RUME 1 Theorizing Precisely

Week 8

Pat Thompson October 16, 2018

"Divide 5 into 3"

"Divide 5 into 3"

"Divide 5 into 3 pieces"

"Divide 5 into 3"

"Divide 5 into 3 pieces"

"Divide 5 into 3"

"Divide 5 into 3 pieces"

"Divide 5 into 3"

"Divide 5 into 3 pieces"

"Divide 5 into 3"

"Divide 5 into 3 pieces"

"Divide 5 into 3"

"Cut up 5 into 3 pieces"

5
 1/3 of 5
 1/3 of 5
 1/3 of 5

"Divide 5 into 3 pieces"

"Divide 5 into 3"

Numerical operation

Unclear — numerical or quantitative operation

??

3)5

"Cut up 5 into 3 pieces"

	5
	 1/3 of 5
l operation	 1/3 of 5
.1011 •	 1/3 of 5

Quantitative operation

"*x* changed from 2 to 5"

 ${\mathcal X}$

"*x* changed from 2 to 5"

2

"*x* changed from 2 to 5"

5

"*x* changed from 2 to 5"

5

x = 2

"*x* changed from 2 to 5"

5

x = 5

"*x* changed from 2 to 5"

5

x = 5

Four Students' Meanings of "Change"

 $2 \xrightarrow{x} 5$

"*x* changed from 2 to 5"

5

Four Students' Meanings of "Change"

"*x* changed from 2 to 5"

Four Students' Meanings of "Change"

 $\boldsymbol{\chi}$ → 5 2

Completed variation

 \mathcal{X} ► 5

Variation in progress

Length	Object? Attribute? Unit
--------	--------------------------------

Object? Attribute? Unit

Volume

Area

Object? Attribute? Unit

Terms commonly thought of as indicating a quantity

Quantity

Length

Area

Object? Attribute? Unit

Object? Attribute? Unit

Volume

Object? Attribute? Unit

Terms commonly thought of as indicating a quantity

Area as a One Dimensional Quantity

Volume as a One Dimensional Quantity

Quantity Terms commonly thought of as indicating a quantity

Length

Area

Object? Attribute? Unit

Object? Attribute? Unit

Volume

Object? Attribute? Unit

Volume as a One Dimensional Quantity

A quantity is *conceived* by *someone*. It is *essential* you ask, "What is the object, the attribute, the quantification *this* student (teacher, person) has conceived?"

Area as a One Dimensional Quantity

Length

Volume

Profit

Mass

Force

Torque

Energy

Economy

Angle Measure

Fuel efficiency

Relative size

Area

Object? Attribute? Unit Object? Attribute? Unit

Quantity Terms commonly thought of as indicating a quantity

Volume as a One Dimensional Quantity

Area as a One Dimensional Quantity

Length

Volume

Profit

Mass

Force

Torque

Energy

Economy

Angle Measure

Fuel efficiency

Relative size

Area

Object? Attribute? Unit Object? Attribute? Unit

Quantity Terms commonly thought of as indicating a quantity

Area as a One Dimensional Quantity

Volume as a One Dimensional Quantity

Magnitude (student measured his height in inches and cm)

- •How tall are you in inches? 79
- •How tall are you in centimeters? About 201
- •How many centimeters is 79 inches? Huh?

Rotations about line parallel to *x***,** *y***, or** *z* **axis passing** through Center

$$\begin{bmatrix} 0 & 0 \\ \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} (X-\text{Center}) + \text{Center}$$

$$\begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} (X-\text{Center}) + \text{Center}$$

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} (X-\text{Center}) + \text{Center}$$

$$d = \text{slider}(0.005, 0.1)$$
 $d = 0.013075$

 $n = \operatorname{clamp}(m, 0, 2\pi)$

$$f(x) = \frac{x^2}{3} + 0.2 \sin(10x)$$
$$C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

What do these statements do and how do they do it?

$$= R_{y}\left(\begin{bmatrix} \pi t \\ f(\pi t) \\ 0 \end{bmatrix}, n, C\right), \text{ radius} = d$$
$$= R_{y}\left(\begin{bmatrix} \pi \\ tf(\pi) \\ 0 \end{bmatrix}, n, C\right), \text{ radius} = d$$
$$= R_{y}\left(\begin{bmatrix} t\pi \\ 0 \\ 0 \end{bmatrix}, n, C\right), \text{ radius} = d$$

$$d = \text{slider}(0.005, 0.1)$$
 $d = 0.013075$

 $n = \operatorname{clamp}(m, 0, 2\pi)$

$$f(x) = \frac{x^2}{3} + 0.2 \sin(10x)$$
$$C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

What does this statement do and how does it do it?

$$= \begin{pmatrix} u\pi \\ R_{y}(\begin{bmatrix} u\pi \\ f(u\pi) \\ 0 \end{bmatrix}, vn, C) \text{ if Surface} = 1 \end{pmatrix}$$

What does these statement do and how do they do it?

$$= \begin{pmatrix} R_{y} \begin{pmatrix} u\pi \\ 0 \\ 0 \end{pmatrix}, vn, C \text{ if Surface} = 1 \end{pmatrix}$$
$$= \begin{pmatrix} R_{y} \begin{pmatrix} \pi \\ uf(\pi) \\ 0 \end{pmatrix}, vn, C \text{ if Surface} = 1 \end{pmatrix}$$

y

