelated uses of conceptual analysis are 

1) describing ways of knowing that are immediately and developmentally beneficial for 

learning and 2) analyzing ways of understanding a body of ideas based on describing the 

coherence between their meanings, where coherence refers to both compatibility and 

support. These two uses of conceptual analysis provide tools for determining instructional 

goals and the development of curriculum, both of which are elements of this study.  

Stressing the importance of considering ways of knowing that are both 

immediately and developmentally beneficial for learning, instructional goals must be 

considered relative to their current place in the curriculum, their possible influence on 

later curriculum goals, and the group of learners that the curriculum applies to. For 

instance, images of radian measure should be developed that consider the future 

mathematical experiences to be had by the learner (e.g., the unit circle). This is consistent 

with Dewey’s (1938) call for a “continuity of educative experience.” He described that 

when considering the design of educational material, a designer cannot create materials 

outside of the experiences of the learner. That is, educational materials should not be 

based on adult understandings, which is an easy trap to fall into and may often be the 

dangerous driving force of the “logical progressions” of topics. Rather, materials need to 

focus on the continual development of connected experiences that promote reflective and 

developmental thinking. At every point in mathematics curriculum a designer or teacher 

must consider what previous experiences are to be drawn on as well as the future 

experiences for which one hopes to create foundations. As Dewey stated, “…every 
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experience both takes up something from those which have gone before and modifies in 

some way the quality of those which come after” (1938, p. 35). 

The following section presents a system of ideas of angle measure and 

trigonometric functions in order to provide an example of a conceptual analysis. This 

conceptual analysis drove the design of this study, and namely the design of the 

instructional sequence outlined later in this chapter. Before continuing, it is noted that 

this system of ideas is based on the groundwork laid by Thompson (2008) and 

Thompson, Carlson, and Silverman (2007). 

Trigonometric Functions and Angle Measure 

What follows is a discussion of a system of ideas and ways of understanding of 

angle measure and trigonometric functions. The general threads of this discussion are: 

- The measure of the openness of an angle can be conceived of in terms of a 

subtended arc length’s fraction, or percentage, of the corresponding circle’s 

circumference, regardless of the unit of angle measure. 

- The unit of a radian (or radius lengths) conveys the multiplicative comparison of 

an arc length and the length of a radius. 

- The unit circle results from measuring quantities relative to the radius. 

- The sine and cosine functions have an input quantity of angle measure, measured 

in radians, and an output quantity of a length measured in a number of radius (or 

hypotenuse) lengths. 

Angle measure offers a common foundation for trigonometry that can be 

leveraged to promote coherence between the various contexts of trigonometry. One could 
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argue, and argue legitimately, that current approaches to trigonometry are reliant on angle 

measure. However, this reliance does not necessarily imply that trigonometry is 

developed on foundations of angle measure, or that angle measure itself is developed in a 

way that can be leveraged as a foundation to trigonometry (e.g., coherence beyond a 

logical progression of topics). More pointedly, angle measure can often be found in 

mathematics curricula, but the measure of an angle (and what this measure is actually of) 

is often used for a purpose differing from the result of a measuring process or an attempt 

to develop trigonometric functions. 

For instance, in triangle trigonometry, an angle is typically used in a manner such 

that it exists only somewhere within a triangle of interest; the angle and its measure are 

both treated as a place on a triangle opposed to the value being a measure of an attribute 

of the angle (Thompson, 2008). In addition, curriculum often treats trigonometric 

functions in a special manner relative to triangle trigonometry; curriculum frequently 

explores static relationships between objects of a triangle. Here, the focus is on a result 

(e.g., finding the side of a specific triangle) rather than a function (e.g., a process relating 

the varying values of two quantities). This can have the undesired effect of the sine, 

cosine, or tangent functions becoming only about specific whole triangles and finding 

values, which requires evaluating the functions. This is in stark contrast to the use of the 

sine and cosine functions as processes and the openness of an angle as a quantity that can 

vary causing simultaneous variation in the output of the trigonometric functions. 

In addition to the use of angle measure as referencing an object in triangle 

trigonometry, a majority of the U.S. mathematics curriculum’s approach to angle measure 
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is inconsistent and lacks an explicit focus on the process of measuring an angle. Upon the 

introduction of angles, textbooks frequently describe angle measure as an amount of a 

rotation or a measurement of a subtended arc. At this time, the degree is imposed as the 

common unit of angle measure and students are immediately presented with a protractor 

as a tool for measuring an angle. Additionally, students are presented with various 

geometric objects that are defined to have a specific angle measure (e.g., a straight line is 

one-hundred and eighty degrees, two perpendicular lines form an angle of ninety 

degrees). Then, common activities focus on having the students calculate angle measures 

by using properties of supplementary angles, complementary angles, vertical angles, etc. 

However, the process by which an angle’s openness is quantified is rarely addressed 

beyond the use of a protractor (that has already been created by someone other than the 

student) or defining various geometric objects. 

The ability to use a protractor (e.g., a procedure) is significantly different than 

understanding the process by which an angle-measuring device is created. A student may 

understand that an angle measure references an arc length or an amount of rotation, but 

this understanding may not include a mathematical process behind measuring an angle. 

This lack of understanding can create multiple conceptual hurdles. For instance, in the 

case that a student solely understands angle measure is arc length, if circles of different 

sizes are used to measure the angle, the magnitude of the arc length varies, possibly 

resulting in a perturbation in the student’s image of angle measure.  

Whereas the introduction to angle measures in degrees is frequently vague in 

terms of the process by which the measurement is based, textbooks frequently describe 
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angle measures in radians as a measure of an intersected or subtended arc length in a 

number of radius lengths. In this context, the angle measure is explicitly defined as a 

number of radius lengths subtended by the rays of an angle. Yet, this approach to 

teaching angle measure is contradictory to the traditional introduction of angle measure in 

degrees. 

A lack of understanding the process of measuring an angle may also inhibit 

individuals’ ability to conceive of a varying angle measure (a conception necessary in 

situations of circular motion). When the focus of the sine and cosine functions is on 

determining the sides of a triangle, angles become static objects with constant 

measurements opposed to dynamic objects with measurements that can (and do) vary. 

This opposes the various uses of trigonometry in the dynamic settings of engineering, 

physics, and other sciences, where the input value of trigonometric functions varies and 

the use of trigonometric functions is not necessarily about finding sides of specific 

triangles. Thus, if an individual’s image of angle measure consists of references to 

objects or merely using a protractor, and her or his understanding of trigonometric 

functions consists of static right triangles, it becomes much to ask for the individual to 

apply this reasoning to angles and trigonometric functions in dynamic situations. 

Developing angle measure as a process based on measuring a subtended arc 

length’s fraction of a circle’s circumference can possibly avoid a vagueness of angle 

measure. In terms of degrees, this approach implies that one degree corresponds to an arc 

length of a circle that is 1/360th of the circumference of that circle13; in terms of radians, 

                                                 
13 The circles referenced are assumed to be centered at the vertex of the angle. 
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this approach implies that one radian corresponds to an arc length of a circle that is 1/2!th 

of the circumference of that circle. By developing angle measure in this manner, 

measuring in degrees and radians are both developed as the process of measuring the 

fraction, or percentage, of a circle’s circumference subtended by the angle. 

This process is essentially how the construction and use of a protractor works. 

Measuring in either unit is measuring the same attribute in the same manner, but using a 

different number of units to divide the attribute being measured (Figure 1). Both units of 

measure have a fixed total number of units that rotate through any circle centered at the 

vertex of an angle and measuring the openness of an angle involves determining the 

fraction of the total circumference of a circle and how many of the total units correspond 

to this fraction. Thus, if x degrees or r radians are subtended by an angle, both 

measurements correspond to the same fraction or percentage of a circle’s circumference 

(e.g., 

 

x /360 = r /2! ). 

 

 

Figure 1. Angle measure and units. 

With angle measure presented as an arc length’s fraction of a circle’s 

circumference, a varying openness of an angle corresponds to a simultaneous variation in 
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the fraction of the circumference cut off by the angle. Rather than an angle and the 

measure of its openness being a static object in a right triangle or a position on a circle, 

the openness of an angle is a measurable attribute (e.g., a quantity) of the angle that can 

vary. This understanding is necessary for reasoning about the unit circle and periodic 

motion. This is one reason for introducing trigonometric functions using the unit circle; it 

offers a context that can be directly related to angle measure as a fraction of a circle’s 

circumference and leveraged to introduce angle measures that vary.  

An important facet of this approach to angle measure is that the approach is not 

reliant on the radius of the circle that is chosen to measure the angle. Although the linear 

measurement of the circumference of a circle and corresponding subtended arc length 

may vary when considering circles of different radii, the percentage of the circumference 

subtended by the angle, regardless of the circle, remains constant. 

The use of a radian as a unit of angle measurement is highly reliant on the image 

that a circle of any radius can be used to measure the angle. Regardless of the circle used, 

2! of the corresponding radius lengths rotate through the circumference of the circle; but 

the linear measure that one radius corresponds to changes depending on the chosen circle. 

This is especially important when exploring circular motion in physics and distinguishing 

between angular and linear (tangential) velocities. In these cases, a circular path of a 

specific radius is often considered. Therefore it is important for a student to be able to 

apply the use of a radian as a unit of measure relative to a particular circle of interest, 

although between problems (circles) the linear measurement one radius corresponds to 

may change. 
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In addition to an arc length’s fraction of a circle’s circumference, an angle 

measure made in radians conveys the multiplicative relationship between a length (e.g., 

arc length) and the length of a radius, just as any measure conveys a multiplicative 

relationship between the quantity being measured and the unit of measurement. If an 

angle has a measure of 2 radians, the length of the arc subtended by the angle is two 

times as large as the length of a corresponding radius. Or if an angle has a measure of !/4 

radians, the length of the arc subtended by the angle is !/4ths times as large as the length 

of a corresponding radius. Note that the focus remains on the arc length subtended by the 

angle. The angle measure is not on a location on a circle, which may often be inferred 

from the labeling of the unit circle, or a location in a right triangle. 

The relation between a linear measurement of arc length and the corresponding 

radian measure is also important relative to the use of the unit circle. As Weber (2005) 

described, it is important to promote that students understand the process by which the 

unit circle is constructed if the students are to leverage the unit circle as a reasoning tool. 

The unit circle is often claimed to be a circle with a radius of r = 1 . With a connection 

between the length of one radius as a unit of measure and a corresponding linear 

measurement (e.g., inches or centimeters), all circles can be conceived as the unit circle 

(e.g., a circle with a radius length of one radius). It is the linear measurement that one 

radius refers to that varies between circles (e.g., the magnitude of the measurement unit). 

As a consequence, rather than trigonometric functions being related to only a circle of 

 

r =1, where 1 is a number, trigonometric functions are connected to any circle through 

the use of the length of a radius of the circle as a unit of measurement (e.g., 1 as a value). 
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At this time, the cosine and sine functions can be defined as processes that have 

an input of angle measure, in radians. In the context of the unit circle, the output of the 

cosine function is the abscissa of the terminus of the arc subtended by the angle and the 

output of the sine function is the ordinate of the terminus of the arc subtended by the 

angle, with both measured as a fraction of one radius (the unit of measurement as a 

quantitative relationship). This definition, along with the ideas presented above, allows 

the development of the cosine and sine functions coherently in each context (Figures 2-

4). In the context of a right triangle, the cosine and sine functions have an input of angle 

measure, measured in radians, and output a length measured as a fraction of a 

hypotenuse, where the hypotenuse of a right triangle can be conceived of as the radius of 

a circle. The outputs of the cosine and sine functions are values (formed by multiplicative 

comparison) regardless of the context and as the radius of the circle increases (the 

hypotenuse of the right triangle), the outputs of the cosine and sine functions remain 

constant due to the similarity between the right triangles. Furthermore, if the radius 

(length of the hypotenuse) is held constant and the angle measure varies, then the output 

values of the cosine and sine functions vary accordingly. 
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Figure 2. An arc length image of angle measure and unit circle trigonometry. 

 

 

 

Figure 3. An arc length image of angle measure and triangle trigonometry. 
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Figure 4. An arc length image of angle measure and the contexts of trigonometry. 

Note that the images of the sine and cosine functions described above are 

intended to differ from the definition of the outputs of the sine and cosine functions as 

only a coordinate within the unit circle. For example, consider the definition of cosine 

(not the cosine function) as a coordinate given in Axler’s precalculus textbook.  

The cosine of an angle !, denoted cos!, is defined to be the first coordinate of the 

endpoint of the radius of the unit circle that makes an angle of ! with the positive 

horizontal axis. (2009, p. 384) 

First, from my interpretation of this definition, ! is used to reference the angle (e.g., angle 

!) and the measure of an angle (e.g., cos!). Although subtle, this conflation of the use of 

the symbol ! can detract from the symbol representing a value (with a unit of measure) to 

a student. Second, the cosine function is not explicitly defined as a function or a process 

between two quantities’ values in this definition. Rather it is defined as the first 

coordinate of the endpoint of the radius. Furthermore, this definition does not explicitly 

identify the length being measured or a unit of measurement. This could have the result 
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of a student conceiving of the cosine function as merely a number on the unit circle, 

rather than a value. 

The use of the output of the cosine function to represent a value with different 

meanings becomes especially apparent in the introduction of the cosine function within 

right triangles by the Axler textbook (2009). This introduction uses the similarity of 

triangles to conclude that 
cos(!)
1

=
a
c

, where a and c represent the lengths of the adjacent 

side and hypotenuse, respectively, of a right triangle with an angle of measure !. In this 

use of the cosine function, cos(!)  first represents the length of a side and is not described 

as a process. However, in the simplification to cos(!) = a / c , cos(!)  then becomes 

defined as a ratio. This occurrence of the output of the cosine function representing two 

different values can be avoided if the cosine function is approached as a function with an 

output that is a ratio of lengths, as described in the previous conceptual analysis. In such a 

case, when the cosine function is used in the context of a right triangle, a specific pair of 

input-output values is being represented. 

This study sought to put this conceptual analysis into action by constructing an 

instructional sequence based on the system of ideas presented in this section. The 

following section highlights various activities of the instructional sequence by presenting 

the tasks and the purpose of each task. 

Instructional Sequence 
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The instructional sequence14 for this study began with activities intended to 

necessitate that the students reconceptualize angle measure (in both radians and degrees). 

As revealed in the exploratory study, the students entering the study were expected to 

have weak understandings of angle measure. The Protractor Problem (Table 2) was first 

used to engage the students in constructing a meaning for a unit of angle measure through 

the process of creating a tool to measure an angle.  

Table 2 

The Protractor Problem (Task 1) 

Using the supplies of a Wikki Stix and a ruler, construct a protractor that measures an 

angle in a number of gips, where 8 gips rotate a circle. 

 
The intentions of The Protractor Problem were to have the students realize the 

need to partition the circumference of the protractor into equal arc lengths. More 

specifically, the task intended to promote the students conceiving of a subtended arc 

length as a measurable attribute related to the measure of an angle. Additionally, each 

student was given a different sized protractor. This was chosen to promote the students 

conceiving of a unit of angle measure corresponding to a constant fraction of a circle’s 

circumference, regardless of the size of the circle. It was expected that the students would 

use an arc length per unit of angle measure approach, with each student determining a 

different arc length. Thus, by the end of this task (which consisted of creating protractors 

for multiple units of angle measure), the students were expected to conceive of a unit of 

                                                 
14 The entire instructional sequence, including each full problem statement, can be found 
in Appendix C. 
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angle measure in terms of a process of measuring the multiplicative relationship between 

a subtended arc length and the circumference of a circle, where this comparison is 

constant for a circle of any size. 

Following the Protractor Problem, the students were given The Angle 

Measurement Problem. This activity presented them with an angle that they were to 

measure using only a compass, Wikki Stix, and a ruler. The intent of this activity was to 

have the students leverage what they discovered during the The Protractor Problem (e.g., 

the openness of an angle is measured by determining what fraction of the circle’s 

circumference is subtended by the angle) while continuing to reason about the process of 

measuring an angle in a way that necessitated the use of a circle. Also, this problem 

continued to promote the students reasoning about the relationship between a linear 

measure of an arc length and the corresponding degree measure. The exploratory study 

revealed that this reasoning ability was critical to understanding angle measure, and 

particularly reasoning about angle measure in terms of the circumference of any circle 

centered at the vertex of the angle. The researcher also expected each student to use a 

different sized circle to measure the angle, which created an opportunity to discuss the 

implications of this choice. 
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Table 3 

The Circumference Problem 

Construct a circle using a Wikki Stix as the radius (your group should have Wikki Stix of 

different lengths). Then, determine how many of your Wikki Stix mark off the 

circumference of your circle. Compare your result with your classmates. What 

observations can you make from this comparison? Construct an angle that cuts off one 

Wikki Stix length of an arc. Compare the openness of the angle with those of your 

classmates.  

 
The Circumference Problem (Table 3) introduced the radian as a unit of angle 

measure. By giving the students multiple lengths of Wikki Stix, they were able to 

conclude that 2!, or approximately 6.2-6.5 radius lengths compose the circumference of 

any circle. That is, the circumference of a circle is always 2! times as large as the radius 

of that circle, or the radius is 1/(2!) times as large as the circumference of the 

corresponding circle (C = 2!r  or 
C
r
= 2! ). The characteristic of an angle measure 

referencing a fixed fraction, or percentage, of a circle’s circumference is consistent with 

how angle measure was defined during the previous activities (e.g., The Protractor 

Problem); regardless of the radius of the circle used to measure the angle, the same 

fraction of 2! radians will be subtended by an angle with a fixed openness. Also, the 

same number of radius lengths will rotate along the subtended arc length. 

In light of the exploratory study’s finding that the students predominantly 

reasoned about radian measurements as a fraction of a circle’s circumference, the 
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researcher planned to extend The Circumference Problem in order to focus the students 

on measuring along an arc in a number of radius lengths. In order to accomplish this goal, 

the problem asked the students to construct angles that measured 2 radians, 3.5 radians, 

and 7 radians by using their Wikki Stix to measure along the circumference in the 

appropriate number of radius lengths. 

Table 4 

The Fan Problem (Sine) 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a 

counterclockwise direction. The bug is exactly 3.1 feet from the center of the fan and is at 

the 3:00 position as the blade begins to turn. Create a graph that shows how the bug’s 

vertical distance above the 9:00 to 3:00 diameter line varies with the total distance the 

bug travels around the circumference. 

 
The Fan Problem (Table 4) was designed to offer the students an opportunity to 

reason about a varying angle measure, or arc length, in order to construct the sine 

function (and the cosine function). The students were prompted to create a graph by 

covarying (by reasoning about amounts of change and rate of change) the vertical 

distance of the bug above the horizontal diameter of the fan with the distance traveled by 

the bug around the circle swept out by its motion. The researcher then formalized this 

relationship as the sine function, f (!) = sin(!) . Additionally, the problem was stated 

such that the students were allowed to choose their units of measure for the output 

quantity. This instructional decision was intended to enable a discussion on the 

implications of the chosen output unit for fans of differing radius lengths, as well as how 
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to convert between an output measured in radius lengths to an output measured in the unit 

presented by the problem (e.g., feet). 

The Fan Applet (Figure 5) was also designed to use throughout The Fan Problem. 

The exploratory study revealed that the students’ conceptions of the problems’ contexts 

were highly complex and continually changing structures. Thus, The Fan Applet intended 

to offer a dynamic diagram of the situation that the students could use throughout the 

discussion of The Fan Problem. More specifically, as the students described quantities 

(varying and constant) and relationships between quantities, the researcher prompted 

them to use the diagram to identify these quantities and how the quantities covary.  

 

Figure 5. The fan applet.  
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Table 5 

The Positions on a Circle Problem 

A certain arctic village maintains a circular cross-country ski trail for the enjoyment of its 

citizens during the winter months. Their trail has a radius of 2 kilometers. A certain skier 

started at position (2,0) one morning, skiing counterclockwise for 2.2 kilometers, where 

he paused for a brief rest. Determine the ordered pair that identifies the location where 

the skier rested. 

 
After The Fan Problem, The Positions on a Circle Problem (Table 5) was 

designed to further explore the relationship of the sine and cosine functions to positions 

on circles of various sizes. By offering circles of various sizes, the students had to reason 

about measuring the relevant quantities in a number of radius lengths to solve the 

problem correctly. Also, The Fan Problem consisted of mostly indeterminate values. The 

Positions on a Circle Problem created opportunities for the students to evaluate the sine 

and cosine functions while continuing to reason about the relationship between two 

quantities’ values. The problem also asked students to generalize the relationship between 

a position on a circle, an angle swept out from the standard position, and the radius of a 

circle. 
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Table 6 

The Finding an Arc Length Problem  

A skier skied on a circular route, starting at the point (1,0) on the circle, and ending at the 

point (0.951, 0.309) on the circle. How many km did she ski? 

A skier skied on a circular route, starting at the point (2.5,0) on the circle, and ending at 

the point (2.3775, 0.7725) on the circle. How many km did she ski? 

 
Prior to exploring trigonometric functions in a right triangle context, The Finding 

an Arc Length Problem (Table 6) prompted the students to determine an unknown arc 

length when given coordinates on various sized circles. This offered the students an 

opportunity to continue reasoning about measuring quantities relative to the radius, while 

using the sine and cosine functions to relate quantities’ values. Furthermore, this problem 

presented a situation that necessitated the inverse sine and cosine functions, which also 

enabled the researcher to see if the students had conceptualized the sine and cosine 

functions as reversible processes. Lastly, the problem presented coordinates in multiple 

quadrants in order to raise issues of the domain and range of both the sine and cosine 

functions, as well as their inverse functions. 

Table 7 

The Determining an Output Problem 

Determine the output of the sine and cosine of the measure of angle ABC without 

measuring the angle. Hint: think of how you would determine the measure 

of the angle of interest and how the sine function relates to this 

measurement. 
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In order to enable coherence between the previous problems and a right triangle 

context, The Determining and Output Problem (Table 7) created an opportunity for the 

students to leverage an arc length image of angle measure and the sine and cosine 

functions as processes relating the values of two quantities. By using the hypotenuse of 

the right triangle to create the circle (with a radius length equivalent to the hypotenuse), 

and a subtended arc length, the students could conceive of measuring each leg of the 

triangle relative to the hypotenuse in order to apply the sine and cosine functions to the 

right triangle context. After the students used such reasoning for multiple right triangles, 

they were then asked to generalize their reasoning for generalized values of the sides of a 

right triangle. 

Table 8 

The Airplane Problem 

A plane leaves the local air force base and travels due east. A radar station 45 miles south 

of the base tracks the plane and determines that the angle formed by the base, the radar 

station, and the plane is initially changing by 1.6 degrees per minute. Determine the 

distance the plane is from the radar station after a number of minutes, m. 

 
To conclude the activities, The Airplane Problem (Table 8) featured a situation 

that the students could conceive of a right triangle with sides of varying lengths and 

angles of varying measures. This problem offered a context for the students to apply the 

outcome of the previous exploration in a case that a right triangle did not have sides of 
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fixed lengths. Also, the problem enabled the researcher to gain insights into the students’ 

actions when performing symbolic manipulations. 

Summary of Chapter 

This chapter first presented an overview of the results of an exploratory study into 

students’ conceptions of angle measure. This exploratory study revealed the students 

holding very limited and fragment understandings of angle measure as they entered the 

study. However, as the students progressed through the study, they constructed 

understandings of angle measure that were dominated by reasoning about a subtended arc 

length’s percentage of a circle’s circumference. Furthermore, the students were able to 

leverage their ability to reason about a varying arc length to construct quantitative 

relationships in the context of circular motion.  

The chapter then provided a conceptual analysis of trigonometry and angle 

measure. The conceptual analysis described a system of ideas that promoted coherence 

between the contexts of trigonometry and angle measure. Then, to conclude the chapter, a 

sequence of instructional activities was outlined relative to the intended student learning 

during each task. 
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Chapter 5 

Results Of Zac 

This chapter presents an account of Zac’s reasoning and problem solving 

behaviors revealed over the course of the study. This narrative first provides his PCA 

scores to illustrate his pre- and post-course shift and to situate Zac within the context of 

the other students enrolled in the precalculus course. This is followed by a 

characterization of Zac’s initial conception of angle measure as assessed in the pre-

interview. Following this characterization, Zac’s actions during the teaching experiment 

tasks15 are presented. The results of the interview sessions are also presented to further 

illustrate the understandings Zac constructed during the teaching experiment sessions, 

and to identify the role various reasoning abilities (e.g., quantitative and covariational 

reasoning) played in his learning. This chapter concludes with a summary and discussion 

of Zac’s progression over the course of the study. 

Zac was a full-time student in his early twenties at a large public university in the 

southwest United States. He was a Bachelor of Arts major with a focus in 

Ethnomusicology and Audio Technology. Zac completed Calculus I at a different 

university during the summer previous to the precalculus course. Zac did not intend to 

take a subsequent mathematics course after completing the precalculus course. 

Pre- and Post-Course Assessment 

                                                 
15 The problems displayed in this chapter are shortened versions of the implemented tasks 
For the full problems (e.g., diagrams included) that were implemented with the subjects, 
see Appendix C. 
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Zac received a ‘B’ for his final course grade. In total, two students from the 

course received an ‘A’, seven students received a ‘B’, eight students received a ‘C,’ and 

three students received a failing grade. Zac performed above average relative to the 16 

students that completed both the pre- and post-administrations of the PCA exam (Table 

9). 

Table 9 

Results of the PCA Pre- and Post-test (n=16) 

 Zac Amy Judy Class Average 

Pre-test Score 13/25 5/25 15/25 7.31/25 

Post-test Score 17/25 10/25 21/25 12.18/25 

 
Zac’s Conception of Angle Measure Prior to Instruction 

Prior to the first teaching experiment session, the researcher conducted an 

interview16 with Zac to gain insights into his initial conceptions of angle measure. Zac’s 

reasoning revealed during the pre-interview informed the design of the initial 

instructional activities. 

First, Zac described an angle measure of one degree and an angle measure of 

thirty-four degrees. Zac explained that a measure of one degree “is a certain measure of 

distance at a certain point.” Zac then constructed a diagram (Figure 6) and elaborated on 

his description (Except 3). 

Excerpt 3 

                                                 
16 All interview tasks given to Zac are presented in their full form in Appendix D. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Zac: Well, we have it defined (drawing a horizontal segment and a 

perpendicular segment to this segment), ok, that's a really shawdy line, 

but we'll deal. That, uh, perpendicular lines (using his hands to show 

perpendicular lines) have a degree of ninety degrees right there, ninety 

degrees right there (drawing right angle symbols). And a straight line is 

technically a degree of a hundred and eighty degrees. And a whole 

circle, if you do something like that (drawing a circle), that's the whole 

three sixty degrees. So, we can stick with the ninety degrees, this section 

right here (drawing an arc outside of drawn circle), has been divided 

into ninety different sections. So that, one of them, which this is not 

going to be one of them, but it will work (drawing line extending right to 

show one degree). Like say, say that that distance right there (drawing 

segment between two rays) is one degree. And then saying it has thirty-

four degrees is just thirty-four of those. Like that (drawing ray at 

approximately thirty four degrees), which is definitely not thirty four 

degrees, but ya. 

KM: Ok. So what do you mean by sections? 

Zac: Well, it's been divided up into ninety different areas. 

 
Zac first described perpendicular lines as having ninety degrees between the two 

lines (lines 3-5). He then continued to describe geometric objects as illustrated by his 

statement that a straight line is one hundred and eighty degrees and a whole circle is three 

hundred and sixty degrees (lines 5-8). Zac then alluded to dividing a “section” into 
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smaller sections corresponding to one degree (line 9-14). He also constructed an arc 

(lines 9-10), but when asked to explain the “section” he was referring to, he indicated an 

area (line 18). Thus, it appears that Zac’s initial conception of angle measure consisted of 

a combination of objects (e.g., properties of lines and circle), areas, and distances 

between two lines. 

Zac identified an arc during his description and referenced breaking up sections, 

but after this description he admitted that he did not know how to construct or break up 

the various sections. Thus, his conception of angle measure did not include a systematic 

way to coordinate the various attributes he identified in order to measure an angle. Soon 

after this interaction, he further admitted that he had never thought about angle measure 

deeply previous to this question. 

 

Figure 6. Zac’s initial angle measure diagram. 

After Zac was given the supplies of a compass, Wikki Stix, and a ruler to measure 

an angle displayed on the interview protocol, he was unable to measure the angle. Zac 

also described a protractor, saying, “they have…a [protractor] that’s already designed 

out, shows you where all the angles are.” Zac’s suggestion of a protractor showing where 
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“the angles are” is consistent with an individual focusing on objects and positions of lines 

without imagining partitioning a subtended arc length. 

Table 10 

The Traversed Arc Problem 

An individual is riding a Ferris wheel that has a radius of 51 feet. On part of a trip around 

the Ferris wheel, the individual covers an arc-length of 32 feet. How many degrees did 

the individual rotate? 

 
To conclude the pre-interview, Zac completed The Traversed Arc Problem (Table 

10). Zac oriented to the problem by drawing a circle, labeling the given measurement, 

and calculating the circumference of the circle. Zac then calculated one fourth of the 

circumference (80.1 feet) and constructed the equation 
90
80.1

=
x
32

. Zac subsequently 

solved for an angle measure of 35.95 degrees and explained his solution (Excerpt 4). 

Excerpt 4 

1 

2 

3 

4 

5 

6 

7 

8 

Zac: Well it's just, if you're given three variables and you just need one more. 

Well, you, uh, 'cause you're given degrees and feet and degrees and feet. 

KM: Ok. 

Zac: And it just, it gives you three of the four you need. It's a very easy 

equation to find a fourth. 

KM: Ok, 'cause you're given three of the four, then you know to set up a 

proportion? 

Zac: Ya. 
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9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

KM: Ok, and so, and how do you know how, which way to set up the 

proportion? 

Zac: Well you could do it either way. I could do eighty point one over ninety 

is thirty two, as long as the top's are both the same unit, their both 

degrees, and these are both feet (writing units by the measurements). 

KM: Ok, as long as they’re both the same. 

Zac: Ya. Well this actually is in a degree, which is why it works if you think 

scientific notation wise. 

KM: Ok. 

Zac: 'Cause then these feet cancel each other out so you are just left with a 

unit, then the degrees is what's left over. 

 
Zac justified his equation by stating that he had three given variables with one 

unknown variable (lines 1-2). Zac also alluded to having the appropriate units to 

construct his equation (lines 12-13). Zac’s explanation focused on the type of the problem 

(e.g., three values known, a fourth unknown), as opposed to suggesting that each ratio 

represented a relationship between an arc length and angle measure. Following this 

interaction, he was unable to describe a meaning of the ratios as the researcher questioned 

his solution. 

Zac returned to the previous problem and claimed he could solve the problem in 

the same manner. As opposed to constructing a full circle centered at the vertex of the 

angle, Zac drew a perpendicular ray to the horizontal ray extending from the vertex of the 



   98 

 

given angle. He subsequently constructed a quarter of a circle, calculated the 

circumference of the entire circle, and determined a quarter of the circumference. 

Zac then provided a solution identical to Excerpt 4, which consisted of a focus on 

matching units between the two numerators and two denominators. The researcher then 

asked Zac to explain the meaning of one of the ratios. After Zac calculated the value of a 

ratio, Zac multiplied the third given number by this result. Zac was then unable to 

provide an explanation beyond the numerical result of the ratio (e.g., not a value) and the 

calculation. The researcher also asked Zac why he chose to use ninety degrees opposed to 

three hundred and sixty degrees to solve the problem. Zac responded that a “smaller 

piece” and “small numbers” made the problem “easier.”  

Summary of Pre-interview 

Zac’s actions during the pre-interview reveal that his conception of angle measure 

consisted of a loose coordination of objects (e.g., lines and circles) and attributes of these 

objects (e.g., distances between two lines, areas, and the orientation of two lines). But, his 

responses did not reveal a process for measuring an angle that consisted of coordinating 

measurable attributes. Rather, the measurements were pre-defined properties for the 

various objects. Also, when referencing a protractor, Zac described the protractor as 

providing the location of angles. These actions imply that Zac had not conceived of a 

protractor, or angle measure, as identifying the fraction of a circle’s circumference cut off 

by the angle.  

While Zac did not give descriptions that stemmed from a process of measuring an 

angle, he was able to determine an angle measure corresponding to an amount of rotation 
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(Excerpt 4). Zac’s justifications for his solution had a calculational focus independent of 

the quantities of the problem. Zac claimed that his equation could be used to solve 

problems consisting of three known values and an unknown fourth value. The researcher 

prompted Zac to describe one of the ratios composing his equation, which resulted in Zac 

immediately calculating the ratio rather than providing a quantitative meaning for the 

ratio. Lastly, as Zac explained an alternative approach to a problem, he focused on the 

aesthetics of the numbers opposed to the quantities of the problem situation. 

Teaching Experiment Sessions One Through Four 

The first four teaching experiment sessions consisted of Activities 1-7 (Appendix 

C). This section outlines the instructional tasks that were implemented during these 

sessions in the context of the constructions and connections made by Zac. Analysis of 

Zac’s engagement in the instructional activities resulted in a preliminary model of his 

thinking, which informed the design of his interview tasks. The first two teaching 

experiment sessions resulted in Zac reconceptualizing angle measure, while the second 

two classroom sessions led to Zac constructing the sine and cosine functions in the 

context of circular motion. 

Teaching Experiment Session One 

Zac’s reasoning during the pre-interview consisted of various geometric objects 

when providing descriptions of angle measure. Zac’s responses did not include 

coordinating measurable attributes of these objects, or a process of measuring an angle. 

Thus, the first teaching experiment session focused on identifying the object of an angle 

(two rays with a common endpoint), the measurable attribute of the angle (the openness), 
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and a process of measuring the openness of an angle (quantifying the fraction of a circle’s 

circumference subtended by the angle). 

The cannon problem. 

Table 11 

The Cannon Problem 

Two military historian groups decided to test the range of two different World War I 

cannons that have different barrel lengths. During their testing both groups noted that the 

horizontal distance traveled by the projectiles fired from their cannons changed as they 

tilted their cannon barrels up and down. The two groups wanted to compare the 

horizontal distances traveled by the projectiles by the two cannons without transporting 

one cannon to the other. Describe the quantities that one group could measure to convey 

to the other group how to set up their cannon identical to the other group. 

 
During The Cannon Problem (Table 11), Zac first discussed, “as the angle of the 

cannon changed, the distance the projectile traveled changed.” Zac subsequently 

identified a need to measure this angle. He further described the measurable attribute of 

an angle as, “the curvature between the two lines…I don’t really know how to explain it. 

I never had to think much about an angle before.” Zac’s difficulty explaining angle 

measure was consistent with his actions during the pre-interview, and prompted the 

researcher to use The Protractor Problem (Table 12) to investigate angle measure. 

The protractor problem. 
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Table 12 

The Protractor Problem (Task 1) 

Using the supplies of a Wikki Stix and a ruler, construct a protractor that measures an 

angle in a number of gips, where 8 gips rotate a circle. 

 
The Protractor Problem was intended to support the subjects constructing a 

process of measuring an angle that is reliant on partitioning the circumference of the 

circle into equal segments of an arc length. Zac first determined a measure of two gips 

(Excerpt 5).  

Excerpt 5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Zac: Well, I already figured out what two gips is, by just dividing it in half. 

KM: So dividing what in half? 

Zac: The protractor. I just drew a line down the middle (waving hand over 

protractor) and that gives me two gips. And then I just need to figure out 

how to find… 

KM: So how’d you know how to draw the line? 

Zac: Uh, I figure out that the diameter is four inches, and just found out 

where two inches is, marked it (referring to the midpoint of the 

diameter), and found my best two inches this way (waving pen tip from 

the bottom to the top of the protractor) and drew it up. 

KM: OK, so you kind of had to eye-ball that a little bit though, right? 

Zac: Ya, but it’s a right angle (attempting to use the protractor on the end of 
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13 

14 

the ruler to verify the right angle). 

KM: No using the protractor. 

 
During this interaction, Zac’s method focused on the object, or area, of the 

protractor to identify a measure of two gips. He drew a line “down the middle” to divide 

“it in half” (lines 1 & 3-5), and then related this measurement to the geometric object of a 

right angle (lines 12-13). Zac’s mark for the measurement was also based on a visual 

estimation. The researcher predicted that Zac would encounter difficulties as he 

attempted to identify other measurements and thus he encouraged Zac to continue while 

hoping these difficulties would result in Zac reflecting on his solution. 

When Zac determined a mark of one gip, he initially attempted to construct two 

equal “pieces” of the protractor. Zac could not accomplish this goal beyond a visual 

estimation. After allowing Zac to persist with no success, the researcher asked Zac for a 

method to verify his original mark of two gips (Excerpt 6). 

Excerpt 6 

1 

2 

3 

4 

5 

KM: Now, that line you drew (referencing Zac’s two gips line) here…how 

can we tell if that’s in its right location? 

Zac: Ya, you get the, measure out the whole thing. 

KM: So what do you mean measure out the whole… 

Zac: Measure out the perimeter. 

 
Zac’s reflection led to him identifying the circumference of the protractor as a 

measurable attribute that could be used to identify an angle measure (lines 3-5). Zac then 



   103 

 

calculated the circumference of the protractor (e.g., half of a circle) and determined half 

of this amount. At this moment in the teaching experiment session, Zac’s actions made a 

distinct shift to reasoning about angle measure relative to various arc lengths and a 

circle’s circumference. 

In order to draw on Zac’s reasoning, the researcher drew a diagram of a protractor 

on the whiteboard and labeled the radius of the protractor as 3.9 centimeters. In order to 

construct the protractor such that 15 units (quips) rotated through a circle’s 

circumference, Zac suggested the calculation of 12.2522 / 7.5  (e.g., half of the 

circumference divided by half of the total units) and explained the result as the number of 

centimeters of arc length per quip for that specific circle. When presented with a 

protractor with a radius of 4.5 centimeters, Zac explained that the construction method 

remained unchanged, but the numerical values composing the method changed (e.g., 

1.885 cm/quip). Zac’s explanation implies that his reasoning centered on the quantities of 

the situation, opposed to the calculations composing his method. 

Zac’s approach to the problem revealed him coordinating an arc length per unit of 

angle measure, but Zac was yet to describe a subtended arc length as a fraction of the 

circle’s circumference. In order to leverage Zac’s approach to constructing a protractor, 

the researcher posed the ratios of the linear arc length for one unit of angle measure to the 

total circumference of the corresponding circle (e.g., 1.63/24.5044 and 1.885/28.2744). 

Additionally, the subjects were asked to interpret the ratio of 1/15 (e.g., one quip relative 

to fifteen quips). 



   104 

 

After the subjects calculated each ratio (approximately 0.067), Zac interpreted this 

value (Excerpt 7). 

Excerpt 7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

KM: [Talk about] what each of these operations represented and why those 

numbers came out to be the same. So talk to each other about why you 

think that might be true. 

Zac: ’Cause it’s just taking the full circumference and then a fifteenth of a full 

circumference. 

KM: So say a little more, so what’s going on? 

Amy: You’re taking one measurement of one of the fifteen quips… 

Zac: Dividing it by the full fifteen quips. 

KM: So taking the one and dividing it by the full fifteen quips. Well that’s 

just the left case, what about the other two [ratios]? 

Zac: It’s the exact same. You’re taking one-fifteenth of the full circumference 

and dividing it by the full circumference. 

 
During this interaction, Zac reasoned that each numerator represented one-

fifteenth of the entire circumference (the denominator). These actions imply that Zac 

conceived of each ratio as a value representing an arc length’s fraction of a circle’s 

circumference. 

Following this interaction, Zac described 4.1 quips as, “four point one fifteenths 

[of a circle’s circumference].” Zac added that this fractional amount held for any circle 

centered at the vertex of the angle, which implied that he constructed an understanding of 
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angle measure corresponding to the angle subtending a constant fraction of any circle’s 

circumference that is centered at the vertex of the angle. Zac then concluded the 

protractor problem by describing an angle measure of one degree as, “one three-sixtieth 

of a circle’s circumference.” 

The protractor applet. The Protractor Applet (Figure 7) was designed to support 

the subjects continuing to reason about angle measure as the fractional amount of a 

circle’s circumference subtended by the angle. Also, as the terminal ray of an angle is 

moved or the radius of the circle is changed on the applet, the displayed values change 

accordingly, which allowed a dynamic investigation of angle measure.  

 

Figure 7. – The protractor applet. 

Zac first explained that the value of the two displayed ratios represented the 

“percent of the full circle’s circumference” cut off by the angle. Then, Zac claimed that 

the “along the arc” distance would increase while the radius of a circle was increased; he 

also explained that ratios remaining constant reflected that the openness of the angle 

remained constant. These actions reveal Zac continuing to reason about angle measure as 
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the fraction of a circle’s circumference subtended by the angle’s rays, with this fractional 

amount remaining constant for a circle of any radius. 

In summary, through his actions of constructing protractors in various units, Zac 

reasoned about an arc length corresponding to one unit of angle measure (e.g., an arc 

length per unit image). Zac then reflected on this process and the quantitative meaning of 

various ratios to construct an understanding of angle measure as a fraction of any circle’s 

circumference cut off by the angle. In each case, Zac reasoned about angle measure 

corresponding to a subtended arc, where he conceived of measuring “along” this arc. 

Teaching Experiment Session Two 

The second teaching experiment session returned to The Protractor Applet in 

order to revisit the outcomes of the previous day. Following this activity, Zac engaged in 

The Angle Measurement Problem (Table 13), which continued promoting connections 

between angle measure and the construction of a circle. The Circumference Problem 

(Table 14) then promoted Zac constructing the radian as a unit of angle measure. 

The protractor applet. Similar to the previous session, Zac described the two 

displayed ratios on the applet, explaining, “It’s the degrees from point a to point b along 

the circumference over the full three sixty degrees which gives you the same percentage 

as the length of, the arc length of point a to point b over the full circumference.” This 

explanation reveals Zac reasoning about measuring along an arc, while also reasoning 

about the arc as a percentage of the circle’s circumference. 

The angle measurement problem. 
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Table 13 

The Angle Measurement Problem 

Using the supplies of a Wikki Stix and a ruler, measure the following angles in degrees 

with only the available supplies. Be prepared to explain your reasoning.  

 
The Angle Measurement Problem offered another opportunity for Zac to reason 

about the process of measuring an angle. Recall that Zac was initially unable to complete 

this task during the pre-interview, and later reached a solution using a procedural method 

from a previous problem. During the second teaching experiment session, Zac 

constructed and measured an arc between the two rays of the angle. Zac then explained 

that the ratio between the arc length cut off by the angle and the circumference of that 

circle represented the arc length’s percentage of the circle’s circumference. He added that 

the angle measure was the same percentage of 360 degrees. 

Zac’s actions on this problem reveal that his engagement in the previous activities 

(e.g., The Protractor Problem) resulted in Zac’s conception of angle measure consisting 

of a quantitative relationship between a subtended arc and the circumference of a circle. 

Thus, in order to determine the multiplicative relationship between these quantities, Zac 

constructed a circle with a subtended arc length and then determined the needed values. 

The circumference problem. 
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Table 14 

The Circumference Problem 

Construct a circle using a Wikki Stix as the radius (your group should have Wikki Stix of 

different lengths). Then, determine how many of your Wikki Stix mark off the 

circumference of your circle. Compare your result with your classmates. What 

observations can you make from this comparison? Construct an angle that cuts off one 

Wikki Stix length of an arc. Compare the openness of the angle with those of your 

classmates.  

 
The Circumference Problem marked the beginning of the activities focused on the 

radian as a unit of angle measure. In order to leverage Zac’s understanding of angle 

measure as measuring along an arc, this task prompted Zac to construct a circle with a 

Wikki Stix as the radius of the circle. Zac then determined the number of Wikki Stix 

along the circumference of his circle, while comparing this to other subjects’ results. This 

resulted in Zac establishing that approximately 6.28 radius lengths17 (or exactly 2! radius 

lengths) rotated through any circle’s circumference. 

After Zac conceived of a constant number of radius lengths rotating through any 

circle’s circumference, Zac claimed, “[the radius] simplifies a circle, you know, the 

circumference of a circle is equal to two pi r, where the radius is the unit, not inches, or 

anything like that. So it simplifies it a lot, you know, using it as an actual unit.” He 

further described, “Like, you know, one radius, and then the circumference is six point 

                                                 
17 Radius lengths is used opposed to radii to emphasize that Zac conceived of the radius 
as a measurable length that could be used as a unit of measure. 
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two eight radius.” These explanations reveal Zac reasoning about the radius as a unit of 

measurement for the circumference of a circle. Zac also described the radius as “one 

radius,” with 2! radius lengths rotating through the circle’s circumference (e.g., 

C = 2!r ). Thus, Zac’s engagement in The Circumference Problem appears to have 

resulted in his construction of the unit circle (e.g., a circle with a radius of one unit). 

Following this problem, Zac described various radian angle measures in terms of 

rotating along various arcs. For instance, in order to construct the arc length of seven 

radii after constructing an arc length of six radii, Zac explained, “I just took my Wikki 

Stix, which is the length of my radius, and moved one more, which gave me seven radii.” 

Zac’s ability to reason about a number of radius lengths rotating along the circumference 

of a circle enabled him to easily consider an arc length that was greater than 6.28 radius 

lengths. Zac also spontaneously described radii measurements of arcs as “relative to the 

radius” and as a percentage of the radius. 

Teaching Experiment Session Three 

In order to leverage Zac’s understanding of radian angle measure (e.g., measuring 

along an arc in a number of radii), The Fan Problem (Table 15) introduced the sine 

function in the context of circular motion. This task composed the entirety of the third 

classroom session, and The Fan Applet (Figure 8) was used to support the subjects’ in 

making sense of the problem situation and identifying the relevant quantities. 



   110 

 

 

Figure 8. The fan applet. 

The fan problem. 

Table 15 

The Fan Problem (Sine) 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a 

counterclockwise direction. The bug is exactly 3.1 feet from the center of the fan and is at 

the 3:00 position as the blade begins to turn. Create a graph that shows how the bug’s 

vertical distance above the 9:00 to 3:00 diameter line varies with the total distance the 

bug travels around the circumference. 

 
Zac first described that the rotation of the bug formed a circle and that the 

distance the bug traveled was measurable in a number of radius lengths. Zac then 

conjectured that the graph would be “like a tangent line…like a sine or cosine,” while 

mimicking the shape of a sinusoid with the tip of his pen. He also reasoned about the 

directional variation (MA2) of the vertical distance as the bug traveled around the center 

of the fan and described that the bug approached a “highest point” and a “lowest point.” 
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In response to Amy stating that she was measuring the input relative to time, Zac 

described that he could use any unit of angle measure, further revealing his comfort of 

relating angle measure to an arc length. All three subjects subsequently generated graphs 

with an output measured in feet and an input measured in radians. Also, all three graphs 

perceptually resembled a graph of the sine function. 

Zac justified his graph by first describing the directional covariation of the two 

quantities (MA2). In order to further investigate this covariational relationship, Zac was 

asked to explain the shape, or curvature, of his graph. Previous to Zac’s explanation, the 

researcher added a graph composed of three linear segments conveying the same 

directional covariation (Figure 9) in the hopes that Zac would contrast his graph with a 

linear relationship. Zac immediately identified that a constant rate between the values of 

the two quantities meant for an equal change of total distance traveled, the vertical 

distance changes by a constant amount (MA3). Following this description, he claimed 

that the relationship between the vertical distance and the distance traveled was not 

linear. 

 

Figure 9. The researcher’s proposed graph. 
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In order to verify that his graph (Figure 10) did not convey a constant rate of 

change, Zac suggested considering equal changes of distance traveled by the bug. In light 

of Zac’s suggestion, The Fan Applet was used to investigate equal changes of total 

distance and the corresponding changes in vertical distance for the first fourth of a 

rotation. This resulted in verifying that the change in vertical distance was decreasing for 

equal changes of total distance (MA3). After discussing how the graph conveyed this 

relationship (e.g., concave down), another student (Judy) described the vertical distance 

as decreasing at an increasing rate for the second quarter of a revolution (MA5). Zac 

elaborated on Judy’s rate of change description and identified that the change in vertical 

distance was increasing over this quarter of the revolution (MA3). Zac then stated that the 

vertical distance decreased at a decreasing rate over the third quarter of a revolution and 

that for equal changes of arc length, “the change in vertical distance is going to get 

smaller” (MA3 and MA5). 

 

Figure 10. The students’ graph. 

Zac’s actions imply that The Fan Problem offered a situation in which he 

conceived of both the vertical distance and the change in vertical distance as two distinct, 

measureable, and related quantities. Zac’s conception of the situation, possibly aided by 

The Fan Applet, also enabled him to reason about amounts of change of vertical distance 
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and how these amounts of change were changing relative to equal changes of arc length 

(MA3). This reasoning led to Zac constructing a graphical representation rooted in 

reasoning about the rate of change and amounts of change between two quantities. 

In order to formalize Zac’s reasoning as the sine function, the researcher 

prompted the subjects to consider a changing radius relative to the constructed graph. 

After Judy identified that the graph would change, the researcher presented a graph that 

was identical in its perceptual features to the subjects’ graph except that the maximum 

and minimum output values were one and negative one, respectively. The subjects were 

then asked for the output unit of this graph given the requirement that the graph 

represented the same situation (e.g., a fan of the same radius) as the previous graph. 

Zac immediately suggested “the radian” as the output unit and identified the 

locations where the bug was zero radius lengths or one radius length vertically from the 

horizontal diameter of the circle. Zac also described that an output measured relative to 

the radius conveyed the covariational relationship for a circle of any linear radius length. 

Thus, it appears that Zac’s ability to reason about measuring a length relative to the 

radius enabled him to identify the radius length as a possible unit of measure for a 

quantity other than an arc length. This resulted in Zac understanding the graph as 

representing a covariational relationship between an arc length and a vertical distance for 

a circle of any size. 

After the previous interactions, the graph presented by the researcher was 

formalized as the sine function, or f (!) = sin(!) . Zac then suggested that the graph he 

produced corresponded to the formula g(!) = 3.1sin(!)  and explained that multiplying 
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the output of the function f by the radius length in feet resulted in an output in feet. 

Additionally, Zac provided this description without calculating a numerical value of 

sin(!) . Hence, Zac’s ability to reason about measuring a length as a fraction of the radius 

while also anticipating the sine function outputting a value measured relative to the radius 

enabled him to convert an indeterminate output value to another unit of measure. 

Zac’s engagement in The Fan Problem reveals him constructing a graph rooted in 

covariational reasoning based on indeterminate values. Zac covaried amounts of change 

of vertical distance and equal changes of arc length to justify the concavity of his graph. 

Reasoning about indeterminate values may have promoted his ability to anticipate sin(!)  

producing an output representing a fraction of the radius (e.g., a process conception of the 

sine function). Zac also reasoned that the output value was a constant percentage of the 

radius regardless of the unit of measure. 

Teaching Experiment Session Four 

In an attempt to generate a similar construction of the cosine function, the 

researcher returned to The Fan Problem (Table 15) during the fourth teaching experiment 

session. The Positions on a Circle Problem (Table 16) and The Finding an Arc Length 

Problem (Table 17) were also used during the fourth classroom session to investigate 

evaluating the sine and cosine functions using numerical values. 

The fan problem. Zac’s actions during the construction of the cosine function 

were consistent with those exhibited during the construction of the sine function. When 

creating the graph of the cosine function, Zac considered equal changes of arc length 

while comparing changes of the horizontal distance to the right of the vertical diameter 
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(MA3). This led to Zac constructing a graph rooted in a covariational relationship. The 

Fan Problem offered Zac a situation in which he could construct quantities and 

covariational relationships between quantities such that these relationships could be 

formalized as the sine and cosine functions. 

The positions on a circle problem. 

Table 16 

The Positions on a Circle Problem 

A certain arctic village maintains a circular cross-country ski trail for the enjoyment of its 

citizens during the winter months. Their trail has a radius of 2 kilometers. A certain skier 

started at position (2,0) one morning, skiing counterclockwise for 2.2 kilometers, where 

he paused for a brief rest. Determine the ordered pair that identifies the location where 

the skier rested. 

 
Zac oriented to the task by using a diagram to identify the starting position of the 

skier and the distance traveled by the skier (Figure 11). After determining a solution to 

the problem, Zac explained, “I found it easier to find the percentage of the radius first,” 

apparently giving preference to measurements given relative to the radius. Zac then 

described his solution (Excerpt 8). 

Excerpt 8 

1 

2 

3 

Zac: Ok, so first I found out how many radians it took for him to get there 

(tracing the traversed arc traveled), which was one point one, ‘cause I 

took two point two kilometers divided by the radius, two kilometers, and 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

got one point one radians (pointing at the values on the board 

throughout his description). Then I took the cosine of one point one and 

got [point] four five radians, which gave me the horizontal distance 

(identifying distance on his diagram). And I took the sine of one point 

one, and uh, got point eight nine radians, which gave me the vertical 

distance (identifying distance on his diagram), shown here as a 

percentage of a radius (pointing to coordinate), ordered pair in radians, 

percentage of a radius. So I got point four five, point eight nine. And 

then I multiplied those by the two kilometers to get it in kilometers 

(pointing to coordinate given in kilometers). I got point nine, one point 

seven eight. 

KM: So why’d you multiply by the two kilometers? 

Zac: Uh, to get the radius. Because it’s in a percentage of a radius, you have 

to multiply it by the radius so then I’ll get kilometers. 

 
Zac solved the problem by converting the given arc length to a number of radius 

lengths and finding the corresponding output values of the sine and cosine functions 

(lines 1-11). Zac’s ability to reason about measuring quantities as a fraction of the radius 

then enabled him to flexibly convert between measurements given relative to the radius 

and measurements given in kilometers (lines 16-17). Thus, Zac’s ability to conceive of 

measuring quantities relative to the radius enabled him to conceive of the situation such 

that he could evaluate the sine and cosine functions when given an arc length in a number 

of kilometers. 
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Figure 11. Zac’s positions on a circle diagram. 

The finding an arc length problem. 

Table 17 

The Finding an Arc Length Problem 

A skier skied on a circular route, starting at the point (1,0) on the circle, and ending at the 

point (0.951, 0.309) on the circle. How many km did she ski? 

A skier skied on a circular route, starting at the point (2.5,0) on the circle, and ending at 

the point (2.3775, 0.7725) on the circle. How many km did she ski? 

 
The first two tasks of The Finding an Arc Length Problem concluded the fourth 

teaching experiment session. When orienting to the problem, Zac identified, “we are 

given what we normally find…outputs.” Subsequently, Zac identified the need of an 

inverse function, which led to the researcher introducing two standard notations for 

inverse trigonometric functions (e.g., sin!1(x)  and arcsin(x) ). When presented with the 

arcsin and arccos notations, Zac concluded that the functions were named as such 

because their output represented an angle measure, or arc length. As Zac continued 
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working he remained attentive to the units of measurement for the input and output 

values of the inverse functions. For instance, on the second task, Zac first converted the 

given positions to a number of radius lengths in order to use the values as inputs to the 

inverse functions. This led to Zac correctly completing the task without difficulty. 

Zac’s actions on this problem imply that his constructed quantitative relationships 

were not one-way processes. That is, Zac reasoned about either quantity as an input or an 

output of a function. Thus, when given a position on a circle in The Finding an Arc 

Length Problem, Zac conceived of an arc length (the input to the sine and cosine 

functions) corresponding to the position. This reasoning enabled Zac to formalize the 

inverse sine and cosine functions relative to the quantitative relationships he had 

previously constructed during The Fan Problem. In short, the inverse functions did not 

require Zac to construct a novel quantitative relationship; Zac had already constructed the 

quantitative relationship that enabled him to anticipate an arc length corresponding to a 

vertical or horizontal distance, or vice-versa. 

Summary of the First Four Teaching Experiment Sessions 

During the pre-interview, Zac referenced various geometric objects (e.g., lines 

and arcs) corresponding to the measure of an angle, but he did not exhibit reasoning 

about a process of measuring an angle that consisted of quantitative relationships. Zac’s 

engagement in The Protractor Problem resulted in him engaging in the process of 

measuring an angle. Zac’s construction of a protractor and reflection on this process led 

to him identifying a subtended arc as a measurable attribute. His focus on the subtended 

arc resulted in him reasoning about measuring along the arc and identifying a relationship 
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between an arc length and a unit of angle measure. Then, by reflecting on various ratios, 

Zac identified that an angle measure conveys the fractional part of a circle’s 

circumference cut off by the angle. For instance, Zac explained that one degree of angle 

measure corresponded to “one three-sixtieth of a circle’s circumference.” 

Zac’s engagement in The Circumference Problem resulted in Zac constructing an 

image of measuring along an arc in a number of radius length. As a result of constructing 

a circle and measuring the circumference of the circle using the radius of the circle, Zac 

identified that all circles have a radius of “one radius” and a circumference of “six point 

two eight radius.” In other words, Zac’s engagement in The Circumference Problem 

resulted in him constructing the unit circle (e.g., a circle of a radius of one). 

The Fan Problem then offered a context that Zac could leverage measuring along 

an arc in a number of radius lengths to construct (within the context of circular motion) 

the covariational relationships formalized by the sine and cosine functions. Relative to 

the sine function, Zac reasoned about equal changes of arc length while comparing the 

corresponding changes of vertical distance. This resulted in both a graph and a formula 

emerging from his conception of quantitative relationships composed of indeterminate 

values.  

Zac’s reasoning about indeterminate values during The Fan Problem parallels a 

process conception of these functions. For instance, Zac explained multiplying “the 

output…the percentage of the radius” by the radius “as long as the radius is in feet” in 

order to convert an output to a number of feet. Zac also altered the formula f (!) = sin(!)  

without performing calculations on a numerical output. Rather, Zac reasoned that the sine 
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function had an output relative to the radius, and that multiplying by the radius length in 

feet resulted in the representation of g(!) = 3.1sin(!) . Zac’s reference to the output of the 

function occurred without calculating or performing an action on a numerical output, 

which implies he conceptualized the sine function as self-evaluating. Also, Zac’s ability 

to reason about an indeterminate value and the quantitative relationship implied by 

measuring a quantity relative to the radius enabled him to anticipate converting between 

two measurement units. 

Exploratory Teaching Interview One 

After the first four teaching experiment sessions, an exploratory interview 

(Appendix D) was conducted with Zac in order to further pursue Zac’s reasoning 

revealed in the group setting. Zac’s thinking (described above) informed the design of the 

exploratory interview. As an example, on The Finding an Arc Length Problem, Zac’s 

actions imply that he constructed a quantitative relationship between two quantities that 

included the ability to reason that for any value of one quantity there was simultaneously 

a value of the other quantity. Thus, The Ski Trail Problem – Version I (Table 21) was 

designed such that it consisted of unknown values in both quantities. 

The first exploratory teaching interview consisted of problems that focused on 

both angle measure and trigonometric functions. An analysis of Zac’s reasoning relative 

to problems focused solely on angle measure is first presented. This will be followed by a 

discussion of Zac’s actions on problems involving trigonometric functions. 

Angle Measure Interview Observations 

The arc length problem. 
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Table 18 

The Arc Length Problem 

Given that the following angle measurement ! is 35 degrees, determine the length of each 

arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 

inches, and 2.9 inches. 

 
After reading The Arc Length Problem (Table 18), Zac explained his solution 

previous to executing the solution (Excerpt 9). 

Excerpt 9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Zac: Um, ok. So what I plan on doing for this one is converting thirty-five 

degrees into radians. And a very easy way of doing that is putting thirty-

five over three sixty is equal to x over two pi (writing corresponding 

equation). 'Cause three sixty degrees covers the whole circumference of 

a circle (mimicking the shape of the circle with the pen tip) and two pi 

radians covers the whole circumference of a circle (mimicking the shape 

of the circle with the pen tip). So those two should be equal (swiping pen 

across the equality) and I can just find x. And then with that all I have do 

is just multiply the answer (pointing to x) by two inches, two point four 

inches, and two point nine inches (pointing to each value in the problem 

statement) to get the different arc lengths (identifying each arc length 

with his pen tip) right there, because radians is just a percentage of a 

radius. 
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Zac first identified a goal of converting the angle measure from degrees to 

radians, likely giving preference to an angle measure in radians (lines 1-2). After 

constructing an equation to complete this conversion, Zac explained that both three 

hundred and sixty degrees and two pi radians “covers the whole circumference of a 

circle,” while making a motion that mimicked a circle (lines 4-6). Consistent with his 

actions during the teaching experiment sessions, Zac then described a radian measure 

conveying a percentage of the radius, while leveraging this understanding to anticipate 

converting the radian measure to the linear measure of each arc length (lines 8-13). These 

actions further illustrate that Zac’s understanding of a measurement in radians consisted 

of a multiplicative comparison (e.g., a quantitative relationship) between an arc length 

and the radius length. 

Zac’s reasoning driving his conversion of a degree measure to a radian measure 

was unclear at this point in the interview. During the pre-interview, Zac described a 

similar method by referencing that both the numerator and denominator of the ratios 

needed to have matching units (Excerpt 4). This approach did not require Zac to conceive 

of each ratio as representing a multiplicative comparison between two quantities’ values. 

In order to gain insights into Zac’s reasoning, he was asked to further explain his 

conversion (Excerpt 10). 

Excerpt 10 

1 

2 

3 

KM: So could you explain a little bit more, why that equation works there? 

How you knew to set that up, why that works? 

Zac: Well what you're doing is just technically finding a percentage. Like 
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4 

5 

6 

7 

8 

9 

thirty-five over three sixty is (using calculator), is poi-, or nine point 

seven percent of the full circumference. 'Cause three hundred sixty 

degrees (mimicking the shape of the circle with the pen tip) in a circle. 

KM: Ok. 

Zac: So thirty-five of those degrees equals nine point seven percent of the full 

thing.  

 
Contrary to his explanation in the pre-interview (Excerpt 4), Zac described a ratio 

as a percentage of a circle’s circumference (lines 3-5). This interaction reveals that the 

reasoning behind his angle conversion was based on his conception of angle measure as 

conveying the fraction of a circle’s circumference subtended by the angle. 

Zac was then asked to explain an angle measure of 0.61 radians (Excerpt 11). 

Excerpt 11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

KM: What does [0.61 radians] mean as an angle measurement? 

Zac: That means that this arc length right here (tracing the arc length on the 

smallest circle) is point six one, or sixty one percent of the radius. 

KM: Of the radius? 

Zac: Ya. 

KM: Ok. Now (pause), and then so why times, why'd you do this step here 

then? With the point six one (pointing to 0.61(x)). 

Zac: Well because I couldn't just leave it as radians, so I have to get it in 

inches, or you know, an actual distance measure. So knowing that it's 
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26 

27 

28 

29 

30 

31 

sixty one percent, or it's equal to sixty one percent of the radius, all I 

have to do is just multiply it by the radius and I know what it is. 

KM: Ok, cool. Ok, so one last question. So we have all these different 

lengthed arcs right (tracing the three arcs)? 

Zac: Ya. 

KM: But yet that angle measurement you know, has the same, the angle 

measurement doesn't change. So why is that, how is it that happens, you 

know why it... 

Zac: Well, because it's always the same percent of the circle it's cutting out 

for each different circle. 

KM: Ok. 

Zac: As long as, you know, you're starting in the very center of the circle 

(pointing to the center of the circle), the origin. 

KM: Ok. Good. Ok, so what's the same percent there you said? Something's 

always the same percent. 

Zac: The, well, the degrees or radians is showing a chunk of the circle being 

cut out, and that's a certain percent of the circle being cut out. It's always 

the same no matter what, as long as you're using that same degree or 

radian length, then you're always going to have that same amount, or 

same percent of the circle, or circumference being cutout no matter what 

size the radius is, or the circumference of the circle is (making circular 

motion with hand). 
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Zac first traced along an arc length and described this length as sixty one percent 

of the radius length (lines 2-3), further revealing his ability to reason about an arc 

measured relative to the radius. Zac also reasoned about the fraction of a circle’s 

circumference cut off by an angle and identified that relative to each circle, the “same 

percent of the circle” is cut off (lines 18-19). Zac added that the same percentage of 

circumference, regardless of the radius length, was cut out for the “same degree or radian 

length” (lines 28-31). These actions reveal that his conception of angle measure as a 

fraction of a circle’s circumference subtended by the angle formed a foundational 

understanding of angle measure. 

In summary, Zac’s actions on this problem revealed him reasoning about angle 

measure as quantifying the fraction, or percentage, of any circle’s circumference cut off 

by the angle. This quantitative relationship enabled Zac to convert an angle measure. Zac 

also reasoned about measuring along a subtended arc in a fraction of the radius. This 

reasoning ability resulted in Zac flexibly converting between a linear unit and a number 

of radians. 

The radian measurements and pi problem. The Radian Measurements and Pi 

Problem prompted Zac to describe angle measures of 0.5! radians and 2.2 radians 

(Excerpt 12). The researcher also chose this problem to gain additional insights into Zac’s 

conception of ! relative to the measure of an angle. 

Excerpt 12 

1 Zac: What does it mean for an angle to have a measure of point five pi 
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2 

3 

4 
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6 

7 
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10 

11 

12 

13 

14 

15 

radians? Or two point two radians. Well an angle to have a measure of 

point five pi radians (draws circle and horizontal radius extending right 

from the center of the circle), or pi halves radians, means it's half of the 

full circle (drawing vertical radius extending up from the center of the 

circle). You know, one fourth of a full circle. Uh, for two point two 

radians (drawing circle and horizontal radius extending right from the 

center of the circle), it means that the angle length, cutout, two point 

two, roughly like right there (drawing radius extending up and to the left 

from the center of the circle, drawing arc and labeling it as 2.2 rad), is 

that length, or the arc length right here (tracing arc length) is equal to 

two point two radius lengths. 

KM: Ok. Now how bout on this one (referring to the angle measure of 0.5!), 

how long's that arc length (tracing arc length)? 

Zac: It is equal to pi halves radius lengths. 

 
Zac’s orientation to this problem involved him constructing a circle (Figure 12) 

and reasoning about the length of an arc to construct an angle (lines 1-6). Relative to the 

first measurement (0.5! radians), Zac identified a fraction of the circle’s circumference 

and described the measurement as “one fourth of a full circle.” Zac then reasoned about 

2.2 radius lengths rotating through an arc (lines 6-12). Thus, Zac alternated between 

reasoning about a fraction of a circle’s circumference and a number of radius lengths 

lying along an arc during this interaction. In order to gain further insights into Zac’s 

conception of the measurement of 0.5! radians, Zac was asked to explain the 
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measurement in the same manner as 2.2 radians (lines 14-15). Zac immediately 

responded that the measurement was “pi halves radius lengths,” and he subsequently 

approximated this value. 

 

Figure 12. Zac’s angle measure diagram. 

Zac first described 0.5! radians as referencing a fraction of a circle’s 

circumference, but he also described the measurement as the number of radius lengths 

rotating along a subtended arc. These explanations convey that Zac developed the ability 

to reason about a radian angle measure relative to a portion of a circle’s circumference 

and relative to a number of radius lengths rotating through an arc length. In both cases, 

Zac’s actions imply his image of angle measure necessitated the construction of a circle 

centered at the vertex of the angle and measuring a subtended arc length, which was a 

central process of each instructional task during the teaching experiment sessions.  

The arc problem. 
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Table 19 

The Arc Problem 

Using the following diagram, determine a formula between the measurements r, 

 

! , and s. 

  

 
Zac’s understanding of angle measure appeared to be driven by quantitative 

relationships that consisted of indeterminate measurements, and thus the researcher 

expected these understandings to form a foundation for Zac’s solution to The Arc 

Problem18 (Table 19). After establishing that the angle measure was in radians, Zac 

constructed a formula representing the relationship between the quantities (Excerpt 13). 

Excerpt 13 

1 

2 

3 

4 

5 

Zac: Alright. We'll say theta equals radians (writing ! = rad ), very very 

simple then. r theta is equal to s (writing r! = s ). 'Cause theta is in 

radians, that means a percentage of the radius. Which would then be 

equal to this length (tracing arc length). So you multiply the percentage 

of the radius by the radius, you'll get the arc length. 

 
After Zac reasoned about a radian measure as a percentage of the radius (lines 2-

4), he explained that multiplying the percentage of the radius length by the radius resulted 

in the measure of the arc length. Zac’s description implies that his constructed formula 

                                                 
18 The subjects were not asked to formalize this relationship during a previous teaching 
experiment session, nor did the researcher provide the formula at any point in the study. 

s 
r 

r 

 

!
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(line 2) stemmed from his ability to reason about an arc length measured as a fraction of 

the radius (e.g., a number of radians).  

Subsequently, the researcher prompted Zac to interpret the formula ! =
s
r

. 

Opposed to providing a procedural explanation (e.g., dividing both sides of his previous 

equation by r), Zac explained, “Well this is…a percentage of a radius length…a ratio, 

that’ll give you a percentage of r.” Thus, Zac’s conception of measuring a subtended arc 

length as a percentage of a radius drove his interpretation of the presented formula in 

addition to his previously constructed formula. Also, Zac showed no difficulty 

formalizing this relationship between indeterminate values. 

Summary of Angle Measure Observations 

Zac leveraged his ability to reason about a fraction of a circle’s circumference to 

perform angle conversions grounded in this quantitative relationship. He also explained 

that an angle cuts off a constant fraction of the circle’s circumference for a circle of any 

size. Zac’s understanding of radian measures conveying a quantitative relationship 

between an arc length and the radius (e.g., measuring along the arc in a number of radius 

lengths) also generated a foundational way of reasoning. He utilized this understanding to 

convert between a measurement in radians to a linear measurement of arc length. 

Furthermore, he reasoned indeterminately about the multiplicative comparison of an arc 

length and the radius to generate a formula representing this relationship. 

In order to leverage these understandings during the novel situations presented in 

the interview tasks, Zac also oriented to the problems such that he conceived of a 

situation consisting of these quantities. For instance, on The Radian Measurements and Pi 
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Problem, Zac first constructed a circle and identified an arc length corresponding to each 

value. During his solution on The Arc Length Problem – Version I and The Arc Problem, 

Zac traced arc lengths and referenced various quantities of the situation in ways that 

implied he conceived of these as measurable attributes of the situation. These orienting 

actions enabled Zac to construct and reason about quantitative relationships, where these 

relationships enabled him to plan and anticipate his calculations (e.g., quantitative 

operations). 

Trigonometric Function Interview Observations 

The ferris wheel problem. 

Table 20 

The Ferris Wheel Problem 

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 

rotation. April boards the Ferris wheel at the bottom and begins a continuous ride on the 

Ferris wheel. Sketch a graph that relates the total distance traveled by April and her 

vertical distance from the ground. 

 
In order to investigate Zac’s covariational reasoning abilities within a similar 

context as The Fan Problem, the researcher designed The Ferris Wheel Problem (Table 

20). Zac oriented to the problem by constructing a circle and labeling the circle’s radius. 

He also labeled the starting position of the individual using a line to connect this position 

to the center of the Ferris wheel (Figure 13). While constructing his diagram, Zac wrote 

“1.2 minutes” and drew a circular arrow, stating that he was identifying how long it took 

April to complete a full rotation. Zac also traced the circumference of the circle while 
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verbalizing, “begins a continuous ride on the Ferris wheel.” These actions appear to 

convey that Zac constructed an image of an object traveling in a circular path, with this 

path forming a measureable arc length related to an elapsed time.  

 

Figure 13. Zac’s diagram of April’s trip. 

After Zac determined the circumference of the circle (72! feet), he described, “her 

vertical distance from the ground,” and traced a portion of the circle beginning at April’s 

starting position. He proceeded by drawing a larger diagram of the Ferris wheel 

describing how the two quantities change together as the Ferris wheel rotates previous to 

he constructed a graph (Excerpt 14). 

Excerpt 14 

1 

2 

3 

4 

5 

6 

7 

8 

Zac: Ok. So a really easy way to do this is divide it up into four quadrants 

(divides the circle into four quadrants using a vertical and horizontal 

diameter). 'Cause were here (pointing to starting position), for every unit 

the total distance goes (tracing successive equal arc lengths), the vertical 

distance is increasing at an increasing rate (writing i.i.)…Then, uh, once 

she hits thirty-six feet, halfway up, it's still increasing but at a decreasing 

rate (tracing successive equal arc lengths, writing i.d.)…Uh, then when 

she hits the top, at seventy-two, it's decreasing at an increasing rate 
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23 

24 

(tracing successive equal arc lengths, writing d.i.)…And then when she 

hits thirty-six feet again it's still decreasing (making one long trace 

along the arc length), but at a decreasing rate (tracing successive equal 

arc lengths, writing d.d.). 

KM: Ok, so in terms of this one, this quadrant (pointing to the bottom right 

quadrant), could show me on there how you know it's increasing at an 

increasing rate? Just show using the diagram... 

Zac: So like, a, she moves that much there (tracing an arc length beginning at 

April’s starting position), that much here (tracing an arc of equal length 

over the last portion of April’s path in that quadrant), uh, the vertical 

distance there changes by that much (tracing vertical segment on the 

vertical diameter), which is really hard to see with this fat marker. And 

then, uh, the vertical distance here changes by that much (tracing 

vertical segment from the starting position of the second arc length), 

which is a much bigger change. 

 
Similar to his actions on The Fan Problem, Zac utilized his image of the situation 

(e.g., the diagram) to describe the relationship between the vertical distance (from the 

ground) and a traversed arc length. Zac identified successive equal changes of arc length 

for each quadrant of the circle, while describing both the directional behavior of the 

vertical distance and the rate of change of the vertical distance with respect to a varying 

distance traveled (MA2 and MA4) (lines 1-12). Furthermore, Zac compared changes of 
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vertical distance corresponding to equal changes of distance traveled (MA4) (lines 17-

24). 

Immediately after these actions, Zac constructed a graphical representation 

(Figure 14). During his construction of the graph, Zac described the directional change 

and rate of change of the vertical distance for an increasing arc length (MA2 and MA5). 

Zac also determined the various arc lengths corresponding to the beginning and end of 

each quarter of a revolution. Thus, it appears that Zac’s graph emerged from his 

constructed conception of the situation revealed in Excerpt 14.  

 

 

Figure 14. Zac’s Ferris wheel graph. 

When prompted to create a formula of his graphical representation, Zac described, 

“…the total distance is the input to get the vertical distance,” appearing to identify an 

input quantity and an output quantity. Zac then rotated his diagram of the situation 

counterclockwise by ninety degrees an explained, “’cause then I can actually make sine 

work.” He then paused for an extended amount of time and stated he could use the sine 

function without rotating his diagram (Excerpt 15). 

Excerpt 15 
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Zac: But I can still technically make it work here just by taking, by making it, 

uh, the starting point (pointing to the bottom of the circle) sixty-nine 

point six, um, feet around the circle. Or one sixty-nine point six feet 

around the circle. Or negative fifty-six point five feet around the circle. 

So it's going backwards (tracing arc clockwise from the standard 

starting position to the bottom of the circle). 

KM: Ok. 

Zac: I can still get the vertical distance that way. Um, so ya (pause). So (long 

pause), that means, since I'm doing that, that means whatever the vert-, 

or total distance is, I have to subtract fifty-six point five from it. 

KM: Ok. 

Zac: So let's see, vertical distance (pause) is equal to f of total distance 

(writing), which is equal to total distance minus fifty-six point five 

(writing), which will get me there (pointing to the bottom of the circle). 

(pause) And how (inaudible), divided by thirty-six feet to get me 

radians. (pause) And then I take the sine of that. So sine, so that will 

give me this one (referring to first constructed graph, task two). 

 

Zac constructed the formula vd = f (Td) = sin (Td ! 56.5)
36 ft

"
#$

%
&'

 by the completion of 

this interaction. Zac’s initial action of rotating his diagram appears to have stemmed from 

his desire for the starting position of the individual to be at the standard position, which 

was the only starting position discussed previous to this task. As Zac reflected on the 



   135 

 

situation, he identified the position of the rider as measureable from the standard position 

along the circumference of the Ferris wheel (lines 1-6). This image enabled Zac to 

explain that this length was 56.5 feet less than the individual’s distance traveled (lines 8-

10). As he continued, Zac converted the total distance to a number of radians (lines 16-

18). Thus, Zac conceived of the argument of the trigonometric function as an arc length 

(measured in radians from the standard position). This resulted in him determining the arc 

length from the standard position as a function of the traversed arc length. 

From the researcher’s perspective, Zac’s formula was not mathematically 

consistent with his graph. Although Zac identified the correct argument of the sine 

function, he was yet to identify a distinct vertical distance or the corresponding unit of 

measurement. In order to gain additional insights into Zac’s conception of his formula, 

Zac was asked to explain his formula an additional time. 

Zac stated that the sine function would output “the vertical distance,” paused for a 

moment, and declared, “[sine] will give me a percentage of the radius length, which I 

then need to multiply by thirty six.” This utterance reveals Zac reasoning about the output 

of the sine function as a fraction of the radius, which led to him altering his formula to 

vd = f (Td) = 36sin (Td ! 56.5)
36 ft

"
#$

%
&'

. 

In response to Zac not identifying a distinct vertical distance, the researcher 

asked, “Vertical distance from where?” Zac then identified the vertical distance from the 

horizontal diameter of the Ferris wheel, which implied that Zac’s formula was a 

mathematically correct reflection of the two quantities he was relating. The problem 
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statement asked for an output measured from the bottom of the Ferris wheel, but Zac 

reasoned about the vertical distance above the center of the Ferris wheel. 

The researcher then asked Zac to clarify the vertical distance conveyed by his 

graph. Zac again identified the vertical distance from the horizontal diameter of the Ferris 

wheel. In an attempt to have Zac notice the inconsistencies in the quantities he was 

relating, Zac was asked for the “vertical distance” when the individual was at the bottom 

of the Ferris wheel (Excerpt 16). 

Excerpt 16 

1 
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KM: So what should the vertical distance be when you're right here (pointing 

to the bottom of the Ferris wheel)? 

Zac: Uhhh, zero. Oh, ok, ya, I was thinking about that actually. So you're 

gonna have to change the formula a little bit, because you're gonna have 

to, add seventy-two, or no, because this problem, from point zero, 

should give you a negative number. Negative thirty-six. I'm right there 

(pointing to the bottom of the Ferris wheel). So then she would add 

thirty-six (adding thirty-six to his algebraic representations). 

KM: Ok, so why add thirty-six? 

Zac: (working) Because, um, technically right there it should give you zero 

(pointing to the bottom of the Ferris wheel). Uh, but the problem's going 

to give you negative thirty-six because the value of sine theta (tracing 

segment from center of the Ferris wheel to the bottom of the Ferris 

wheel) at this point is negative one. Or sine, radians, one radian is 
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negative one right there. And since you have to multiply it by the radius, 

it gives you negative thirty-six. 

KM: Ok. 

Zac: So then to cancel that out, you just add thirty-six to it. Which would 

make sense too because then, uh, when you hit this point (pointing to the 

3 o’clock position), technically that would be zero, so if you're adding 

thirty, that means thirty-six feet above the ground. And then at this point 

(pointing to 12 o’clock position), instead of just being thirty-six, 

because, you know, it's thirty-six from there (tracing segment form 

center of the Ferris wheel to the top of the Ferris wheel), it'd be seventy-

two (tracing segment from the bottom to the top of the Ferris wheel), the 

whole distance from the ground. 

 
Through reflecting on the context of the problem, Zac identified that his original 

formula resulted in a value of negative thirty-six for an input of zero (lines 5-6), and thus 

he needed to add thirty-six to this value in order to give the vertical distance from the 

ground. Zac then contrasted the measurements of the two vertical distances (lines 10-17, 

19-27) and how the output of the sine function was related to each measurement. Also, 

Zac made physical motions identifying the referenced measurements, implying he had 

constructed an image of the situation that included the two vertical distances and a 

measureable difference between these two distances. This reasoning enabled Zac to alter 
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his formula such that it conveyed a relationship consistent with his graphical 

representation ( vd = f (Td) = 36sin (Td ! 56.5)
36 ft

"
#$

%
&'
+ 36 ). 

In summary, Zac reasoned about a varying arc length to identify rates of change 

and amounts of change of vertical distance for equal changes of arc length (MA3-MA5). 

Zac then constructed a graph that reflected this quantitative relationship. Also, when 

constructing the graphical representation, Zac remained focused on the two quantities of 

the situation and described the rate of change of the vertical distance with respect to the 

total distance traveled.  

Zac’s initial formula was inconsistent with his graph (from the researcher’s 

perspective). Yet, Zac’s actions indicate that his formula was consistent with the situation 

he was attempting to model at the time. In the case of his graphical representation, Zac 

related the rider’s vertical distance from the ground and the rider’s distance traveled 

around the circle. When describing his formula, Zac identified the rider’s vertical 

distance above the horizontal diameter in relation to the rider’s distance traveled. Then, 

as Zac reflected on his representations relative to the situation, he related various vertical 

distances and leveraged the radius as a unit of measurement to create a formula consistent 

with his graphical representation. 

The ski trail problem – version I. 
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Table 21 

The Ski Trail Problem – Version I 

An arctic village maintains a circular cross-country ski trail that has a radius of 2.5 

kilometers. A skier started skiing from position (0.9665, 1.25) and skied 

counterclockwise for 12.44 kilometers where he paused for a brief rest. Determine the 

ordered pair (in both kilometers and percentage of a radius) on the coordinate axes that 

identifies the location where the skier rested. 

 
The Ski Trail Problem – Version I (Table 21) intended to gain additional insights 

into Zac’s ability to reason about a starting position other than the standard position and 

inverse trigonometric functions. Recall that on The Finding an Arc Length Problem 

(Table 17), Zac reasoned that for any given value in one quantity, there simultaneously 

existed a value in another quantity. 

When orienting to the problem, Zac identified the need of determining the arc 

length from the starting position of the individual to the standard position in order to 

determine the arc length from the standard position to the ending position of the skier. 

Zac then determined the arc length (Excerpt 17). 

Excerpt 17 

1 

2 

3 

4 

Zac: Well we can use sine or cosine, 'cause that gives us both points. So 

cosine is equal to, ya, cosine theta is equal to point nine six six five 

percent of the radius. And sine theta is equal to (pause) one point two 

five percent of the radius (pause). That doesn't make sense. (pause) 
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5 

6 

7 

8 

9 

10 

11 

12 

14 

15 

16 

KM: So why do you say that doesn't make sense? 

Zac: (pause) Ohh, nevermind. I'm thinking of it as radius equals one, but its 

radius equals two point five. So it's actually half, and it's not point nine 

six six five percent of its, uh, you know, a ratio. Ok, so that's easier to 

think of then. So let's do sine, since it's half. Nice and easy. Sine 

(working) theta is equal to let's see (pause), one point two five divided 

by the radius. Two point five (working). Sine theta is equal to one half, 

or point five. So knowing that, we can do arcsine theta, or arcsine point 

five, and that should give us the radius lengths (using calculator). Ok. 

So that equals point five two radius lengths, or radians…that equals that 

length right there (tracing arc length). 

 
After identifying a relationship between the given coordinates and the sine and 

cosine functions (line 1), Zac constructed two equations (lines 2-4) and described a length 

greater than one radius. Zac assumed the measurements represented a fraction of the 

radius length rather than a number of kilometers, which caused Zac to further orient to 

the problem situation (line 6). This further orientation was a result of Zac being perplexed 

when given a value greater than one radius (lines 3-4). Subsequently, Zac converted each 

measurement to a fraction of the radius, enabling him to correctly determine the desired 

arc length using the inverse sine function (lines 12-16). 

Zac further oriented to the problem by reading the task and identifying that the 

problem was asking “for that and that.” As he made this statement, Zac traced both the 

horizontal and vertical segments representing the coordinate pair for the ending position 
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of the skier. He then determined the arc length from the standard position to the final 

position of the skier (Excerpt 18). 

Excerpt 18 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

14 

15 

16 

17 

18 

19 

20 

Zac: So I'm just gonna add the one point three to twelve point four four, 

which will get me to that point (pointing to ending position). So that's 

thirteen point seven four, ya, kilometers along the circumference 

(tracing the corresponding arc length), which will get me to that point 

(pointing to ending position). And using that I can determine (pause), 

the, uh, horizontal (tracing horizontal distance) and vertical distance 

(tracing vertical distance) to get to that point. 

KM: Ok. 

Zac: So, (long pause). So, what do I need to do here? How did I set it up 

before? (looking back at previous method for determining the arc 

length) Oookk. (pause) I'm looking for (pause). Alrighty, so, sine of 

theta is equal to thirteen point seven four over two point five (writing 

corresponding equation), and cosine theta is equal to thirteen point 

seven four over two point five (writing corresponding equation). So it's 

going to give the horizontal distance (pointing to cosine equation), this 

is giving me the vertical distance (pointing to sine equation). So, let's see 

here (pause). So thirteen point seven (using calculator) four divided by 

two point five (rewriting equations replacing the ratio with a numerical 

value). So I can take the arc of both of those. So theta, five point five is 
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21 

22 

equal to theta (rewriting equation using inverse notation). (using 

calculator to calculate sine inverse of 5.5) Hmm…no real result. 

 
Zac first identified the various known and unknown values on his diagram by 

tracing lengths corresponding to each value (lines 1-7). Then, when attempting to 

determine the unknown values, Zac reflected (lines 9-11) on his previous solution 

(Excerpt 17). This resulted in Zac using the unknown values as inputs to the sine and 

cosine functions (lines 11-20); Zac’s previous solution process was implemented to 

determine an unknown arc length. Zac’s execution of his previous procedure resulted in 

his calculator returning an unexpected result (line 22). 

After Zac obtained this result, he reflected on the known values relative to the 

diagram of the situation. He explained, “What I got here (referring to the 5.5) is the total 

arc length to that point.” Zac then explained a revised solution process (Excerpt 19). 

Excerpt 19 

1 

2 

3 

4 

5 

6 

7 

8 

Zac: I was thinking about it, like, um, this right here (pointing to previous 

solution process). Instead of finding the arc length, I want the vertical 

distance. 

KM: Ok. 

Zac: So the five point five actually counts as theta. So, that gives me (pause), 

uh, (writing) x equals negative seven, or point seven one radians. Which 

is this right here (tracing vertical distance), which makes perfect sense, 

'cause it's negative. 
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Zac’s description (Excerpt 19) reveals that he previously (Excerpt 18) attempted 

to apply an earlier computational process to this situation. He did not consider the role of 

each quantity relative to the input-output process of the sine and cosine functions when 

applying this previous procedure (Excerpt 18). Rather, he simply replaced the known 

value from his previous solution with the new known value. Then, after obtaining an 

unexpected result, Zac’s reflection on the situation enabled him to identify his error and 

determine a correct value (Excerpt 19). 

After this task, Zac was asked to determine the coordinate pair for any angle 

measure of ! radians from the standard position. He first identified the ordered pair as 

(cos(!),sin(!))  and explained, “And if you wanted it in kilometers, or units that the 

radius is in, you'd just do r cosine theta and r sine theta.” Zac also traced vertical and 

horizontal distances corresponding to the outputs of sine and cosine, respectively. These 

actions by Zac further illustrate ability to reason about the sine and cosine functions as 

formalizing a relationship between two quantities. Zac’s unprompted conversion to a 

number of kilometers also exhibits his propensity to reason about the relationship 

between the radius as a unit of measurement and other linear units of measure. 

Overall, Zac’s actions on this problem reveal him using his diagram of the 

situation to identify measurable quantities. Also, he continually reasoned about the sine 

and cosine functions representing input-output relationships between measures of these 

quantities (e.g., values). As a result of Zac’s ability to reason about either quantity as an 

input, Zac used inverse sine and cosine functions to determine unknown arc lengths. Zac 

mistakenly switched the input-output quantities during his solution, which occurred due 
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to him applying a previous procedure without considering the quantitative meanings of 

each value. When he obtained an unexpected result, he further oriented to the problem’s 

context and corrected his solution by identifying the input-output role of the two 

quantities. 

The empire state building problem. 

Table 22 

The Empire State Building Problem 

While site seeing in New York City, Bob stopped 1000 feet from the Empire State 

Building and looked up to see the top of the Building. Given that the angle of Bob’s site 

from the ground was 56 degrees, determine the height of the Empire State Building. 

 
The Empire State Building Problem (Table 22) offered insights into Zac’s 

reasoning relative to a context that did not consist of circular motion. The first four 

teaching experiment sessions did not address a connection between unit circle 

trigonometry and right triangle trigonometry.  

 

Figure 15. Zac’s initial diagram on The Empire State Building Problem. 

First, Zac oriented to the problem by constructing a diagram of the situation and 

labeling the given values (Figure 15). Zac then explained, “From the circle, or triangle, 
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we can determine that cosine of fifty six degrees is equal to one thousand feet (writing 

corresponding equation)…one thousand feet is equal to the radians, because cosine fifty 

six degrees is determined in radius lengths.” After converting the given angle measure to 

a number of radians, Zac continued explaining his solution process (Excerpt 20). 

Excerpt 20 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

14 

15 

16 

17 

18 

Zac: Ok, alright, so. Scratch that, point nine eight. This (referring to cosine 

expression) is equal to a thousand feet, yada yada yada, back where we 

were. Then a thousand feet is equal to the radians times the radius length 

(writing ‘(rad)(r)’), or r. 

KM: Ok. 

Zac: Ok, 'cause the radians is just a percentage of the radius length. Oook. So, 

now what I want to do is figure out what cosine point nine eight is 

actually equal to, and using that I can find out what the radius length is 

(pointing to r). So then when I do sine of point nine eight, I already 

know what the radius length is, so when I get the answer to that 

(referring to sine) all I have to do is multiply by the radius length and I'll 

get that part (identifying the vertical segment on his triangle). 

KM: Ok, so if you wanna go ahead and do that. 

Zac: Ya. Ok, so, (using calculator) cosine point nine eight is equal to, 

(writing) equals point five six radians. And so, all I have to do is (using 

calculator) divide one-thousand by point five six, as shown in this 

equation right here (referring to ‘1000=(rad)(r)’), to isolate the radius 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

all I have to do is divide it by the radians. (using calculator) And I get a 

big number. So that means (writing) r is equal to one seven eight five 

point seven one. So then I do (writing) sine point nine eight, (using 

calculator) and I'm given a radius length, or a percentage of a radius 

length, (writing) equal to point eight three. Now all I have to do is 

multiply that (writing) by r and I'll get the length of that side (pointing to 

vertical segment on his triangle), so, times (using calculator) one seven 

eight five point seven one. So that means the length of that side is equal 

to (writing) one four eight three point O three feet. Figure definitely not 

drawn to scale. 

 
Initially, Zac constructed (Figure 16) a mathematically incorrect equation, 

cos(0.98) = 1000 . However, Zac described that he needed to determine “what cosine 

point nine eight is actually equal to,” and explained that cos(0.98)  represented a fraction 

of the radius (lines 7-8 & 15-16). Zac’s equation also included a label that emphasized 

that the value of 1000 represented a number of feet. Thus, Zac’s initial equation of 

cos(0.98) = 1000 ft  appears to have stemmed from him reasoning about the cosine 

function outputting a horizontal distance that had a measure of 1000 feet or cos(0.98)  

radii. 
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Figure 16. Zac’s work on The Empire State Building Problem. 

As Zac continued, he reasoned about measuring in a fraction of the radius to 

determine the value of the radius and the height of the building. Also, Zac’s flexible 

understanding of the radius as a unit of measurement enabled him to anticipate and 

perform actions on indeterminate outputs of the sine and cosine functions (lines 6-12). In 

spite of Zac’s paper work (Figure 16) appearing mathematically incorrect, Zac correctly 

reasoned about measuring multiple quantities relative to the radius in order to obtain a 

solution to this problem. 

 

Figure 17. Zac’s refined diagram on The Empire State Building Problem. 

Up to this point in his solution process, Zac did not observably identify a radius or 

circle on his diagram. When Zac was asked to further describe his meaning of “the 

radius,” he constructed a circle and then a right triangle in the standard orientation within 

the circle (Figure 17). After labeling the right triangle with each determined value, Zac 
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described the hypotenuse of the right triangle as “the radius.” Zac then discussed his 

choice to construct a circle (Excerpt 21). 

Excerpt 21 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

KM: So what told you to put this in a circle like this? Why did you make that 

choice? 

Zac: Um, to make it easier to understand. Uhhh, (using calculator), how I 

was originally taught was just with triangles. Now that we've started 

using circles it makes a whole lot more sense to me. 

KM: So could you say a little bit about why it makes a little more sense now? 

Zac: Uh, because I always just thought hypotenuse was, you know, just that 

side of a triangle. You know, you could use Pythagorean's Theorem to 

find out what it was very easily. And now that we've figured out, you 

know, now I'm looking at it and seeing it's the radius, it makes a lot 

more sense to be able to find, the horizontal and vertical distance 

according to the radius (waving tip of pen across the radius). 

 
Zac’s descriptions suggest that he found value in “using circles” to relate an angle 

measure and another quantity (lines 3-5). Also, Zac’s justification for the use of circles 

was specific; Zac explained that he only considered the hypotenuse as a side of a triangle 

previous to the precalculus course (lines 7-8). He then explained that his new 

understanding consisted of the hypotenuse, or radius, as a unit of measurement (lines 9-

12). 
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A right triangle context was not introduced during the teaching experiment 

sessions previous to this problem. Yet, Zac leveraged his ability to reason about 

measuring quantities relative to another length in order to determine a correct solution. 

Zac first conceived of the hypotenuse of the right triangle forming the radius of a circle. 

He then reasoned about measuring lengths of the right triangle “according to” the 

hypotenuse. Also, by conceiving of a circle with the radius as a measuring unit, he 

applied his previously constructed understandings of the sine and cosine functions to 

determine these lengths. Lastly, Zac expressed a preference in this way of reasoning and 

conveyed that he found coherence in reasoning about measuring lengths relative to the 

radius of a circle (e.g., the outputs of the sine and cosine functions), which was the 

hypotenuse in the case of a right triangle. 

Summary of Exploratory Teaching Interview One 

Zac’s actions during the interview session imply that The Fan Problem resulted in 

him constructing understandings of the sine and cosine functions rooted in a quantitative 

relationship and the unit circle. The Ferris Wheel Problem revealed Zac constructing a 

diagram before constructing a graph. He then used his image of the situation to construct 

quantities and subsequently reason about relationships between these quantities. Zac 

reasoned about the rate of change of a vertical distance with respect to a traversed arc 

length and he supported this reasoning by identifying equal changes of arc length and 

comparing corresponding changes of vertical distance (MA3-MA5). These actions led to 

Zac producing a graph that reflected this reasoning. 
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Zac’s construction of the sine function through exploring circular motion also 

resulted in Zac having a process conception of the sine (and cosine) function. Zac’s use 

of a diagram to graph the sine function consisted of reasoning about indeterminate values 

of quantities. Subsequently, when converting between various outputs of the sine 

function, Zac discussed these conversions without performing numerical calculations. 

Rather, he anticipated the sine function producing an output measured as a fraction of the 

radius. As another example of Zac’s process conception of the sine function, whether 

given an arc length or vertical distance, Zac conceived of the value of the other quantity 

without having to calculate this value. 

When Zac anticipated converting an output value of the sine function, Zac also 

leveraged the radius as a unit of measure. On each task during the interview session, Zac 

conceived of measuring quantities in a number of radius lengths, which enabled him to 

conceive of each circle as a circle of one radius. He also converted between various units 

by reasoning about the multiplicative relationship between the radius and a length 

measured relative to the radius. Zac also admitted that reasoning about the radius as a unit 

of measure offered coherence between the contexts of a right triangle and a circle. By 

imagining the hypotenuse of a right triangle as the radius, Zac created coherent 

conceptions of the trigonometric functions in the two contexts. 

Zac incorrectly used the sine function in two instances during the interview. In the 

case of The Ski Trail Problem – Version I, he exchanged the input and output quantities 

when attempting to solve for a vertical distance. Relative to The Ferris Wheel Problem, 

his initial formula was inconsistent with his graphical representation and the intentions of 
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the problem. In both cases, Zac reflected on the problem situations when checking his 

solutions, which resulted in him identifying his inconsistencies. Thus, a lack of ability or 

understanding did not appear to be the cause of Zac’s mistakes. Rather, his current 

conception of the situation was either inconsistent with the problem’s intention (e.g., The 

Ferris Wheel Problem) or not utilized during his solution process (e.g., The Ski Trail 

Problem – Version I).  

Zac’s construction and refinement of problem situations, which is an orienting 

behavior, appears to have formed a critical aspect of Zac’s problem solving behaviors. 

Throughout the interview sessions, his first actions frequently consisted of constructing a 

diagram of the situation and identifying quantities and values of the problem situations. 

Also, in problems that did not identify a circle in the problem statement (e.g., The Empire 

State Building Problem), Zac (mentally) constructed a circle. He also identified various 

quantities within this circular context and conceived of measuring these quantities 

relative to the radius of the circle. These conceptions of the problem situations, which 

consisted of quantitative relationships, enabled Zac to flexibly apply the sine and cosine 

functions. Zac’s propensity to construct, reflect upon, and continually refine his image of 

the contextual situations stresses the important, and highly complex, role that orientation 

behaviors can play in problem solving. Zac’s actions also exhibit that a subject’s image 

of a situation is a continually changing mental structure.  

Zac’s propensity to engage in his orienting actions may have been promoted by 

the nature of his engagement in the tasks during the teaching experiment sessions. Both 

The Protractor Problem and The Circumference Problem led to Zac focusing on the 
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process of measuring an angle through the construction of circles and measurable arc 

lengths. Also, The Fan Problem resulted in Zac constructing the sine and cosine functions 

by covarying two quantities of circular motion. As a result, constructing quantities and 

relationships between quantities to solve novel tasks appears to be a central driving force 

in Zac’s reasoning during the first interview. 

Teaching Experiment Sessions Five and Six 

Two teaching experiment sessions occurred before Zac participated in his second, 

and last, interview session. During these sessions, the researcher implemented Activities 

7-9 (Appendix C) with the subjects. These activities focused on inverse trigonometric 

functions and right triangle trigonometry. Select observations of Zac’s behaviors and 

responses during these last two classroom sessions follow. 

Teaching Experiment Session Five 

Due to limited time during the fourth classroom session, the researcher returned to 

The Finding an Arc Length Problem (Table 17) during the fifth classroom session. The 

third task19 on this problem was used to discuss the domain and range of the sine and 

inverse sine functions. The fifth classroom session also transitioned into exploring 

trigonometric functions in right triangle contexts. The Determining and Output Problem 

(Table 23) was first implemented to promote Zac reflecting on the reasoning he exhibited 

during The Empire State Building Problem (Table 22). 

The finding an arc length problem. After Zac identified the unknown value as an 

arc length, he used both the inverse sine and cosine functions to determine this value. Zac 

                                                 
19 The third task consisted of a position in the second quadrant, which was intended to 
generate a discussion of the inverse sine function’s output value. 
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obtained two different values and returned to a diagram of the situation in an attempt to 

reconcile this unexpected result. Zac’s further orientation to the problem situation led to 

him explaining that the ending position of each arc length (from the standard position) 

corresponded to the same vertical distance above the horizontal diameter. Zac also 

explained that the horizontal distance varied from one radius to a negative fraction of the 

radius over this interval.  

In order to leverage Zac’s covariational reasoning, the researcher asked Zac to 

discuss the domain and range of the sine function. Zac first identified that the sine 

function has a range of “one to negative one [radii].” Zac also explained that this 

variation occurs over an input interval of –!/2 to !/2 radians. The researcher subsequently 

formalized this interval as the range of the inverse sine function. 

In summary, in an attempt to reconcile the inverse sine and cosine functions 

outputting two different arc lengths, Zac leveraged the unit circle to explain how the 

determined output values of the inverse functions related to the corresponding input 

values of the inverse functions. This led to a need of formalizing the domain and range of 

the inverse sine function. Zac’s ability to covary an arc length and a vertical distance led 

to him identifying all possible output values of the sine function (e.g., the input values of 

the inverse sine function) and a corresponding interval of input to the sine function (e.g., 

the output values of the inverse sine function). This enabled the researcher to formalize 

these values as the domain and range of the inverse sine function. 

The determining an output problem. 
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Table 23 

The Determining an Output Problem 

Determine the output of the sine and cosine of the measure of angle ABC without 

measuring the angle. Hint: think of how you would determine the measure 

of the angle of interest and how the sine function relates to this 

measurement. 

 
Consistent with his actions on The Empire State Building Problem, Zac 

constructed a circle using the hypotenuse as the radius of the circle. This image of the 

situation enabled Zac to apply his understanding of the output of the sine function as a 

vertical length (the side opposite of the angle) measured relative to the radius (the length 

of the hypotenuse of the right triangle). This led to Zac constructing sin(!) = o / h . 

Relative to determining a similar relationship with the other leg of the right 

triangle, Zac explained, “The hypotenuse is the radius when using sine and cosine…[the 

output of cosine is] dividing the measurement a by the measurement h…a is your 

horizontal distance and h is your radius.” These actions by Zac further display his ability 

to conceive of the hypotenuse as the radius of a circle and, consequently, a unit of 

measure for the sides of a right triangle. 

Next, the researcher implemented The Right Triangle Applet (Figure 18). After 

Judy constructed the equation sin(0.776) = AC , Zac responded that this equation was 

correct if the measurement unit of AC  is “a percentage of the radius.” Zac also identified 

that the applet presented the length of the segment in a number of inches. In order to alter 

Judy’s equation, Zac explained, “multiply that whole function, the sine, by the radius, or 
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in this case, four inches.” Similar to Zac’s actions on previous problems, he conceived of 

sin(0.776)  as a value measured relative to the radius without needing to evaluate this 

expression. This allowed him to anticipate multiplying this value by the radius length in 

inches to obtain a measurement in inches. 

 

Figure 18. The right triangle applet. 

Next, the researcher formalized the tangent function as the ratio of the outputs of 

the sine and cosine functions. The Right Triangle Applet was then used to discuss the 

output of the tangent function for a changing angle measure. Zac described, “[The output] 

is going to get larger…because of the ratio of vertical to horizontal. Because the 

vertical’s getting bigger as [the angle measure] gets larger, and the horizontal is getting 

smaller…it’s going to approach infinity.” Zac further described that the horizontal 

distance approached zero and the vertical distance approached the length of the radius as 

the angle measure approached ninety degrees. 

Zac’s ability to reason about a varying angle measure, a varying horizontal 

distance, and a varying vertical distance enabled him to reason about the ratio of the 

vertical and horizontal distance covarying with the angle measure. This reasoning 
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resulted in Zac concluding that the ratio between the vertical and horizontal distance 

would approach infinity as the angle measure increased to ninety degrees. His reasoning 

was then verified using The Right Triangle Applet. 

Teaching Experiment Session Six 

To complete the teaching experiment sessions, the subjects were given The 

Airplane Problem (Table 24) in order to gain insights into their reasoning relative to a 

right triangle context with a varying angle measure. 

The airplane problem. 

Table 24 

The Airplane Problem 

A plane leaves the local air force base and travels due east. A radar station 45 miles south 

of the base tracks the plane and determines that the angle formed by the base, the radar 

station, and the plane is initially changing by 1.6 degrees per minute. Determine the 

distance the plane is from the radar station after a number of minutes, m. 

 
To begin the task, the subjects used a diagram on the whiteboard. After Judy 

constructed a circle and a horizontal radius, Zac related the path of the plane to the 

diagram, stating, “Going straight up is due east” (Figure 19). 
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Figure 19. The students’ diagram on The Airplane Problem. 

 Zac then identified the plane’s unknown distance from the radar station and 

suggested using the tangent function to determine this distance. Zac subsequently 

provided a solution of tan 1.6m(2! )
360

"
#$

%
&'
=
x
45

, which he rewrote as 

x = 45 tan 1.6m(2! )
360

"
#$

%
&'

, and Zac justified his original formula by stating tangent as 

“opposite over adjacent.”  

After determining this plane’s distance from the radar station as a function of 

time, Zac described how to determine the distance of the plane to the base. As he began 

his explanation, Judy interjected that she used the Pythagorean theorem. Zac 

acknowledged the use of this theorem, but he was compelled to provide a solution using 

the sine function. Zac constructed the formula sin 1.6m(2! )
360

"
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=
45 tan 1.6m(2! )
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h
 and 

described 45 tan 1.6m(2! )
360
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 as the measure (e.g., a value) of the opposite side of the 
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right triangle. As Zac solved for the length of the hypotenuse, he used !  to represent the 

varying angle measure due to the cumbersome nature of rewriting the value 
1.6m(2! )
360

. 

Finally, Zac concluded that h =
45

cos(!)
 represented the length of the hypotenuse as a 

function of the angle measure, which varied with respect to time. 

In summary, Zac conceived of The Airplane Problem such that the initial distance 

of the plane to the radar station formed the radius of a circle. Zac’s orientation to the 

problem also resulted in him conceiving of the plane’s path forming a leg of a right 

triangle such that this leg had a varying length. This image enabled Zac’s use of various 

trigonometric functions to determine various sides of a right triangle. As Zac solved the 

problem, he continually reasoned about various expressions as representing the 

measurements of lengths and angles (e.g., values of 45 tan 1.6m(2! )
360

"
#$

%
&'

 and 
1.6m(2! )
360

) 

without needing to calculate numerical values of these expressions. This resulted in Zac 

manipulating various expressions while maintaining quantitative meanings for the 

expressions. 

Summary of the Last Two Teaching Experiment Sessions 

Zac’s actions during the last two sessions continued to exhibit Zac reasoning 

about the sine and cosine functions as representing processes between the measure of two 

quantities. Additionally, the need to identify the domain and range of the inverse sine 

function emerged in the context of Zac determining an arc length corresponding to a 

vertical and horizontal distance. Zac’s ability to reason about the covariation of an arc 
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length and a vertical distance then led to him correctly determining the domain and range 

of the inverse sine function.  

Relative to right triangle contexts, Zac continued reasoning about quantitative 

relationships and conceiving of the hypotenuse of a right triangle as the radius of a circle. 

These images created coherence between the unit circle and right triangles such that Zac 

constructed and manipulated formulas and expressions while maintaining a quantitative 

meaning for these expressions. For instance, when asked to determine the leg of a right 

triangle in a number of inches, he explained, “multiply that whole function, the sine, by 

the radius, or in this case, four inches.” He then added that he could divide the length of 

the opposite side of the right triangle by the length of the radius to determine the output 

of the sine function. Zac also gave these descriptions without computing specific 

numerical values. That is, he reasoned about expressions as indeterminate values, which 

enabled him to construct, manipulate, and interpret expressions while maintaining a 

quantitative interpretation of these expressions. 

Exploratory Teaching Interview Two 

The second and final exploratory teaching interview (Appendix D) consisted of 

two problems focused on angle measure and multiple problems on trigonometric 

functions. An analysis of Zac’s actions relative to these tasks is provided in this section. 

The Adding Two Angle Measures Problem 
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Table 25 

The Adding Two Angle Measures Problem 

Determine the measurement (relative and angular) of an angle that has a measurement of 

1.5 radians plus 1.2! radians. Given a circle with a radius of 3.5 inches, what is the arc-

length that corresponds to this angle measurement? 

 
After reading the problem statement, Zac first determined the requested relative 

measurement (Excerpt 22).  

Excerpt 22 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Zac: So, one point five plus one point two pi (writing corresponding 

expression), so an easy way to do it, to make it, you know, a percentage, 

just divide both of them by two pi since their in radians (writing both 

ratios), you can do that, and that will give you the percentage of how 

many radians it is around the circle. 

KM: Ok, so why does that, why does that give you that? 

Zac: Um, like uh (pause), ok. So it's radians, and it takes two pi radians to 

reach the full circle, so two pi is a hundred percent. So by dividing that 

(referring to the 1.5) by two pi, you get how much percent of a hundred 

percent it is. 

KM: Ok. 

Zac: Six (replacing 1.2!/(2!) with 0.6) , ok. (using calculator to calculate 

ratio) One point five divided by two times pi. You get zero point two 
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four plus point six (writing corresponding expression), which in percent 

is just twenty four percent and sixty percent. Which then equals then 

zero point eight four, or eighty four percent all together. 

KM: Ok. 

Zac: So one point five radians plus one point two pi radians is eighty four 

percent. And it's asking for the angular measurement as well. So all we 

have to do to get the angular measurement is multiply eighty four 

percent times two pi. 

 
Zac first converted each measure to a percentage of a circle’s circumference (lines 

1-5). Zac justified his conversion to a relative measurement by explaining that 2! radians 

corresponded to reaching the full circle, or 100% of the circle (lines 7-10). After 

calculating each ratio, he explained adding the two relative measurements to obtain a 

percentage of the circle’s circumference. He then identified the radian measure by 

reasoning that the fraction of 2! radians subtended by the angle was the same fraction of 

the circle’s circumference (lines 18-21). 

Next, Zac attempted to determine the arc length corresponding to this angle 

measure (Excerpt 23).  

Excerpt 23 

1 

2 

3 

Zac: Ok, um, since five two point eight is in radians, one radian is the length 

of one radius, so I just multiply by three point five inches, so five point 

two eight times three point five (writing corresponding expression, 
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using calculator). Eighteen point four eight inches. 

KM: Ok. So what does it mean to have a measurement of, like, one point two 

pi radians? 

Zac: Um (pause), that means, well, pi radians is halfway across the circle. 

This. (draws a circle with a horizontal diameter) The full circle, the full 

circumference around the circle is two pi. 

KM: Ok. 

Zac: So, uh, and halfway across is pi, so there's, you're taking pi and 

multiplying it by one point two, so you're getting that extra twenty 

percent, there (making hand motions where a terminal ray would be). 

KM: Ok, so you're getting twenty percent of what? 

Zac: Uh, and extra twenty percent of half the circle. 

KM: An extra twenty percent of half the circle. When you say half the circle, 

what are you referring to about half the circle? 

Zac: Well half the circumference (using pen to trace the circumference). 

KM: Half the circumference. 

Zac: Ya. 

KM: Ok. Ok, so how bout relative to the radius, the length of the radius. 

What's one point two pi radians mean? 

Zac: Um, it means it's one point two pi radius lengths. 

 
After Zac reasoned about a number of radians representing a number of radius 

lengths (lines 1-4), the researcher prompted Zac to explain the meaning of a radian angle 
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measure (and containing the value of ! in the measurement). Consistent with Zac’s 

actions during the previous interview session, he initially described the measurement as a 

fraction of the circle’s circumference. He related the measurement to half of the circle’s 

circumference, or ! radians (lines 7-9 and 11-13), and appeared to conceive of this 

measurement as !+20%! radians. In response to this explanation, the researcher focused 

Zac on explaining the measurement relative to the radius of the circle (lines 21-22). Zac 

immediately responded that the measurement was 1.2! radius lengths (line 23). Zac later 

described, “You get really close to six and a fourth pi radians to get all the way around 

[the circumference],” further exhibiting his ability to conceive of radius lengths rotating 

through the circumference of a circle. 

Zac’s actions on this problem alternated between reasoning about radian measures 

as a fraction of a circle’s circumference (e.g., “half the circle”) and as a number of radius 

lengths along the circumference of a circle. Similar to his actions on previous tasks, his 

descriptions relative to a circle’s circumference were more natural for measurements with 

the symbol ! in the expression. However, when prompted to explain the measurements 

relative to the radius, Zac reasoned about a number of radius lengths rotating through an 

arc. 

The Arc Problem 

The Arc Problem was designed in order to gain additional insights into Zac’s 

ability to reason indeterminately and relate the measure of an angle, the radius, and an arc 

length. This problem was identical to The Arc Problem (Table 19) given during the 

previous interview, but due to Zac consistently focusing on quantitative relationships, the 
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researcher did not expect Zac to attempt to recall a formula without providing a 

quantitative basis for the formula. 

When orienting to the problem, Zac constructed a vertical segment on the diagram 

(Figure 20), while stating, “That would be sine theta, for that length.” 

 

Figure 20. Zac’s vertical segment. 

Zac had difficulty continuing and conjectured the formula sin s
r

!
"#

$
%&
= ' . Upon 

writing this formula, Zac returned to the diagram and stated, “Ok, what this means is, um, 

(pause), well (scratches formula out), not sine, just s over r equals theta. Don’t know 

why I was thinking sine.” As he gave this description, he wrote 
s
r
= ! , and then 

described, “And what that gives you is, uh, this arc length divided by the radius, which 

then gives you a percent of a radius, which is a radian…s relative to r.” 

Zac’s attempt to first apply the sine function may have been a result of the 

continual focus on trigonometric functions during the recent teaching experiment 

sessions. Then, when Zac attempted to justify his constructed formula sin s
r

!
"#

$
%&
= '  

relative to the context of the situation, he altered the formula to 
s
r
= ! . This formula 

reflected his conception of a radian measure representing a fraction of the circle’s radius. 
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Zac’s reflection on the situation and his ability to reason about measuring an arc length as 

a fraction of the radius enabled him to correct an incorrect formula. 

To conclude this problem, the researcher asked Zac to explain “the basis for angle 

measure.” Zac explained, “Um it really is the percent of the circumference. Because no 

matter how big or small the circle is, the percent of the circumference that [the angle] 

cuts out is always the same.” This further illustrates that Zac’s understanding of angle 

measure consisted of the fractional amount of a circle’s circumference subtended by the 

angle formed a foundational understanding of angle measure in addition to his ability to 

reason about a number of radius lengths rotating through an arc length. 

The Enemy Approaches Problem 

Table 26 

The Enemy Approaches Problem 

A castle observation tower is elevated 126 feet above the ground. When an approaching 

enemy is first noticed, the angle of depression (the angle at which an observer needs to 

look down) from the observation post was 0.084 radians. How far away is the enemy 

from the castle? How far away is the enemy from the observer? 

 
On The Enemy Approaches Problem (Table 26), Zac oriented to the problem by 

choosing to draw a diagram “before we read [part] a at all.” As Zac created the diagram, 

he (incorrectly) labeled the angle formed by the observation tower and the observer’s line 

of sight as the angle of measure 0.084 radians (Figure 21). However, Zac’s image was 

incorrect only from the intent of the problem statement, and thus Zac was allowed to 

continue with his solution. 
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Figure 21. Zac’s initial diagram on The Enemy Approaches Problem.  

Zac identified the two unknown sides of the triangle referenced by the problem 

statement and stated, “Let's make it a little easier for me to understand. Thinking of it as a 

circle (redrawing right triangle). We have a right angle, and then we have our point zero 

eight four radians (labeling angle measures).” Zac did not visibly construct a circle on his 

diagram (Figure 22), but his utterances convey he conceived of the right triangle within a 

circular context. 

 

Figure 22. Zac’s second diagram on The Enemy Approaches Problem. 

Zac then constructed the equation cos(.084) =
126
x

 and described, “the cosine 

function [is] triangularly adjacent over hypotenuse.” After determining that the observer 

was 126.446 feet from the enemy, he reflected on his diagram, redrew the right triangle 

(Figure 23), and stated that his first diagram was not to scale (Figure 22). 

126 ft. 

0.084 
radians 
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Figure 23. Zac’s third diagram on The Enemy Approaches Problem. 

Next, Zac explained the tangent function as, “triangularly is opposite over 

adjacent of the angle we’re talking about.” After constructing the equation 

tan(0.084) = y
126

, Zac verbalized, “[10.61 feet] is the length that the enemy is from the 

castle.” 

Zac reflected on his solution and claimed that this distance was alarming because 

of the enemy’s proximity to the castle. The researcher responded by identifying the 

intended angle of measure 0.084 radians. Zac then concluded that that he could “just 

subtract point zero eight four from pi over two” to determine the measure of the angle he 

used and then apply his previous method to determine the solution of the intended 

situation. 

To conclude the problem, Zac described his action of redrawing the right triangle 

while alluding to a circle (Excerpt 24). 

Excerpt 24 

1 

2 

3 

4 

5 

KM: So first of all why can we take a triangle and put it in this orientation? 

Zac: I can take a triangle and flip it however we want. 

KM: Flip it in every... 

Zac: Ya, it doesn't matter. 

KM: So what doesn't matter? 



   168 

 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Zac: Um, well how the triangle is oriented. I just did it so we could see, um, 

in the context of a circle (drawing a circle centered at the vertex of the 

angle and with the hypotenuse as the radius). 

KM: K, so you, say a little bit more about that. 

Zac: Um, well I assigned a hundred twenty six feet (pointing to the tower in 

his original diagram) to my horizontal distance (tracing length on his 

circle diagram), and then the distance between the castle and the enemy 

is the vertical distance, and then the, the diagonal line, or the hypotenuse 

(identifying both hypotenuses), to be my radius. 

KM: Ok. 

Zac: So then we can think of it as sine and cosine in that way. Which made it 

a lot easier. 

KM: Ok, 'cause sine and cosine in the context of the circle tell us what? 

Zac: It will tell us the vertical distance and horizontal distance (tracing both 

distances) in accordance to the radius (pointing to the hypotenuse, or 

radius). 

 
Zac described that his reorientation of the right triangle was an attempt to identify 

the right triangle in the context of a circle (lines 6-8). This reorientation enabled him to 

use the hypotenuse of the right triangle as a radius of a circle. Then, Zac conceived of the 

various legs of the triangle as vertical and horizontal distances in the circle (lines 10-21). 

Immediately following this explanation, Zac described that his reorientation made 

the problem “easier…the vertical distance and horizontal distance in accordance…to the 
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radius.” This statement implies he preferred reasoning within a circular context and about 

lengths measured relative to a radius. This preference may have been an implication of 

Zac’s foundational reasoning ability of measuring lengths as a fraction of the radius. 

Hence, conceiving of the hypotenuse as the radius of a circle enabled Zac to leverage 

such reasoning and construct coherence between the two contexts of trigonometry. 

In conclusion, Zac first constructed a labeled diagram of the situation, which was 

consistent with his actions on previous right triangle problems. Zac’s orientation to the 

problem consisted of him using the hypotenuse to construct a circle with a radius of the 

same length. This image formed a foundation for his solution by enabling him to leverage 

measuring vertical and horizontal distances (the two legs of the right triangle) relative to 

the radius (the hypotenuse). Also, Zac’s conception of the situation led to him reasoning 

about each trigonometric function as an input-output process. For instance, he mentioned 

that tangent was “opposite over adjacent…of the angle we’re talking about.” 

The Tangent Function and Graphing Problem 

Table 27 

The Tangent Function and Graphing Problem 

How does the function f (!) = tan(!)  vary as ! varies from –!/2 to !/2? 

 
The Tangent Function and Graphing Problem (Table 27) was intended to offer 

insights into Zac’s ability to reason covariationally relative to the tangent function. Also, 

the researcher designed the problem such that it prompted Zac to construct a graphical 

representation of the function, which was not accomplished during the previous sessions. 
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Zac began the problem by stating, “It goes from negative infinity to infinity.” Zac 

then explained his reasoning and graphed the function (Excerpt 25). 

Excerpt 25 
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KM: Could you explain? You can draw, if you would like to draw a graph 

too. 

Zac: Well, um, ok. Actually a circle would be better (draws a circle with a 

crosshair). Well we'll get to the graph, just understanding the circle will 

make the graph easier to understand. Ok, so as we talked about in the 

last problem, tangent is equal to opposite over adjacent, or vertical 

distance over horizontal distance. So (pause), when you talk about a 

circle, vertical distance over horizontal distance, uh, the points to it is 

kinda weird. 

KM: So what do you mean by it's kind of weird? 

Zac: Well at, eventually you're going to have some points that don't ex-, that 

aren't defined. 

KM: Oh, ok. 

Zac: Ok, so let's see. Starting here (pointing to the standard position), your 

vertical distance is zero and your horizontal distance is one radius or 

one. So, you know, nice and simple, zero over one. Ok, but you know, 

that makes sense. Then over here (pointing to 9 o’clock position) it's 

negative one zero, which is still zero over negative one, which is zero. 

Makes sense. But then when you get to here and to here (pointing to 12 
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22 

o’clock and 6 o’clock positions), you get zero, one, and zero, negative 

one, and that puts one over zero, and then negative one over zero, which 

isn't defined (at each position he wrote corresponding coordinates). 

 
This interaction reveals that previous to producing the graph, Zac found value in 

constructing a circle and describing the tangent function in this context (lines 1-5). Then, 

after describing the output of the tangent function relative to right triangles and the unit 

circle (lines 6-9), Zac utilized the circle to identify the output values of tangent for four 

locations on the circle (lines 14-22). These actions reveal that in order to produce a graph 

of the tangent function, Zac leveraged his image of the unit circle (a circle with a length 

of one radius) to construct various vertical and horizontal lengths. 

Following this interaction, Zac explained, “The first number [of the coordinate] is 

the horizontal distance and the second number is the vertical distance…measured in 

radius length, or percentage of a radius,” which further reveals that Zac conceived of the 

coordinate values as measurements relative to the radius. Zac also verbalized that as the 

angle measure approaches !/2 radians, “the horizontal distance is getting closer to zero, 

and [the vertical distance] is getting closer to one…[the output of tangent] approaches 

infinity.” When constructing his graph (Figure 24), Zac explained, “[As] theta varies 

from negative pi halves to pi halves…f of theta varies from negative infinity to infinity.” 

Zac’s ability to covary an angle measure, or arc length, with both a vertical and 

horizontal distance enabled Zac to directionally covary the angle measure and a ratio 

between the vertical and horizontal distance (MA2). This reasoning led to him 

constructing a graphical representation of this covariation. 
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Figure 24. Zac’s graph of the tangent function. 

The Ski Trail Problem – Version II 
 
Table 28 

The Ski Trail Problem – Version II 

An arctic village maintains a circular cross-country ski trail that has a radius of 2.5 

kilometers. A skier started skiing from position (–1.76777, –1.76777) and skied 

counterclockwise for 3.927 kilometers where he paused for a brief rest. Determine the 

ordered pair (in both kilometers and percentage of a radius) on the coordinate axes that 

identifies the location where the skier rested. 

 
Although similar to The Ski Trail Problem – Version I, The Ski Trail Problem – 

Version II (Table 28) consisted of a coordinate in the third quadrant. This quadrant was 

chosen in an attempt to observe Zac’s behaviors when neither inverse trigonometric 

function output represented the desired arc length20. 

As Zac oriented to the problem, he pointed to the center of the circle, the initial 

position of the skier, and then the ending position of the skier. Zac then stated, “We know 

the distance from there to there (referring to the arc between the initial and resting 

positions), we need to get the distance along the circumference to there.” While giving 
                                                 
20 Previous to this problem, Zac did not encounter a position in the third quadrant. 
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the last part of this description, Zac traced a counterclockwise arc from the standard 

position to the initial position of the skier. 

Next, Zac assumed that the given measurements were in kilometers, stating, “Ya, 

it has to be ‘cause it’s more than one, so it can’t be radius lengths.” Zac then constructed 

the equation sin 1.7677
2.5

!
"#

$
%&
= z , stating that z represented the unknown arc length. Zac was 

perturbed by the result of calculating the arc length. In response to this perturbation, he 

reflected on the diagram of the situation and stated, “[I’m] doing this backwards…the 

result of sine is the vertical height. I was thinking the result was arc length. Arc length is 

the input, not the output.” Zac then corrected his equation to sin(z) =
1.7677
2.5

 and used 

the arcsine function to determine z = !0.78536 . Zac was again perplexed by his answer 

and verbalized, “that is in radians…and it represents that much arc length (identifying an 

arc length) because if it did represent the whole thing it would equal something bigger 

than pi.” The arc length Zac identified during this explanation was 0.78536 radians 

clockwise from the standard position; Zac expressed that this value was also the measure 

of the counterclockwise arc length from the 9 o’clock position to the starting position of 

the skier. 

Zac then identified that the y-coordinates were equal at the ending position of 

each arc length he determined, and he attempted to determine the desired arc length using 

the cosine (and arccosine) function. This resulted in an arc length of 2.35616 radians 

(Excerpt 26). 

Excerpt 26 
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Zac: I got two point three five six one six. (pause) Now I'm starting to get a 

little confused (long pause). 

KM: So what'd you get? 

Zac: Ok (long pause). (sigh) I got a positive number. (pause) Which I 

shouldn't have gotten. 

KM: So what'd you end up getting? 

Zac: I got two point three six. 

KM: Ok. 

Zac: Which would be somewhere over here (identifying position in the 

second quadrant). 

KM: Ok. 

Zac: Wait, no no no no no. (pause) Horizontal distance. No, ya, nevermind. 

That's right. It's doing the exact same thing again, it's going this way 

(making clockwise motion from the standard position). Or, you know, 

'cause uh, x there and there (identifying positions in the second and third 

quadrant) are the same thing. 

KM: Ok. 

Zac: Or cosine there and there (identifying positions in the second and third 

quadrant) are the same thing. 

KM: So it's really giving you that arc length (identifying clockwise arc 

length)? 

Zac: Ya, it's giving, it's giving the shorter distance. 
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KM: Ok. 

Zac: So actually what we could do is just take two pi and subtract that from it 

and it will give us the other way. 

 
After expressing further confusion (lines 1-2 & 4-5), Zac used the diagram of the 

situation to identify a counterclockwise arc from the standard position (lines 9-10). Zac 

also acknowledged that the same arc length, but clockwise from the standard position, 

would end at the starting position of the skier and yield the same x-coordinate (lines 12-

16). Finally, Zac identified that the difference between the determined value and 2! 

would result in the appropriate arc length (lines 24-25). These actions reveal that Zac’s 

ability to reason about measuring along an arc in a number of radius lengths enabled him 

to interpret and relate output values of the inverse cosine function relative to various 

coordinate positions on a circle. 

After computing the arc length counterclockwise from the standard position, Zac 

determined the coordinates of the skier’s resting position (Excerpt 27). 

Excerpt 27 

1 
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6 

Zac: Oookkk. So two pi (using calculator) minus two point three six gives 

you three point nine two radians. So to get three point nine two seven in 

radius lengths, so we can add them together. We just divide the three 

point nine two seven by two point five (using calculator) point two 

seven divided by two point five, and it's one point five seven. 

KM: So why's dividing that by two point five work? 
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Zac: Because I mean it gives us a percentage of a radius, or the radius length 

from there to there along the circumference (tracing arc length from the 

skier’s starting position to the resting position). 

KM: Ok. 

Zac: So then we take one point five seven plus three point nine two (using 

calculator) and that's five point four nine radians to get all the way 

around the circumference to that point (tracing arc length from the 

standard position to the resting position). 

KM: Ok. 

Zac: So knowing that we can then take the sine and cosine of that and find the 

coordinates for that point. So sine of five point five four nine and cosine 

of five point four nine (writing corresponding expressions). Ok (using 

calculator) gives you negative point seven one two, or seven one three 

(writing value). And then (using calculator) cosine of five point four 

nine, point seven O two (writing value). And that's in radians. 

KM: Ok. 

Zac: So actually we can say, because it's asking for both, kilometers and 

percentage of a radius, so we have it in one way right now. Point seven 

zero two, um, negative point seven one three (writing coordinate pair). 

That's one way to get it, that's in radians, so percentage of a radius. 

KM: Ok. 

Zac: Same thing. Ummm (pause). So then all I have to do is multiply both 
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these by two point five (working) to get them in kilometers. Times two 

point five (using calculator). One point seven five four (writing value) 

and then we got negative point (using calculator) seven one three times 

two point five, negative one point seven eight five four (writing 

coordinate pair). Negative one point seven eight, and there are two 

different ones. Radians and kilometers. 

 
Zac remained attentive to the quantities and the corresponding units of measure 

throughout the entirety of his solution process. Zac visually traced each referenced arc 

while describing the corresponding units of measure and the multiplicative relationship 

between units of measure (lines 1-5, 7-9, & 11-14). Furthermore, Zac’s ability to reason 

about measuring along an arc length appears to have enabled his reasoning about adding 

two arc lengths (lines 11-14). After determining the appropriate arc length, Zac then used 

the sine and cosine functions to determine the coordinate pair as a fraction of the radius, 

or “radians” (lines 16-21). Zac leveraged his ability to reason about a measurement as a 

fraction of the radius to convert these coordinates to a number of kilometers (lines 28-

34).  

In summary, Zac continually reflected on his image of the contextual situation to 

correctly determine the resting position of the skier. Specifically, Zac’s ability to reason 

about measureable arc lengths and measurements given in a number of radians created a 

foundation for Zac to interpret various values. As Zac determined arc lengths measured in 

a number of radians, he identified these arc lengths on his diagram while using 

relationships between arc lengths to determine a desired arc length. For instance, when 



   178 

 

Zac determined an arc length of 2.35616 radians, his image of the situation enabled him 

to reason that this was not the counterclockwise arc length he was attempting to find. He 

then identified that the arc length corresponded to the appropriate horizontal distance and 

that the difference between a full revolution (2! radians) and this arc length was equal to 

the desired arc length. After determining the appropriate arc length, Zac then used the 

sine and cosine functions to determine the appropriate coordinate position. 

Summary of Exploratory Teaching Interview Two 

Zac’s actions during the second interview were consistent with those he exhibited 

during the teaching experiment sessions and the previous interview. Relative to angle 

measure, Zac continued to reason about measuring along subtended arc lengths in a 

number of radius lengths, or a fraction of the radius. Zac also identified that the same 

percentage of the circumference is cut off by an angle regardless of the size of the circle. 

Zac conceptions also necessitated the (mental) construction of a circle when reasoning 

about angle measure. 

Zac also continued to reason about the sine and cosine functions as quantitative 

relationships between an angle measure and a multiplicative comparison of two lengths. 

These quantitative relationships were such that Zac reasoned about either quantity as the 

input or output of the functions. Whether given either value, Zac was able to apply the 

(inverse) sine and cosine functions to obtain an unknown arc length or multiplicative 

comparison of two lengths.  

Zac’s behaviors when orienting to problems also continued to offer insights into 

his constructed understandings. Zac frequently created and used diagrams throughout the 
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interview to identify various quantities and measurements of these quantities (e.g., 

values). He then conceived of relationships between these quantities and anticipated, or 

planned, calculations based on these relationships (e.g., quantitative operations). 

Furthermore, as Zac obtained values, he often reflected on his image of the situation 

resulting in him refining his diagrams and conceiving of relationships between quantities 

(e.g., The Ski Trail Problem – Version II). Zac also utilized his image of the unit circle to 

coordinate the variation of an arc length, vertical distance, and horizontal distance when 

graphing the tangent function. This enabled Zac to construct a relationship between a 

varying arc length and the ratio of the vertical distance and horizontal distance when 

graphing the tangent function. 

Zac’s orientation to The Enemy Approaches Problem further revealed the 

coherence he constructed between unit circle trigonometry and right triangle 

trigonometry. Similar to his actions in previous right triangle contexts, he conceived of 

the hypotenuse of the right triangle as the radius of a circle. This construction appears to 

have stemmed from his comfort and flexibility with measuring lengths relative to the 

radius of a circle. Thus, his ability to conceive of constructing a circle using the 

hypotenuse of the right triangle enabled him to conceive of right triangle contexts in a 

manner that was consistent with the unit circle. Zac also continued to reason about 

relationships between an angle measure and a ratio of two lengths. 

Summary and Discussion of Zac 

Zac’s initial conception of angle measure consisted of geometric objects and pre-

defined measurements of these objects (e.g., two perpendicular lines have ninety degrees) 
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opposed to a systematic process of measuring an angle that was based on measurable 

attributes of these objects. As he solved the various teaching experiment tasks, Zac 

developed an image of angle measure that required the construction of a circle centered at 

the vertex of an angle. Zac conceived of the arc length subtended by the angle as a 

measurable attribute central to the process of measuring the openness of an angle. 

Furthermore, Zac conceived of measuring the subtended arc length relative to both the 

circumference and radius of the corresponding circle, where these two measurements 

were constant for a circle of any radius. Also, the quantitative relationship of a subtended 

arc length’s fraction of a circle’s circumference formed a foundation for Zac converting 

between units of an angle’s measure. 

Zac’s conception of measurements relative to the radius (whether arc lengths or 

vertical and horizontal distances) consisted of a quantitative relationship between the 

measured length and the radius. After engaging in The Circumference Problem, Zac 

reasoned about measuring along an arc length in a number of radius lengths and as a 

percentage of the radius length. This enabled Zac to conceive of any circle as having a 

radius of one unit and a circumference of 2! radius lengths (e.g., C = 2!r ). Zac also 

conceived measuring the coordinates on a circle relative to the radius (e.g., the unit 

circle) when solving The Fan Problem. As a result, Zac was able to construct the unit 

circle as he encountered circles of various linear radius lengths. His ability to measure 

quantities in a number of radius lengths also led to him flexibly converting between units 

of measurement, while often giving preference to measurements relative to the radius. 
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Zac constructed conceptions of the sine and cosine functions that were grounded 

in quantitative relationships and entailed the ability to reason about indeterminate values. 

Relative to the sine function, Zac leveraged his ability to reason about measuring along 

an arc to covary the vertical distance of a point above the horizontal diameter of a circle 

and a swept out angle measure. This led to Zac reasoning about rates of change of the 

vertical distance with respect to a subtended arc length, and he supported this reasoning 

by comparing amounts of change of vertical distance for equal changes of arc length. 

Zac’s reasoning also consisted of indeterminate values, as opposed to numerical values. 

This enabled Zac to construct process conceptions of these quantitative relationships that 

were independent of numerical values. 

An implication of Zac’s understandings consisting of quantitative relationships 

was the emergence of mathematical representations and reasoning rooted in these 

relationships. Zac used mathematical notation and representations (e.g., symbolic 

functions, variables, and graphs) to formalize and represent quantities’ values and the 

relationships between quantities. As a result, Zac was able to reflect on his solutions in 

terms of quantities and relationships between quantities. The quantitative structures he 

constructed provided a foundation for planning, justifying, checking, and correcting his 

solutions. Thus, the tasks of the teaching experiment and interview sessions appear to 

have resulted in Zac constructing problem situations that consisted of quantities and 

relationships between quantities. 

Another implication of Zac’s thinking and the quantitative focus of the teaching 

experiment sessions was the nature of Zac’s orientation processes during problem 
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solving. Throughout the study, and particularly during the interview sessions, Zac began 

solving a problem by constructing a diagram and identifying quantities (with known and 

unknown values) and relationships between quantities on this diagram. Zac frequently 

referenced his diagram of the situation when anticipating calculations and interpreting 

values. For instance, Zac continually returned to his diagram of a situation as he solved a 

problem in order to refine his image of the situation (e.g., identifying determined values). 

In this sense, he used his diagram of the situation as a tool of reasoning to make sense of 

a problem’s context and conceptualize the relevant quantities of a situation. This use of a 

diagram resulted in Zac generating solutions that were grounded in his image of the 

problem’s context. For instance, Zac constructed an image of two covarying quantities 

that he leveraged to create and refine a graphical representation. The quantitative 

structures that Zac constructed by reasoning about the context of a problem also formed a 

basis for Zac checking (e.g., considering determined values relative to his image of the 

situation) and altering his solutions processes. Zac’s checking of his solutions led to him 

refining his image of the situation if necessary, revealing the dynamic nature of a 

student’s image of a problem situation. 

Zac’s propensity to construct, use, and reflect on diagrams of a situation also 

enabled coherence between unit circle and right triangle trigonometries. As Zac 

encountered right triangle situations, he constructed a circle using the hypotenuse of the 

right triangle. He subsequently reasoned about measuring legs of the right triangle 

relative to the hypotenuse, or radius of the circle. This enabled him to leverage his 

understandings constructed during the unit circle portion of the teaching experiment, such 
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as angle measure as an arc length and the sine and cosine functions formalizing 

quantitative relationships. 
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Chapter 6 

Results Of Amy 

This chapter provides an overview of the reasoning and problem solving 

behaviors Amy exhibited during the study. First, her PCA scores are provided to illustrate 

her pre- and post-course shift and situate her within the students from the precalculus 

course. This is followed by data illustrating the thinking and understandings Amy 

revealed over the course of the study. In addition to characterizing her reasoning, Amy’s 

problem solving behaviors are discussed in the context of her thinking. This chapter 

concludes with a summary and discussion of Amy’s reasoning and problem solving 

behaviors. 

Amy was a full-time student in her late teens. She was a first-year student and an 

undeclared major, yet she was planning to be a registered nurse. Amy completed college 

algebra as a junior in high school and she did not enroll in a mathematics course during 

her senior year. Thus, upon entering the precalculus course she had not completed a 

mathematics course in one and a half years. She did not intend to take any additional 

mathematics courses after completing the precalculus course.  

Pre- and Post-Course Assessment 

Amy received a ‘C’ for her final course grade. In total, two students from the 

course received an ‘A’, seven students received a ‘B’, eight students received a ‘C,’ and 

three students received a failing grade. Amy performed below average relative to the 16 

students in her class who completed both the pre- and post-administrations of the PCA 

exam (Table 29). 
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Table 29 

Results of the PCA Pre- and Post-test (n =16) 

 Zac Amy Judy Class Average 

Pre-test Score 13/25 5/25 15/25 7.31/25 

Post-test Score 17/25 10/25 21/25 12.18/25 

 
Amy’s Conception of Angle Measure Prior to Instruction 

Amy’s initial conception of angle measure did not include a process for 

determining the amount of openness between two rays. When presented21 with an angle 

and prompted to determine its measure, Amy shaded the space between the two rays and 

indicated that the angle’s measure represented the amount of area between the angle’s 

rays. Then, instead of describing a measurable area, she focused on the geometry of the 

angle by stating, “I know one eighty’s like that (drawing a line) and I know ninety is like 

that (drawing a right angle).” This response suggests that her conception of an angle’s 

measure was based on the shape of a geometric object that included the space between 

two rays, where this conception did not include a process for quantifying the space. 

Amy was then unable to measure an angle using a compass, Wikki Stix, and a 

ruler. When prompted to use these tools to measure her angle, she immediately tossed the 

supplies aside and claimed that she had “no guess” as to how to use the supplies to 

measure the angle. She then referenced the centimeters on the ruler and described that she 

                                                 
21 The interview tasks referenced in this chapter are presented in their full form in 
Appendix E. 



   186 

 

had no idea as to how a number of centimeters related to the measure of an angle. 

Consistent with her previous descriptions, Amy’s comments and actions suggest that her 

conception of angle measure did not include a measurement process that consisted of 

quantifying a subtended arc length. 

Table 30 

The Traversed Arc Problem 

An individual is riding a Ferris wheel that has a radius of 51 feet. On part of a trip around 

the Ferris wheel, the individual covers an arc-length of 32 feet. How many degrees did 

the individual rotate? 

 
To conclude the pre-interview, Amy was presented with The Traversed Arc 

Problem (Table 30). Amy’s orientation to this problem consisted of attempting to recall 

formulas for the radius and diameter of a circle. She first identified the radius as “fifty 

one feet around…radius is pi times diameter…I was just thinking diameter, is like, pi 

times the radius squared.” As Amy recalled (incorrect) formulas, she also had difficulty 

identifying the “diameter” and “radius” on a circle. Amy then continued with her initial 

interpretation of the situation (e.g., the radius as the circumference) (Excerpt 28). 

Excerpt 28 

1 

2 

3 

4 

KM: Well go ahead with the, it's fifty feet around and run with that. 

Amy: Ok, am I right though? That it's fifty-one feet around? Because I'm 

gonna screw up the problem if it's not fifty-one feet around. 

KM: No, you won't screw up the problem. No, go ahead. 
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5 

6 

7 

8 

9 

10 

11 

Amy: Ok. Um, ok. Covers an arc length of thirty-two feet. So, let's say, that's 

thirty-two feet, something like that. That chunk (tracing an arc length) is 

thirty-two feet. How many degrees did the individual travel? Alright, 

well a full circle, I'm just gonna try this, I have no idea if it works. I have 

fifty-one feet. Which in a circle is equal to three hundred and sixty 

degrees (writing 51ft = 360°). You're gonna go thirty-two feet, which 

equals x degrees. 

 

At the completion of this interaction, Amy had constructed 
32 ft = x     
51 ft = 360°

, which 

she used as the equation 
32
51

=
x
360

. Amy’s explanations conveyed that this equation 

stemmed from a correspondence (exhibited by the use of two equal signs) between the 

numerators and denominators of the ratios (lines 8-11). Amy also revealed a lack of 

confidence (lines 2-3) in her ability to solve the problem correctly, and she suggested that 

she was not sure if her solution was correct (line 8). Amy subsequently determined the 

equation 51x = 18720  through “cross-multiplication” and solved for a correct number of 

degrees relative to her interpretation of the radius. After this interaction, Amy justified 

her original equation by explaining that the denominators represented the “full 

length…full degrees of a circle,” and that the numerators represented “what was 

covered.” She remained unable to describe the meaning of the ratios beyond this 

correspondence across the equality. It appears that Amy’s solution approach involved her 
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matching part and whole measurements in the numerators and denominators opposed to 

reasoning about a multiplicative relationship. 

To conclude the interview, the researcher directed Amy to the task of measuring 

an angle in order to determine if she could extend her previous solution (Excerpt 29) to 

this task. Amy did not attempt to use the given supplies and immediately stated that she 

could not complete the problem. These actions imply that Amy’s conception of angle 

measure did not include constructing a circle and measuring a subtended arc in spite of 

her providing a correct solution to the previous task when given the measurement of an 

arc length. Also, her approach to the problem revealed that she was reluctant to 

conjecture how the tools may aid her in measuring the angle. 

In summary, Amy’s responses during the pre-interview suggest that she 

conceptualized the measure of an angle as a space (not admitting a measurement process) 

between two rays. This understanding did not enable her to engage in the process of 

measuring an angle when given the appropriate supplies. Then, when given an arc length, 

Amy relied on a part to whole correspondence and “cross-multiplying” to determine the 

measure of an angle. Amy was unable to extend this reasoning to the task of measuring 

an angle with the given supplies, and she was reluctant to attempt measuring an angle, 

which may have been related to a lack of confidence in her ability to solve the novel 

problem.  Also, in spite of her correctly solving for an angle measure, Amy did not 

reason about an angle measure representing a percentage or fractional part of a circle 

subtended by two rays.  

Amy’s Ways of Thinking During the Instructional Tasks 
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When engaging in The Protractor Problem (Table 31), Amy identified an arc 

along the protractor and claimed that this arc distinguished an area between two rays. 

When prompted to provide further explanation, Amy stated, “That’s just what I was 

taught in high school.” Thus, her construction of an arc did not appear to imply the 

construction of a circle or a measurable arc length. Rather, she used the arc to indicate an 

area and she remained unable to articulate a measurement process corresponding to the 

area. Also, she justified her statement by claiming that she was previously taught such an 

action. 

Table 31 

The Protractor Problem 

Using the supplies of a Wikki Stix and a ruler, construct a protractor that measures an 

angle in a number of gips, where 8 gips rotate a circle.  

 
As Amy continued solving The Protractor Problem, she referenced “a circle” 

when describing various angle measures, but she was unable to consistently identify a 

measurable attribute of a circle. For instance, Amy described one degree as a percentage 

“of a circle.” However, she could not clarify a measurable attribute of the circle (e.g., an 

area or circumference of the circle). Amy also referenced a radius as “half the circle,” a 

diameter as “the full circle,” and a circle’s circumference as “the full circle.” As a result 

of Amy combining multiple quantities as “a circle,” she had difficulty consistently 

identifying an arc length or circumference of a circle when reasoning about angle 

measure. Also, Amy exhibited frustration when the researcher prompted her to describe 

“a circle” in terms of a measurable attribute. She exhibited a reluctance to identify 
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distinct quantities of “a circle” and this led her to relying on the other students to provide 

a solution for the problem. 

Table 32 

The Circumference Problem 

Construct a circle using a Wikki Stix as the radius (your group should have Wikki Stix of 

different lengths). Then, determine how many of your Wikki Stix mark off the 

circumference of your circle. Compare your result with your classmates. What 

observations can you make from this comparison? Construct an angle that cuts off one 

Wikki Stix length of an arc. Compare the openness of the angle with those of your 

classmates.  

 
On The Circumference Problem (Table 32), Amy exhibited further frustration 

with the task of constructing a circle consisting of measurable attributes and using a 

Wikki Stix to measure the circumference. As a result of her frustration, she watched the 

other students complete the task and her participation consisted of restating the other 

students’ comments. Additionally, Amy remained reluctant to explain her meanings and 

calculations. For instance, she was unable to clarify her meaning of “a circle” and began 

asking for a “pass” when the researcher asked her to contribute or clarify her statements. 

As another example of Amy’s reluctance to reflect on and make sense of her actions, 

Amy multiplied 1.5 radians by 2! radians to determine the percentage of a circle’s 

circumference cut off by 1.5 radians. When the researcher asked her to describe her 

calculation, she responded, “I know what you mean,” and resisted reflecting on her 
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calculation in terms of the quantities of the situation, which was likely a result of her 

calculations not being rooted in quantitative relationships.  

Amy resistance to provide conjectures and reflect on the ideas she put forward 

implies that she lacked confidence in her ability to solve the novel tasks. She also 

repeatedly watched the other students solve the problems and, as a consequence, she 

relied on the other students to provide correct solutions. Thus, rather than engaging in and 

reflecting on her own reasoning, she relied on her interpretations of the ideas and 

solutions put forward by the other students and the researcher. 

Table 33 

The Arc Length Problem 

Given that the following angle measurement ! is 35 degrees, determine the length of each 

arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 

inches, and 2.9 inches. 

 
Amy’s tendency to observe the other students during instructional activities 

possibly contributed to her reasoning lacking quantitative structures. Opposed to 

engaging in measurement processes and constructing mental scenes composed of 

quantitative relationships, she observed the other students performing numerical 

calculations and other observable actions. This likely inhibited Amy constructing an 

understanding of angle measure that consisted of quantitative relationships between an 

arc length, circumference, and the radius of a circle, as she did not engage in the mental 

processes of measuring or relating these quantities. As an example, on The Arc Length 

Problem (Table 33) Amy first converted a degree measurement to a number of radians 
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(0.61 radians) using a recalled formula. She then had difficulty reasoning about a 

quantitative relationship to solve the problem (Excerpt 29). 

Excerpt 29 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Amy: Ya, wait. Do I take the percentage? No. (looking at the researcher) Is it 

the percentage divided by the radius or opposite? No, that, no. That's not 

right (pause). That's sixty one percent of one radian. And (pause). My 

radius is two. Would using cosine and sine be (pause) helpful? 

KM: Well let's see. What are you looking for right now? You're looking for... 

Amy: I'm looking for, um, the length of this arc (tracing the outside arc 

length). 

KM: The length of that arc. 

Amy: Right now I just have it in degrees, but I'm looking for like the actual 

length of it. 

KM: Ok. You have it in degrees, and you also found it in? 

Amy: Radians. 

KM: Radians right. So you said point six one represents sixty one percent of... 

Amy: A single radian. 

KM: A single radian, right. Do you know how long a single radian is? For this 

circle (tracing the outside circle)? 

Amy: A single radian for the whole circle? That's (pause)… 

KM: Well, so what's it mean to be sixty one percent of a radian? 

Amy: There's, the total number of radians is two pi. So, there's like six point 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

two eight radians I think. So that's sixty one percent of one of those 

radians. 

KM: Of one of those radians, ok. 

Amy: Ya. 

KM: And so what is a radian? Just... 

Amy: Um, in every circle there's, I'm not sure how to describe it. Like, it's the 

length around every circle. Like no matter what size the circle is. There's 

gonna be six point two eight radians. 

KM: Radians right. So how long is one radian? Do we know how long, let's 

just look at one circle right now. 

Amy: (laughs) Ok. 

KM: We'll just look at this outside circle. 

Amy: Alright. 

KM: Relative to that outside circle do we know how long one radian is? 

Amy: (pause) I actually don't think I know. 

 
Amy first referenced a percentage of “one radian” (line 3), but she was unable to 

determine each arc length using this value. When prompted to describe “one radian” 

relative to a specific circle, she explained, “six point two eight radians…in every circle,” 

appearing to imagine some measurement. However, she was unable to verbalize the 

length of a single radian (line 34) until the researcher identified the radian as “one 

radius.” Thus, her conception of a number of radians did not appear to entail her 

reasoning about a number of radius lengths measuring a circle’s circumference. Although 
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she claimed that 6.28 “radians” rotated through the circumference of the circle (which 

was discussed during the previous instructional activity), her actions did not indicate that 

she conceived of “one radian” as the length of the corresponding radius. 

Amy’s inability to describe “one radian” as the length of the radius may have 

been the result of her engagement during The Circumference Problem. As previously 

mentioned, she relied on watching and listening to the other students complete the task, 

rather than engaging in and reflecting on the process of measuring along a circumference 

in a number of radius lengths. As a result, Amy’s conception of 6.28 “radians” was 

possibly a prescribed quality (not a value) of a “full circle” (e.g., Circle = 2! ) rather than 

the result of measuring the circumference in a number of radius lengths (e.g., C = 2!r ). 

As a consequence of Amy’s conception of radian measures, she predominantly 

described radian measures as “out of” 6.28 radians, opposed to a multiplicative 

relationship between the measure of an arc and the radius (or circumference) of a circle. 

For instance, consider Amy’s response when asked to describe an angle measure of 2.3 

radians relative to the length of a radius (Excerpt 30). 

Excerpt 30 

1 

2 

3 

4 

5 

6 

KM: So if we look at that arc length compared to the radius, how many times 

larger is that arc length compared to the radius? 

Amy: Compared to th-. 

KM: How many times larger is the arc length compared to the radius when I 

say it's two point three radians? 

Amy: But we don't have a radius. 
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7 

8 

9 

10 

KM: I know we don't. So does two point... 

Amy: We don't even have a how many times larger it is. 

KM: Ok, so we don't have any times... 

Amy: We just have two point three radians (laughing). 

 
When asked to compare an arc length to a radius (lines 4-5), Amy expressed, “we 

don’t have a radius,” further revealing that she did not conceive of a measurement given 

in radians implying a number of radius lengths subtended by an angle. Also, it appears 

Amy found difficulty reasoning about an indeterminate measure of a radius (line 6). As 

Amy continued, she alluded to the measurement of 2.3 radians being a part of the “full 

circle.” The researcher asked her to further explain this relationship (Excerpt 31). 

Excerpt 31 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Amy: Let's say this whole circle (drawing circle) is two pi (writing 2! inside 

the circle). For it to have a measure of two point three radians, it's gonna 

be a certain, like, portion of the circle, in terms of radians. 

KM: Ok, so what, do we know what portion that's gonna be? 

Amy: Two point three. 

KM: So two point three's, we'd call that the portion of this? 

Amy: Mm-Hm. 

KM: Ok, then the two pi refers to what about the circle? What about the 

circle... 

Amy: The whole circumference of the circle. 
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11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

KM: Ok, and that's two pi what? 

Amy: Radians. 

KM: Ok, so if we have two point three radians. Do we know what percent that 

is of the entire circumference? 

Amy: Um, of two point three radians, what percent it is? 

KM: What percent it is of the entire circumference? Can we... 

Amy: Ya. We could figure that out. 

KM:  Do you know how we could figure that out? 

Amy: By having the radius. I think. Or we could just figure it out by dividing 

by two pi. Let me see if that works (using calculator). I got thirty six 

percent. I don't think that's right. 

 
During this interaction Amy focused on a relationship between a measurement in 

radians and “the circle.” Similar to Excerpt 29, her references to “two pi” did not appear 

to stem from her conceptualizing a circle’s circumference as 2! radius lengths. When 

asked to describe the portion of the circle that 2.3 radians represented, she repeated the 

measurement of 2.3 and did not appear to reason about a multiplicative relationship 

between the portion and the whole (line 5). After the researcher suggested that she find 

the percentage that the portion of the circle was of the entire circumference (lines 13-14), 

Amy suggested that she needed a specific radius length (line 19). She then performed a 

correct calculation to determine the fractional amount of a circle’s circumference (lines 

19-21). 
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Despite Amy determining a correct value, she was not confident in her result. 

Also, she obtained this result only after continued probing from the researcher and she 

was subsequently unable to justify her calculation relative to a relationship between two 

quantities. Similar to The Circumference Problem, she was reluctant to reflect on her 

calculation relative to the context of the problem after this interaction even when she was 

told her answer was correct. Amy was able to provide correct answers at times, but it 

appears that her lack of confidence and unwillingness to reflect on her actions may have 

led to her inability to create these constructions without continued prompting from the 

researcher. 

Due to Amy conceiving of the measurements as labels of objects rather than a 

quantitative relationship between an arc length and the length of the radius or 

circumference, her calculations during the angle measure activities were not driven by 

multiplicative relationships and she was unable to justify her calculations in terms of 

various measurable attributes. This was further verified when Amy subsequently 

described ! radians as “half the circle,” without being able to describe a number of radius 

lengths rotating through an arc length. Amy also attempted to recall the location of radian 

measurements on a circle. For instance, she stated, “I’m trying to think, we have pi over 

two, pi, and then we have three pi over two down here. And then two pi here. Am I 

right?” During this explanation, she correctly pointed where these arc measurements are 

labeled on unit circle. However, when further questioned on these positions, Amy was 

unable to explain the measurements relative to an arc length being measured in a number 

of radius lengths. 
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Table 34 

The Missing Measurement Problem 

Determine the unknown linear measurement of arc-length cut off by an angle of 2.1 

radians. 

 

 

 
In an attempt to have Amy reason about a multiplicative relationship between an 

arc length and the radius, the researcher presented Amy with The Missing Measurement 

Problem (Table 34). She first described, “I remember doing this in class.” Yet, Amy did 

not complete such a problem during the previous instructional activities. 

After using the given angle measure to calculate the percentage of the circle’s 

circumference cut off by the angle (an action the researcher focused Amy on during a 

previous task), Amy paused for an extended period of time. She then calculated the 

circumference of the circle and constructed the equation 
2.1
2!

=
x
43.9

. She followed this 

by using the equation 2! x = 92.19  to solve for the unknown measure and subsequently 

explained her solution (Excerpt 32). 

Excerpt 32 

1 

2 

KM: Ok, so could you explain to me how you were able to set that up? Why 

that worked? 

7 in. 
7 in. 

2.1 

s 
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3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Amy: Um, well we know that this (tracing the arc of 2.1 radians) is two point 

one radians of the entire circle, which is two pi. And we know that the 

full circle (mimicking the shape of a circle with her pen) is forty-three 

point nine inches. But we wanna get this particular measurement in 

inches (tracing unknown arc length). 

KM: Ok. 

Amy: Which is (pointing to the 2.1 in her original equation), is gonna be, kind 

of the equivalent to two point one, but in inches. 

KM: Ok. 

Amy: So I just set those equal to each other and cross-multiplied. 

 
Amy was unable to use the percentage of the circle’s circumference that she 

calculated previous to this interaction and subsequently relied on part to whole matching 

(e.g., 2.1 is part of 2! and the unknown arc is the same part of the whole circumference) 

to construct and solve an equation through “cross-mulitpl[ying].” Thus, it appears that her 

constructed ratios did not reflect a multiplicative relationship between an arc and the 

circumference. Rather, the ratios reflected a correspondence between part and whole 

measurements, which was consistent with her inability to use the percentage she 

calculated. 

In response to Amy’s part to whole and cross-multiply procedure, the researcher 

prompted Amy to consider the relationship between the radius of the circle and the arc 

length (Excerpt 33). 
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Excerpt 33 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

KM: If we look at two point one radians, how many times larger than one 

radius is that? 

Amy: Two point one. 

KM: Two point one right. Well what's the radius in this case? 

Amy: Seven inches. 

KM: Seven inches right. So, could we use that relationship to find out what 

that arc length should be? 

Amy: (long pause) 

KM: If we know this arc length (tracing arc length) is two point one times 

larger than one radius. Could we use that at all to help us out? 

Amy: Yes. We could just multiply seven by two point one. I like doing things 

cross-multiplying. It makes more sense to me (laughing). 

 
Amy correctly described a multiplicative relationship between an arc length and 

the radius (line 3) and identified the unknown arc length using this relationship (lines 11-

12). This reasoning did not appear to be natural and she expressed that she was more 

comfortable with “cross-multiplying” (lines 11-12). This interaction reveals that Amy 

was able to reason about an arc length being so many times as large as a radius, but she 

did not have confidence in this reasoning compared to “cross-multiplying.” 

In an attempt to have Amy continue reasoning about a multiplicative relationship 

between the arc length and the radius, Amy was asked to complete the next task of The 

Missing Measurement Problem (which consisted of a given arc length of 14.7 inches and 
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a radius of 7 inches) without cross-multiplying. Amy immediately determined the 

circumference of the circle, likely stemming from her part to whole cross-multiplication 

procedure. She then paused and inquired, “We want to use the same kind of 

formula…you want me to use that (pointing to the previous problem)?” With the 

researcher’s approval, she continued to solve the problem (Excerpt 34). 

Excerpt 34 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Amy: Um, alright. Well in this case (pointing to the previous problem) we had 

fourteen point seven inches as the angular measurement. And we have 

seven degrees (pointing to the previous radius). So if you divided that 

you would get two point one. So (uses calculator), so I'm gonna go with 

four point zero eight radians. 

KM: Ok, so, how'd you determine that again, could you... 

Amy: Well, I looked at this one (pointing to the previous problem), and it's 

opposite except this is the measure we're trying to find (pointing to the 

unknown measurement). And if we took the measure that we had 

(underlining 14.67) and divided it by the radius (pointing to previous 

radius), we would get the radians. So I just did that. 

KM: So why does that give us the radians? If we take the nine point eight and 

divide it by two point four. 

Amy: Because we're taking the measurement that we have and dividing it by 

the radius. And that should give us the missing angle. 

KM: Why does that give us the missing angle? What's that, you know when 
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take nine point eight and divide it by two point four how many of what 

are finding go into what? How many times of what are we finding go 

into what? 

Amy: We're finding how (sigh), ok, let me think about this for a second. (long 

pause) Sorry, I'm gonna write this down (writes 4.08). We're finding, 

how many times two point four goes into nine point eight. Which two 

point four is one radian. 

KM: Ok. 

Amy: So that's gonna give us the total number of radians in this, that this is 

(tracing arc length). 

 
Amy first reflected on her previous solution and described the calculation used to 

solve this problem (lines 1-5). As she provided this description, she also referred to the 

number of inches as an angle measure and the measure of the radius as “seven degrees.” 

Amy then explained that she could perform a similar calculation in order to complete the 

problem (lines 7-11). These explanations indicate that her solution was driven by a 

previous procedure (a calculation involving division) and matching the placement of the 

given measurements relative to this calculation. This was further illustrated when the 

researcher asked Amy for a quantitative meaning behind her calculation (lines 16-19). 

Amy correctly reasoned about the number of radius lengths composing the arc length 

(lines 20-26), but her hesitation and need to reflect on her solution indicated that this 

quantitative relationship was not originally driving her solution. 
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Just as in Excerpt 33, Excerpt 34 reveals Amy’s ability to reason about measuring 

an arc length in a number of radii, but this reasoning was not natural or spontaneous. 

Also, Amy’s behaviors (e.g., her sigh) imply that she was reluctant to reflect on her 

solution in the manner the researcher was asking. This may have been a result of her 

finding more value or more confidence in reasoning about a previous procedure than the 

quantities of the situation. 

Next, Amy was presented with a third task that provided an arc length (13.19 

kilometers) and the radius (3 kilometers). In spite of the researcher asking her to use 

similar reasoning as she exhibited towards the end of Excerpt 34, Amy calculated the 

circumference of the circle and used “cross-multiplying” to solve for a number of radians. 

The researcher then asked her to consider a relationship between the arc length and the 

radius (Excerpt 35). 

Excerpt 35 

1 

2 

3 

4 

5 

6 

7 

8 

KM: How many times larger is thirteen point one nine than three? 

Amy: (pause) Than three? Hold on (uses calculator), four point three nine 

times larger. 

KM: Does that make sense (referring to the previous answer)? 

Amy: Yes. 

KM: Why's that make sense? 

Amy: Because that's the radians and that's what it gives you when you divide 

like that. I'm just so used to cross-multiplying everything. 
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Amy was able to reason about a multiplicative relationship between the arc length 

and the radius (lines 2-3) and state that this was “the radians,” but she continued to 

emphasize her confidence in “cross-multiplying everything.” Also, she had previously 

determined the number of radians using her cross-multiplication method, but she found it 

necessary to calculate the multiplicative relationship between the arc length and the 

radius. Thus, it appears that the procedure of setting up ratios by using a part to whole 

correspondence dominated Amy’s reasoning. After obtaining a number of radians using 

this method, she did not conceptualize this value as the multiplicative relationship 

between an arc length and the radius. Additionally, her description of “the radians” 

focused on performing a calculation instead of a quantitative relationship between two 

quantities (lines 7-8). 

Amy’s inability to leverage reasoning about measuring along an arc generated 

obstacles in her conceiving of an input-output process that is formalized by the 

trigonometric functions. For instance, Amy’s conception of angle measure as a label of 

an object or a part of “a circle” presented itself when Amy interpreted the equation 

cos(! ) = "1 (Excerpt 36).  

Excerpt 36 

1 

2 

3 

4 

5 

Amy: Ok, well, we have cosine pi and you get negative one. So usually when 

you have, I mean what we've done in the past, like up here, is the 

positive side (tracing the top half of a circle). And down here is like 

negative (pointing to the bottom half of a circle). Like if we do it on like 

a literal gra-, literal graph. It will, I'm going to far into it, nevermind. 
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Um, this is like plus one and this will be like negative one (writing each 

value by the corresponding part of the circle). And then since pi is half a 

circle (tracing the bottom half of a circie), when I see cosine pi, to me, 

that means, like the bottom half of the circle, is what it represents. 

KM: So what do we mean by... 

Amy: So negative one, like radius, at the bottom half since... 

KM: So the pi because it's negative now represents the bottom half. 

Amy: Ya, of the circle. 

KM: Ok, and pi because that's half of a circle? 

Amy: Mm-Hm. 

KM: And why the bottom half and not the top half? 

Amy: Because the bottom half is the negative part. Which is what we've, I 

mean, if it's on a coordinate, that's the negative part of the coordinate. 

KM: So why is that the negative part of it? What's negative about it? 

Amy:  Because that's the way a coordinate map is done (laughing).  

 
Amy first conceived of ! as “half a circle,” opposed to representing the measure 

of an arc in a number of radius lengths. Additionally, she interpreted the number –1 to 

signify the “bottom half” of a circle rather than the “top half” of a circle. When providing 

her interpretation of the given equation, Amy also hesitated explaining her reasoning 

(e.g., “I’m going to far into it.”). After this interaction, Amy further added, “Ok, cosine of 

pi is just half the circle,” rather than identifying the cosine function as formalizing a 

relationship between two quantities. These actions imply her reasoning was based on 
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objects (e.g., half of a circle) opposed to a relationship between measurable attributes of a 

circle (e.g., an arc length and a horizontal position). 

Table 35 

Amy’s Ferris Wheel Problem 

Consider a Ferris wheel with a radius of 36 feet. April boards the Ferris wheel at the 3 

o’clock position and begins a continuous ride on the Ferris wheel. Sketch a graph that 

relates the total distance traveled by April and her vertical distance above the horizontal 

diameter of the Ferris wheel. 

 
Consistent with Amy’s conception of “a circle” and her inability to reason about 

the equation cos(! ) = "1  in terms of conveying a relationship between two quantities’ 

values, Amy had difficulty constructing and covarying distinct quantities when reasoning 

about circular motion. To illustrate her difficulties, consider Amy’s actions on Amy’s 

Ferris Wheel Problem (Table 35). Amy first expressed a lack of confidence in her ability 

to solve the task and uttered, “Oh, I hate the graphs.” Amy then oriented to the problem 

by constructing a circle and identifying April’s (the rider) starting position (Excerpt 37). 

Excerpt 37 

1 

2 

3 

4 

5 

Amy: The second she gets on the Ferris wheel, she’s already thirty six feet 

above ground…So your vertical distance from the origin (marking the 

center of the circle) is (drawing segment to the bottom of the Ferris 

wheel) thirty six feet (drawing segment from the origin to the starting 

position of April). Right? Is that right or wrong? 
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KM: So how are you interpreting vertical distance and total distance? 

Amy: Well you said it's from the origin (marking the center of the circle). 

KM: Vertical distance from the origin. 

Amy: Ya, so. 

KM: And where's she starting? 

Amy: She's starting here (identifying starting position of April). So technically 

is that our origin? Where you start? 

 
Amy identified both a horizontal and vertical segment corresponding to April’s 

“vertical distance from the origin,” and (correctly) described each segment as a length of 

36 feet (lines 1-5). However, neither segment was consistent with the researcher’s 

intentions of vertical distance, nor did Amy appear to establish a vertical distance. Amy 

also identified multiple “origin[s]” and her questioning conveyed that she did not identify 

a unique reference point for the vertical distance (lines 11-12).  Throughout this 

interaction, Amy looked to the researcher for approval of her explanations rather than 

relying on her own reasoning (lines 5, 7, and 11-12). 

After Amy and the researcher discussed a reference point (e.g., a horizontal 

diameter) for measuring the vertical distance, Amy articulated, “Total, I'm not sure. Just 

would that be like circumference? Or, total distance as she gradually goes around the 

circle?” In this case, Amy was confused about the meaning of “total distance,” and her 

explanation conveys that she held the conflicting images of the total circumference and a 

varying arc length along the circle. 
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A varying arc length was then established as the “total distance” April had 

traveled and Amy began to construct a graph of the vertical distance in terms of total 

distance. Amy once more expressed that the meaning of vertical distance was unclear and 

she did not attempt to use the diagram to reconcile this lack of clarity. After the 

researcher used the diagram to identify a specific vertical distance (e.g., from the top of 

the Ferris wheel to the horizontal diameter), Amy asked, “So vertical distance, it doesn't 

have to drop down right, it could go up? I just want to make sure it's not like dropping a 

ball off a building kind of problem.” As she made this statement, she traced the vertical 

segment both upwards and downwards, continuing to reveal her difficulty conceiving of 

the relevant quantities. Her reference to a ball situation also implies that she was 

attempting to relate this situation to a previous problem. The researcher then asked her to 

identify the length of the vertical segment, to which Amy responded, “Ok, well that's also 

pi over two. That's (tracing a vertical segment) 'cause, well, no it's one radius technically. 

So it's not pi over two, it's one.” In this case, Amy referred to the length using a 

previously discussed angle measure, further exhibiting her tendency to confuse various 

attributes and measurements. However, she correctly concluded that the length was “one 

radius.” 

Amy subsequently constructed a graph that perceptually resembled the sine 

function. Yet, Amy was unable to justify the shape of her graph by coordinating two 

related quantities. Also, she did not attempt to use her diagram to justify her graph. In an 

attempt to promote Amy constructing and reasoning about quantities, the researcher 

asked that Amy identify equal changes of arc length on her diagram. Amy completed this 
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for the first quadrant and (correctly) claimed that the vertical distance was increasing and 

the change in vertical distance was decreasing over this interval. She was then asked to 

illustrate the covariation of the two quantities on her diagram (Excerpt 38). 

Excerpt 38 

1 

2 

3 

4 

5 

6 

7 

8 

KM: So what's representing the change? 

Amy: This is the change (shades in areas). 

KM: So that area or just that height? 'Cause you're shading the whole thing. 

Amy: Ok (pause). Just the height. 

KM: Just the height. 

Amy: Just the height, ya. 

KM: Just that height. 

Amy: Well I like shading 'em (continuing to shade areas). And see it gets less. 

 
Amy’s completed diagram can be found in Figure 25. After shading an area (line 

2), Amy hesitated when asked to clarify the change in vertical distance on her diagram 

(line 4). She then continued to shade in areas and claimed, “see it gets less” (line 8). 

These actions and explanations, along with the researcher’s leading questions, made it 

unclear whether she had distinguished the change in vertical distance from the areas she 

identified. 
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Figure 25. Amy’s diagram of Amy’s Ferris Wheel Problem. 

Amy then explained how her graph reflected the phenomenon she identified on 

the diagram. Amy first traced the graph while describing, “Ya, whoo, I’m increasing a lot 

and I’m slowin’ down.” This action implies that Amy reasoned about the shape of the 

graph to describe the motion of the individual (e.g., less steep means slower). This shape 

reasoning may explain Amy’s ability to describe directional changes and amounts of 

change of vertical distance while being unable to illustrate the relevant quantities on a 

diagram (Excerpt 38). To gain further insights into her reasoning, Amy was asked to 

explain how her graph illustrated the covariational relationship of the two quantities 

(Excerpt 39). 

Excerpt 39 

1 

2 

3 

4 

Amy: Ya, I can do it like, ya, here's one, two, three, four, five (making marks 

along the graph). And, well, hold on (drawing vertical lines down from 

her graph). And, change, change, change, change (drawing horizontal 

lines between the vertical lines). See, it's bigger. Like here and here, than 
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5 right here (shading in areas). 

 
Amy first created marks along the arc of the graph (Figure 26), opposed to the 

horizontal axis (lines 1-2), which may have been a result of her mimicking her actions 

from the diagram and focusing on the shape of the graph. Then, when identifying a 

“change,” she drew a horizontal line and shaded an area (lines 3-5). These actions were 

consistent with those exhibited by Amy when using the diagram (Figure 25 and Excerpt 

38). Following this interaction, the researcher prompted Amy to consider the increments 

she made along the graph. Amy then stated that she should have placed her initial 

increments along the horizontal axis of the graph, but she had difficulty explaining this 

action in terms of a change in a quantity’s value.  

 

Figure 26. Amy’s graph on Amy’s Ferris Wheel Problem. 

Amy’s actions of inconsistently identifying areas and lengths resulted in the 

researcher prompting her to conduct a similar process for the second quarter of a 

revolution (Excerpt 40) with the intention of gaining additional insights into her 

conception of the situation. 
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Excerpt 40 
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Amy: Here's one point, here’s another point (marking equal increments along 

a horizontal radius and extending vertical segments from the horizontal 

radius to the circle). Equal increments (singing and marking increments 

along the circle). And there's one. And so we have our change here, our 

change here, our change here, our change here (drawing horizontal 

segments between the vertical segments). So at first it's like not 

decreasing a lot (shading areas). And then it gradually decreases, 

dramatically (tracing graph) until we get. 

KM: And now when you were marking off these equal this... 

Amy: I decided to do down there (referring to marks on horizontal radius). 

KM: Should you mark them off down there or along the arc? Where should 

you mark those off at? 

Amy: Hmmm. This one might be along the arc. 

 
Amy first marked “equal increments” along a horizontal radius (lines 1-3), which 

was possibly a result of previously identifying equal increments on the horizontal axis of 

the graph. She subsequently identified successive arc lengths from the 12 o’clock 

position to the 6 o’clock position, where the end of each arc length corresponded to each 

vertical segment she drew (lines 3-4). Amy also referred to horizontal segments as 

changes and shaded in areas when describing the change as decreasing (lines 4-8). After 

the researcher further questioned Amy, she had difficulty describing the initial “equal 

increments” relative to a measurable attribute of the situation (line 13). These 
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descriptions reveal that Amy’s image of the situation did not include distinguishing and 

relating quantities consistent with the researcher’s intentions. Also, at this point in the 

task, her tone and approach to the task imply she did not value this reasoning. 

Amy’s inability to illustrate the covarying quantities may have a result of her 

repeating actions that were not rooted in reasoning about quantities. Amy appears to have 

focused on sequences of various behaviors (e.g., segment a horizontal axis, draw vertical 

lines, draw horizontal lines) without these actions consisting of quantities (e.g., attributes 

admitting a measurement process) beyond a gross quantification of area. 

The researcher subsequently aided Amy’s identification of the appropriate 

quantities on her diagram and asked Amy to covary these quantities over the third quarter 

of a revolution. Amy used her diagram to construct equal changes of arc length while also 

constructing vertical segments (Figure 26). Next, she drew horizontal lines and claimed, 

“I drew something wrong, what am I doing?” After concluding “[I] did it right,” and 

shading areas, Amy verbalized, “So you’ve got like a lot of decreasing going on and then 

slowly it kind of bottoms out.” Amy could not clarify her meaning of “it,” and remained 

unable to identify a change of vertical distance on her diagram independent of the shaded 

areas and horizontal segments. Amy’s descriptions reveal that she was reasoning about 

the shape of the circle (e.g., “bottoms out”) and previous behaviors (e.g., drawing 

horizontal lines), rather than reasoning about amounts of change of the relevant 

quantities. 

The researcher then identified two vertical distances and asked Amy to illustrate 

the change of vertical distance for the change of arc length. After pausing for an extended 
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period of time, she responded, “It’s (tracing a horizontal segment), ya, no, it’s this 

(tracing a vertical segment). It’s right here.” Consistent with previous descriptions, she 

identified both a vertical and horizontal segment revealing that she had not previously 

constructed an image of the situation that included changes of vertical distance (from the 

observer’s perspective), even though her initial verbal descriptions implied otherwise. 

After verifying the change in vertical distance, Amy was asked to explain the 

covariation of the quantities for the last quarter of a revolution, with the researcher 

emphasizing that she be explicit about the quantities of the situation (Excerpt 41). 

Excerpt 41 
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KM: Ok, so how about the last section, do the same thing. Now I don't want 

you to use words like it, or whatever, I want you talk about total distance 

traveled and vertical distance this time. 

Amy: Ok (marking equal changes of arc length). So, we've got our fun little 

increments of a certain radius. And these bad boys (drawing horizontal 

segments) are starting out really small (shading areas), and gradually 

they are increasing. 

KM: So what do you mean by they are increasing? 

Amy: The increments. 

KM: What do those represent? 

Amy: The percentage of a radius increments. 

KM: Are... 

Amy: Are increasing. 
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KM: Ok, and those represent changes in... 

Amy: Vertical distance (laughing). And they're starting out small and then 

they're, the changes (pointing to the areas) between the distances of 

vertical distances are changing. 

 
Amy was unable to clearly articulate or illustrate changes of vertical distance 

(lines 4-11) for successive changes of arc length and she did not identify a change of 

vertical distance on her diagram. Rather, she referenced “bad boys,” drew horizontal 

segments, shaded areas, and described “increments…percentage of a radius.” These 

explanations further convey that her actions were not based on covarying changes of 

vertical distance and changes of arc length that were distinct from other attributes of the 

situation. Also, Amy’s tone of voice during this interaction suggested that she did not 

find value in being specific about the quantities of the situation and that she found the 

researcher’s questions unnecessary or annoying. Her disposition may have been a result 

of her difficulty engaging in the desired reasoning or not finding value in this reasoning 

(e.g., constructing and reasoning about quantities). 

Amy’s actions during The Ferris Wheel Problem emphasize that a student’s 

verbal utterances are not necessarily indicators of the reasoning behind these utterances. 

Amy described changes of vertical distances and arc lengths, but she was unable to 

consistently identify the relevant quantities on a graph or diagram of the situation. She 

instead reasoned about the shape of both a circle and a graph when describing the 

covariational relationship. Also, her explanations and behaviors appeared to mimic her 

previous behaviors opposed to resting on reasoning about distinct quantities and 
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relationships between these quantities. Thus, as she did not conceive of the relevant 

quantities of the situation, she was unable to covary these quantities in order to construct 

a graph that represented a covariational relationship between two measurable attributes. 

Over the course of the study, the researcher attempted to promote Amy 

constructing measurable quantities consistent with the instructional intentions. For 

instance, as Amy encountered difficulty solving various tasks, the researcher continually 

asked Amy to identify lengths and reference points for measuring various lengths. As 

another example, after Amy verbalized that she did not understand the notion of vertical 

distance in circular motion, the researcher prompted Amy to discuss and relate measuring 

the elevation of various cities relative to sea level to measuring a varying vertical height. 

During a majority of the attempts to promote Amy constructing images of 

situations consistent with the instructional intentions, the nature (both in tone and 

verbiage) of her responses indicated that she did not find value in making these 

distinctions. In fact, she claimed that the requests made things “more difficult than [they] 

should be.” To illustrate her difficulty and resistance in identifying distinct quantities, 

consider Amy’s responses when asked to discuss the sine function (Excerpt 42). 

Excerpt 42 

1 

2 

3 

4 

5 

KM: For the input to sine, the sine function. What are we measuring and what 

units? For the input to the sine function. 

Amy: We're measuring the percentage of a radius. 

KM: And what are we measuring? Do you see the distinction there, you're 

just saying, so I can say I'm measuring in feet, but I'm not telling you 
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what I'm measuring. If I just come to you and say I'm measuring in feet, 

you have no clue what I'm measuring right? 

Amy: (laughing) Right. 

KM: So when you say I'm measuring in a percentage of a radius, you're not 

telling me, you're telling me the units you're measuring in, but you're not 

telling me what you're measuring. So what are you measuring in 

percentage of a radius. 

Amy: The vertical distance. 

KM: Ok, is that the input or output to sine? 

Amy: That's (pause), well, that's the output. 

KM: That's the output, right. What's the input to sine? 

Amy: (pause) Would it be the radians? 

KM: Ok, that's the units. Now what are you measuring? 

Amy: (pause) (sigh) Percentage of a radian. 

KM: That's still a unit. 

Amy: (laughing) This is killing me. 

KM: When you're saying radians or whatever, what are you measuring? 

Amy: (long pause) (sigh) I don't know. I'm not even sure.  

 
When asked for the quantity she was measuring Amy described a measurement 

unit (lines 3, 17, and 19). This possibly stemmed from the explicit focus of the teaching 

experiment sessions on the radius as a unit of measure, leading Amy to conceive of a 

“percentage of a radian” or “radians” as numbers to be determined rather than the results 
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of measuring a distance along an arc or segment. Hence, she did not conceive of 

measurable attributes of a situation distinct from “the radians.” Amy’s tone of voice and 

casual approach during this interaction also implies that she did not take this distinction 

seriously. Amy’s disposition may have been a combination of her having difficulty 

making this cognitive distinction and the obstacles arising due to her inability to make 

this distinction (e.g., her disposition was a defense mechanism). Immediately following 

this interaction, she further expressed her struggles by stating, “This is more difficult than 

it should be.” 

As Amy expressed, she had difficulty constructing distinct quantities and 

reasoning about these quantities throughout the study. Amy frequently reasoned about 

measurements as references to objects opposed to conveying a quantitative relationship 

or the result of a measuring process. Although she often performed correct calculations 

and provided correct verbal responses at various times, these calculations and responses 

appeared rooted in recalling procedures rather than quantitative relationships. Then, when 

prompted to reflect on her solutions relative to a problem’s context, she exhibited 

discomfort and remained reluctant to engage in such reflection, which inhibited her 

progress over the course of the study and considering other ways of thinking about the 

instructional topics. For instance, she expressed that she would better understand the sine 

function if she knew the formula to calculate the output value. The next section further 

explores the implications of Amy’s procedural approach to problem solving relative to 

her understandings of angle measure and trigonometric functions. 

The Role of Amy’s Problem Solving Behaviors 
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As previously illustrated (Excerpts 28, 32, 33, and 35), Amy frequently relied on 

executing cross-multiplication, which was supported by her reasoning about part to whole 

correspondences that she identified when orienting to a problem. In order to illustrate 

Amy’s problem solving behaviors in the context of the Multidimensional Problem 

Solving Framework (e.g., orienting, planning, executing, and checking) provided by 

Carlson and Bloom (2005), this section begins by discussing her propensity to execute 

cross-multiplication. 

As a first example of Amy’s reliance on executing cross-multiplication, consider 

her actions when she was asked to determine the circumference of a circle given that an 

arc length of 0.03 inches was 22% of the circle’s circumference (Excerpt 43). 

Excerpt 43 
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Amy: Given that an arc-length of point zero three inches is twenty two percent 

of a circle's circumference, what is the circle's circumference? Alright, 

so I've got an arc length that is point zero three inches. A circle's 

circumference is pi times diameter. Isn't that pi times the diameter? 

KM: Pi times the diameter. 

Amy: (writing !d) And then, ok, all we have it point three. So we've got point 

three and the whole circle is pi times the diameter (writing .03 above 

!d). Of the circle's circumference. Hmmm. This would be better if I had 

a radius. Ok, it's twenty-two percent of the circumference. Twenty-two 

is the result of one hundred (writing the ratio of 22 to 100). (calculating 

100 times .03) I don't know if this is right, I'm just gonna give it a shot. I 
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get three. Oh, I need an x somewhere. Hmm. 

KM: So what'd you do there? You did... 

Amy: Ya, well I was gonna try and like cross-multiply and everything. But I... 

KM: So what do you mean by you need an x? What are you referring to? 

Amy: I need like a, something that I'm gonna solve. Which would be the rest, 

which would be the whole circumference. So, ya, it would be like point 

three over x if we wanted to find it in inches (replacing !d with x). So it 

would be equals 3 (writing 22x=3) and that doesn't make sense. 

KM: So what doesn't... 

Amy: The whole circle's point one three inches. I mean, the circumference. I 

don't know if that makes sense. 

KM: So what do you think? How long was your arc length? 

Amy: My arc length was point zero three, I just don't like uneven stuff. 

 
Amy’s initial orienting behaviors consisted of recalling a formula for the 

circumference of the circle (lines 3-4) and expressing the need of a radius (lines 8-9) to 

determine the whole (e.g., the circumference) of a part to whole relationship. After using 

a part to whole correspondence to construct an equation (lines 6-10), Amy claimed that 

she needed an “x…something that I’m gonna solve” before executing her procedure. Her 

explanations conveyed that her use of the variable x initially stemmed from representing 

the measure of a quantity. Rather, her use of x was to satisfy the need of having an 

unknown part or whole (e.g., “I need an x somewhere”) in order to “cross-multiply and 

everything.” Lastly, Amy repeatedly stressed that she was not confident in her solution 
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(lines 4, 11, and 19) and her checking of the answer consisted of not liking “uneven stuff” 

rather than reflecting on the solution or the quantities of the situation. 

These actions reveal Amy’s reasoning was focused on executing the procedure of 

cross-multiplying, where her efforts consisted of constructing an equation of a form the 

relied on part to whole matching. Also, the ratios Amy constructed did not have a 

quantitative meaning beyond this part to whole correspondence. As a result, Amy did not 

conceive of the ratios as values, which inhibited her ability to check the problem beyond 

the aesthetics of the result (e.g., “uneven stuff”). As the researcher continued to prompt 

Amy to explain her reasoning, she was unable to explain her solution beyond alluding to 

cross-multiplication as the prescribed procedure for the given problem. Then, after the 

researcher’s probing led her to use the fractional amount of the circle’s circumference 

without cross-multiplying, she claimed, “I like doing cross-multiplying,” apparently 

finding confidence and comfort in executing this procedure, which was consistent with 

her actions in Excerpts 33 and 35. 

Amy’s reliance on and confidence in executing cross-multiplication influenced 

her reasoning and problem solving behaviors throughout the study. For instance, Amy 

was asked to determine (without cross-multiplying) the measure of an angle that 

subtended 12% of a circle’s circumference. After Amy found 12% of 360 degrees by 

using the operation of 0.12"360, she explained, “Ya, we could do that, but I trust myself 

with cross-multiplying more.” Also, after obtaining a proper angle measure using a 

method other than cross-multiplication, she started to construct an equation to execute 

cross-multiply in spite of already obtaining the correct answer. The researcher then stated 
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that Amy should trust her reasoning, to which she responded, “There's no reason to mess 

up cross-multiplying. It's safer.” These responses illustrate her “trust” in executing cross-

multiplying, opposed to being confident in her reasoning about the quantities and 

relationships of the situation. In turn, her view of cross-multiplication as a prescribed 

procedure that gave a correct solution became an obstacle for her considering other 

solutions to problems. 

As previously revealed (Excerpts 33-35), Amy was able to reason about a 

multiplicative relationship between an arc length and the radius. However, after engaging 

in this reasoning, she explained, “I’m just so used to cross-multiplying everything.” Thus, 

cross-multiplying dominated her reasoning such that she did not appear to value or have 

confidence in engaging in novel reasoning patterns or reflecting upon this reasoning. 

In addition to Amy’s propensity to execute a cross-multiplication procedure, she 

frequently attempted to “remember” previously executing procedures and calculations. 

These actions dominated her orienting behaviors when encountering novel tasks. As an 

illustration, consider Amy’s initial actions on The Arc Problem (Table 33) (Excerpt 44). 

Excerpt 44 

1 

2 

3 

4 

5 

6 

Amy: I'm trying to figure out theta, ok. I remember doing this, I'm just trying 

to remember how. Ok. Radius. Hmm, and the angle measure's thirty-five 

degrees. And I'm trying to determine the length (tracing arc length), like 

in inches? 

KM:  Ya. 

Amy: Ok. Alright, let's see. Um. Two inches. And it's thirty-five degrees out of 
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7 

8 

9 

10 

11 

12 

13 

three hundred sixty degrees (writing ratio of 35 to 360). Hmmm. If two 

inches (pause), no. Hmm, I swear I know how to do this, I just can't 

remember. 

KM: Ok. 

Amy: (long pause) (sigh) Ok. (long pause) Hmm. I'm trying to determine the 

length of the arc. Oh I promise I know how to do this. I can't remember 

though (long pause). 

 
Throughout the interaction Amy suggested that she knew “how to do” the 

problem, but that she could not remember how to complete the problem (1-9). As the 

interaction continued, Amy was unable to recall a previous, or prescribed, solution 

process and stressed that she could not “remember how” to solve the problem (lines 11-

13). Amy’s approach to the problem suggests that she equated knowledge and solving the 

task to remembering a prescribed solution. As a result, Amy then stated she could not 

solve the problem, opposed to attempting to provide a conjecture or reason about the 

quantities of the situation (e.g., orienting and planning behaviors). 

Amy’s actions throughout the study suggested that she viewed the proposed 

problems as if a prescribed solution existed for her to “remember” and execute. For 

instance, on The Ferris Wheel Problem (Table 35), Amy initially stated, “Oh I knew you 

were gonna ask me this, and I don’t know the answer.” Amy’s response implies that she 

believed the researcher expected her to recall an answer (a graph) from memory opposed 

to constructing a graph by reasoning about a covariational relationship. As another 

example, Amy’s orientation to a right triangle problem consisted of her claiming, “I 
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know how to do this, I did this last night…I just did this…give me the first step and 

maybe I can figure it out from there…and we just learned this.” Again, her claims of “I 

know how to do this” and “give me the first step” emphasize her belief that she was 

expected to recall a post procedure when orienting to the problem. 

As yet another illustration of Amy’s propensity to remember and execute a 

prescribed procedure or calculation devoid of a quantitative meaning, consider Amy’s 

attempt to determine the hypotenuse of a right triangle when given an angle measure and 

the length of the side (670 feet) opposite of the angle measure (Excerpt 45).  

Excerpt 45 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Amy: Um (pause). Doesn't six hundred and seventy divided by this side 

(pointing to the side adjacent the given angle) give us the radius? Right? 

KM: What do you think? 

Amy: Well I know it does, but. 

KM: Six hundred and seventy divided by what side? 

Amy: Right here (pointing to the side adjacent the given angle). 

KM: So why do you think that gives us the radius? 

Amy: I know it does. 

KM: So why do you know it does? 

Amy: 'Cause that's what is in my notes. 

 
After identifying a right triangle and an unknown value, Amy recalled a 

calculation (lines 1-2) and looked to the researcher for approval. When asked to justify 

her conjecture, she claimed it was correct because the calculation was in her notes (lines 
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8-10). In this case, Amy’s conjectures focused on calculations not rooted in quantitative 

relationships, which likely limited her ability to check the correctness of her conjectures. 

An explanation for her suggesting the calculation of dividing two sides was that the 

previous instructional activity explored the tangent function within the context of right 

triangles. Thus, it is likely that Amy recalled the calculation of dividing the opposite 

length by the adjacent length to obtain an answer in a right triangle context. 

Amy’s reliance on remembering formulas and procedures and executing 

calculations presented her further difficulties when attempting to reason about the sine 

function. She claimed, “I don't know exactly what sine does, like I'm sure if I knew what 

the formula was I'd have more of an understanding what happens.” Amy’s explanation 

reveals that she found remembering formulas as “understanding.” As a result, Amy felt a 

need to remember a sequence of calculations in order to understand the sine function, 

rather than reasoning about the sine function as a process relationship between two 

quantities 

Although the researcher attempted to promote Amy making sense of problem 

situations (e.g., identifying quantities) and reflecting on her reasoning, Amy was very 

reluctant to participate in such actions and expressed extreme discomfort and a lack of 

confidence during these instances. Her discomfort was such that during an instructional 

activity relating right triangle trigonometry to the unit circle, Amy exclaimed in a stern 

tone “I’m just here to learn…I do not know how to do this so that is why I’m here 

learning.” Amy’s response occurred when the researcher asked her to identify the output 

of the sine function relative to the unit circle, which was a topic of the previous 
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instructional activities. The nature of Amy’s response, in combination with her tendency 

to watch the other students and the researcher, indicates that she approached learning as 

watching someone else complete a problem correctly rather than engaging in novel 

reasoning. Similarly, when the other two students were engaged in problem solving, Amy 

frequently left the classroom; then, upon her return, she would ask if they had completed 

the problem and desire the correct answer. 

To further illustrate the implications of Amy’s disposition to learning 

mathematics and problem solving, recall that during The Ferris Wheel Problem (Table 

35) Amy’s initial response was that she did not remember the graph and that her 

conception of the situation lacked an explicit distinction of quantities. This limited her 

ability to construct a graph rooted in the covariation of quantities; specifically, she had 

difficulty supporting the concavity of her graph through reasoning about amounts of 

change (Excerpts 38-41). Amy’s actions when asked to describe the sine function on a 

later task offered insights into her difficulty in constructing and reasoning about explicit 

quantities (Excerpt 46). 

Excerpt 46 

1 

2 

3 

4 

5 

6 

Amy: Sine is the vertical distance. Um, ya. 

KM: Can you talk to me, vertical distance from where? You know talk to me 

about what vertical distance you're talking about. 

Amy: Usually we've used like sine and cosine of a circle. So when you have 

like a certain point, it's the vertical distance on that circle, like (pause) 

where it is in terms of the vertical distance. 
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7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

KM: Should we use a diagram maybe? Show me what you're talking about. 

Amy: (draws a circle with a crosshair) I've got a point right here (marking a 

point on the circle), it's (pause), the distance, like (tracing a vertical 

distance to the horizontal diameter), this distance (tracing a horizontal 

distance along horizontal diameter) right there (retracing vertical 

distance). 

KM: So which distance is the vertical distance? 

Amy: Oh it's so mixed up, um. It screws me up, because you need like the 

horizontal distance to get the vertical distance. 

KM: So why do you say that? 

Amy: (pause) Because it's a screwed up world. It just, it, like I know what it 

means, it just confuses me like in general. 'Cause it doesn't mean what it 

says. 

KM: So what do you mean it doesn't mean what it says? 

Amy: Well it says, you know, they're telling me sine's the vertical distance of 

something, but I need to find the horizontal distance to find the vertical 

distance. That doesn't make any kind of sense. 

KM: So why do you say, what make's you say you need to find the horizontal 

distance... 

Amy: 'Cause that's what you told me. (laughing) Like you have to find, it's 

weird because it looks like you're finding the horizontal distance to get 

to the vertical distance. 
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Amy expressed that the sine function represented a vertical distance (line 1). As 

she was pressed to explain further, she did not use a diagram until the researcher 

suggested this action. Amy attempted to use the diagram to identify this distance (Figure 

27), which resulted in her tracing both horizontal and vertical distances (lines 8-12). She 

described that the various distances confused her (lines 14-23) and that she needed “to 

find the horizontal distance to find the vertical distance.” Then, she claimed, “that’s what 

you told me…it looks like you’re finding the horizontal distance to get the vertical 

distance.” 

 

Figure 27. Amy’s diagram for describing the sine function. 

Amy’s difficulties appear to have stemmed from observing the actions of the 

researcher and other students during the previous instructional activities. During these 

sessions, a coordinate system was used to measure the horizontal and vertical positions of 

a point on a circle relative to the origin of the circle. As the researcher and the other 

students used this coordinate system, they often traced horizontally or vertically to the 

coordinate axes to determine the appropriate vertical or horizontal positions, respectively. 

Amy appears to have interpreted these observable behaviors as “finding the horizontal 

distance to get to the vertical distance,” resulting in her confusing the two quantities. 
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These actions were consistent with Amy’s actions during The Ferris Wheel 

Problem. As she progressed through The Ferris Wheel Problem (Excerpts 37-41), she 

was observed identifying multiple segments and an area as changes and she frequently 

performed actions that she performed for a previous quarter of a revolution. For instance, 

after identifying “equal increments” along the horizontal axis of a graph, Amy identified 

equal lengths along a horizontal radius on the Ferris wheel. Amy’s repeated actions were 

not grounded in the relevant quantities of the situation. Similarly, Amy’s actions on other 

tasks that included calculations and procedures were not the result of her reasoning about 

relationships between quantities. Although she was able to provide correct solutions at 

times, her resistance to reflect on the quantitative meaning of her procedures resulted in 

her inability to flexibly solve novel situations without continued prompting from the 

researcher. 

In summary, Amy’s problem solving behaviors consisted of attempting to 

remember a procedure or formula when orienting to a problem and then executing 

calculations defined by the procedure or formula she remembers. Amy did not appear to 

construct mental scenes of problem situations that consisted of quantities and 

relationships between quantities. This may have resulted in Amy’s inability to engage in 

meaningful planning or checking behaviors, as she did not construct quantitative 

structures with which she could anticipate solutions or interpret her solutions. Rather, 

remembering a prescribed procedure did not require any planning or checking (beyond 

the aesthetics of the solution), as she believed the procedure provided a correct solution if 

applied correctly. 
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Amy was also reluctant to engage in planning actions such as providing 

conjectures and considering various avenues of solving a problem without executing 

calculations. She often made statements such as, “I'm just trying something, don't ask me 

what I'm doing. I just want to see if it works,” when she performed calculations and 

would not consider the meaning of her calculations previous to executing them. Also, 

when she was asked to explain a quantitative meaning of her solutions, she often made 

statements like, “This is why I’m not good at this.” Amy also attempted to hide the 

computations she performed on her calculator and she would clear her calculator when 

asked for her solutions. These actions imply that Amy lacked confidence in her own 

mathematical abilities and that her focus was on obtaining correct results opposed to 

understanding the solution used to obtain these results. 

The combination of Amy’s procedural approach to problem solving and lack of 

confidence in her own mathematical abilities parallels the nature of Amy’s thinking 

during the study. As illustrated, rather than constructing problem contexts consisting of 

quantitative structures that she could leverage and reflect upon, her understandings 

consisted (or prescribed) procedures and calculations, which she attempted to recall when 

orienting to a problem. These procedures and calculations were not rooted in quantitative 

relationships, and as a result, her ability to check her solutions relied on the aesthetics of 

her solution and her confidence in the remembered procedure. For instance, during 

problems in which she cross-multiplied, Amy remained confident in her solutions. 

However, in other contexts that did not lend themselves to cross-multiplying or in 

situations that she was asked to not cross-multiply, she had difficulty engaging in the 
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reasoning abilities needed to solve the tasks. Also, opposed to engaging in and reflecting 

on novel reasoning, she cited her notes, provided statements such as, “That’s what I 

thought we were supposed to do,” and relied on previous observable behaviors (her own 

behaviors or her interpretation of others behaviors). Hence, her understandings and 

problem solving behaviors centered on these observable behaviors and numerical 

calculations that the other students and researcher provided. 

Summary and Discussion of Amy 

Amy’s solutions frequently revealed that she did not construct and reason about 

the relevant quantities of a problem’s context. As opposed to conceiving of distinct 

quantities, Amy often confused quantities, which resulted in her reasoning about 

inconsistent attributes of a situation. Amy also conceived of measurements as labels for 

an object, as opposed to measurements representing quantitative relationships and the 

result of a measurement process. For example, Amy described that “six point two eight” 

radians were in a circle, but she had difficulty reasoning about measuring the 

circumference of a circle in a number of radius lengths (e.g., C = 2!r ). Rather, she 

conceived of the “six point two eight” radians as a “full circle.” This image enabled her 

to use a part to whole correspondence that supported a cross-multiplication procedure, 

but this image did not support her reasoning about measuring along the circumference of 

a circle in a unit length. 

Amy’s inability to construct and reason about distinct quantities also inhibited her 

reasoning about the relationships formalized by the sine and cosine functions. Amy was 

able to recall a graph of the sine function, but she was unable to support the graph by 
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reasoning about two covarying quantities. Instead, she fluctuated between referencing 

areas and identifying inconsistent lengths and changes in lengths. Also, she emphasized 

that she would better understand the sine and cosine functions if she was given a formula 

to calculate values. 

Amy’s difficulties and inability to construct quantitative relationships were 

directly related to her procedural, or formulaic, disposition to mathematics and problem 

solving (which possibly stemmed from a lack of confidence in her abilities). When 

orienting to problem situations, she predominantly focused on attempting to remember 

calculations and procedures, while also having difficulty progressing if she was unable to 

recall the proper procedure or calculation. Also, when she justified her solutions she often 

fixated on previous calculations or behaviors, rather than a quantitative meaning behind 

her calculations and actions. For instance, she justified a division because the calculation 

was “in [her] notes.” As another example, when constructing a graph, Amy mimicked her 

actions from previous explorations without reasoning about distinct quantities of the 

situation. Her difficulty in reasoning about the relevant quantities was later revealed to 

have stemmed from observing and mimicking the behaviors of others (e.g., tracing a 

horizontal segment to determine a vertical distance).  

Her focus on the behaviors of others also consisted of looking to the other 

students and researcher for approval of her solutions. She exhibited discomfort when 

pushed to explain her solutions and her responses to the researcher’s questioning implied 

that she was focused on obtaining a correct result, as opposed to understanding solutions 

in terms of the quantities of a problem. Additionally, Amy showed resistance when 
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pushed by the researcher to reflect on her own reasoning or the quantitative meaning of 

her solutions, which conflicted with the problem solving approach of the instructional 

tasks. Multiple construction activities were used during the teaching experiment sessions, 

but Amy’s explanations and behaviors revealed that she did not find value engaging in 

these tasks. Rather, she continued to rely on the solutions and correct answers of the other 

participants in the study. This approach to learning was an obstacle in her engaging in 

novel reasoning to solve problems and subsequently reflecting on this reasoning. 

Her reluctance in engaging in novel reasoning and reflecting on her reasoning 

may have also been influenced by her mathematical confidence and views of 

mathematics. She frequently stressed that she did not trust her reasoning and she was 

often hesitant in putting her thinking on display for the participants of the study. Amy 

also looked to the researcher for approval of her solutions, rather than checking her 

solution through reflecting on her own thinking and making sense of her calculations. 

Amy approached the instructional activities as though her role was to observe other 

participants correctly solve problems. In turn, she believed these procedures would 

provide her the necessary tools to obtain correct answers. This led to her referencing 

previous procedures when solving novel tasks that did not lend themselves to these 

procedures. 

Overall, Amy’s actions emphasize the implications of both a procedural approach 

to problem solving and a lack of confidence in one’s ability to engage in novel reasoning. 

As opposed to orienting to problems and constructing quantitative structures to leverage 

during problem solving, Amy looked for previous procedures and calculations to perform 
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in an attempt to obtain a correct result. As a result, her calculations were not based on 

quantitative relationships. When her procedures did not provide a correct solution, she 

resisted providing conjectures and relied on prompting from the researcher. Then, after 

engaging in reasoning consistent with the instructional goals, she was reluctant to reflect 

on and trust this reasoning, which resulted in her maintaining a focus on calculations and 

procedures. As a result, her unprompted solutions did not result from her images of 

quantities and how they were related (beyond her part to whole relationships). Hence, as 

Amy encountered novel problem contexts, she was unable to carry forward her reasoning. 
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Chapter 7 

Results Of Judy 

This chapter provides an overview of the reasoning and problem solving 

behaviors Judy exhibited over the course of the study. Her PCA scores are first provided 

to illustrate her pre- and post-course shift and to situate her within the students in the 

precalculus course. This is followed by data illustrating the thinking and understandings 

Judy revealed over the course of the study. In addition to characterizing her reasoning, a 

discussion of Judy’s problem solving behaviors is presented. To conclude this chapter, a 

summary and discussion of Judy’s progression over the course of the study is provided. 

Judy was a full-time student in her mid-twenties. She was a first year 

biochemistry student at the university. Three years prior to this study, Judy had 

completed undergraduate degrees in English and Political Science at a different 

university, although five years had elapsed since taking a mathematics course (College 

Algebra). She planned to enroll in Calculus I after completing this precalculus course.  

Pre- and Post-Course Assessment 

Judy received an ‘A’ for her final course grade. In total, two students from the 

course received an ‘A’, seven students received a ‘B’, eight students received a ‘C,’ and 

three students received a failing grade. Judy’s pre- and post-PCA exam scores were 

above average relative to the 16 students in her class who completed both the PCA pre- 

and post-administrations (Table 36). 
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Table 36 

Results of the PCA Pre- and Post-test (n=16) 

 Zac Amy Judy Class Average 

Pre-test Score 13/25 5/25 15/25 7.31/25 

Post-test Score 17/25 10/25 21/25 12.18/25 

 
Judy’s Conception of Angle Measure Prior to Instruction 

When prompted22 to describe an angle measure of one degree, Judy claimed, “A 

circle has three hundred and sixty degrees and a half circle will have one hundred eighty 

degrees…an angle has one degree means it’s one three hundred sixtieth of a circle.” 

When asked to elaborate, Judy responded by saying, “Wow, I don’t know how to 

describe this…I really don’t know what an angle is outside of formulas…Like, if you 

know this was like that, and I had to find this, then it would be a hundred and seventy 

nine degrees.” During this explanation, Judy drew the supplementary angle to one degree 

and determined the measure of this angle. Judy’s actions reveal that she held a loose 

coordination of angle measure and a circle, but her descriptions did not reveal her 

reasoning about a measurement process consisting of measurable attributes of a circle 

(e.g., quantifying the fraction of a circle’s circumference). 

Judy was then asked to measure an angle using only a compass, Wikki Stix, and a 

ruler. She initially constructed a circle centered at the vertex of the angle and then 

determined the circumference of the circle and the arc length subtended by the angle 

                                                 
22 The interview tasks referenced in this chapter are presented in their full form in 
Appendix F. 
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using the Wikki Stix. After she divided the arc length by the circumference and obtained 

0.087, Judy explained, “I don’t know…should be eight point seven eight degrees…I 

don’t think that’s right.” Judy then expressed that she did not understand her calculation 

and that she could not complete the problem. Judy’s actions on this problem reveal her 

measuring an arc and attempting to relate angle measure to a subtended arc length and a 

circle’s circumference. She calculated the fractional amount of the circle’s circumference 

cut off by the angle (to the observer), but she conceived of this value as a number of 

degrees. She recognized that this value did not make sense as the measure of the angle, 

which led to her discarding her calculation without reflecting on the calculation in terms 

of the quantities of the situation. 

Previous to attempting the last task of the interview, Judy explained, “I’m gonna 

look this up at home…I’m gonna be sitting on the edge of my seat until then…Ohhh, I 

can’t move on…we just gotta cover it up.” Judy’s utterances reveal that she held a strong 

desire to understand the previous problem and that she had difficulty moving on without 

producing an answer that made sense. After covering up the previous problem, Judy 

immediately stated that she was unable to solve the last task. She also added, “I’m gonna 

go crazy. I really wanna know!” Judy’s inability to provide solutions that made sense 

caused her frustration, but she exhibited a strong desire and need to make sense of the 

problems. The interview concluded with Judy assuring the researcher that she would not 

research how to solve the tasks before the first teaching experiment session.  

In summary, Judy’s conception of angle measure did not include a meaningful 

measurement process consisting of quantities although she attempted to relate an arc 
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length and a circumference. Judy calculated the fractional amount of a circle’s 

circumference subtended by an angle, but she did not interpret this value as the fractional 

part of a circle’s circumference subtended by the angle’s rays. Thus, she was unable to 

determine the angle measure using this calculation. Judy also expressed that she did not 

understand angle measure, but that she had a strong desire to learn this topic. Judy’s 

curiosity and desire to understand angle measure was revealed in her expressing that she 

would be “on the edge” of her seat until she understood the meaning of an angle measure. 

Judy’s Ways of Thinking During the Instructional Tasks 

When responding to The Protractor Problem (Table 37) during the first teaching 

experiment session, Judy used a Wikki Stix to measure a circle’s circumference. After 

determining this value, she indicated that dividing the circumference by the number of 

units corresponding to that length (e.g., 360 degrees for the full circumference) would 

produce the “amount of distance on the [circumference] for each degree.” Judy appeared 

to view measuring an arc length as a necessary means for constructing a tool for 

measuring an angle. This led to her partitioning the circumference of a circle based on a 

unit length. Thus, Judy’s engagement in The Protractor Problem led to her identifying a 

subtended arc length as a measurable attribute corresponding to the process of measuring 

an angle.  

Table 37 

The Protractor Problem 

Using the supplies of a Wikki Stix and a ruler, construct a protractor that measures an 

angle in a number of gips, where 8 gips rotate a circle. 
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Next, Judy was asked to consider the effects of using different radius lengths 

when creating a protractor with an arc length per unit approach. Judy responded that as 

the radius length of a circle changed, the arc length subtended by the angle would also 

change. For instance, she indicated that the arc length would increase for an increasing 

radius length. 

In response to Judy’s reasoning, the researcher prompted her to consider various 

arc lengths that corresponded to one unit of angle measure, where each arc length was 

from a different sized circle. Judy calculated each arc length, divided by the 

corresponding circle’s circumference, and then concluded that each arc length 

represented the same fraction of the corresponding circle’s circumference. That is, Judy 

reflected on each calculation and identified that each ratio, or value, represented a 

fraction of the circle’s circumference subtended by an angle of one unit. During the pre-

interview, Judy did not reflect on a similar calculation relative to the quantities of the 

situation. Thus, the focus of the teaching experiment sessions on measuring an arc length 

and considering multiple radius lengths may have promoted Judy relating angle measure 

to the fractional amount of any circle’s circumference subtended by the angle. 

After engaging in The Protractor Problem, Judy transitioned to predominantly 

reasoning about angle measure as the fractional amount of a circle’s circumference cut 

off by the angle opposed to an arc length per unit relationship. For instance, Judy 

exhibited this conception when she explained the effects of increasing the openness of an 
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angle relative to the two displayed ratios23 on The Protractor Applet (Figure 28). Judy 

indicated, “[the ratios will] change, but they are still going to be equal to each 

other…both are, they’re ratios of kind of the same thing. They’re measuring the amount 

of circumference cut off in comparison to the entire circumference.” Judy’s description 

reveals her interpreting the ratios as a measurement of the arc length relative to the 

circumference (e.g., each ratio as a value), which enabled her to anticipate the ratios 

remaining equal for an increasing openness of the angle. Judy then explained that an 

angle measure of 32.1 degrees indicated that the subtended arc length was 8.89% of any 

circle’s circumference.  

 

Figure 28. The protractor applet. 

Judy’s ability to reason about measuring along a subtended arc to determine an 

angle measure also supported her constructing the radius as a unit of angle measure 

during The Circumference Problem (Table 38). 

 

                                                 
23 During this implementation of the applet, the radian measurement and the ratio of the 
radian measurement to 2! radians was not displayed. 
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Table 38 

The Circumference Problem 

Construct a circle using a Wikki Stix as the radius (your group should have Wikki Stix of 

different lengths). Then, determine how many of your Wikki Stix mark off the 

circumference of your circle. Compare your result with your classmates. What 

observations can you make from this comparison? Construct an angle that cuts off one 

Wikki Stix length of an arc. Compare the openness of the angle with those of your 

classmates.  

 
After Judy constructed a circle using a compass and a Wikki Stix, she determined 

the circumference of the circle and divided by the length of the Wikki Stix, or “the 

radius.” After comparing this result to the other subjects’ outcomes, Judy described that 

the measurement of a circle’s circumference is always 6.28 “radius.” She also expressed 

a measure of 1.5 radius lengths by saying, “Well, the circumference of the arc is 1.5 

radians.” Judy subsequently determined the linear measurement of an arc corresponding 

to 1.5 radians and a radius of 3.2 centimeters by “[taking] 3.2 and adding it to half of 

3.2.” 

Judy’s explanations during The Circumference Problem reveal her reasoning 

about a measurement in radians corresponding to a number of radius lengths rotating 

along an arc length (e.g., “the circumference of the arc”). Judy also identified that a 

constant number of radius lengths rotated through the full circumference of any circle. 

Furthermore, she converted between a measurement in radians and a linear measurement 

by imagining a radius length and a fraction of the radius lying along an arc.  
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Judy’s ability to reason about a number of radius lengths rotating through the 

circumference resulted in Judy also indicating that an angle measure of ! radians 

represented “the amount of radius [lengths] along the circumference. So you would just 

need to multiply [! radians] by the radius length [to determine the linear measurement].” 

Then, after returning to The Protractor Applet (Figure 28) with the radian measures 

displayed, Judy described the ratio of the arc length to the radius as, “A measure of the 

radian amount passed…on the circumference.” Judy’s actions reveal that her engagement 

in The Circumference Problem resulted in her conceiving of a radian measure as a 

number of radius lengths rotating through the arc length subtended by an angle. 

During The Circumference Problem, Judy also spontaneously converted 1.5 

radians to a number of degrees by using the equation of 
1.5
2!

=
x
360

. She reasoned that 

each ratio represented, “the percentage of the arc in comparison to the circumference.” 

Hence, Judy’s understanding of angle measure as a fraction of a circle’s circumference 

created a foundation for her constructing a conversion equation that was not discussed 

previous to this action. 

Judy’s multiple conceptions of angle measure (e.g., an arc’s fraction of a circle’s 

circumference or radius) each consisted of a quantitative relationship stemming from 

reflecting on a measurement process. After Judy’s engagement in The Protractor Problem 

and The Circumference problem, she leveraged these multiple conceptions of angle 

measure to solve novel tasks. For instance, consider her responses to the prompts in The 

Arc Problem (Table 39). 
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Table 39 

The Arc Length Problem 

Given that the following angle measurement ! is 35 degrees, determine the length of each 

arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 

inches, and 2.9 inches. 

 

Judy first constructed an equation of the form 
35
360

=
x
2!r

 for each radius and arc 

length and then explained her solution (Excerpt 47). 

Excerpt 47 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Judy: It's (referring to each ratio) the percentage of the, um, of the cutout 

length in relationship to the entire circle. 

Kevin: To the entire circle, and what about the entire circle? 

Judy: Oh, I'm sorry, the circumference. 

Kevin: Ok, so in this case we have these multiple circles with different arc 

lengths in terms of inches, but yet they all have the same angle 

measurement. How is it that that happens? 

Judy: Oh, I see, um, that works because, um, (pause) let's see, oh, um, if you 

have, you know, your first circle (making a circle with her hands) and 

you increase the radius (increasing the size of the circle made with her 

hands) then, um, even though the percentage of the entire circle is the 

same, you have to compensate with a larger arc length. 

Kevin: Ok, in terms of what units do you need a larger arc length? 
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14 Judy: Inches, in inches. 

 
Judy described that each ratio was a value representing the percentage of the 

circumference cut off by the angle (lines 1-4). Judy also reasoned that for a varying 

radius length, the arc length increased such that the angle subtended a constant 

percentage of the circle’s circumference (lines 9-13). Judy’s understanding of angle 

measure as the fractional amount of any circle’s circumference cut off by the angle 

formed a foundation for her determining various arc lengths, which was revealed by her 

justifying her solution in terms of the quantities of the situation (e.g., an arc length’s 

fractional amount of a circle’s circumference). 

When prompted to determine the same arc lengths using a radian angle measure, 

Judy converted the angle measure in degrees to 0.61 radians using her previously 

revealed conversion process (e.g., reasoning about a fractional amount of a circle’s 

circumference). She conveyed that, “there are two pi radius lengths that make up a 

circle’s circumference, regardless of the radius length.” This explanation reveals Judy 

continuing to reason about a number of radius lengths rotating through any circle’s 

circumference. She then determined each arc length (Excerpt 48). 

Excerpt 48 

1 

2 

3 

4 

Judy: Say if you gave me this one (referring to 0.61 radians) instead of thirty-

five degrees, I would just, um, put that over the entire radians and set it 

equal to, find the arc length over the entire circle. 

Kevin: Ok, good. Now is there any other way you could use that measurement? 



   245 

 

5 
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9 

So, this is one option, obviously, setting up that equation. Is there any 

other method you could use using that measurement? 

Judy: Oh ya! (laughing) I always do it the longest way, because it always 

makes sense to me. But you could just really multiply this (pointing to 

the radian measurement) by the radius length. 

 
Judy first used reasoning (e.g., a fractional amount of a circle’s circumference) 

similar to her previous solution (Excerpt 47) in order to anticipate determining the arc 

lengths (lines 1-3). When describing an alternative solution, she identified an operation of 

multiplying the number of radians by the radius (lines 7-9). She also expressed that she 

preferred her previous solution because “it always makes sense to me.” This interaction 

reveals Judy reasoning about angle measure as a subtended arc length’s multiplicative 

relationship with the radius and circumference of a circle. Both quantitative relationships 

formed a foundation for her calculations (e.g., quantitative operations) and enabled her to 

determine the linear measurement of an arc length. However, she expressed that 

reasoning about the fractional amount of a circle’s circumference was more powerful for 

her at this point in the instructional sequence. 

Despite Judy’s claim that reasoning about an arc length’s fraction of a circle’s 

circumference made more sense to her, she transitioned to reasoning about a quantitative 

relationship between an arc length and radius of a circle of any size as she encountered 

more problems with radian measurements. For instance, after The Arc Length Problem, 

Judy contrasted a radian angle measure with a linear measurement of an arc on The 

Inches or Radians Problem (Table 40). 
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Table 40 

The Inches or Radians Problem 

A student measures the arc-length that an angle cuts off, resulting in 1.7 inches, and 

claims that the angle has a measure of 1.7 inches. Discuss this student’s claim. 

 
Judy oriented to The Inches or Radians Problem by drawing an angle, a circle 

centered at the vertex of the angle, and tracing an arc length (Figure 29). She then paused 

for an extended period of time and explained, “I don’t think it makes sense…it might 

make sense if you said one point seven radians and the radius length was one inch. But 

the angle measure, you don’t use a linear unit to describe angle measurement.” After 

claiming that the student’s angle measure did not make sense, Judy constructed a smaller 

circle and explained that an arc length of one point seven inches corresponds to an angle 

with more openness (Figure 29). In this case, Judy reasoned that conveying an angle 

measure as a number of inches cut off by the angle does not correspond to a constant 

openness for a circle of any radius. 

 

Figure 29. Judy’s diagram for linear measurements. 

Judy continued with her explanation and contrasted a measurement of 1.7 inches 

with an angle measure of 1.7 radians (Excerpt 49). 
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Excerpt 49 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Judy: [1.7 radians] would mean that on any circle's circumference (making a 

circle with her hands), um, that 1.7 times the radius had, um, has been 

traveled along (moving finger along an imagined arc) the circumference. 

Kevin: Ok. 

Judy: So, um, I think that makes a lot more sense than that. Because this 

(referring to the 1.7 inches) isn't translatable to any other circle. 

Kevin: Ok, good, so now I'm gonna throw out and say, uh, the student said the 

radius he used was 1.5 inches to get the 1.7 inch arc length. So how 

many radians would that be? 

Judy: Um (using calculator), it would be 1.13 radians. 

Kevin: Ok, so how'd you find that? 

Judy: I divided, uh (laughing), I divided the arc length by the radian length, 

which is 1.5 (labeling radius on diagram), to see how many times the 

radius the arc length is. 

 
Judy first conceived of a traversed arc length as so many times the radius length 

(lines 1-3) and added that the linear measurement was not “translatable” to a circle of a 

different radius (lines 5-6). Then, after the researcher provided her with a specific radius 

length (lines 7-9), Judy calculated a number of radians (line 10) and elaborated that this 

value represented the multiplicative relationship between the arc length and the radius 

length (lines 12-14). These actions reveal Judy reasoning about a radian measure as 

conveying a multiplicative relationship between an arc length and the radius for any 
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circle centered at the vertex of the angle. This understanding enabled Judy to calculate a 

radian measurement using a quantitative operation, while also contrasting this 

measurement with a linear measurement.  

Table 41 

The Radian Measurements and Pi Problem 

What does it mean for an angle to have a measure of 1.2! radians? 5.27 radians? How 

long is the arc subtended by the angle relative to a radius of 3.5 inches? 

 
Judy continued to reason about a relationship between an arc length and the radius 

when she was subsequently asked (Table 41) to describe angle measurements of 5.27 and 

1.2! radians. Also, Judy oriented to this problem by first constructing a circle (Figure 

30). She then explained the meaning of each angle measure (Excerpt 50). 

Excerpt 50 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Judy: It means that if you travel from your starting point here, and you travel 

counterclockwise (tracing arc length), you travel five point two seven 

times your radius length along the circumference (moving her pen tip in 

the shape of a circle). 

Kevin: Ok, what about the one point two pi radians? What's that mean? To have 

an angle measure of one point two pi radians? 

Judy: Um, I guess one point two pi times the radius length, which is, (using 

calculator) um, about three point seven seven radius lengths. 

Kevin: Ok, so what role does pi play in that? 
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Judy: Um, just a number. 

Kevin: Just a number, ok. Good. 

Judy: Oh, and then the arc length is, um, I just multiplied the radians times the 

radius (3.5 inches) length to get the arc length, which is eighteen point 

four four five. 

Kevin: Ok, good. So why does that operation work, why does that give you the 

arc length? 

Judy:  Um, because, uh, I kind of look at the radians like a function almost, so I 

always look at it as five point two seven times whatever the radius 

length is, is the linear arc length 'cause um, that's how it translates to any 

other circle you use. So if it was a larger one where the radius was five, 

then I'd multiply it by five instead. 

 
Consistent with Excerpt 49, Judy described that both measurements conveyed a 

multiplicative relationship between a traversed arc length and the radius (lines 1-8). Judy 

also traced an arc length while giving her description. Her image of traveling along an arc 

may have stemmed from reasoning about angle measure corresponding to the process of 

measuring along a subtended arc length, as well as the various circular motion activities 

implemented during the study. After discussing an operation relative to the context of the 

problem, Judy spontaneously described that she interpreted radian measures as a 

(multiplicative) process (lines 16-20) between an indeterminate radius and arc length of 

any circle. 
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Figure 30. Judy’s diagram for angle measures. 

Judy’s understanding of radian measures as a process between quantities also 

enabled Judy to formalize a relationship between indeterminate measurements of these 

quantities. For instance, Judy was asked to construct a formula relating a subtended arc 

length, the radius of the corresponding circle, and an angle measure. After Judy 

constructed ! =
s
r

, she described, “Um, because radians is…the number of radius lengths 

that have passed along the circumference.” Judy’s reasoning reveals her conceiving of 
s
r

 

as a number of radius lengths, which was equivalent to an angle measure of !  radians. 

Thus, Judy’s image of a number of radius lengths rotating through an arc length 

promoted her constructing a formula reflecting this quantitative relationship as a number 

of radians.  
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Table 42 

The Rotating Problem 

A Ferris wheel with a radius of 41 feet is rotating at 2.5 full revolutions per minute. 

Marcus boards the Ferris wheel for a ride. After 20 seconds, how far has Marcus traveled 

on the Ferris wheel? Give your answer in a linear measurement (e.g., a number of feet) 

and a number of radians. 

 
Judy also leveraged reasoning about measuring along an arc length in a number of 

radius lengths when responding to problems consisting of circular motion. Recall that 

Judy could not solve a problem during the pre-interview that required relating an arc 

length and an angle measure. When orienting to The Rotating Problem (Table 42), Judy 

explained, “I just remember this problem from the first time you presented it…I thought I 

would never understand it.” Judy’s claim reveals her recalling her initial frustrations 

during the pre-interview and that she initially questioned whether or not she would be 

able to make sense of angle measure. After making this statement, Judy oriented to the 

problem by drawing a circle and labeling the radius. Judy also claimed, “I think it’s easier 

to think of it in radians first,” while identifying that Marcus traveled 5! radians per 

minute. 

Judy continued to orient herself to the problem and claimed, “[I’m] trying to think 

of it in relation to our exercise yesterday…’cause we did a lot of things with time 

yesterday…I think I have to convert theta into time.” After she could not recall any 
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specifics from the previous class24, she reflected on the context of the problem and 

expressed, “Let me think a little more about it…I think I way over thought it.” 

Next, Judy determined the number of radians rotated per second by Marcus and 

she used this value to determine that Marcus rotated 5.236 radians per 20 seconds. Judy 

also described that twenty seconds is one third of a minute and that this implied that 

Marcus rotated one third of 5! radians. These actions reveal that after Judy could not 

recall a previous procedure, she leveraged her ability to reason about a varying arc length 

to complete the task. This resulted in her reasoning about the rate at which Marcus 

rotated to calculate the number of radians rotated per one minute, one second, and twenty 

seconds. Following Judy determining these values, she continued to reason about the 

context of the problem and multiplied the value of 5.236 by “the radius length to get the 

linear measurement” of 214.676 feet. 

After determining the linear measurement, Judy was asked to explain the effects 

of increasing the radius of the Ferris wheel to 52 feet while maintaining a speed of 2.5 

revolutions per minute (Excerpt 51).  

Excerpt 51 

1 

2 

3 

4 

Judy: Um, it'd be, this linear measurement (identifying previous answer of 

214.676 feet), it'd kind of grow in proportion to the new circumference. 

Um, and the, since the full revolutions per minute, the speed hasn't 

changed, neither would the radians. 

                                                 
24 During the previous teaching experiment session, the subjects modeled a traversed arc 
length as a function of time. 
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8 

Kevin: So what do you mean by the linear would grow in proportion? Say a 

little bit more about what you meant by that. 

Judy: Um, ya, because, since (pause), I think it would grow 52 over 41 times 

the one measured previously. 

 
Judy’s ability to reason about an angle measure corresponding to a circle of any 

size enabled her to identify that the number of radians rotated by the individual per 

minute would not change for a varying radius (lines 3-4). Also, Judy reasoned about the 

proportional relationship between the circumference of a circle (an arc length) and a 

subtended arc length to conclude that the linear measurement would increase by a factor 

of 
52
41

 (lines 1-2 & 7-8). In this case, Judy’s ability to reason about an angle measure 

conveying the fraction of any circle’s circumference or radius subtended by the angle 

enabled her to reason about the effect of increasing the radius of a Ferris wheel while 

maintaining a constant angular speed. 

Table 43 

The Fan Problem (Sine) 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a 

counterclockwise direction. The bug is exactly 3.1 feet from the center of the fan and is at 

the 3:00 position as the blade begins to turn. Create a graph that shows how the bug’s 

vertical distance above the 9:00 to 3:00 diameter line varies with the total distance the 

bug travels around the circumference.  
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Judy’s ability to reason about a varying arc length and measuring quantities 

relative to the radius also formed a foundation for her to construct the sine and cosine 

functions. For instance, during The Fan Problem (Table 43), Judy described that as the 

bug traveled over the first quarter of a revolution, the distance of the bug above the 

horizontal diameter was “starting to grow less” as the angle measure approached ninety 

degrees. Judy then described that the vertical distance was decreasing at an increasing 

rate over the second quarter of the bug’s revolution around the fan (MA5). She also 

supported her rate of change description by reasoning that the change in vertical distance 

was “increase[ing], but in a negative way” as the angle measure increased. Judy’s 

reasoning about the covariational relationship between an angle measure and a vertical 

distance subsequently led to the construction of a graph of the sine function rooted in this 

reasoning. 

Another student, Zac, led much of the discussion during The Fan Problem. Thus, 

in order to further investigate Judy’s reasoning, she was given a similar context during an 

interview session. Judy’s actions when solving The Ferris Wheel Problem (Table 44) 

offered further insights into her conception of the sine function. 

Table 44 

The Ferris Wheel Problem 

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 

rotation. April boards the Ferris wheel at the bottom and begins a continuous ride on the 

Ferris wheel. Sketch a graph that relates the total distance traveled by April and her 

vertical distance from the ground. 
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Judy oriented to The Ferris Wheel Problem by drawing a circle, labeling the 

radius of the circle, and identifying the starting position of April. Before constructing a 

graph, Judy first determined the formula sin ! "
#
2

$
%&

'
()

. She then returned to orienting to 

the situation, which resulted in her constructing a vertical segment from the center of the 

Ferris wheel to April’s starting position and underlining vertical distance from the ground 

in the problem statement. This additional orientation led to her altering her formula to 

sin ! "
#
2

$
%&

'
()
+1 . Also, Judy described that April began at an “angle” of “negative pi 

halves” from the starting point while tracing an arc between the 3 o’clock position and 

the starting position of April. These actions reveal that Judy’s use of a diagram consisted 

of her distinguishing between various vertical distances and an angle from the standard 

position. Also, she conceived of measuring the difference between the two vertical 

distances as one radius length. 

Before constructing her graph, Judy labeled the horizontal and vertical axes with 

“total distance traveled in radians” and “percent of a radius,” respectively. Then, Judy 

identified the corresponding input and output values for the end of each quarter of a 

revolution. For instance, she determined, “If my input is zero, my vertical distance is 

negative one, uh, percent of radius.” After identifying these points on the graph, she 

created a graph (solid curve in Figure 31) by reasoning about the directional covariation 

of the two quantities (MA2). 
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Figure 31. Judy’s graph for The Ferris Wheel Problem. 

Similar to her initial formula, Judy’s graph had an output of the vertical distance 

above the center of the Ferris wheel. After re-reading the problem statement and 

checking her graph, she stated, “Oh! From the ground…it’s just plus the radius.” Judy’s 

reflection on the problem statement resulted in her identifying that her graph was 

inconsistent with the vertical distance formalized by her formula. This resulted in her 

correcting her graph such that it reflected the proper input-output process (dashed curve 

in Figure 31). She also continued to reason about measuring the vertical distance relative 

to the radius when she described increasing the vertical distance by “the radius” and the 

maximum value as “two-hundred percent of a radius…two radius lengths.” 

Due to Judy giving only a directional covariation explanation for the shape of her 

graph, she was asked to reconstruct her graph on a new set of axes and discuss its shape 

(Excerpt 52). 

Excerpt 52 

1 

2 

3 

Judy: Um, I can definitely try. This is my least favorite question of yours 

(laughing). Hammering all of the hard questions. Well, I would say 

you'd have to compare the rates of change from one part of, uh, the 
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curve (tracing an arc on the diagram) to well, let me think (pause). 

That's not what I'm trying to get at. (pause) Ok. Because from your input 

(marking positions at 3 o’clock and 12 o’clock, respectively) zero to pi 

halves, um (pause), your (pause), change in vertical distance per the 

same input, um, or, per the same change in radians traveled around the 

circumference (tracing an arc with her finger), is increasing as you go 

from zero to pi halves (tracing arc length). And it is decreasing as you 

go from pi halves to pi (tracing arc length). So it's constantly increasing 

or decreasing, rather than at a constant rate. So if you took... 

Kevin: Ok, so ya, go ahead, can you show me on, you just said, let's just focus 

on this section (3 o’clock to 12 o’clock). 

Judy: Oh ok, I mean decreasing, sorry. 

Kevin: So what's decreasing? 

Judy: Um, your change in vertical distance. So, if you took, you know, similar, 

um, changes of radius, or radians, along the circumference (marking 

equal changes of arc length), um. You know, from here to here 

(identifying change of arc length) it has a drastic change, but the, as you 

keep on going further along the circumference (tracing arc length) the 

change is decreasing. And that's why it has the curve. 

 
Judy expressed that she found justifying the shape of her graph a difficult task 

(lines 1-2). Judy then returned to the diagram of the situation, rather than the graphical 

representation, and described amounts of change of vertical distance relative to equal 
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changes of arc length (MA3) without visually identifying these changes on her diagram. 

When elaborating, she incorrectly identified the change of vertical distance as increasing 

and then decreasing for an arc length beginning at the 3 o’clock position rather than the 

starting position of April (lines 5-12). As she continued to reflect on her diagram, she 

corrected her description of the change of vertical distance and constructed changes of 

vertical distance for equal changes of arc length (MA3) (lines 17-22) (Figure 32). 

Judy’s actions reveal that although she found the researcher’s prompt difficult, her 

ability to reason about a varying arc length formed a foundation for constructing and 

comparing changes of vertical distance. Also, by continuing to reflect on the problem 

situation, Judy repeatedly refined her image of the situation and the covariational 

relationship between the relevant quantities. This reasoning led to her supporting the 

original concavity of her graph. 

 

Figure 32. Judy’s diagram on The Ferris Wheel Problem. 

Due to Judy reasoning about a starting position of 3 o’clock on her diagram, she 

was asked to describe how the diagram related to her graph. Judy then identified the 

correct interval of input on her graph that corresponded to the distance traveled by April 

on the diagram (e.g., 0.5! radians to ! radians). She then explained the covariational 
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relationship between the quantities by saying, “From this distance to this distance 

(identifying interval on horizontal axis) you see more steep slope or rate of 

change…(tracing graph) but then it gets closer and closer to a slope of zero.” After this 

rate of change description (MA5), Judy hesitated as she attempted to identify a change in 

vertical distance on her graph. After identifying equal changes of arc length along the 

horizontal axis and pausing for an extended amount of time, she stated, “I think your 

change in vertical distance is just that,” while correctly identifying a change of vertical 

distance with an arrow (Figure 33). 

 

Figure 33. Judy’s refined graph on The Ferris Wheel Problem. 

With a change in vertical distance constructed on her graph, Judy then discussed 

corresponding amounts of change of the two quantities (Excerpt 53). 

Excerpt 53 

1 

2 

3 

4 

5 

Judy: (identifying successive changes of vertical distance on the graph) Um, 

they should be getting smaller and smaller. 

Kevin: Ok, and why should they be getting smaller and smaller? 

Judy: Um, because the change in vertical distance from here to here 

(identifying arc length on the diagram) is getting increasingly smaller 
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7 
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9 

10 

until you get to, until you get to your maximum vertical height. 

Kevin: So what do you mean by increasingly smaller? 

Judy: Um (pause), oh, because as you progress or as you travel along the 

circumference (tracing arc length), it gets, um, the vertical, change in 

vertical distance is smaller than the last change in vertical distance. 

 
After identifying changes of vertical distance on her graph, (lines 1-2), she 

returned to her diagram to verify the relationship between the two quantities (lines 4-6). 

While reflecting on the diagram, she continued to reason about a varying arc length and 

the change of vertical distance over this interval on her diagram (MA3) to support her 

rate of change description (lines 8-10). 

Judy’s actions suggest that her initial construction of the graph was not rooted in 

reasoning about amounts of change of the two quantities (MA3). Rather, she may have 

recalled the graph from previous explorations. However, by continuing to reflect on a 

diagram of the situation, she reasoned about the rate of change of vertical distance with 

respect to a traversed arc length (MA5) and supported this reasoning by comparing 

amounts of change of vertical distance with respect to successive changes of arc length 

(MA3). Judy had difficulty initially identifying a change of vertical distance on her 

graph, but her understanding of the graph as representing input-output values of a 

covariational relationship enabled her to relate the graphical representation to a diagram 

of the situation. As a result, she justified the shape of her graph beyond a rate of change 

description or a recollection from memory (Excerpt 53). 
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Judy’s solution to The Ferris Wheel Problem reveals that the context of circular 

motion created a situation that supported her constructing, relating, and formalizing a 

covariational (quantitative) relationship as the sine function. Throughout her solution, she 

reasoned about a varying arc length and vertical distances, while also conceiving of 

measuring these quantities in a number of radius lengths. Also, she reasoned about 

indeterminate values to anticipate the sine function producing an output in a number of 

radius lengths (e.g., a process conception of the sine function). Thus, Judy’s engagement 

in The Fan Problem promoted her constructing an understanding of the sine function that 

was grounded in reasoning about a covariational relationship of two quantities. 

When confronted with a right triangle situation, Judy’s conception of the sine and 

cosine functions formalizing a quantitative relationship created a foundation for her to 

solve the problems correctly. As an example, consider Judy’s approach to The Enemy 

Approaches Problem (Table 45). 

Table 45 

The Enemy Approaches Problem 

A castle observation tower is elevated 126 feet above the ground. When an approaching 

enemy is first noticed, the angle of depression (the angle at which an observer needs to 

look down) from the observation post was 0.084 radians. How far away is the enemy 

from the castle? How far away is the enemy from the observer? 

 
Judy oriented to The Enemy Approaches Problem by drawing a labeled diagram 

of the situation, identifying two right triangles, and determining the complement of the 

given angle measure (Figure 34). 
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Figure 34. Judy’s diagram on The Enemy Approaches Problem. 

Judy then identified a “vertical distance,” “horizontal distance,” and “the radius.” 

She also clarified her meaning of these quantities (Excerpt 54). 

Excerpt 54 

1 

2 

3 

4 

5 

6 

7 
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10 

11 

12 

Judy: If you turn it this way (rotating Figure 34 ninety degrees 

counterclockwise) it is the vertical distance because your theta is always, 

um (pause), your, well your vertical distance has to be connected 

somewhat to the right triangle. Or right angle of the triangle. 

Kevin: Ok. 

Judy: And so, when you're solving, it's just going to be that distance (tracing 

vertical segment). 

Kevin: So what tells you to turn it that way? Why do you want to turn it that 

way? 

Judy: Um, I want it to mirror a circle. So, if I, whenever I imagine a circle and 

vertical distance, the triangle is always that way (drawing a right 

triangle within a circle). 
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Judy continued orienting to the problem by rotating her diagram such that the 

angle opened to the right and the height of the observation tower formed the quantity of a 

vertical distance (lines 1-3). She then claimed that she wanted the diagram to “mirror a 

circle.” These actions reveal Judy conceiving of the hypotenuse of the right triangle 

forming the radius of a circle, with the two legs of the right triangle forming measurable 

horizontal and vertical distances within the context of a circle. 

 

Figure 35. Judy connecting a right triangle to the unit circle. 

Judy subsequently discussed, “that’s how [the hypotenuse] becomes the radius 

length,” when constructing a new diagram of the situation (Figure 35). Judy’s conception 

of the hypotenuse as the radius length, and thus a unit of measurement, resulted in her 

reasoning about the outputs of the trigonometric functions relative to measurable sides of 

the right triangle. For instance, she explained, “[The] cosine of the distance traveled in 

radians is equal to the horizontal distance…divided by the radius length.” Judy’s 

explanation also reveals her reasoning about an angle measure as traveling along an arc 

length, where she identified that this value was the input to the cosine function. 

As Judy encountered additional right triangle contexts throughout the study, she 

frequently oriented to the task by imagining the hypotenuse as the radius of a circle. This 

action led to her creating coherence between a right triangle and a unit circle context. As 

a result, she maintained a focus on measuring quantities relative to a measurable length 



   264 

 

(e.g., the radius or hypotenuse), where these values formed the outputs of the 

trigonometric functions. Also, she maintained an image of angle measure as measuring 

along an arc length in a number of radius lengths opposed to a label within a right 

triangle. 

It appears that Judy’s orientation action of using the hypotenuse of a right triangle 

to construct a circle created coherence between the two trigonometry settings. Also, this 

orientation action was context focused, much like Judy’s previous problem solving 

behaviors. Throughout the study, Judy focused on constructing diagrams, labeling known 

and unknown values, and supporting her solutions by reasoning about relationships 

between quantities. Judy’s problem solving behaviors are explored in the next section 

relative to her reasoning and actions during the study. 

The Role of Judy’s Problem Solving Behaviors 

Judy expressed a strong desire and need to understand angle measure during the 

pre-interview in spite of her frustration when she was unable to provide meaningful 

solutions. As Judy continued through the study, she frequently described her frustration 

with the topic when orienting to the various tasks. For instance, during The Rotating 

Problem (Table 42), she expressed, “I don’t know, [this problem] just makes me laugh, 

thinking about when I first saw these things because I thought I would never understand 

it. I’m glad I got through the initial frustration.” This explanation reveals the initial 

difficulties Judy felt during the study, and may explain the researcher observing limited 

participation from Judy during the first few teaching experiment sessions. 
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Although her verbal participation was limited during the first few sessions, Judy 

was engaged in the problem tasks (e.g., the construction tasks). While she expressed that 

trigonometry was difficult, she maintained her interest in making sense of her actions. As 

the study progressed, her participation during the instructional activities increased 

substantially. During the last interview session and when orienting to a problem, Judy 

reflected on her attempt to make sense of the various trigonometry activities, as well as 

the nature of the activities (Excerpt 55). 

Excerpt 55 

1 

2 

3 

4 

5 

6 

7 
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10 

11 

12 

13 

14 

Judy: Trigonometry (sigh, laughing). 

Kevin: You enjoying trig? 

Judy: (laughing) It's challenging. 

Kevin: Well then... 

Judy: Um, I'm kind of glad though that I'm learning it this way. I really had no 

clue what any of it meant. I just knew that there were formulas, pretty 

much. 

Kevin: Good. I'm glad you're enjoying it. 

Judy: Not the word I'd use actually. 

Kevin: (both laughing) Well I'm glad you're learning then. I'm glad you're 

learning. It may be painful, but I'm glad you're learning. 

Judy: Ya, this class surprisingly helps me in all my other classes. 

Kevin: Really? 

Judy: Like every other class it helps me so much. 
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20 

Kevin: How's that? Just... 

Judy: Um, now when I look at graphs I think about the rate of change a lot 

more in depth. And um, even the way I describe things in class, like my 

other teachers appreciate, you know, that I'm looking at things, you 

know, like "why is it that way?" Everything, so I feel like I understand 

my classes better. 

  
Judy expressed the difficulty she encountered when trying to construct 

understandings during the trigonometry activities (lines 1 and 3). In spite of these 

difficulties, she described that she valued the depth at which she was learning and 

explained she previously did not make sense of her previous experiences beyond the 

existence of formulas (lines 5-7). Judy then described that reasoning more deeply about 

rates of change had become a tool for graphing the relationships between quantities (lines 

16-17). Also, she acknowledged the depth at which the precalculus course promoted her 

reflecting on the reasoning behind various procedures and actions. She elaborated that 

this approach gave her a greater understanding of precalculus and her other classes (lines 

17-20). Thus, Judy found trigonometry to be a challenging topic, but she also strove to 

overcome these difficulties and understand trigonometry more deeply than the ability to 

correctly apply procedures and formulas. 

Judy’s problem solving behaviors during the study reflected her attitude towards 

providing meaningful solutions beyond a memorized procedure or formula. During the 

activities and problems presented during the sessions, Judy spent ample time orienting to 

the contextual situations of each problem. Her orienting actions frequently consisted of 
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constructing a diagram and identifying known and unknown measurable attributes 

(quantities) on the diagram. For instance, during The Inches and Radians Problem (Table 

40), Judy first constructed a diagram of the situation and identified the given value on the 

diagram. As she discussed her reasoning for not using a linear unit to measure the 

openness of an angle, she continued to reference the quantities of the situation and 

constructed an additional diagram to contrast the two units of measurement. 

In addition to Judy’s initial orientation actions, as Judy executed her solutions, she 

often reflected on her diagrams in order to check her solution and further orient to the 

context if needed. As an example, during The Ferris Wheel Problem (Table 44), Judy 

initially created a formula whose output was inconsistent with the intentions of the 

problem. She then reflected on her diagram and the problem statement, which resulted in 

her altering the formula to reflect the appropriate vertical distance. Judy also leveraged 

her diagram of the situation without prompting to verify the covariational relationship 

conveyed by her graph on The Ferris Wheel Problem (Excerpt 52). 

Judy’s planning, execution, and checking of her solutions predominantly 

consisted of reasoning that was grounded in the quantities of the situation, which may 

have been a product of her meaningful orienting actions. For instance, as Judy anticipated 

and executed calculations, she described the calculations and resulting values in terms of 

quantities and relationships between quantities. On The Inches and Radians Problem she 

explained (Excerpt 49) that she divided an arc length by the radian length and that this 

operation represented “how many times the radius the arc length is.” In this case, her 

calculation was driven by a quantitative relationship, which also enabled her to describe 
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the calculation as a quantitative operation. On The Arc Length Problem, Judy reasoned 

about the fraction of a circle’s circumference to calculate an arc length, with her 

constructed equation consisting of two ratios representing this quantitative relationship 

(Excerpt 47). In contrast, during the pre-interview Judy divided an arc length by the 

circumference, but she was unable to make sense of this calculation relative to the 

context of the problem.  

In summary, Judy’s focus on the contextual situations and reasoning about 

quantitative relationships when problem solving promoted her constructing the deeper 

understandings she desired. Opposed to concentrating on performing correct calculations 

and memorizing procedures, Judy spent much of the problem solving process orienting to 

the problem situations. As she constructed quantities and relationships between quantities 

during this process, this formed a foundation for her to anticipate (plan) and interpret 

calculations relative to these quantities (e.g., quantitative operations). This also enabled 

her to maintain a contextual focus when executing her calculations. As a result of her 

understandings consisting of quantitative relationships, Judy found identifying the 

relevant quantities of the situation a valuable tool in problem solving. 

Summary and Discussion of Judy 

Initially, Judy was unable to coordinate a subtended arc length and the 

circumference of a circle to measure an angle. As a result of her engaging in activities 

focused on the quantitative meaning of various measurement units, Judy appears to have 

constructed an understanding of the process for measuring an angle that consisted of 

quantitative relationships. For instance, after The Protractor Problem, Judy was 
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frequently observed reasoning about measuring along an arc length and describing the 

measure of an angle as the fractional amount of a circle’s circumference subtended by the 

angle. This quantitative relationship enabled her to fluently convert between various units 

of angle measure. In fact, Judy leveraged this reasoning to convert between a number of 

degrees and a number of radians prior to an activity addressing angle conversion. 

Relative to radian measurements, Judy also reasoned about measuring along a 

subtended arc in a number of radius lengths. She conceived of a radian measure as the 

multiplicative relationship between the subtended arc length and the radius (of any 

circle), where she referred to this quantitative relationship as a “function” between the 

length of the radius and the arc length. Judy’s ability to conceive of a number of radius 

lengths rotating along the circumference of a circle also promoted her conception that all 

circles have a circumference of 2! radius lengths (e.g., C = 2!r ). Her actions also 

conveyed that she imagined traveling continuously along an arc. That is, as she described 

radian measurements, she imagined traveling along an arc and simultaneously accruing a 

number of radius lengths. 

Judy’s propensity of imaging measuring continuously along an arc and 

constructing circles to describe angle measure may have been a result of the approach of 

the instructional activities. Judy’s actions on both The Circumference Problem and The 

Protractor Problem consisted of her measuring along an arc length and reflecting on this 

process to construct units of angle measure. Also, multiple instructional activities resulted 

in Judy reasoning about a traversed arc length varying with respect to time. As a result, 
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Judy conceived of a subtended arc length as a measurable attribute of an angle that varied 

as the openness of the angle was changed. 

Judy’s ability to reason about a varying arc length also supported her constructing 

the trigonometric functions of sine and cosine. Similar to the angle measure explorations, 

The Fan Problem offered a situation for Judy to engage in the construction of the sine and 

cosine functions. Relative to the sine function, after reasoning about the rate of change of 

the two relevant quantities (MA5), Judy engaged in reasoning about changes of arc length 

while constructing and relating changes of vertical distance (MA3). This enabled Judy to 

justify the concavity of the graph of the sine function. Additionally, due to Judy’s 

conception of the sine function being supported by the context of the unit circle, she was 

able to consider various starting positions and vertical distances relative to the sine 

function. For instance, on The Ferris Wheel Problem, Judy created a formula by 

reasoning about a shift in the starting position, as well as a difference between the vertical 

distance from the center of the Ferris wheel and a vertical distance from the ground. 

Judy’s ability to conceive of measuring quantities in a number of radius lengths 

also supported her applying trigonometric functions to any circular context. As she 

encountered circles of various linear radius lengths, she conceived of the radius as one 

radius length (e.g., the unit circle). This enabled her to conceive of vertical and horizontal 

distances from the center of a circle as measured in a number of radii (e.g., outputs to the 

sine and cosine function). Additionally, when encountering a right triangle situation, Judy 

used the hypotenuse of the triangle to construct a circle with a radius length equivalent to 

the hypotenuse. This supported her continuing to reason about angle measure as a 
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subtended arc and measuring various lengths (e.g., the legs of the right triangle) relative 

to the radius. 

Judy constructed understandings consistent with the instructional design of the 

lesson, and she expressed that she found the topic of trigonometry difficult. In spite of 

this difficulty, she showed high persistence in making sense of the various activities 

throughout the study. Judy explicitly stated that she appreciated obtaining a deeper 

understanding of the material than her previous experiences. Rather than focusing on 

procedures or calculations, Judy sought to understand the reasoning and concepts that 

formed the foundation to a solution. This attitude was also revealed in Judy’s problem 

solving behaviors. 

Judy focused on the contextual situations when problem solving and her actions 

consisted of reasoning about quantities and relationships between quantities. Judy’s 

approach to problem solving may have been related to her engagement in the 

instructional activities during the teaching experiment. Judy’s actions consisted of 

various construction processes that she reflected on in order to construct quantitative 

relationships. As opposed to merely looking to complete each task correctly, she 

attempted to make sense of her actions relative to the relevant quantities of the situation. 

This reasoning formed a foundation for Judy’s solutions and enabled her to construct a 

flexible and connected understanding of angle measure and trigonometric functions. 
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Chapter 8 

Conclusions 

This chapter summarizes the three students’ conceptions of angle measure and 

trigonometric functions. The students’ ways of thinking are compared while highlighting 

reasoning abilities that were revealed to be critical for understanding central concepts of 

trigonometry. The reasoning abilities that were found to be central to learning ideas of 

angle measure and the sine function are then summarized in a framework. This chapter 

also provides a discussion of the students’ problem solving dispositions and behaviors. 

The students’ actions revealed that their approaches to problem solving were related to 

their ability to conceptualize and reason about quantities and their relationships. 

Suggestions for curriculum and instruction are then provided in the context of this 

dissertation’s findings. Finally, this dissertation concludes by addressing the limitations 

of this study, as well as this study’s implications for future mathematics education 

research. 

Quantitative Reasoning in Trigonometry 

The three students’ actions when completing the instructional tasks offered 

insights into this study’s research questions. Specifically, analysis of the data revealed 

various conceptual obstacles that the students encountered and the reasoning abilities the 

students used when learning and using ideas of angle measure and the sine and cosine 

functions. This section outlines these findings by comparing the ways of thinking 

exhibited by the three students in this study. The students’ understandings of angle 

measure are first described and then the students’ conceptions of trigonometric functions 
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are characterized. The role of quantitative and covariational reasoning is also addressed 

throughout the characterization of the students’ thinking.  

Recall that the study’s research questions were: 

- What understandings of trigonometric functions do students develop during a 

trigonometry instructional sequence that emphasizes quantitative and 

covariational reasoning? 

- What roles do quantitative reasoning and covariational reasoning play in students 

developing understandings of trigonometric functions? 

- What understandings of the topics foundational to trigonometric functions (e.g., 

angle measure and the radius as a unit of measure) do students develop during the 

trigonometry instructional sequence?  

- How do understandings of these foundational trigonometry topics influence 

students’ conceptions of trigonometric functions? 

Students’ Conceptions of Angle Measure 

Consistent with research literature on students’ and teachers’ thinking (Akkoc, 

2008; Brown, 2005; Fi, 2003, 2006; Topçu, et al., 2006), and the findings from the 

exploratory study, all three students held weak understandings of angle measure upon 

entering the teaching experiment. Each student alluded to a circle or an arc when 

attempting to describe the meaning of angle measure, but their conceptions consisted of 

properties of geometric objects (e.g., a line has one hundred and eighty degrees) rather 

than a measurement process involving measurable attributes (e.g., a subtended arc length 

and a circumference). Due to their inability to reason about the process of measuring an 
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angle in terms of coordinating quantities, they were unable to measure an angle when 

given sufficient supplies to accomplish this task. They were also unable to give 

meaningful explanations of the calculations they performed when trying to solve the pre-

interview tasks. 

The students’ behaviors during the pre-interviews emphasize the implications of 

an angle measure conception that does not include a measurement process involving 

quantities and relationships between quantities. The students were able to perform 

calculations to solve for an angle measure when given the value of an arc length, but they 

were unable to solve problems that did not provide quantities’ values explicitly in the 

problem statement. The students’ preconceptions of angle measure may explain the 

consistent prior research finding that both students and teachers hold fragmented and 

underdeveloped conceptions of angle measure (Akkoc, 2008; Brown, 2005; Fi, 2003, 

2006; Topçu, et al., 2006), such as their inability to reason about radian measure beyond 

converting to a number of degrees. These limited understandings may be the result of a 

conception of angle measure that does not include a measurement process grounded in a 

quantitative structure.  

As the study progressed, Judy and Zac conceptualized angle measure as the 

fractional amount of any circle’s circumference subtended by the angle (given that the 

circle is centered at the vertex of the angle). Judy and Zac constructed this conception of 

angle measure when attempting to create a protractor. When completing this task, they 

identified a subtended arc length as a measurable attribute of an angle’s openness. Then, 

as they reflected on using circles (centered at the vertex of an angle) of various sizes to 
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identify arc lengths corresponding to one unit of angle measure, they determined that an 

angle subtended the same percentage of each circle’s circumference. 

Similar to the students in the exploratory study, Judy and Zac frequently 

leveraged reasoning about a multiplicative relationship between a subtended arc length 

and a circle’s circumference to solve various angle measure tasks. They were also able to 

verbalize the meaning of angle measure in terms of this relationship, and spontaneously 

used this reasoning to convert between units of an angle’s measure. As one example, 

Judy generalized a method for converting a number of radians to a number of degrees, 

where her method emerged from reasoning about the percentage of a circle’s 

circumference cut off by the angle (e.g., 
d
360

=
r
2!

). Zac also engaged in reasoning 

consistent with Judy’s method when he converted between units of an angle’s measure. 

Thus, it appears that an image of measuring a subtended arc relative to the circumference 

of the corresponding circle provided a way of reasoning that enabled them to fluently 

convert between units of angle measure. 

Recall that Fi (2003, 2006) found that teachers used a procedural approach for 

converting between radian measures and degree measures and that these conversions 

were rooted in a need to convert to degree measurements in order to describe radian 

measurements. Fi noted that the teachers’ conceptions of radian measure were dominated 

by this conversion. Judy and Zac constructed a quantitative conversion between units of 

an angle’s measure, which appeared to help them avoid developing conceptions of radian 

measure that were dominated by this conversion. In fact, when asked to give explanations 
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of radian measures, Judy and Zac did not attempt to convert25 to a number of degrees in 

order to explain the measure. Rather, Judy and Zac described radian measures as the 

result of measuring along a subtended arc in a number of radius lengths, an image that 

formed during their engagement in The Circumference Problem. 

When completing The Circumference Problem, Judy and Zac identified the need 

to measure along a subtended arc length and then partition this arc into a number of 

radius lengths. This image supported their conceptualizing 2! radius lengths rotating 

along any circle’s circumference as they compared circles of different radius lengths 

(e.g., C = 2!r) . By reasoning about a number of radius lengths rotating along a 

subtended arc for circles of various sizes, Judy and Zac also conceptualized a number of 

radians as conveying a multiplicative relationship between a subtended arc and a radius 

length (e.g., ! =
s
r

) that was independent of the size of the circle used to measure the 

angle. 

As the study progressed, Judy and Zac primarily reasoned about radian measures 

as a multiplicative comparison between a subtended arc and the length of a radius. This 

was contrary to the conceptions of the students in the exploratory study that involved 

their predominantly reasoning about radian measures in terms of a multiplicative 

relationship between a subtended arc and the circumference of a circle. Thus, it appears 

that increasing the focus of measuring arc lengths in a number of radius lengths during 

                                                 
25 When given angle measures in degrees, Judy and Zac frequently converted to a number 
of radians by reasoning about the multiplicative relationship between a subtended arc 
length and the circumference of the corresponding circle. As the study progressed, both 
students claimed that they found radian measures more powerful and easier to work with.  
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the instructional sequence supported Judy and Zac in constructing this conception of 

radian measure. Furthermore, rather than conceiving of ! as a unit or the number 180, as 

revealed in the research literature (Akkoc, 2008; Fi, 2003, 2006; Tall & Vinner, 1981; 

Topçu, et al., 2006), Judy and Zac interpreted radian values with the ! symbol26 as a 

number of radius lengths (e.g., a value).  

In contrast to Judy and Zac’s thinking, Amy did not reason about angle measure 

in terms of a process of measuring along a subtended arc in a number of unit lengths; nor 

did Amy consistently reason about a multiplicative relationship between a subtended arc 

length and the circumference of a circle. Rather, Amy conceptualized angle measures as 

numerical labels of objects. She consistently expressed that “a circle” was 2! radians 

(e.g., Circle = 2! ) and her reasoning did not include conceiving of a circle’s 

circumference as measurable in a number of radius lengths (e.g., C = 2!r ). Amy’s 

understanding of the number 2! corresponding to a whole circle (e.g., 2! as a number, 

not a value) enabled her to reason additively about angle measures and to construct 

equivalent ratios to solve using cross-multiplication. For Amy, these ratios reflected 

additive, part (the numerator) to whole (the denominator) reasoning, which did not 

support her reasoning about a multiplicative relationship between a subtended arc and the 

circumference of a circle.  

Amy’s reasoning during the study was dominated by using part to whole 

relationships to the extent that she resisted reflecting on other meanings of angle measure. 

                                                 
26 Similar to the students in the exploratory study, Judy and Zac frequently reasoned 
about such measures as a fraction of a circle’s circumference, but when prompted, they 
described the measurements in terms of a number of radius lengths. 
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After Amy reasoned about a multiplicative relationship between an arc length and the 

radius of a circle in response to prompting from the researcher, she explained that she 

“trust[ed]” cross-multiplication more. Furthermore, when Amy was prompted to solve 

tasks and reflect on her solutions without using cross-multiplication, she continually 

expressed a desire to cross-multiply and resisted making sense of these alternative 

solutions. As a result, Amy was able to correctly convert between units of angle measure 

using her part to whole reasoning and cross-multiplication, but she did not conceive of an 

arc as measurable in a number of radius lengths. This finding is consistent with the 

observance (Fi, 2003, 2006) of teachers converting between radian measure and degree 

measure while lacking an understanding of radian measure beyond this conversion. In 

Amy’s case, she lacked an understanding of radian measure as a quantitative relationship 

between the radius of a circle and a subtended arc. 

In summary, Judy and Zac constructed angle measure conceptions that were 

rooted in quantitative relationships. After engaging in the instructional activities, they 

conceptualized processes of measuring an angle that stemmed from reasoning about 

quantities (e.g., a subtended arc length and the circumference or radius of a circle) and 

relationships between these quantities. Then, as they encountered novel problems and 

conceived of the relevant quantities, they leveraged their understandings of angle 

measure to solve the tasks. On the contrary, Amy did not appear to construct a process 

for measuring an angle that consisted of quantities and relationships between quantities. 

Rather, she conceived of angle measures as numerical labels of objects, opposed to the 

result of a process of measuring along an arc in a number of radius lengths. This led to 
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her relying on using part to whole ratios and cross-multiplication in order to solve 

problems, while remaining unable to explain her ratios and calculations as multiplicative 

relationships between quantities. As she encountered novel problems, she was unable to 

apply her reasoning to these situations without continued prompting from the researcher. 

Students’ Conceptions of Trigonometric Functions 

Consistent with the students’ actions during the exploratory study, Judy and Zac 

leveraged their ability to reason about measuring (or traveling continuously) along an arc 

in order to imagine a varying subtended arc in the context of circular motion. When 

presented with The Fan Problem, this reasoning ability formed a foundation for their 

constructing a covariational relationship and subsequently formalizing this relationship as 

the sine function. Judy and Zac conceived of the unit circle (e.g., a circle with a radius 

length of one unit) and then reasoned about an increasing or decreasing rate of change of 

vertical distance above the horizontal diameter with respect to an angle measure in a 

number of radians (MA5 of Carlson et al.’s (2002) Covariation Framework). They 

supported this reasoning by comparing changes of vertical distance for equal changes of 

angle measure (MA3), which resulted in the graph and the formula of the sine function 

emerging from this reasoning. 

Judy and Zac’s use of the unit circle to reason about the sine function is consistent 

with Weber’s (2005) suggestion that the unit circle be developed as a tool of reasoning. 

Additionally, the context of circular motion supported Judy and Zac constructing 

quantitative relationships that supported the emergence of the sine function as 

formalizing the relationship between two covarying quantities. This finding supports the 
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role that quantitative reasoning (Smith III & Thompson, 2008) and covariational 

reasoning (M. Carlson, et al., 2002) play in students understanding the sine function.  

Judy and Zac also fluently reasoned about the relationship formalized by the sine 

function in terms of a process between the indeterminate values of two quantities. 

Specifically, Judy and Zac covaried two magnitudes (e.g., arc lengths and vertical 

distances) when constructing the sine function. The nature of their reasoning parallels a 

process conception of function; Judy and Zac were able to anticipate the sine function (or 

inverse sine function) producing an output and they were able to imagine this value 

varying for a varying angle measure (or arc length) without calculating numerical values. 

They were also able to perform operations on this output (e.g., converting to a different 

unit of measure) without first determining a numerical output value.  

Judy and Zac’s process conception of the sine function was consistent with their 

ability to reason about the quantitative relationship conveyed by a measure relative to the 

radius without performing calculations. Both students were able to anticipate converting 

between a number of radius lengths and a linear measure without needing to perform the 

numerical calculations. This reasoning ability stemmed from their understanding of a 

measure relative to the radius conveying a multiplicative relationship between a length 

and the length of the radius, where this relationship existed independently of performing 

numerical calculations. 

Whereas Judy and Zac constructed a conception of the sine function that was 

rooted in covarying changes in an arc length and changes in a vertical distance (e.g., a 

relationship between two conceived quantities), Amy had difficulty engaging in such 
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reasoning, nor did she appear to value this reasoning. For instance, she conceived of 

measurements as referring to objects, which led her to conclude that cos(! ) = "1 

referenced the bottom half of a circle (e.g., ! as half of a circle, and the negative sign 

indicating the bottom half). 

Reasoning about objects instead of quantities that covary led to Amy 

encountering difficulty in using a diagram of the unit circle to construct the graph of the 

sine function. When the researcher prompted Amy to use a diagram of a circle to explore 

the relationship formalized by the sine function, Amy did not construct distinct quantities 

on her diagram to covary. Instead, she confused various segments, areas, and arcs. Amy’s 

inability to leverage the various contexts of trigonometry to support her reasoning was 

consistent with Weber’s (2005) finding that the students who experienced the most 

difficulty had limited understandings of these contexts. Amy’s actions reveal that her 

difficulties stemmed from not conceptualizing the relevant quantities of the situation. 

Amy’s inability to distinguish between the various quantities appeared to be 

related to her propensity to observe and mimic the actions of the researcher and her peers. 

For instance, she recalled observing the other students tracing a horizontal distance to 

determine a vertical distance on a coordinate system. This led to her having difficulty in 

distinguishing between the horizontal and vertical lengths. As a result, Amy used the 

shape of the circle to determine the shape of her graph. She was unable to support this 

reasoning by covarying amounts of change of a vertical distance and an arc length on her 

graph and diagram of the situation. Even though she was able to identify a vertical 

distance, she was not able to support her graph by reasoning about a changing vertical 
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distance (as distinct from areas) for successive changes of arc length. She also expressed 

that she did not value reasoning within the problem’s context and that she believed it 

made mathematics more difficult. 

Amy’s inability (or unwillingness) to imagine quantities and their measures also 

contributed to her inability to reason about the sine function as a process relating two 

quantities. For instance, she stated, “I'm sure if I knew what the formula was I'd have 

more of an understanding what happens.” This statement reveals that Amy desired to use 

a formula to calculate values of the sine function, instead of reasoning about the sine 

function in terms of a quantitative relationship. Amy’s utterances suggest that she relied 

on an action conception of function, which is consistent with her not engaging in (or 

valuing) reasoning about quantities and relationships between quantities with 

indeterminate values. Hence, Amy looked to determine a method for calculating values of 

the sine function rather than constructing a conception of the sine function as a 

relationship between two quantities. 

The students’ conception of the sine and cosine functions, as well as the radius as 

a unit of measurement, also had implications relative to their understanding of right 

triangle trigonometry contexts. Both Judy and Zac spontaneously used the hypotenuse of 

a right triangle to construct a circle with a radius equivalent to the length of the 

hypotenuse. They then conceived of measuring the sides of the right triangle relative to 

the hypotenuse, or radius. The image of a common unit of measure between the contexts 

enabled Judy and Zac to create coherence when using trigonometric functions in a right 

triangle context or a unit circle context. More pointedly, reasoning about the hypotenuse 
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as a radius and a unit of measure led to Judy and Zac leveraging the unit circle as a tool 

of reasoning in both contexts of trigonometry. This finding supports Weber’s (2005) 

suggestion that students may benefit from developing the unit circle as a tool of 

reasoning. 

Contrary to Judy and Zac, Amy’s actions when working within a right triangle 

context consisted of recalling ratios (e.g., opposite over adjacent) and calculations that 

did not reflect quantitative relationships. In right triangle contexts, she referenced her 

notes from the previous instructional activities to justify her solutions. As an example, 

when asked to determine the hypotenuse of a right triangle, she suggested dividing the 

leg opposite an angle by the leg adjacent to the angle. In response to the researcher 

asking her to explain the meaning of this calculation, she argued that the calculation 

yielded the correct result because it “was in [her] notes.” It is important to note that the 

previous instructional activity explored the tangent function in a right triangle context. In 

this case, Amy’s focus on calculations and procedures led to her recalling a previous 

session’s calculation that did not reflect a quantitative relationship. Additionally, Amy’s 

attempt to recall a previously observed calculation is consistent with her referring to the 

other students’ actions when constructing a graph of the sine function. 

Amy frequently attempted to recall procedures and formulas when attempting 

tasks and she expressed discomfort when the researcher asked her to reflect on her 

reasoning or engage in reasoning about quantities independent of numerical calculations. 

In fact, during a teaching experiment session midway through the study, she exclaimed, 

“I’m just here to learn…I do not know how to do this so that is why I’m here learning.” 
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Her statement was in response to the researcher asking her to recall the two quantities 

related by the sine function, which was explored during the previous teaching experiment 

sessions. Amy’s inability and resistance to engage in quantitative reasoning inhibited her 

constructing understandings consistent with the instructional goals. Instead, her 

understandings consisted of a combination of procedures and calculations that she was 

unable to apply consistently and flexibly to novel problems. To say more, Amy did not 

construct measurable attributes of situations or reflect on relationships between these 

quantities in a way that enabled her to engage in novel reasoning. As a result, when she 

encountered new problems she could only apply procedures and calculations previously 

performed and she exhibited no ability to check or justify these actions relative to a 

quantitative structure. 

Whereas Amy’s actions focused on procedures and calculations, Judy and Zac 

engaged in the instructional activities in ways that led to them constructing situations 

consisting of quantities and relationships between these quantities. The quantitative 

structures constructed by Judy and Zac formed a foundation that supported and warranted 

their reasoning in ways consistent with the instructional goals. Then, as they engaged in 

novel problems, they constructed an image of the situation described by the problem such 

that they could leverage these understandings. Also, both Judy and Zac emphasized that 

although they found trigonometry difficult, they valued the reasoning they engaged in 

during the study. As one example, Zac stated that measuring quantities relative to the 

radius (or hypotenuse) created coherence between a unit circle context and a right 

triangle context. Judy claimed that reasoning about the rate of change between two 
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quantities offered her a tool for reasoning about graphs. She added that she valued 

exploring the meaning behind her actions and calculations and that she benefited from 

taking this approach in other classes. 

Trigonometric Function Framework 

In order to synthesize the findings that emerged from this study, a framework is 

provided to list a set of reasoning abilities and understandings that can lead to a mature 

and coherent understanding of trigonometric functions. The Trigonometric Function 

Framework27 is composed of reasoning abilities and mental actions (Table 46) that are 

grounded in the results of this study. Also, the Trigonometric Function Framework 

parallels and supports the critical ideas and reasoning abilities necessary for trigonometry 

identified by Thompson (2008). 

Each aspect of this framework could manifest itself in a variety of manners 

relative to student behavior and reasoning. For instance, a student may conceptualize a 

ratio of lengths in a variety of ways (e.g., as measuring a quantity in units of another 

quantity, or as a numerical calculation). As another example, a student can reason about 

the dynamic relationship between angle measure and a length in a variety of manners. 

Because of the differences that may exist in students’ reasoning, the framework is not 

intended to be exhaustive in describing the numerous subtleties in reasoning that a 

student may engage in, but instead provide an outline of the various reasoning abilities 

that can lead to a deep understanding of angle measure and trigonometric functions. This 

                                                 
27 Note that the framework is discussed in the context of the sine function. 
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framework can provide guidance for the design of trigonometry lessons (e.g., 

instructional goals), as well as future studies into students’ thinking in trigonometry. 

Table 46 

Trigonometric Function Framework 

Conceiving of a subtended arc as a measurable attribute of an angle. 

Measuring along a subtended arc in a unit length. 

Constructing a multiplicative relationship between a subtended arc and 

the circumference of that circle, where this comparison is constant for 

a circle of any size (that is centered at the vertex of the angle). 

Conceiving of a process of measuring an angle that necessitates the 

construction of a circle. 

Constructing a multiplicative relationship between a subtended arc 

length and the length of the radius, where this comparison is constant 

for a circle of any size (e.g., a radian measure). 

 

 

 

 

Angle Measure 

Covarying a subtended arc, or an angle measure, and another quantity 

(e.g., time). 

Conceiving of an angle swept out by an object traveling on a circular 

path as a measurable attribute of circular motion. 

 

 

 

 

Conceiving of measuring the angle swept out by an object by 

measuring a varying subtended arc length. 
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Conceiving of a vertical distance28 as a measurable and varying 

attribute of circular motion. 

Covarying amounts of change and rates of change of vertical distance 

with respect to a varying angle measure in terms of indeterminate 

values (e.g., a process conception of covariation/function). 

Constructing a multiplicative relationship between the vertical 

distance and the length of the radius (e.g., constructing the unit circle 

by measuring all lengths relative to the radius). 

Formalizing the covariational relationship between the vertical 

distance and angle measure, with both measured relative to the radius, 

as the sine function. 

Constructing a circle using the hypotenuse of a right triangle. 

 

 

 

 

 

The Sine 

Function 

Constructing a multiplicative relationship between the legs of the right 

triangle and the hypotenuse of the right triangle (e.g., the hypotenuse 

as the unit of measure). 

 
In order to characterize the students’ thinking during this study it was necessary to 

examine their reasoning patterns (e.g., covariational reasoning) and mental constructs as 

they engaged with the instructional materials. The findings of this study and the items 

provided in the Trigonometric Function Framework support that the theories of 

quantitative reasoning (Smith III & Thompson, 2008; Thompson, 1989) and covariational 

                                                 
28 The term vertical distance is used to reference the vertical distance of the object above 
the horizontal diameter of the circle. 
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reasoning (M. Carlson, et al., 2002; Saldanha & Thompson, 1998) were effective lenses 

for describing and comparing the students’ mental constructions. As characterized in the 

framework above, the results illustrate that covariational reasoning provides an accurate 

characterization of how students reason when constructing meaningful graphs of the sine 

and cosine functions. In particular, covariational reasoning provides a lens that 

characterizes the mental processes involved in thinking about how an angle measure and 

a conceived length (both measured in units of a radius) change together. The results of 

this study also support the role quantitative reasoning plays in characterizing the mental 

images students construct when problem solving. In order to determine the nature of the 

students’ thinking during the teaching experiment, it became necessary to build models of 

their mental images and to consider the role of these mental images in their thinking and 

reasoning (e.g., covariational reasoning). This analysis revealed the central role of 

students conceptualizing measurable attributes when reasoning about trigonometric 

functions and angle measure.  

Relative to the theory of quantitative reasoning, this study’s findings and the 

framework above also highlight the importance of students’ conceptualizing a 

measurement process and the result of a measurement process as a multiplicative 

comparison. Both the input and output quantities of trigonometric functions are based on 

a multiplicative comparison of lengths, and it is therefore important that students 

construct each of these quantities and a multiplicative comparison between the quantities. 

This study’s findings supports the importance and usefulness of gaining insights into the 
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mental images students construct and the implications of these mental images (Smith III 

& Thompson, 2008). 

Overall, a student that has the reasoning abilities identified in the framework can 

use formulas and mathematical representations (e.g., graphs and function notation) as 

meaningful formalizations of the identified quantitative relationships. Reports have 

revealed that it is difficult for students to use function notation and language (M. Carlson, 

1998). This difficulty can present itself as a large hurdle in representing trigonometric 

functions (as seen with Amy), as function notation is used in the symbolic representation 

of the trigonometric functions. Because of this convention, it becomes necessary that 

students view the notation as representing a relationship between two varying quantities. 

By first constructing quantitative relationships between indeterminate values, students 

might be more prepared to reason about f (!) = sin(!)  as the notation for a process that 

produces an output value for an input value without having to numerically evaluate the 

sine function. However, if they have not constructed a quantitative relationship that 

consists of indeterminate values, it becomes a daunting task for the student to reason 

about f (!) = sin(!)  as formalizing a process between two quantities. 

This use of function notation within the symbolic rule of the sine function also 

stresses the importance that students develop the ability to leverage the contexts of 

trigonometry as tools of reasoning. As Weber revealed (2005), and consistent with the 

findings from this study, a student’s ability to reason about the sine function is highly 

reliant on his or her ability to construct contextual representations of the quantitative 

relationships defined by trigonometric functions. The contexts in which trigonometric 
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functions are used can provide a foundation for reasoning about input-output processes 

between two quantities. As such, the importance of students constructing meaningful 

quantitative conceptions in these contexts cannot be over emphasized. The next section 

explores the implications of the students’ propensity to leverage contexts meaningfully 

(e.g., using a diagram of the unit circle). 

Implications of the Students’ Problem Solving Behaviors 

Over the course of the study, the students’ propensity and ability to engage in 

quantitative reasoning influenced the nature of their problem solving behaviors. For 

example, students with strong quantitative reasoning abilities were observed to be more 

effective in orienting to a problem. These relationships offered insights into the various 

mental actions behind their problem solving behaviors in the context of the 

Multidimensional Problem Solving Framework provided by Carlson and Bloom (2005) 

(e.g., the problem solving phases of orienting, planning, executing, and checking). 

When orienting to a problem, Amy predominantly attempted to recall a 

procedure, formula, or calculation from the previous instructional activities. In the 

instances that Amy constructed a diagram as a strategy for orienting herself to a problem, 

her focus on the diagram was brief and she did not identify distinct and measurable 

attributes; nor did Amy return to her diagrams after this initial construction without 

prompting from the researcher. Thus, Amy’s orienting phase was typically brief and did 

not result in her constructing a meaningful mental image of the problem situation. 

If Amy recalled a formula or procedure when orienting to a problem, she 

immediately executed calculations (not quantitative operations), as opposed to 
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anticipating or planning future actions in terms of quantities and relationships between 

these quantities. After Amy executed calculations, she had difficulty checking her 

solutions. Her checking actions typically consisted of considering the aesthetics of her 

solution and determining if she “trust[ed]” the procedure she applied. Thus, it appears 

that Amy did not develop a quantitative structure when orienting to a problem’s context 

that supported her in checking her solutions. 

In the cases when Amy could not recall a formula or procedure to execute, she 

resisted initiating and considering conjectures, nor did she appear to plan solutions that 

were not readily apparent. Then, in the instances when the researcher provided prompts 

to aid her progression, she resisted considering subsequent actions and reflecting on the 

thinking that resulted from the researcher’s prompts. Also, she continually expressed a 

need to execute numerical calculations prior to interpreting the meaning of a calculation, 

regardless of whether the calculation was her idea or posed by the researcher. After she 

executed a calculation and obtained an answer, she remained satisfied with the solution 

and did not value reflecting on her calculations. This approach to problem solving 

implied that Amy strove to obtain a result that satisfied the goal of each problem, but that 

she did not value understanding her solution beyond obtaining the correct answer. In 

other words, she did not desire or find value in making sense of her calculations in terms 

of the quantities of the situation and the relationships these calculations implied. 

Amy’s resistance to initiating conjectures and reflecting on her reasoning may 

have been directly related to a lack of confidence in her mathematical reasoning abilities. 

She frequently verbalized that she did not trust her reasoning, and her actions during the 
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instructional activities implied that she valued the other students’ solutions more than her 

solutions. Amy’s disposition during the teaching sessions also implied that she believed 

her role was to watch and listen to the researcher (or other students) provide a solution 

that would be applied to subsequent tasks. Amy relied on interpreting the actions of the 

researcher and other students in an attempt to remember procedures and calculations, as 

opposed to engaging in reasoning that entailed constructing quantities and quantitative 

relationships. Amy’s approach to the group sessions helps explain her inability to provide 

meaningful solutions beyond applying previously observed procedures and calculations.  

While Amy maintained a calculational focus to problem solving and did not 

appear to value sense making beyond obtaining a procedure to solve a problem, both 

Judy and Zac focused heavily on the context of a problem when attempting to solve the 

instructional activities. First, Judy and Zac’s orientation behaviors consisted of 

constructing a diagram and identifying (both known and unknown) values and quantities 

on the diagram (e.g., tracing an arc length). These orientation behaviors created a 

foundation that Judy and Zac leveraged to construct quantitative relationships and plan 

their solutions by anticipating the execution of operations. More pointedly, previous to 

executing calculations, they used diagrams to construct quantitative relationships and 

reason about these relationships in order to plan a sequence of calculations (e.g., a 

sequence of quantitative operations). The quantitative structures that resulted from these 

actions also enabled Judy and Zac to check their solutions in terms of quantitative 

relationships and the context of the problem. When obtaining an expected or unexpected 

result, they reflected on their diagrams in order to interpret their solution. This resulted in 
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Judy and Zac continually refining their image of the problem situations as they reflected 

on and modified their solutions. 

Similar to Amy, Judy and Zac expressed that they found trigonometry difficult 

and frustrating. But, they explained that they valued making sense of their solutions. 

Rather than focusing on calculations and obtaining correct answers as Amy did, Judy and 

Zac strived to understand the mathematical ideas that justified their calculations and 

solutions. On several occasions, both students verbalized that they appreciated the 

quantitative focus required by the activities and the understandings they had obtained. 

The students’ approaches to problem solving revealed the role of quantitative 

reasoning in solving novel problems. Amy’s focus on procedures and formulas limited 

her ability to solve novel problems and engage in reasoning consistent with the 

instructional goals. On the other hand, Judy and Zac’s propensity to reason about the 

context of a problem resulted in them reflecting on actions consisting of quantities and 

relationships between quantities. This enabled them to construct understandings and 

reasoning abilities rooted in quantitative structures. Then, as they encountered novel 

situations, they leveraged these understandings to solve the various tasks by focusing on 

the quantities in the problems’ contexts and how these quantities were related. 

This study offered insights into the various mental actions at play during the 

problem solving phases identified by Carlson and Bloom (2005). Due to Amy’s focus on 

performing calculations and recalling past procedures, she did not appear to engage in or 

value constructing a mental image, or scene, of the problem’s context. As a result, her 

approach to solving problems did not involve her conceptualizing quantities and 
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relationships between quantities. She performed calculations that were not rooted in 

quantitative relationships and was unable to plan or check her solution independent of 

calculating numerical values. Contrary to Amy’s approach to problem solving, Judy and 

Zac constructed quantities and relationships between quantities prior to executing 

calculations and procedures. During the executing stage of solving a problem, their 

actions were grounded in quantitative relationships that served as a foundation for their 

creating a robust mental structure of the problem’s quantities and their relationships. As a 

result, this mental structure provided a foundation for their anticipating and checking 

their solutions. They also frequently reflected on and refined their image of the problem 

situation as they progressed on a problem. When obtaining an unexpected result, this led 

to further orienting to the problem situation and constructing an alternative solution 

grounded in their refined image of the situation. 

The instructional activities intended to promote the students engaging in 

quantitative reasoning in order to solve novel problems, with the hope that the students 

would reflect on this reasoning and the quantitative structures they constructed. Both 

Judy and Zac engaged in reasoning consistent with the instructional intentions, which led 

to them developing meaningful and flexible understandings. However, Amy did not 

appear to construct quantitative structures to reflect upon when problem solving. Her 

approach to novel problems emphasizes the importance of curriculum promoting students 

engaging in meaningful problem solving behaviors. The following section explores 

suggestions such as this for curriculum and instruction. 

Suggestions for Curriculum and Instruction 
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This study contained an instructional sequence that was designed to promote the 

students constructing understandings by confronting novel problems that required them to 

engage in quantitative and covariational reasoning. However, as inferred from the data, 

the students did not always engage in reasoning consistent with the instructional goals. 

Specifically, Amy’s calculational and procedural approach to solving novel problems did 

not support her engaging in quantitative and covariational reasoning. This resulted in 

Amy constructing limited and fragmented understandings of trigonometric functions and 

angle measure. As such, she was unable to use these ideas to solve novel problems. 

Amy’s actions reveal that merely offering students contextual problems does not 

imply that the students will engage in quantitative or covariational reasoning. Thus, it is 

important that curriculum and instruction promote problem solving behaviors that are 

consistent with the reasoning students are expected to engage in. If students are to engage 

in covariational reasoning and quantitative reasoning to construct mathematical 

understandings, it is necessary that students first construct a problem situation and 

quantities to reason about. Then, as students continue to solve a problem, they should 

consider, or anticipate, calculations relative to the quantities of the situation (e.g., 

quantitative operations (Thompson, 1989)) opposed to immediately performing 

procedures or using formulas that have no quantitative meaning for the students. By 

maintaining a quantitative focus when responding to a novel problem, the students are 

able to build and leverage a quantitative structure to check, correct, and reflect on their 

solutions. For instance, relative to this study, Judy and Zac were able to construct and 
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leverage their conception of the unit circle throughout their solutions due to their 

quantitative understanding of the radius as a unit of measure. 

Developing problem solving behaviors consistent with the understandings 

students are to construct can be applied to any mathematical topic. A student’s approach 

to mathematics and problem solving is influenced by their previous experiences in 

mathematics courses. Thus, at all levels of schooling, curriculum and instruction should 

focus on promoting reasoning and problem solving dispositions that are immediately and 

developmentally beneficial for the learner. As revealed with Amy, approaching problem 

solving with a procedural and calculational disposition leads to narrow and inflexible 

reasoning that is not readily adaptable when making sense of novel contexts or new 

mathematics ideas. The findings of this study suggest that developing robust reasoning 

patterns and problem solving abilities is complex and requires explicit instructional 

interventions to do so. As such, it is highly recommended that that curriculum and 

instruction make concerted efforts to develop and reinforce these reasoning patterns 

needed for successful problem solving throughout a student’s mathematical journey. 

Specific to trigonometry, this study also reveals that a student’s conceptions of 

angle measure and the radius as a unit of measure are critical for reasoning about 

trigonometric functions. Because the sine and cosine functions formalize a quantitative 

and covariational relationship, it is necessary that a student construct quantities and ways 

to measure these quantities that support her or his thinking about the trigonometric 

functions. By constructing understandings of angle measure and the radius as a unit of 

measure that are rooted in quantitative relationships, the groundwork is laid for a student 
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to leverage the unit circle to reason about a varying arc length and other quantities 

measured in terms of the radius. Also, through conceptualizing quantitative relationships 

within the context of circular motion, a student can create a foundation to reason 

indeterminately about the input-output processes formalized by the sine and cosine 

functions. This enables the students to anticipate an input-output process without needing 

to evaluate the sine or cosine function. In light of these findings, curriculum and 

instruction should be designed such that students construct understandings of angle 

measure and the radius as a unit of measure in ways that form foundations for reasoning 

about trigonometric functions in the various contexts of trigonometry. These foundational 

understandings can lead to coherent reasoning in the contexts of trigonometry, where the 

contexts of trigonometry become tools of reasoning for the students. 

This study also reveals the importance of students engaging in processes of 

measuring quantities and constructing relationships between quantities. In the case that a 

student merely observes a peer or the teacher engaging in these processes, the student 

doing the observing may not develop understandings consisting of quantities and 

relationships between quantities. Rather, the student may focus on the procedures or 

calculations, as he or she did not engage in the mental processes of constructing 

quantities to measure and relate. Thus, it is important that students are given the 

opportunity to reason through problems and reflect on this reasoning, instead of 

providing solutions and procedures worked out by another individual to the students. 

Limitations of the Study 
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This study explored the reasoning abilities and understanding of three precalculus 

students. As each student constructs unique knowledge, the results of this investigation 

may not apply to all students. Rather, the results of this study provide insights into 

students’ reasoning abilities in trigonometry that can serve as the groundwork for future 

research. Also, the students of this study were drawn from a reformed precalculus course. 

The design of the course attempted to promote the students engaging in quantitative and 

covariational reasoning. Thus, previous to the study, the students experienced a 

classroom setting that was mostly consistent with the approach of the instructional 

sequence used in this study. Students that experience a more traditional precalculus 

course may perform much differently than the students of this study. In such a case, the 

students may experience difficulty engaging in the instructional activities at a quantitative 

level, much like Amy’s actions during the study. 

A second limitation of this study was the group setting in which the students 

engaged in the instructional activities. This setting made it difficult to capture the entire 

progress of each student on the instructional activities, as each student’s level of 

participation varied during these activities. An interview setting was used to pose 

additional tasks to the students in order to test the researcher’s models of their 

mathematics, but their engagement during the initial instructional tasks was not captured 

at this individualized level. 

The study also tracked only what the students did during the instances that they 

were videotaped. Consistent with Judy’s desire to solve a pre-interview problem when 

the interview concluded, it was assumed that the students considered the instructional 
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activities when not in the research setting. The study occurred over a five-week period, 

which likely increased the chance that the students reflected on the activities of the study 

when outside of the research setting. Additionally, each student mentioned that this study 

was not their first experience with trigonometry; and for those students that continued on 

to another math course, it was likely not their last experience with trigonometry. As a 

result, the results presented in this study explain their thinking and reasoning during the 

five-week period of the study, but not the entirety of their trigonometric (or 

mathematical) experiences. 

Lastly, this study captured the students’ observable behaviors, which were then 

used to construct and test models of their thinking. However, stemming from the 

theoretical perspective of this study, these were merely models of the students’ 

mathematics that are not to be interpreted as exact matches of the mental actions driving 

their behaviors. Thus, the results presented should be read as the researcher’s 

interpretation of the students’ understandings and reasoning, where this interpretation 

was grounded in building and testing models of the students’ mathematics, which were 

inferred from the students’ observable behaviors. 

Directions for Future Research 

This study investigated the role of quantitative and covariational reasoning in 

precalculus students constructing understandings of angle measure and trigonometric 

functions. Specifically, this dissertation focused on precalculus students constructing and 

reasoning about trigonometric functions in the contexts of the unit circle and right 

triangles. In order to further explore quantitative reasoning in the contexts of 
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trigonometry, future studies should also explore subsequent topics of trigonometry. For 

instance, little is known relative to students’ understandings of periodicity in the context 

of trigonometric functions or students’ conceptions of polar coordinates, which are reliant 

on trigonometric functions. As another example, a future study should explore students’ 

abilities to apply trigonometric functions in a periodic, but non-circular context (e.g., 

wave behavior). 

Second, the measurement conceptions held by the students of this study appeared 

to play a role in their thinking and reasoning abilities. Given students’ varying 

conceptions of measurement (e.g., as labels of objects or as a multiplicative comparison), 

the role of students’ measurement conceptions should be further explored in the context 

of angle measure and trigonometry. 

Third, this dissertation revealed insights into the relationship between quantitative 

reasoning and students’ problem solving behaviors. Due to the importance of students’ 

ability to solve novel problems, the relationship between students’ problem solving 

behaviors and the mental actions driving these behaviors offers a future research path. 

This includes considering a student’s confidence in their ability to make sense of a 

mathematical topic and their disposition towards learning mathematics and engaging in 

novel problem solving. 

Lastly, a product of this dissertation is the instructional sequence that was used 

during the study. Yet, someone attempting to use these materials may interpret the 

intentions of the tasks differently from their design. As research literature on 

trigonometry reveals (Thompson, et al., 2007), teachers hold very entrenched conceptions 



   301 

 

of trigonometry. Also, this study was conducted in a setting of three students, rather than 

a classroom of twenty or more students. Thus, a study investigating teachers’ 

interpretations of the instructional materials and their implementation of these materials 

may offer insights into the professional development needed for a teacher to implement 

research-based materials successfully. 
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Mental 
Actions 

Description of 
Mental Actions 

Verbal Behaviors 
Related to General 
Functions 

Verbal Behaviors Related to 
Trigonometric Functions 

Mental 
Action 1 
(MA1) 

Coordinating the 
value of one 
variable with 
changes in the 
other 

Verbal indications of 
coordinating the two 
variables (e.g., y 
changes with 
changes in x 

Verbalizing that the output 
of sin(!) changes with 
changes in angle measure, 
!) 

Mental 
Action 2 
(MA2) 

Coordinating the 
direction of 
change of one 
variable with 
changes in the 
other variable 
 

Verbalizing an 
awareness of the 
direction of change 
of the output while 
considering changes 
in input 

Verbalizing an awareness of 
the increasing output values 
of sin(!) with increasing 
values of angle measure ! (! 
between 0 and !/2 radians)  

Mental 
Action 3 
(MA3) 

Coordinating the 
amount of 
change of one 
variable with 
changes in the 
other variable 

Verbalizing an 
awareness of the 
amount of change of 
the output while 
considering changes 
in the input 

Verbalizing that for an angle 
measure increasing from 0 
to !/2 radians, the output 
values of sin(!) increases 
from 0 to 1 length of a 
radius.  

Mental 
Action 4 
(MA4) 

Coordinating the 
average rate-of-
change of the 
function with 
uniform 
increments of 
change in the 
input variable. 

Verbalizing an 
awareness of the rate 
of change of the 
output (with respect 
to the input) while 
considering uniform 
increments of the 
input 

Verbalizing that the average 
rate of change of the output 
values of sin(!) with respect 
to angle measure !  
decreases for successive 
uniform increments of angle 
measure ! between 0 and !/2 
radians. 

Mental 
Action 5 
(MA5) 

Coordinating the 
instantaneous 
rate of change of 
the function with 
continuous 
changes in the 
independent 
variable for the 
entire domain of 
the function 

Verbalizing an 
awareness of the 
instantaneous 
changes in the rate 
of change for the 
entire domain of the 
function (direction 
of concavities and 
inflection points are 
correct) 

Verbalizing an awareness 
that the instantaneous rate of 
change of the output values 
of sin(!) with respect to 
angle measure !  decreases 
over the domain of ! values 
from 0 to !/2 radians. 
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Pre-interview Tasks 
 
1. An individual is riding a Ferris wheel that has a radius of 51 feet. On part of a trip 

around the Ferris wheel, the individual covers an arc-length of 32 feet. How many 
degrees did the individual travel? 

 
 
2. The following angle has a measurement of 3 units. How could you use arc-length and 

circumference to determine how many of these units rotate a full circle?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. What does it mean to say an angle has a measure of one degree? 34 degrees?  
 
 

Exploratory Interview Tasks 
 

1. What is an angle and what does it mean to measure an angle? 
 
 
2. Measure the following angle using the available supplies (compass, Wikki Stix, and 

ruler). Measure the angle in both degrees and quips (recall that 16 quips rotate a 
circle). 
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3. Determine the measurement (in degrees) of an angle that has a measurement of 22.3 
degrees plus 3.1 quips. Construct this angle using a compass and Wikki Stix. 

 
 
4. A student measures the arc-length that an angle cuts off and claims that the angle has 

a measure of 1.7 inches. Discuss how the arc length measurement relates to angle 
measure. Describe how to reconstruct the circle that was used to measure this angle 
given that the angle has a measurement of 27 degrees.  

 
 
5. A Ferris wheel with a radius of 41 feet is rotating at 2.5 full revolutions per minute. 

Marcus boards the Ferris wheel for a ride. After 20 seconds, how far has Marcus 
traveled on the Ferris wheel? Give your answer in both a linear measurement (e.g., a 
number of feet) and a number of degrees.  

 
 
6. If the arms on the Ferris wheel (described in item 5 above) are extended to 52 feet 

and the rotating speed of 2.5 full revolutions per minute is maintained i) Would the 
linear measurement of Marcus’ rotation change? ii) Would the number of degrees that 
Marcos rotated change? 

 
 
7. While site seeing in New York City, Bob stopped 1000 feet from the Empire State 

Building and looked up to see the top of the Building. Given that the angle of Bob’s 
site from the ground was 56 degrees, determine the height of the Empire State 
Building.  

 
 

Post-interview Tasks 
 

1. An individual is riding a Ferris wheel that has a radius of 51 feet. On part of a trip 
around the Ferris wheel, the individual covers an arc-length of 32 feet. How many 
degrees did the individual travel? How many radians did the individual travel? 

 
 
2. The following angle has a measurement of 2.1 units. How could you determine how 

many of these units rotate a full circle?  
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3. Using the diagram below, determine an algebraic relationship between the 

measurements r, 

 

! , and s. 
 
 
 
 
 
 
 
 
4. What fraction of a circle’s circumference does an angle that is 4.1 radians minus 2.1 

degrees cut off? How many degrees is the resulting angle? How many degrees is the 
resulting angle? Explain how you would construct the resulting angle using Wikki 
Stix, a compass, and a ruler. 

 
 
5. Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a 

full rotation. April boards the Ferris wheel and begins a continuous ride on the Ferris 
wheel. 
a. Determine a formula that relates the total distance traveled by April and the time 

since her Ferris wheel ride began. 
 

b. If the platform to board the Ferris wheel is 8 feet off of the ground, sketch a graph 
that relates the total distance traveled by April and her vertical distance from the 
ground. 

 
c. If the platform to board the Ferris wheel is 8 feet off of the ground, sketch a graph 

that relates the time since beginning the ride to April’s vertical distance from the 
ground. 

 
d. If the speed at which the Ferris wheel rotates is increased, how will your graphs 

above change? If the speed at which the Ferris wheel rotates is decreased, how 
will your graphs above change? 

 
e. If the radius of the Ferris wheel is increased, how will your graphs above change? 

If the radius of the Ferris wheel is decreased, how will your graphs above change? 
 

 

s 
r 

r 
 

!
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Activity 1 - The Cannon Problem 
 
Two military historian groups decided to test the range of two different World War I 
cannons that have different barrel lengths. During their testing both groups noted that the 
horizontal distance traveled by the projectiles fired from their cannons changed as they 
tilted their cannon barrels up and down. The two groups wanted to compare the 
horizontal distances traveled by the projectiles by the two cannons without transporting 
one cannon to the other. Describe the quantities that one group could measure to convey 
to the other group how to set up their cannon identical to the other group.
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Activity 2 - The Protractor Problem 
 

Supplies: Wikki Stix, rulers, and unmarked protractors 

Imagine that a group of individuals decided to measure an angle in a unit called gips, 
where any circle is 8 gips. Using the available supplies, construct a protractor to measure 
any angle in gips. Explain your approach to constructing your protractor and say why it 
works. 

 

 

 

 

 

 

 

A different group of individuals decided they wanted any a circle to have a measure of 15 
units. They chose to call these units quips. Using the available supplies, construct a 
protractor that measures any angle in quips. Explain your approach to constructing your 
protractor and say why it works. 
 
 

 

 

 

 

 

 
 

Describe how you might create a protractor to measure the openness of an angle in 
degrees. 
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Activity 3 – The Angle Measurement Problem 
 

Supplies: Wikki Stix, compass, ruler 
 
Measure the following angles in degrees with only the available supplies. Be prepared to 
explain your reasoning.  
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Activity 4 – The Circumference Problem 
 

Construct a circle using a Wikki Stix as the radius (your group should have Wikki Stix of 
different lengths). Then, determine how many of your Wikki Stix mark off the 
circumference of your circle. Compare your result with your classmates. What 
observations can you make from this comparison? 
 

 
Construct an angle that cuts off one Wikki Stix length of an arc. Compare the openness of 
the angle with those of your classmates.  

 
 

Construct angles that measure 2.5 radians and 7 radians. Compare the openness of your 
angles with those of your classmates. 
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Activity 5 – The Fan Problem 
 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a 
counterclockwise direction. The bug is exactly 3.1 feet from the center of the fan and is at 
the 3:00 position as the blade begins to turn.  
  

 
 
 
 
 
 
 
 
 
1. How does the distance the bug traveled on the fan correspond to angle measure?  
 
2. What would it mean to say the bug moved 0.765 radians around the fan? How far 

around the fan would this be? How many feet would 0.765 radians correspond to? 
 
3. Create a graph that shows how the bug’s vertical distance above the 9:00 to 3:00 

diameter line varies with the total distance the bug travels around the circumference. 
Label at least 3 points on the graph. Let the vertical distance be positive when the bug 
is above the 9:00 to 3:00 diameter line, and negative when the bug is below the 9:00 
to 3:00 diameter line. 
a. Using amounts of change of input and output, explain what your graph conveys 

about the covariation of the measure of the two quantities. 
b. In what units did you measure the bug’s total distance traveled and the bug’s 

vertical distance above the 9:00 to 3:00 diameter line? Will your graph change if 
the radius of the fan is changed? If so, how will your graph change? If no, why 
not? 

 
4. Create a graph that shows how the horizontal distance to the right and left of the 

12:00 to 6:00 diameter line varies with the total distance the bug travels around the 
circumference. Let the horizontal distance be positive when the bug is to the right of 
the 12:00 to 6:00 diameter line, and negative when the bug is to the left of the 12:00 
to 6:00 diameter line. 
a. Using amounts of change of input and output, explain what your graph conveys 

about the covariation of the measure of the two quantities. 
b. In what units did you measure the bug’s total distance traveled and the bug’s 

horizontal distance to the right of the 9:00 to 3:00 diameter line? Will your graph 
change if the radius of the fan is changed? If so, how will your graph change? If 
no, why not? 

 

3.1 ft 
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Activity 6 – The Positions on a Circle Problem 
 

A certain arctic village maintains a circular cross-country ski trail for the enjoyment of its 
citizens during the winter months. This trail has a radius of 1 kilometer. A certain skier 
started at position (1,0) one morning, skiing counterclockwise for 1.1 kilometers, where 
he paused for a brief rest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Explain what each of the following ordered pairs on the coordinate axes represents 

relative to the skier’s position on the trail.  
a. (1, 0) 
b. (0,1) 
c. (-1, 0) 
d. (0,-1) 

 
 
2. Why can’t the skier’s position be represented by the ordered pair (1.1, 0)? 
 
3. Determine the ordered pair that identifies the location where the skier rested. 
 
4. What is the meaning of the x-value of the ordered pair? 
 
5. What is the meaning of the y-value of the ordered pair? 
 
6. What does the ordered pair (cos(1.1), sin(1.1)) represent? 
 
A second arctic village maintains a circular cross-country ski trail for the enjoyment of its 
citizens during the winter months. Their trail has a radius of 2 kilometers. A certain skier 
started at position (2,0) one morning, skiing counterclockwise for 2.2 kilometers, where 
he paused for a brief rest.  
 

(1, 0) 

1.1 km 

1 km 

N 

W E 

S 
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7. Draw a diagram of the situation and determine the ordered pair that identifies the 
location where the skier rested. 

 
A third arctic village maintains a circular cross-country ski trail for the enjoyment of its 
citizens during the winter months. Their trail has a radius of 2.5 kilometers. A certain 
skier started at position (2.5,0) one morning, skiing counterclockwise for 2.75 kilometers, 
where he paused for a brief rest.  
 
8. Draw a diagram of the situation and determine the ordered pair that identifies the 

location where the skier rested. 
 
9. In summary, and based on your thinking for questions 3-7, what is the ordered pair 

for any location on the circle of radius r at an angle of measure 

 

! , where the center of 
the circle is considered the origin? 
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Activity 7 – The Finding and Arc Length Problem 
 

1. A skier skied on a circular route, starting at the point (1,0) on the circle, and ending at 
the point (0.951, 0.309) on the circle. How many km did she ski?  

 
 
 
 
 
 
 
 
 
 
 
 
 
2. A skier skied on a circular route, starting at the point (2.5,0) on the circle, and ending 

at the point (2.3775, 0.7725) on the circle. How many km did she ski?  
 
 
 
 
 
 
 
 
 
 
 
 
 
3. A skier skied on a circular route, starting at the point (2.5,0) on the circle, and ending 

at the point (-2.3775, 0.7725) on the circle. How many km did she ski?  Calculate this 
distance using both inverse sine and inverse cosine. 
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Activity 8 – The Determining an Output Problem 
 
Determine the output of the sine and cosine of the measure of angle ABC without 
measuring the angle. Hint: think of how you would determine the measure of the angle of 
interest and how the sine function relates to this measurement. 
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Activity 9 – The Airplane Problem 
 
A plane leaves the local air force base and travels due east. A radar station 45 miles south 
of the base tracks the plane and determines that the angle formed by the base, the radar 
station, and the plane is initially changing by 1.6 degrees per minute. Determine the 
distance the plane is from the radar station after a number of minutes, m. 
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The Arc Length Problem 
 

Given that the following angle measurement ! is 35 degrees, determine the length of each 
arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 
inches, and 2.9 inches. (Drawing not to scale) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Radian Measurements and Pi Problem 
 

What does it mean for an angle to have a measure of 0.5! radians? 2.2 radians? 
 
 

The Arc Problem 
 

Using the diagram below, determine a formula between the measurements r, 

 

! , and s. 
 
 
 
 
 
 
 
 

! 

s 
r 

r 

 

!
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The Ferris Wheel Problem 
 

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 
rotation. April boards the Ferris wheel at the bottom and begins a continuous ride on the 
Ferris wheel. 
1. Sketch a graph that relates the total distance traveled by April and her vertical 

distance from the ground. 
 
2. Sketch a graph that relates the time since beginning the ride to April’s vertical 

distance from the ground. 
 
3. Determine formulas for the functions represented above. 
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The Ski Trail Problem – Version I 
 

An arctic village maintains a circular cross-country ski trail that has a radius of 2.5 
kilometers. A skier started skiing from position (0.9665, 1.25) and skied 
counterclockwise for 12.44 kilometers where he paused for a brief rest. 
1. Determine the ordered pair (in both kilometers and percentage of a radius) on the 

coordinate axes that identifies the location where the skier rested. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. What is the general form of the ordered pair, in a percentage of a radius, of any 

coordinate on a circle of radius of r kilometers that forms an angle of measure ! as 
illustrated below?  (Assume that the center of the circle is positioned at the origin of 
the unit circle.)    

 
 
 
 
 
 
 
 
 
 
3. Determine the coordinates (x, y), in kilometers, of a point on a circle of radius r 

kilometers in terms of the angle of measure ! and the radius r.  

r 

! 

(0.9665, 1.25) 

12.44 km 

2.5 km 
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The Empire State Building Problem 
 

While site seeing in New York City, Bob stopped 1000 feet from the Empire State 
Building and looked up to see the top of the Building. Given that the angle of Bob’s site 
from the ground was 56 degrees, determine the height of the Empire State Building. 
 
 

The Adding Two Angle Measures Problem 
 

Determine the measurement (relative and angular) of an angle that has a measurement of 
1.5 radians plus 1.2! radians. Given a circle with a radius of 3.5 inches, what is the arc-
length that corresponds to this angle measurement? 
 
 

The Enemy Approaches Problem 
 

A castle observation tower is elevated 126 feet above the ground. When an approaching 
enemy is first noticed, the angle of depression (the angle at which an observer needs to 
look down) from the observation post was 0.084 radians. How far away is the enemy 
from the castle? How far away is the enemy from the observer? 
 
 

The Tangent Function and Graphing Problem 
 

How does the function f (!) = tan(!)  vary as ! varies from –!/2 to !/2? 
 
 

The Ski Trail Problem – Version II 
 

An arctic village maintains a circular cross-country ski trail that has a radius of 2.5 
kilometers. A skier started skiing from position (-1.76777, -1.76777) and skied 
counterclockwise for 3.927 kilometers where he paused for a brief rest. Determine the 
ordered pair (in both kilometers and percentage of a radius) on the coordinate axes that 
identifies the location where the skier rested. 
 
 
 
 
 
 
 
 
 (-1.76777, -1.76777)  

3.927 km 

2.5 km 
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The Arc Length Problem 
 

Given that the following angle measurement ! is 35 degrees, determine the length of each 
arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 
inches, and 2.9 inches. (Drawing not to scale) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

! 
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The Missing Measurement Problem 
 

Answer the following. Consider all angle measures to be given in radians.  
1. Determine the missing linear measurement of arc-length cut off by the angle. 
 
 
 
 
 
 
 
 
 
 
 
 
2. Determine the missing angular measurement in radians. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Determine the measure of an angle that cuts off 13.19 kilometers of arc length on a 

circle that has a radius of 3 kilometers. 

2.4 cm. 

2.4 cm. 

! 

9.8 cm. 

7 in. 
7 in. 

2.1 

s 
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Amy’s Ferris Wheel Problem 
 
Consider a Ferris wheel with a radius of 36 feet. April boards the Ferris wheel at the 3 
o’clock position and begins a continuous ride on the Ferris wheel. 
1. Sketch a graph that relates the total distance traveled by April and her vertical 

distance above the horizontal diameter of the Ferris wheel. 
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The Arc Length Problem 
 

Given that the following angle measurement ! is 35 degrees, determine the length of each 
arc cut off by the angle. Consider the circles to have radius lengths of 2 inches, 2.4 
inches, and 2.9 inches. (Drawing not to scale) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Inches or Radians Problem 
 

A student measures the arc-length that an angle cuts off, resulting in 1.7 inches, and 
claims that the angle has a measure of 1.7 inches. Discuss this student’s claim. 
 
 

The Radian Measurements and Pi Problem 
 

What does it mean for an angle to have a measure of 1.2! radians? 5.27 radians? How 
long is the arc subtended by the angle relative to a radius of 3.5 inches? 
 
 

The Rotating Problem 
 

A Ferris wheel with a radius of 41 feet is rotating at 2.5 full revolutions per minute. 
Marcus boards the Ferris wheel for a ride. After 20 seconds, how far has Marcus traveled 

! 
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on the Ferris wheel? Give your answer in a linear measurement (e.g., a number of feet) 
and a number of radians. 
 
 

The Enemy Approaches Problem 
 

A castle observation tower is elevated 126 feet above the ground. When an approaching 
enemy is first noticed, the angle of depression (the angle at which an observer needs to 
look down) from the observation post was 0.084 radians. How far away is the enemy 
from the castle? How far away is the enemy from the observer? 
 
 

The Ferris Wheel Problem 
 

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 
rotation. April boards the Ferris wheel at the bottom and begins a continuous ride on the 
Ferris wheel. 
1. Sketch a graph that relates the total distance traveled by April and her vertical 

distance from the ground. 
 
2. Sketch a graph that relates the time since beginning the ride to April’s vertical 

distance from the ground. 
 
3. Determine formulas for the functions represented above. 
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