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An Exponential Growth Learning Trajectory: Students’ Emerging
Understanding of Exponential Growth Through Covariation
Amy B. Ellisa, Zekiye Ozgurb, Torrey Kulowa, Muhammed F. Doganc, and Joel Amidonb

aUniversity of Georgia; bUniversity of Mississippi; cDicle University

ABSTRACT
This article presents an Exponential Growth Learning Trajectory (EGLT), a
trajectory identifying and characterizing middle grade students’ initial and
developing understanding of exponential growth as a result of an instruc-
tional emphasis on covariation. The EGLT explicates students’ thinking and
learning over time in relation to a set of tasks and activities developed to
engender a view of exponential growth as a relation between two con-
tinuously covarying quantities. Developed out of two teaching experiments
with early adolescents, the EGLT identifies three major stages of students’
conceptual development: prefunctional reasoning, the covariation view,
and the correspondence view. The learning trajectory is presented along
with three individual students’ progressions through the trajectory as a way
to illustrate the variation present in how the participants made sense of
ideas about exponential growth.

Introduction

Exponential growth is an important topic beginning in the middle grades and is encountered in
increasingly complex variations in subsequent grades. A focus on the conceptual underpinnings of
exponential growth is highlighted in many national standards documents (e.g., Australian
Ministerial Council on Education, Employment, Training and Youth Affairs, 2006; National
Governor’s Association Center for Best Practices, 2010; Finnish National Board of Education,
2004; Singapore Ministry of Education, 2006), and a deep understanding of exponential functions
plays a critical role in university mathematics courses such as calculus, differential equations, and
complex analysis (Weber, 2002). Recent years have seen an increased emphasis on the ideas related
to exponential growth in early adolescence (e.g., Haese, Haese, & Humphries, 2013; Lappan, Fey,
Fitzgerald, Friel, & Phillips, 2006).

Despite the importance of a robust understanding of exponential growth, instruction proves challen-
ging given students’ documented difficulties in understanding this topic. Weber (2002) found that
university students struggle to understand the rules of exponentiation and to connect them to rules for
logarithms. Research on secondary students reveals challenges in making the transition from linear
representations to exponential representations and in identifying what makes data exponential (Alagic &
Palenz, 2006). Further, studies investigating teachers identify struggles in both the understanding and
instruction of exponential growth. Teachers appear to have a strong understanding of exponential
growth as repeated multiplication, but struggle to connect this understanding to the closed-form
equation, to recognize growth as exponential in nature, and to appropriately generalize rules such as
the multiplication and power properties of exponents (Davis, 2009; Presmeg & Nenduardu, 2005; Strom,
2006, 2008). These limitations may contribute to teachers’ difficulty in anticipating what supports
students may require in learning about exponential properties (Davis, 2009).
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The challenges in supporting students’ learning suggest a need to better understand how to foster
student understanding of exponential growth. In order to develop this line of research, we con-
structed an Exponential Growth Learning Trajectory (EGLT), one possible trajectory tracing stu-
dents’ initial and evolving understanding of exponential growth throughout a series of lessons with
an instructional emphasis on covariation. By using the term “learning trajectory,” we follow
Clements and Sarama’s (2004) definition of a learning trajectory as:

Descriptions of children’s thinking and learning in a specific mathematical domain and a related, conjectured
route through a set of instructional tasks designed to engender those mental processes or actions hypothesized
to move children through a developmental progression of levels of thinking, created with the intent of
supporting children’s achievement of specific goals in that mathematical domain. (p. 83)

As Simon and Tzur (2004) noted, the most important aspect of a learning trajectory is for
teaching concepts whose learning is problematic. Better understanding how to support student
learning is a critical aspect of addressing challenging topics. This article reports on the results of
two teaching experiments investigating students’ understanding of exponential growth within the
context of covarying quantities. We present a learning trajectory specifying students’ evolving
understanding, identifying connections between students’ conceptions and the tasks and teaching
actions promoting the development of those conceptions. Our findings suggest that situating an
exploration of exponential growth in a model of covarying quantities can support both students’
understanding of what it means for data to grow exponentially and how to algebraically express
exponential relationships.

The need for learning trajectories research

Learning trajectories research has the potential to support a better understanding of student
learning, enable more effective teaching strategies, and guide better curriculum and standards
design. Steffe (2004) noted that the construction of learning trajectories of children’s mathema-
tical thinking constitutes “one of the most daunting but urgent problems facing mathematics
education today” (p. 130). To date, the majority of learning trajectories address ideas in early
mathematics, such as those for equipartitioning (Confrey, 2012); length measurement (Clements
& Sarama, 2007; Sarama & Clements, 2002); children’s composition of geometric figures
(Clements, Wilson, & Sarama, 2004); relational thinking about addition, subtraction, and divi-
sion (Stephens & Armanto, 2010); and integer addition and subtraction (Stephan & Akyuz,
2012). Although substantial work has occurred in understanding students’ conceptual develop-
ment in the secondary topics of ratio and proportion, algebra, and functions, few studies have
been devoted to the development of learning trajectories on those topics. Given students’
difficulty in developing rich ideas about algebraic concepts, learning trajectories research could
support a better understanding of students’ thinking and learning in those content areas.

Learning trajectories research can also provide opportunities to translate research-based
findings into improved teacher education and professional development, enabling teachers to
diagnose students’ understanding and provide appropriate feedback (Amador & Lamberg, 2013;
Wilson, Mojica, & Confrey, 2013). Clements and Sarama (2004) found that superior teachers
used learning trajectories to support student learning by focusing on their students’ reasoning
and accordingly making adjustments to their tasks and teaching actions. In general, researchers
suggest that learning trajectories can guide teachers in making sense of their students’ under-
standing and in choosing the most appropriate instructional activities (Clements & Sarama,
2012; Szilagyi, Clements, & Sarama, 2013), an avenue for supporting curriculum design and the
development of standards documents (e.g., Baroody, Cibulskis, Lai, & Li, 2004; Battista, 2004;
Clements et al., 2004; Confrey & Maloney, in press).
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Background and theoretical framework

Hypothetical learning trajectories: Definitions and characteristics

The notion of a hypothetical learning trajectory has different meanings among mathematics educa-
tion researchers. Simon’s (1995) original description of a hypothetical learning trajectory consists of
“the learning goal, the learning activities, and the thinking and learning in which students might
engage” (p. 133). Clements and Sarama (2004) elaborated on this definition by emphasizing three
parts of a learning trajectory: A mathematical goal, a model of cognition they called developmental
progressions, and instructional tasks providing experiences for students to progress through the
developmental levels. Many researchers’ working definitions of learning trajectories emphasize
progression in sophistication. For example, Battista (2004) relied on the notion of levels of sophis-
tication, strata through which a student progresses from one cognitive level to the next until reaching
formal mathematical concepts. Similarly, Wilson and colleagues (2013) defined learning trajectories
as research-based descriptions of how students’ thinking evolves over time from informal ideas to
increasingly complex ones.

Some researchers also highlighted the aspect of learning trajectories emphasizing a conjectured
model of learning. For example, Steffe (2004) described a learning trajectory of children’s thinking as
including “A model of their initial concepts and operations, an account of the observable changes in
those concepts and operations as a result of the children’s interactive mathematical activity in the
situations of learning, and an account of the mathematical interactions that were involved in the
changes” (p. 131). Steffe’s description is compatible with our model, in which we aim to develop
conjectures about both a possible learning route and a specific means that can be used to support
and organize learning along this route. We also attend to Confrey and associates’ (2009) depiction of
a learning trajectory, which emphasized individuals’ refinement of their own understanding while
acknowledging that conceptual growth is influenced by instruction. The work of building learning
trajectories includes developing a cognitive model of students’ learning that is sufficiently explicit to
describe students’ operations involved in constructing increasingly sophisticated mathematical ideas;
thus, “the creation of learning trajectories always implies conceptual analysis” (Clements & Sarama,
2004, p. 85). Clements and Sarama also pointed out that a learning trajectory does not describe the
only path of learning, or even the best of many paths. Instead, it represents one possible character-
ization of student learning over time. Within that perspective, we offer a learning trajectory that is an
empirically based model of students’ initial understandings about exponential growth and an
account of how those understandings changed as the students interacted with mathematical tasks,
tools and representations, and deliberate teaching actions.

Alternate models and critiques of learning trajectories
Daro, Mosher, and Corcoran (2011) described a learning trajectory as an “empirically supported
hypotheses about the levels or waypoints of thinking, knowledge, and skill in using knowledge, that
students are likely to go through as they learn mathematics” (p. 12). An example of this type of skill-
based trajectory can be found in the Ongoing Assessment Project multiplicative reasoning frame-
work (Vermont Mathematics Partnership Ongoing Assessment Project, 2011), which identified
strategies important to multiplicative reasoning such as repeated addition, skip counting, doubling,
and halving. Similarly, Brendefur, Bunning, and Secada (2014) identified a group of secondary
teachers’ collective development of a learning trajectory for exponential functions, which is a
characterization of students’ strategies for a doubling bacteria problem, such as a doubling the
time strategy, a divide the number of bacteria by two strategy, and a change the base from two to
1.5 strategy. In contrast, we focus on students’ conceptual development, rather than emphasizing
strategies or skills.

Sikorski and Hammer (2010) argued that couching learning trajectories as progressively more
sophisticated ideas typically means progressively more correct. They critiqued learning progressions
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in science for only including correct ideas, particularly in cases in which the formation of an
incorrect idea was historically generative for later progress. Because our learning trajectory is
based on a conceptual analysis of empirical data, the trajectory includes the important ideas students
developed about exponential growth, including those of limited generalizability or correctness. We
do not offer a learning trajectory in which the selection of topics and pathways was based on a logical
task analysis of content domains (e.g., American Association for the Advancement of Science, 2001;
Harlen, 2010).

Lesh and Yoon (2004) discussed a form of learning trajectories in which researchers structure
levels of knowledge development into ladder-like sequences, with each rung of the ladder represent-
ing a more sophisticated understanding of the construct in question. They noted that although such
sequences can be useful for curriculum development, it can be dangerous to rely on such models to
make inferences about how learning occurs. Ladder-like sequences imply a linear view of develop-
ment, whereas there is ample evidence that mathematical ideas develop along a variety of dimen-
sions. We take these cautions to heart and therefore are careful to characterize our learning
trajectory as a reflection of the development of groups of students as we analyzed them in situ.
Further, evidence from our corpus of data suggests that it does not make sense to identify an
individual student’s thinking as occurring at a particular developmental level, when that claim would
imply that the student then functions at that same level across a variety of tasks and settings.
Students’ thinking is more complex, fluid, and dynamic than what can be easily represented by a
static model of learning. Our learning trajectory is an attempt to characterize the nature of the
evolution of students’ thinking in a particular instructional setting. Therefore we present not only
the learning trajectory itself, but also the individual trajectories of three students as a way to illustrate
the differences and commonalities present in the ways that the students made sense of ideas about
exponential growth.

Covariation and the rate of change perspective

A typical approach to exponential growth emphasizes the operation of repeated multiplication. For
instance, in the middle grades (ages 11–14 years) curriculum Connected Mathematics Project
(Lappan et al., 2006), students encounter a problem in which coins are placed on a chessboard in
a doubling pattern. Students must examine the relationship between the number of squares and the
number of coins, perform repeated multiplication, and then connect this operation to exponential
notation. This approach follows the recommendation of researchers suggesting the introduction of
exponential growth as repeated multiplication with natural numbers (e.g., Goldin & Herscovics,
1991). However, generalizing to non-natural exponents may then pose challenging for students, as it
can be difficult to imagine a constant b multiplied by itself a fractional (or irrational) number of
times (Davis, 2009).

In an alternate approach, Confrey and Smith (1994, 1995) introduced the operation of splitting; a
splitting structure is a multiplicative structure in which multiplication and division are inverse
operations, such as repeated doubling and repeated halving. Confrey and Smith posited that splitting
can be an operational basis for multiplication and division, whereby students treat the product of a
splitting action as the basis for its reapplication; thus, a split can be conceived of as a multiplicative
unit. Basing multiplication on repeated addition, rather than splitting, neglects the development of
ideas such as equal sharing, magnification, and repeated copies (Confrey & Smith, 1994). As the
basis of a rate of change approach to exponential growth, splitting can enable students to calculate
ratios between successive y-values for constant changes in x-values. We highlight this conception as
an important foundational idea for a rate of change approach to exponential growth.

An emphasis on rate of change (Smith, 2003; Smith & Confrey, 1994) and covariation
(Saldanha & Thompson, 1998; Thompson & Carlson, in press) fosters an examination of a
function in terms of coordinated changes of x- and y-values. In this case a student may
coordinate change between ym to ym+1 with change between xm to xm+1. This approach differs

154 A. B. ELLIS ET AL.

D
ow

nl
oa

de
d 

by
 [

Pa
tr

ic
k 

T
ho

m
ps

on
] 

at
 0

4:
52

 2
8 

Ju
ne

 2
01

6 



from the more typical correspondence view, in which a function is seen as the fixed relationship
between the members of two sets. From the correspondence perspective, y = f (x) represents y as
a function of x, in which each value of x is associated with a single value of y (Farenga & Ness,
2005). This static view underlies the typical treatment of functions in school mathematics, but
research on middle grades students’ emerging understanding of functional relationships suggests
that beginning with a covariation approach can support a flexible, connected understanding of
rate of change that supports eventual formalization and transition to the correspondence view
(Ellis, 2007, 2011; Smith & Thompson, 2007; Thompson, 1994; Thompson & Thompson, 1992).

Saldanha and Thompson (1998) addressed the idea of covariation in terms of the images that can
support one’s ability to think covariationally, describing covariational thinking as the ability to
mentally hold a sustained image of two quantities’ values simultaneously. Castillo-Garsow (2013)
similarly addressed covariation as the mental act of imagining two quantities changing together
simultaneously. Immersing students in situations with quantities that they can visualize, manipulate,
and imagine could foster an ability to reason flexibly about dynamically changing events (Carlson,
Jacobs, Coe, Larsen, & Hsu, 2002). This approach may be particularly helpful in supporting students’
understanding of exponential growth as they grapple with coordinating additive change in x with
multiplicative change in y.

A defining characteristic of exponential growth is the notion that the rate at which the
function changes with respect to x is proportional to the value of the function at x
(Thompson, 2008). An emphasis on covariation could foster an early understanding that the
value of y2/y1 is dependent on x2—x1. This goal could be further supported by developing an
exponential growth situation in which two quantities covary continuously, rather than in discrete
chunks. Students who can conceive of continuous variation can imagine smooth changes as
composed of smaller chunks with numerical values, with every smaller chunk within that change
in progress itself imagined as being covered by a smooth change in progress (Castillo-Garsow,
2012; Castillo-Garsow, Johnson, & Moore, 2013; Thompson, 2011). Strom (2008) noted that the
ability to reason multiplicatively must include considering multiplicative comparisons for input
intervals other than one unit. To develop a mature understanding of exponential function, she
argued, one must imagine a function such as y = 2x more flexibly than just a function that grows
by a multiplicative factor of two for every one unit added to x. One must also be able to imagine
some other constant factor relating two output values for intervals smaller than a unit, such as a
factor of

ffiffiffi

2
p

corresponding to an interval size of 0.5 units. This type of thinking promotes what
Strom referred to as partial factors, the idea that fractional exponents can represent a smaller
part of a factor (such as conceiving of 2½ as 1/2 factors of 2). A context in which two quantities
covary continuously could potentially support these ways of thinking because, unlike a scenario
with coins on a chessboard, an input unit less than one can have quantitative meaning for
students.1

Methods

Overview: Structure of the study

The data presented in this article are from two teaching experiment studies conducted in the United
States over the course of two years. The first study was an exploratory teaching experiment
conducted in order to (a) understand students’ emerging conceptions of exponential growth; (b)
identify shifts in students’ conceptions over time; and (c) hypothesize potential mechanisms respon-
sible for promoting the identified shifts. The results of the first study produced an initial learning
trajectory (Ellis, Ozgur, Kulow, Williams, & Amidon, 2013), which supported the design of an
instructional sequence for a second, larger-scale teaching experiment. The results of the second

1We acknowledge that this approach does not address how to reason with irrational inputs, such as 2π.
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teaching experiment led to the revision and refinement of the learning trajectory reported here. The
following sections detail the participants, the hypothetical learning trajectory and task development,
and the process of data analysis.

Participants and the teaching experiments

Teaching experiment #1
The first teaching experiment (TE1) included five eighth-grade students (aged 13–14 years), all
female. Our recruitment efforts yielded five students who agreed to participate, and all five
students were accepted into the teaching experiment. Two of the students participated intermit-
tently. Thus, we restricted our analysis to the three students who participated regularly, Uditi, Jill,
and Laura (all pseudonyms). Jill and Laura were enrolled in an eighth-grade general mathematics
course, and Uditi was enrolled in an eighth-grade pre-algebra course. None of the students had
encountered a formal exponential functions unit in their mathematics class at the time of the
study. On the first day of the teaching experiment, the students’ engagement with initial
exploratory activities suggested that their understanding of exponentiation was from a repeated
multiplication model; they understood an expression such as 23 to represent 2 × 2 × 2. Regarding
exponential growth, all three students described the growth in qualitative ways, such as “the
graph increases very quickly,” but did not quantify the nature of the growth they encountered.
The students participated in a 12-day teaching experiment (Cobb & Steffe, 1983; Steffe &
Thompson, 2000) over the course of three weeks, in which the first author was the teacher-
researcher. Two project members observed and videotaped each teaching session, which lasted
approximately one hour. The project team met daily to debrief and discuss the events that
occurred during each session, adjusting and modifying the planned activities for the following
session based on what had transpired.

Teaching experiment #2
The second teaching experiment (TE2) included eight participants who had just completed eighth
grade (all aged 14 years). The participants were all members of a university-sponsored program,
which partners with local schools to provide support for students of color and first-generation
college students. The program hosts a five-week on-campus summer session, which served as the
setting for the second teaching experiment. There were five male participants and three female
participants. The students took part in a five-week teaching experiment that addressed linear and
exponential growth, in that order. The exponential growth portion of the teaching experiment
occurred over a period of 9 days, with each session lasting 90 minutes. The second and third authors
were the teacher-researchers.

Roughly half of the TE2 students had encountered an exponential growth unit in their classrooms
prior to the teaching experiment. However, the students’ ideas about exponentiation and exponential
growth were strikingly similar to those of the students from the first teaching experiment. On the
first day, all of the students described an expression such as 23 as representing repeated multi-
plication. Those students who had heard about exponential growth could only describe it as a type of
growth that increased very quickly, but like the TE1 students, they could not quantify the nature of
the growth. Due to the shorter number of days and the greater number of students, the students in
the second teaching experiment did not encounter as many of the tasks as those in the first teaching
experiment. One or more project members observed and videotaped each teaching session. The
project team met daily to debrief and discuss the events that transpired during each session.
Pseudonyms were assigned to all of the participants.

The general instructional approach employed in both teaching experiments was an inquiry-
oriented approach. The teacher-researchers provided students with tasks and allowed the students
to explore the tasks together while discussing ideas with one another. Students worked together in
groups on a daily basis. The teacher-researchers followed the students’ lead by probing their
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thinking, asking them to explain and justify their strategies, and encouraging the free exchange of
ideas. Justification was a strong norm in both teaching experiments; the teacher-researchers encour-
aged and expected the students to justify their reasoning on a regular basis.

The hypothetical learning trajectory and task development

We constructed an initial hypothetical learning trajectory before the first teaching experiment based
on extant research, a review of the relevant literature, and pilot interviews with middle school
students. This supported the development of an initial set of learning goals in the context of a
specific set of tasks (Clements & Sarama, 2004; Simon & Tzur, 2004). The task context relied on a
scenario in which a plant called the Jactus grew by doubling its initial height every week. Students
could explore the growing Jactus by comparing its height over time with a specially designed
Geogebra script (Figure 1). Students could manipulate the Jactus by dragging its base with the
mouse, observing as the plant continually increased or decreased its height as it moved along the
x-axis. Later in the teaching experiment, we changed the growth factor to values other than 2 and the
initial height to values other than 1 inch. Our aim was to develop a context in which students could
explore two continuously covarying quantities.

A central goal for developing the instructional context was that it be experientially real and
meaningful to the students (Gravemeijer, 1994). The students and the teacher-researcher discussed
the feasibility of a plant growing exponentially, and we considered whether the unrealistic nature of
the scenario would interfere with the students’ sense making. Although the Jactus context is not
realistic, we found the tradeoff worthwhile in that it represents a situation with continuously varying
quantities that younger students could understand, visualize, and mathematize (following Webb,
Van Der Kooij, & Geist, 2011). Webb and his colleagues argued that the realistic aspect of Realistic
Mathematics Education is not just about using real world contexts, but rather about relying on
situations that are imaginable; contexts can be idealized to motivate powerful mathematical
strategies.

Figure 1. The Jactus Geogebra script.
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Although relying on continuous contexts does not guarantee that continuous reasoning will
occur, the Jactus context afforded the possibility of continuous reasoning in a way that a discrete
situation might not. It is possible to visualize a plant that is somewhere between 1-inch tall when it
starts growing and 2 inches tall after a week, whereas it may be more difficult to imagine that type of
growth in more traditional scenarios (e.g., a cell in the midst of dividing into two cells). However, we
anticipated that continuous reasoning would be difficult to achieve, particularly with younger
adolescents. We thus developed tasks and strategies to encourage this way of thinking, such as (a)
emphasizing scaling images of growth in the plant’s height as it varied with time, (b) designing tasks
highlighting the nature of growth within unit intervals, and (c) introducing problems requiring
students to shift from calculation to anticipation. We discuss these instructional decisions in more
detail in the Results section.

Building on the students’ conception of exponential growth as repeated multiplication, our
learning goals emphasized fostering students’ understanding of the following five ideas for an
exponential function y = abx:

1. The period of time x for the y-value to double (or increase by the growth factor b) is constant,
regardless of the value of a or b.

2. There is a constant ratio change in y-values for each constant additive change in corresponding
x-values.

3. The ratio of the growth in y is always the same for any same Δx; for example, a Jactus plant will
grow the same amount multiplicatively (relative to its own height) from Week 102 to Week 104
as it grows from Week 2 to Week 4.

4. The value of y2/y1 is dependent on x2—x1.
5. The constant ratio change in y-values is dependent on both the growth factor b and on Δx in

the following manner: y2
y1
¼ bx2�x1 . This relationship will hold even when Δx < 1.

The teaching experiment model demands flexibility in instruction; thus, any initial set of
activities would operate only as a starting point for instruction (Simon et al., 2010). We
implemented iterative cycles of teaching actions, in which we build models of students’ thinking
and consequently revised current and future tasks on an ongoing basis. The preliminary design
enacted in the first teaching experiment was then refined and revised for the purpose of the
second teaching experiment.

Data analysis

Clements and Sarama (2004) noted that a learning trajectory must be emergent, with teacher-
researchers constructing new models of students’ mathematics as they interact with students
over time. We employed ongoing and retrospective analysis techniques (Simon et al., 2010;
Steffe & Thompson, 2000) in order to characterize students’ changing conceptions throughout
the course of the teaching experiments. All sessions were transcribed and enhanced into
documents including not only verbal utterances but also all images of student work, descrip-
tions of relevant gestures, and other nonverbal actions (Arzarello, Paola, Robutti, & Sabena,
2009). A hypothetical learning trajectory developed before the first teaching experiment served
as a source of preliminary codes as the research team coded the enhanced transcripts for
evidence of one or more of the component understandings. Component understandings are the
individual concepts, ideas, and particular ways of reasoning and representing we identified in
the students’ thinking about specific aspects of exponential growth. For example, one compo-
nent understanding is the idea that the magnitude of the growth factor, b, determines how the
plant’s height grows. Another component understanding is the idea that one can express
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repeated multiplication for a growth factor b algebraically as y = bx, where x represents time in
weeks and y represents height in centimeters or inches.

For each student response to a task, we determined as a group whether it provided evidence of
one of the component understandings in the hypothetical learning trajectory. This initial round of
coding produced new emergent codes (Strauss & Corbin, 1990), which were not part of the initial
hypothetical learning trajectory. Those codes supported a first round revised learning trajectory,
which we call the first emergent learning trajectory, accounting for the events from the first teaching
experiment. As an example, consider the component understanding that one can coordinate the
ratio of two y-values, y2/y1, for any additive increase in x-values. For example, students can
determine the ratio of y2/y1 for Δx and recognize this ratio as a representation of how many times
taller the plant would grow in a given interval of time, regardless of the size of the interval. Early
transcript excerpts of the students’ thinking in the first teaching experiment indicated that they
appeared to understand this idea. For instance, given a Jactus with two heights at Weeks 24 and 29,
Uditi could divide the two height values and interpret the quotient, 32, as meaning that the plant
grew 32 times as tall in a five-week span. However, later transcript excerpts revealed that Uditi did
not take the quotient of height values for all intervals. In one instance, when the interval was a
quarter of a week, Uditi could divide the two height values but could not interpret the quotient as a
representation of how many times taller the plant grew in 0.25 weeks. The students’ task responses
and utterances suggested that determining growth for intervals smaller than one week was a
conceptually different activity than determining growth for a span of multiple weeks. Therefore,
the component understanding on the initial hypothetical learning trajectory that one can coordinate
the ratio of two y-values for any additive increase in x-values was refined into three separate
component understandings in the first emergent learning trajectory, which distinguished between
coordinating multiplicative change in y for intervals of (a) one unit, (b) multiple units, and (c) any
unit, including intervals less than one week.

The first emergent learning trajectory then supported the revision of the task sequence for the
second teaching experiment. After the conclusion of the second teaching experiment, all episodes
were transcribed and enhanced, and the analysis process continued with the first emergent learning
trajectory now serving as the starting point for coding. Through multiple rounds of analysis, the
trajectory underwent another series of revisions, with the process continuing until the trajectory was
stabilized into the second emergent learning trajectory. The research team them returned to the data
from the first teaching experiment and re-analyzed that data corpus with the second emergent
learning trajectory, making a final round of minor revisions until the trajectory had stabilized into
the final emergent learning trajectory, the EGLT. Given the challenge in clarifying the nature of the
students’ mental images, particularly when the students struggled to articulate their thinking, we
relied on a process of triangulating data from multiple sources in order to infer students’ thinking.
We relied on students’ drawings, written work, nonverbal gestures, and trends and shifts in their
problem-solving approaches in order to draw on multiple sources of data, where possible, for
inferring student thinking.

During all three rounds of coding, two members of the research team coded the entire data corpus
independently, meeting weekly with the project team in order to discuss boundary cases and clarify and
refine uncertain codes. Once this phase was complete, the research team met to code every transcript
together, comparing each code and discussing any differences until reaching agreement. A subset of two
researchers then re-coded the entire data set, again meeting weekly with the research team to discuss
any final refinements. This iterative process of coding, refining, and recoding continued until no new
codes emerged and no more refinement was necessary. We then chose 20% of the data corpus, which
included a 118 instances of codes, encompassing the entire set of existing codes. A new project member
who had not participated in the prior coding activities independently coded this portion of the data. We
calculated Cohen’s kappa to determine the inter-rater agreement between the coders. The resulting
Cohen’s kappa coefficient, κ ¼ 0:830; p<0:001; indicates an almost perfect agreement between the
coders (Viera & Garrett, 2005).
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Results: An EGLT and three students’ progressions

Overview of the learning trajectory

The progression of the students’ conceptual development occurred in three major stages of
reasoning, which we call prefunctional reasoning, the covariation view, and the correspondence
view. We borrow the term stage from Steffe (2012) and Glasersfeld and Kelly (1981), who
described a stage as a period through which a characteristic is present and remains constant
throughout the period. Although prefunctional reasoning preceded the development of both
the covariation and the correspondence views, the latter two ways of thinking did not occur in
a sequential nature. Rather, students constructed an early covariation understanding of expo-
nential growth, and then began to develop both a more sophisticated covariation perspective
and a correspondence understanding in tandem. The students’ covariation thinking influenced
the ways in which they constructed and interpreted correspondence rules, and they were
eventually able to leverage both perspectives as needed when approaching novel tasks.
Figure 2 presents a visual representation of the three stages and the component understandings
in the learning trajectory. Arrows identify the ways in which the students demonstrated
different types of movement between each of the individual component understandings over
time.

The following four sections address prefunctional reasoning, early covariation reasoning, corre-
spondence reasoning, and sophisticated covariational reasoning. In each case we present the relevant
portion of the learning trajectory and discuss students’ understandings and the tasks that supported
the development of those understandings.

Figure 2. The stages and component understandings in the exponential growth learning trajectory.
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Prefunctional reasoning

In both teaching experiments the students entered the sessions with a qualitative understanding of
exponential growth, describing such growth as beginning slowly and becoming faster over time.
Many students accompanied these explanations with gestures indicating a curve that grew sharply
steeper over time. The students could not, however, quantify the manner in which the plants grew.
Exploration with the Geogebra program enabled the students to begin to solidify and articulate a
repeated-multiplication understanding of exponential growth. Table 1 details each of the three
component understandings in the prefunctional reasoning section of the learning trajectory, along
with associated data examples and tasks. We discuss each in turn.

With a qualitative understanding of growth, students understand that the y-value, in this case the
plant’s height, grows larger at an increasing rate over time. However, they are unable to quantify the
manner of increase. Students first explored the Jactus situation within the Geogebra program, moving
the plant along the x-axis representing time in order to explore how the height changed. They then
encountered a task prompting them to draw a picture of how the Jactus grows over time. Troy, a student
from Teaching Experiment 2 (TE2), drew an upward curve and explained, “It starts moving a little bit
faster . . . in betweenWeek 1 it started going up a little bit faster and then a little bit faster and then a little
bit faster and then a little bit faster.” Uditi, a student from Teaching Experiment 1 (TE1), drew a picture
with cactus plants (Figure 3) and explained, “The difference in these two [pointing to the plant atWeek 0
andWeek 1] are like really little, but then it grows toWeek 3 and then it’s a lot more.” In both cases, the
students used qualitative terms such as “a little bit faster” or “a lot more” but could not quantify either the
height of the plant or the amount of growth.

Prompts to measure and describe the plant’s height at different points in time encouraged students to
explicitly attend to the height in inches and the magnitude of growth over time. This fostered a repeated
multiplication understanding of growth, the notion that a process such as doubling or tripling deter-
mined how the plant grew. However, at this point, the students’ focus was onmultiplication of the height
values without explicit attention to changes in time. For example, for a task requiring students to
calculate the plant’s height each week, Carter (TE2) explained how he determined the height at Week 5:

Carter: Times it by 3.
Instructor 1: Times it by 3. Why were you timesing it by 3?

Carter: Because that’s the pattern.
Instructor 1: How do you know?

Carter: Because 1 times 3 is 3, 3 times 3 is 9, 9 times 3 is 27, 27 times 3 is 81.

Figure 3. Uditi’s drawing of the Jactus’ growth over time.
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Absent from Carter’s language is attention to how much time it took for the plant’s height
to triple.

Through comparing plants with different growth rates, students began to realize that the growth
factor determined the nature of the growth, identifying plants with larger growth factors as those
that would grow taller over time. For example, given a comparison problem across three plants with
growth factors of 2, 3, and 4, Laura (TE1) could determine that the quadrupling plant grew faster
than the others, “because it’s growing 4 times and it’s more than 2 times and 3 times.” Evan (TE2)
provided a similar description, explaining that the plant with the growth factor of 4 was the fastest
growing plant because “it multiplies its height more than the others.” At this stage the students did
not attend to the connection between the growth of the y-values and the growth of the x-values; for
this reason, we coded their understanding as prefunctional.

The tasks the students encountered early in the teaching experiments were designed to encourage
quantification of both height and time. Because the students’ initial understanding of exponential
growth was qualitative, the research team constructed activities in which the students had to
measure, record, calculate, and predict height values at different time points. The teacher-research-
ers’ teaching actions also encouraged students to think about quantification. For example, when
students referred to growth as “fast growth,” the teacher-researcher responded, “How do you know
that this is fast growth? What about this shows that it grows extremely fast?” When a student
described a plant as getting bigger, the teacher-researcher pressed, “How much bigger?” The focus
on quantification encouraged attention to the growth factor and the repeated multiplication action.
However, at each component understanding in the pre-functional reasoning stage of the learning
trajectory, the students did not make explicit connections between time and height; they did not
consider height as a function of time. For that reason, it became important to develop tasks and
scenarios requiring explicit attention to the time values as well as the height values.

Early covariation reasoning

In an attempt to encourage coordination of the plant’s height with the number of weeks it had been
growing, we introduced a task in which students had to compare three student-produced drawings
of a Jactus that doubled in height every week, and determine which drawing accurately represented
the plant’s growth (Figure 4). Two students from TE2, Troy and Benito, discussed why they thought

Table 1. Prefunctional reasoning.

Component Understanding Definition Data Examples Tasks

PR1) Qualitative
Understanding

Students understand that
y-values grow larger at an
increasing rate over time, but
the manner of increase is
unquantified.

TE2, Troy: “It starts moving a
little bit faster . . . in between
Week 1 it started going up a
little bit faster and then a little
bit faster and then a little bit
faster and then a little bit
faster.”

Exploration with the
Geogebra Program via sliders;
tasks requiring students to
draw, graph, and describe the
nature of the plant’s growth.

PR2) Repeated Multiplication Students understand that
repeated multiplication
determines how height (y)
grows without attending to
time (x).

TE1, Uditi: “They’re all going up
by like times 4, like 16 times 4
is 64 and then 64 times 4 . . .
that’s 1024.”

Tasks requiring students to
measure the plant’s height,
record the height in tables,
find missing values in a
provided table, and complete
far-prediction problems for
large x-values.

PR3) Growth Factor
Magnitude

Students understand that the
magnitude of the growth
factor determines how growth
occurs.

TE1, Laura: “The tropical [is
fastest], because it’s growing 4
times and it’s more than 2
times and 3 times.”

Compare plants with different
growth factors in order to
determine which grows the
fastest over time.
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the third drawing was correct. Benito suggested they write the heights above each plant, and Troy
remarked, “So if you’re doubling it by height each time, this is what it should be for Week 2, about
that long.” Troy and Benito assigned a numerical value to the plant, considering it to be 1 inch at
Week 1, and then they understood that the height of the plant should double “each time.” They
could compare the height of the line representing the plant at Week 3 to the height of the line at
Week 2 and declare it to be twice as tall. Although the students attended to the weeks, they did not
quantify the growth in weeks. Attention to coordination of growth in height with growth in weeks
was implicit, with the phrase “each time” a common one to describe students’ multiplying process.
The following quotes are examples of students’ descriptions of their actions across both teaching
experiments:

Paj (TE2): You double each time.
Uditi (TE1): It’s starting out half the size of that and then it’s doubling each time and that one’s doubling too.
Jose (TE2): The plant doubles in size from the week before each time. So 2 it goes 4, 4 it goes 8.
Evan (TE2): It quadruples each time for growth.

In some cases, such as with Troy and Benito’s conversation above, the students explicitly
referenced the weeks. However, these references appeared to function only as a way to keep track
of how many times one had doubled (or multiplied by the growth factor). The students viewed each
week as a marker or a counter, rather than as a quantity of time (Table 2), as evidenced by both their
language and their gestures in tapping each week.

Tasks requiring students to draw pictures of the Jactus encouraged more explicit coordination
between time as quantified as a number of weeks and height in inches. For example, Carter (TE2)
encountered a task with a drawing of a Jactus that was 1/2 inches tall at Week 0, and he had to draw
the Jactus at Weeks 1–4. After producing his drawings, he explained:

Carter: This is Week 0, this is the starting height and then, so I took this height and I doubled it, and I
doubled it and this is Week 1. So I doubled . . . so I doubled Week 0. Wait . . . wait, no, hold on. I doubled Week
1 and then I got Week 2. I doubled Week 2 and I got Week 3.

You get it?

The hesitation in Carter’s explanation suggested a struggle he experienced in beginning to
articulate the explicit connection between coordinating doubling in height with additive increases
of 1 week. Carter also placed each plant’s height on the same vertical line, which could have also
accounted for his hesitation in explaining his thinking. Additional drawing tasks that included
drawing heights for missing weeks continued to support this coordination.

Tables in which the inputs increased by nonuniform amounts also encouraged more explicit
attention to time and the need to coordinate growth in height with growth in time. For example, the
students from TE1 worked with a table of values requiring the determination of the plant’s height at
Week 10 (Figure 5). Laura doubled the inches for each successive week by filling in the gaps in the

Figure 4. Three student drawings of growth over time.
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table, and she explained, “For 4 (weeks) I got 48 (inches).” Laura’s language reflected an explicit
attention to both weeks and inches, but she could only double the previous week’s height to find the
next week’s height. Laura did not yet understand that she could, for instance, find the height at Week
10 by taking the height at Week 8 and multiplying it by 4, or 22 for a jump of 2 weeks. This
component understanding is characterized by the students’ need to include every missing value in
the table in order to accommodate weeks, rather than being able to coordinate growth in height with
growth in time for multiple-week jumps.

Introducing tasks in which students had to think about how to move directly from one time (e.g.,
Week 0) to another time (e.g., Week 5) encouraged the coordination of multiplicative growth in height
with additive growth in weeks for multiple-week values. Tasks requiring the determination of an
unknown growth factor given two week and height values also helped students begin to connect the
repeated multiplication action with the increase in the number of weeks. For example, Evan’s work
(TE2) exemplifies this coordination for multiple-unit intervals when he encountered a table with three
data points, (0, 1); (5, 1024); and (18, 68719476736). He drew a line between the 1 at 0 Weeks and the
1024 at 5 weeks and wrote, “× 4 × 4 × 4 × 4 × 4,” coordinating repeated multiplication by 4 five times
with the 5-week increase in time.

The teacher-researchers’ actions also encouraged the students to coordinate repeated multiplica-
tion with an additive increase in weeks. For instance, in TE1 the teacher-researcher drew a picture of
the Jactus at Week 0 and then asked the students to predict what they would have to calculate in
order to jump directly from (a) Week 0 to Week 2, and (b) Week 0 to Week 3. Uditi explained that
to find the height at Week 2, one would have to multiply by 4 twice: “From this (gestures to Week 0)
to this (gestures to Week 1) it’s times 4, so 4 times 4 is 16.” Her explanation for part (b) is similar:

Table 2. Early covariational reasoning.

Component
Understanding Definition Data Examples Tasks

Cov1) Implicit
Coordination

Students understand that the
y-value grows by a constant
multiplicative factor “each time,”
but the time values are not
explicitly quantified.

TE1, Jill: “It’s going up by 3 each
time.” TE2, Jose: “The plant
doubles in size from the week
before each time. So 2 it goes 4, 4
it goes 8.”

This was not a targeted
conception, but could be
encouraged through tasks
requiring students to reflect
verbally and in writing on
relationships between height
and time; tasks requiring
students to draw pictures of
growing plants for different
week values and evaluate others’
pictures; tasks requiring students
to make sense of nonuniform
tables of data.

Cov2) Explicit
Coordination for
1-Unit Changes

Students can coordinate
multiplicative growth in y with
change in x for Δx = 1. If students
achieve reversibility at this stage,
it means they can take the ratio of
two consecutive y-values (for
Δx = 1) in order to determine the
growth factor.

TE1, Laura: Filled in missing gaps
in a table of data by doubling the
inches for each successive week:
“For 4 (weeks) I got 48 (inches).”

Tasks of drawing height values
at specific week values; tasks
with nonuniform tables of data
and missing entries.

Cov3) Explicit
Coordination for
Multiple-Unit
Changes
(Repeated
Multiplication)

Students can coordinate the
change in y-values for multiple-
unit changes in x-values, but their
mental imagery is grounded in
the actions of repeated
multiplication. Achieving
reversibility means students can
determine growth factors by
imagining the y-values repeatedly
multiplying Δx times.

TE2, Paj: “I took this number (the
height at Week 16) divided by this
number (the height at Week 14)
and get 9, and I tried to do this
number (the height at Week 14)
times 3 . . . 3 times 3 equals 9 and
then got this number (the height
at Week 16).”

Tasks with two or three data
points between 2 and 5 weeks
apart, requiring students to
either (a) determine missing
height values, or (b) determine
unknown growth factors.

164 A. B. ELLIS ET AL.

D
ow

nl
oa

de
d 

by
 [

Pa
tr

ic
k 

T
ho

m
ps

on
] 

at
 0

4:
52

 2
8 

Ju
ne

 2
01

6 



“Times 4 times 4 times 4.” The teacher-researcher asked the students to reflect on what they would
have to do in order to jump directly from the height at Week 0 to the height at Week 7, and after
thinking, Uditi replied, “Four times 4 is 16, 16 times 4 is 64, 64 times 4 is 256 then . . . 1024 times 4,
4096, times 4 and then it’s 16,384.”

A commonality in Uditi’s and Evan’s actions is that both needed to account for each step between
the multiweek intervals, coordinating an increase in one week with the action of multiplying by the
growth factor. The teacher-researchers eventually introduced the notation bm as a way to express
b × b × b . . . m times, and although the students quickly made use of this notation, for them it was a
representation of the action of repeatedly multiplying by the growth factor b. Students also devel-
oped the reverse understanding, determining unknown growth factors by dividing two height values
and imagining what number they could repeatedly multiply the correct number of times. For
example, given two data points (14, 9565938) and (16, 86093442), Paj (TE2) divided the two height
values to get 9. She then took the first height value and multiplied it by 3 twice to result in the second
height value. At this point, however, the students’ reliance on mental images of repeated multi-
plication limited their coordination to small-week intervals, intervals for which they could imagine
repeatedly multiplying by the growth factor. It was difficult to generalize this thinking to an interval
that was arbitrarily large or small.

Correspondence reasoning

Many of the students’ ideas about exponential growth as a correspondence relation emerged
simultaneously with their covariation reasoning. We refer to these ideas as correspondence reasoning
because they reflect the students’ ideas about the direct relation between x and y, rather than
students’ ideas about the rate of change of y for corresponding changes in x (Table 3). For example,
for a function y = 2x, students may think about y as the result of taking 2 to the x power, relating the
plant’s height of 8 inches to the number of weeks it had been growing, 3, by thinking of 8 as 23.

When the students understood that the growth factor b represents the multiplicative change in
height per week, they began to algebraically express this relationship. Tasks encouraging students to
describe generally how to determine the plant’s height on any given week fostered the correspon-
dence view. For example, Carter (TE2) responded to this question for a doubling Jactus with an

Figure 5. Laura’s table of values for the doubling Jactus.
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initial height of 1 inch. He explained the equation “y = 2x” by stating, “y is the number of weeks and
then if you times it by 2 to the power of x then it’s like, that’ll gives you the height that it goes for
each week.” When the teacher-researcher followed up by asking the students to think about how that
would help the students determine the plant’s height at Week 6, Benito explained, “It’d be 2 to the
6th power,” elaborating, “It’s doubling [for] 6 weeks so you power it to the sixth power.”

Both Benito and Carter’s language revealed a common phenomenon in that the equation y = bx

was a representation of both a direct correspondence relation (“you times it by 2 to the power of x,”
or “you power it to the sixty power”) and an expression of covariation (“the height that it goes for
each week”). When Benito said that the plant had been multiplying for six weeks, he appeared to be
thinking about the plant’s growth covariationally. The equations the students wrote often reflected
this orientation. This was likely a result of the instructional emphasis enacted in the teaching
experiments, as the teacher-researchers designed the task activities to encourage the coordination
of co-varying quantities early in the sessions.

The next two rows of Table 3 address the students’ component understandings of the parameter
“a” in y = a • bx. The students across both teaching experiments conceived of the initial height “a” as
either the “starting value,” meaning the initial height at Week 0 one can use to begin the repeated
multiplication process, or as a multiplicative constant, the value that multiplicatively changes the
height at any given week by the constant a. An example of the first component understanding occurs
in Uditi’s language from TE1. She explained why a doubling Jactus plant needed to be multiplied by
0.2 inches, the initial height: “Because that’s the starting number and you start multiplying from that
point.” Uditi considered the 0.2 inches to represent the value at which one begins the multiplication
process. In contrast, Evan (TE2) compared two doubling Jactus plants, one with an initial height of 1
inch and the other with an initial height of 3 inches. Evan wrote two equations, “height = 1 • 2# of

weeks” and “height = 3 • 2# of weeks,” and explained, “So this part of the equation (pointing to the
initial height 3) means how many times the original value is multiplied.” For Evan, the 3 in
“height = 3 • 2# of weeks” acted as a multiplicative constant.

The fourth row of Table 3 addresses students’ understanding of the growth factor b in y = a • bx.
We introduced tasks encouraging students to compare plants with different initial heights and
different growth factors in order to determine which plant would grow the fastest in the short
term and in the long term. Uditi, Laura, and Jill’s conversation from TE1 demonstrates the nature of
this understanding. They encountered a task in which the blooming Jactus was 10 inches tall when it
began growing, and it doubled each week. The evergreen Jactus, in contrast, tripled each week but
was only one inch tall when it began growing. The students all agreed that the evergreen would be
taller in the long run, with Jill explaining, “Because it triples so like when you keep going in the
weeks, it’s going to be bigger than the one that doubles.” The teacher-researcher introduced other
scenarios in which the blooming Jactus began with a height of 100 inches and 1000 inches. The
students maintained their belief that after enough time, the evergreen would always pass the
blooming Jactus, because “someday going to catch up and it’s going to get bigger than that.” In
subsequent conversations, the teacher-researcher varied the initial height values and the growth
factors, and the students maintained the idea that as long as one growth factor was larger than the
other growth factor, the plant with the larger growth factor would eventually overtake the plant with
the larger initial height but smaller growth factor. Calculating heights for different weeks and
creating and comparing graphs supported this notion.

The students eventually encountered tasks in which they had to determine the height of a plant
for a large interval, such as 20 weeks, given a known initial height and growth factor. For instance,
given a doubling Jactus with an initial height of 3 inches, the students in TE2 had to determine the
plant’s height at 20 weeks. All of the students acknowledged that they could begin with a height of
3 inches and repeatedly double the height until they reached 20 weeks, but this process was
sufficiently cumbersome that they preferred the direct correspondence relation. Carter explained
that he would determine the plant’s height by calculating 3 × 220. Generalizing his thinking, he then
explained that he could just as easily find the plant’s height at 50 weeks or 1000 weeks by calculating
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3 × 250 and 3 × 21000, respectively. Kathy then shared a general formula, y = 3 • 2x, explaining the
growth factor 2 as representing the plant’s height doubling and the x as representing the number of
weeks. The students were able to write equations for many different Jactus scenarios, varying both
the initial height and the growth factor. Evan (TE2) explained the utility of this approach, writing,
“You can do it the long way, which is doubling the starting point for each week, or you could use the
equation y = b(starting point) • 2x.” Evan’s inclusion of “starting point” was his way of explaining
what the parameter “b” represented.

The last row of Table 3 addresses a similar component understanding, that students are able to
determine unknown y-values given an x-value. The only difference between this component under-
standing and the prior one is that now students can determine y-values for non-whole-number
x-values. For example, Uditi (TE1) wanted to check the correctness of the height of a doubling Jactus
plant at 0.5 weeks when the plant’s initial height was 1 inch. She wrote “1 × 2°.5” and explained, “1 is

Table 3. Correspondence reasoning.

Component Understanding Definition Data Examples Tasks

Cor1) Algebraic
Representation of
Repeated Multiplication

Students express the repeated
multiplication pattern for a
growth factor b algebraically as
y = bx.

TE2, Carter: “y is the number of
weeks and then if you times it
by 2 to the power of x then it’s
like, that gives you the height
that it goes for each week.”

This was not a targeted
conception, but could be
encouraged through tasks
requiring the determination
of the plant’s height for any
given week; tasks requiring
the determination of the
plant’s height for Week x.

Cor2) Initial Height is a
Multiplicative Constant

Students view the initial height
value (or the “a”) in y = abx) as
the value magnifying the
height at any given week by
the constant “a.” Thus the
height value for any week k is
transformed to a • k.

TE2, Evan: “So this part of the
equation (pointing to the
initial height) means how
many times the original value
is multiplied.”

Contexts with initial heights
other than 1 inch; tasks
comparing plants with
different initial heights and
same growth rates.

Cor3) Initial Height is the
Starting Value

Students view the initial height
value “a” as the value at which
the multiplying process begins.

TE1, Uditi: “Because that’s the
starting height and you start
multiplying from that point.”

This was not a targeted
conception, but could be
encouraged through tasks
requiring students to reflect
how many times larger a
plant at n weeks is compared
to the initial height.

Cor4) Effect of Growth Factor Students understand that the
growth factor has a greater
effect on the plant’s ultimate
height than the initial height,
thus for sufficiently large
x-values, the value of y
depends more on the growth
factor than on the initial
height.

TE1, Jill: “The evergreen . . .
because it triples, so like when
you keep going in the weeks,
it’s going to be bigger than the
one that doubles.”

Tasks comparing plants with
different initial heights and
growth factors; comparing
and creating graphs for plants
with different initial heights
and growth factors.

Cor5) Correspondence
Relation, Whole Numbers

Students understand that one
can determine an unknown
y-value for any given whole-
number x-value according to
the relation y = abx.

TE2, Kathy: “For the 3-inch one,
y equals 3 times 2 [to the] x.”

Tasks requiring the
determination of y-values for
very large x-values; tasks
requiring the determination
of y-values for any general
x-value, given an initial height
other than 1 inch.

Cor6) Correspondence
Relation, Fractions

Students understand that one
can determine an unknown
y-value for any given x-value
according to the relation
y = abx, including fractions and
decimals.

TE1, Uditi: Writes y = 1 × 2°.5

and explains, “1 is the starting
number and . . . I’m trying to
put that number 0.5 because
that’s the week.”

This was not a targeted
conception, but could be
encouraged through tasks
requiring the determination
of y-values for nonwhole-
number x-values, such as
determining the plant’s
height at 0.5 weeks.
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the starting number and . . . I’m trying to put that number 0.5 because that’s the week.” The
achievement of this understanding came later than the prior understanding, and we decided that
the challenge the students appeared to experience in achieving it merited categorizing this compo-
nent understanding separately.

Covariation reasoning

As discussed, the students’ correspondence reasoning and covariation reasoning emerged in tandem,
rather than one occurring before the other. More sophisticated covariation reasoning included the
ability to explicitly coordinate the ratio of y-values for multiple-unit changes in x, including,
eventually, scenarios in which the interval was less than one. Students’ abilities to make this
transition required a shift from mental images of repeated multiplication to imagery that did not
rely on a repeated multiplication model. This transition began with the students’ process of re-
unitizing, which is described in the first row in Table 4.

Re-unitizing emerged as a way of thinking as the students began to grapple with imagining ratio
change in y for larger intervals; students would take a new chunk of time, such as three weeks, as a
unit, and then operate on that unit as the basis for coordinating multiplicative growth. Carter (TE2)
wrote a table to organize the growth of a tripling Jactus, but he ordered the weeks in units of 2 rather
than 1. Writing the ordered pairs (10, 59049), (12, 531441), (14, 4782969), and (16, 43046721),
Carter wrote “×9” between the successive height values in the table. Re-unitizing appeared to be the
first step in fostering a transition to imagining exponential growth for larger intervals and non-
standard intervals. Re-unitizing thinking coincided with the initial shifts in students’ language away
from repeated multiplication imagery. This shift may have been motivated in part because one must
conceive of growth embedded within growth in order to repeat a process of repeated multiplication
for multiweek intervals of time. For example, repeated multiplication imagery involves thinking of a
plant growing twice as tall for one week, repeating that process three times for a new interval of three
weeks, and then repeating the entire embedded process for multiple three-week intervals. It may
have made more sense to instead shift to thinking about the plant growing eight times as tall for an
interval without imagining that process as a repetition of × 2 × 2 × 2.

Prior to this point, the students’ reliance on images of repeated multiplication constrained their
ability to make sense of nonwhole number intervals in time as a measure of growth. Although
students could use their correspondence reasoning to write equations such as bx = y, for large values
of x they could only conceive of this equation as a relation between a static height value, y, and a
static point in time, x. An equation such as bΔx = R as a representation of a measure of growth (with
R = ratio of two y-values, y2 and y1 and Δx = the change in corresponding x values, x2—x1) would
not have meaning to students relying on images of repeated multiplication if Δx represented an
interval that was, for instance, a very large number of weeks—perhaps too large to mentally
coordinate an image of repeated multiplication—or a value less than one week.

The second row in Table 4 describes students’ abilities to coordinate growth in height for larger
intervals, shifting to images such as scaling and smooth change. This shift was supported by activities
with the Geogebra script that modeled continuous scaling motions, as well as by prompts to draw
graphs of exponential functions without specific values. The teacher-researchers explicitly attempted
to foster a different type of imagery for growth among the students by re-directing their attention to
the Jactus plant growing continuously over time in the Geogebra script. They asked students to
describe verbally and in gestures the nature of the plant’s growth between intervals, and introduced
tasks in which the students were encouraged to draw and graph general exponential functions
(rather than specific functions for which they could plot points). In addition, students encountered
tasks in which they had to (a) determine the growth factor of a plant with only two data points with
a large-week interval in between, or (b) use the growth factor to determine a new height value over a
large-week interval. We hypothesized that providing only two height values for a large interval in
time would encourage thinking that was not reliant on repeated multiplication, because it would be
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too difficult to mentally keep track of the multiplication process a great many times (such as for 10
or 15 weeks). For instance, Troy (TE2) was able to determine that a doubling Jactus grew 1024 times
as large every 10 weeks without writing an equation, explaining, “I did 2 to the power of 10.” The
expression 210 represented, for Troy, how many times larger the plant would grow over a 10-week
interval.

It was not always straightforward to clarify the nature of the students’ mental images, because
they did not easily articulate their thinking. Instead, we made inferences based on the students’
gestures and drawings, clues from their language as they solved problems, and noticeable shifts in
students’ strategies. For example, one strategy shift was evidenced by students becoming able to
easily determine a new height value by multiplying an existing height value by bΔx, when he or she
could previously not do so for large intervals or for nonstandard intervals. An example of a shift in
students’ language is evident from Uditi (TE1) as she determined the growth factor of a plant that

Table 4. Covariation reasoning.

Component
Understanding Definition Data Examples Tasks

Cov4) Re-unitizing Students create a new unit out of
a multiple-unit change in x in
order to operate on the new unit
multiplicatively.

TE1, Uditi: “It’s 8 for 3 weeks . . . 8
times 8, I mean 8 times 8, yeah,
equals 64 for the 6 weeks.”

Tasks requiring students to
determine the growth factor for
different periods of time for the
same data; e.g., “How does this
plant grow each week, every
three weeks, and every half a
week?”

Cov5) Explicit
Coordination for
Multiple-Unit
Changes
(Exponentiation
Imagery)

Coordination of the ratio of
y-values for any Δx > 1; students
no longer rely on repeated
multiplication imagery.

TE2, Carter: “This (height of
6144 inches at 12 weeks) times 2
to the power of 7 (yields the
height of a doubling Jactus at 19
weeks).”

Prompts to draw non-specific
exponential functions without
plotting points; tasks with only
two data points with large
x-value intervals.

Cov6) Coordination
for Multiple-Unit
Changes to
Determine New
y-Values

Students determine new height
values through coordinating
multiplicative change in y with
additive change in x; in particular,
they no longer need to rely on
the initial value but can instead
determine y2 from any y1 by
multiplying y1 by b(x2-x1) for a
growth factor b.

TE1, Uditi: (Multiplying 0.6 × 313):
“0.6 is the week number 1, and
then 3 is how much it goes by
and 13 is the difference between
these two [Pointing to Week 1
and Week 14].”

Tasks requiring the
determination of y-values for
large x-values; Prompts to
determine whether a given
point in a table of values is
correct or incorrect.

Cov7) Reversibility
(Determining
Growth Factor)

Students can determine an
unknown growth factor b by
coordinating the ratio of two
y-values, y2 and y1, with the
corresponding difference in
x-values, Δx, taking the Δx’th root
of y2/y1.

TE2, Benito: [Given two points, (8,
25.6) and (18, 26,214.4), Benito
took the tenth root of 26,214.4/
25.6 = 1024]: “If it’s 26,214.4
divided by 25.6, equals 1,024. And
then, 1,024, you do that to the
number of weeks.”

Tasks or tables with provided
data points requiring students
to determine an unknown
growth factor. Data points with
large intervals between the
x-values particularly target the
development of this idea.

Cov8) Coordinating
Multiplicative
Change in y with
Additive Change
in x, any Δx

Coordination of the ratio of
y-values for any change in x,
including when Δx is < 1.

TE1, Uditi: [Given a plant that
triples each week, how much
does it grow in a day?] “For one
week there are 7 days, and I
divided 1 by 7 . . . and I got 0.14,
so I did 3 over 0.14.” [Writes
30.14 = 1.17].

Tasks prompting students to
determine the nature of growth
for Δx values < 1.

Cov9) Constant
Change in x Yields
Proportional
Multiplicative
Constant Change
in y

Students understand that for any
Δx, the ratio of the two
corresponding heights y2 to y1
will be b(x2—x1) and does not
depend on the individual x1 or x2
values.

TE1, Jill: [How many times taller
would a plant with a growth
factor of 2 grow from Week 100
to Week 103?] “It’s going to
always go up by the same
amount. It’s always going to
double every week and go up by
8 every 3 weeks.”

Tasks requiring students to
determine the growth factor for
different time periods; tasks
requiring students to predict the
growth factor for time periods
with values too large to
calculate.
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was 256 inches at 4 weeks and 1,073,741,824 inches at 15 weeks. In prior days, the students struggled
to make sense of this problem because the 11-week interval was too large to coordinate imagined
repeated multiplication. Now, however, both Uditi and Jill could take the ratio of the two height
values (4,194,304) and write the equation “___11 = 4,194,304” as a way to express the relationship
between additive growth for 11 weeks and the quotient of the two height values. When asked to
describe her thinking that led to this equation, Uditi stated, “It’s growing in an exponential growth,”
with an accompanying hand gesture indicating a smooth process of increasing height over time.
Uditi’s shift in language when describing the growth provided additional evidence that her images of
growth had changed.

Students’ shifts to coordinating multiplicative growth in y for large intervals fostered the use of
this coordination in order to determine new y-values, as described in the third row of Table 4. As an
example, Carter (TE2) examined a plant with a height of 1024 inches at 5 weeks and
68,719,476,736 inches at 18 weeks. Guessing that the growth factor was 4, Carter multiplied
1024 inches by 413 to confirm the new height. Carter explained that he multiplied the height at 5
weeks by 413 because “five is 13 weeks away from 18,” and “Four to the power of 13, that way, you
don’t have to keep timesing it by 4 every time.” The students’ use of exponential notation truncated
the repeated multiplication process and further supported a shift in thinking to multiplicative growth
that could occur for large or nonstandard intervals.

The students’ growing comfort with the exponential notation bΔx as a representation of multi-
plicative growth was evidenced in their eventual use of the root operation to determine unknown
growth factors. In particular, once the students had interiorized multiplying a height value by bΔx as
way to multiplicatively scale that value by b for Δx weeks, they could then think about the reverse
operation, taking the Δx’th root of y2/y1 in order to determine b. This reasoning can be seen in
Benito’s (TE2) work in determining the growth factor b given two points, (8, 25.6) and (18, 26,214.4)
(Figure 6).

Benito explained, “See this, if it’s 26,214.4 divided by 25.6, equals 1024. And then, 1024, you
do that to the number of weeks.” Benito was not familiar with formal language such as taking the
tenth root, but his written work indicates that he did take the tenth root of 1024. He struggled to
explain what operation the tenth root accomplished: “If you divide that 10 times, if you divide it
. . . wait. If you do it down, and then by the number of weeks that went by.” It is reasonable that
Benito first tried to describe the operation as repeated division, since he conceived of it as the
opposite operation as exponentiation, but Benito then adjusted his language. Later, he explained
the operation as “We’re seeing what times what equals that number, but it has to be the same
number squared. So you square root it.” Similarly, Evan (TE2) could describe this strategy in
general terms: “I divide the height at more weeks by the height at less weeks. And then I find the
difference in the number of weeks, and then I use that to root the quotient of the height.” Benito
and Evan understood the quotient, 1024, as how many times taller the plant became in 10 weeks;

Figure 6. Benito’s method for determining the growth factor from two height values.
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1024 was the growth factor for an interval of 10 weeks. The students could take the tenth root to
determine the growth factor for 1 week, 2, because they understood that if 2 was the growth
factor for an interval of 1 week, 210 must be the growth factor for an interval of 10 weeks.
However, we do not have evidence that Benito or Evan would have understood this relationship
for partial intervals, such as an interval of half a week or one day.

It was necessary for students to be able to coordinate multiplicative growth in y with additive
growth in x for large intervals in a manner that no longer relied on images of repeated multiplication
in order to then make sense of cases in which the time intervals were less than one. This occurred
with Uditi’s (TE1) thinking about a problem with only two data points. The plant had a height of
12.513 inches at 2.3 weeks and 13.967 inches at 2.4 weeks, and the students had to determine how
the plant grew every 0.1 weeks and every week. All of the students took the ratio of the two height
values, which was approximately 1.116, and stated that the plant would grow 1.116 times as tall for
each tenth of a week. While Jill and Laura then struggled to use this information to determine how
much the plant would grow in one week, Uditi wrote “__0.1 = 1.12”, indicating that the blank
represented the weekly growth factor. At this point Uditi could now write an expression with a
decimal exponent representing a measure of growth rather than a static value, explaining that the
exponent, 0.1, represented “the difference between the height [between Week 2.3 and Week 2.4]”
and the quotient, 1.12, as how much the plant “goes 1.12,” which appeared to mean how many times
taller the plant grew in 0.1 week. Uditi could then determine that the weekly growth factor was 3,
explaining 3 as “the difference between the height for like every week, like a change of 3.”

In a separate task on a different day, the students in TE1 again determined the growth factor to be
approximately 1.116 for an increase of 0.1 weeks. Uditi was able to relate the growth for 0.1 weeks to
the growth for 1 week by raising the growth factor 1.116 to the tenth power, concluding that the
weekly growth factor was 3. The teacher-researcher asked Uditi, “How come it’s to the tenth power
instead of times 10?” and Uditi replied, “Because it grows, like, up for this one [indicates movement
from 0 weeks to 0.1 weeks], and then you’ll have to do that again to get this one, it’s, like, two times
to get this one, [indicates from movement from 0.1 weeks to 0.2 weeks] so, and then it goes by 10.”
This suggests that Uditi may have constructed an image of the plant’s height stretching in a scaling-
up process such that at each time point (i.e., at 0.1 weeks, at 0.2 weeks, etc.), the height was 1.116
times as tall as it was at the prior time point.

We designed and implemented two types of tasks to support students’ thinking of exponents as
measures of growth rather than as static values for intervals less than one. First, we encouraged
students to imagine what occurred with the plant’s growth between intervals. For example, if a plant
triples each week, what happens after 1 day, or 1 hour? We encouraged discussion about how the
plant grew in between a given interval. Second, we developed tasks that required a shift from
calculation to anticipation. The students typically solved problems that provided specific height
and time values, and they took ratios in order to determine growth factors. A task we introduced at
the end of the teaching experiment provided the growth factor, or a way to easily determine it, and
then asked students to predict what the ratio of y-values would be for different time intervals. These
tasks required students to work with a known interval (x2—x1) and a known growth factor b and
then anticipate how to determine, rather than calculate, a corresponding ratio y2/y1. Relying on
numbers that were too large to directly calculate may have encouraged students to think directly
about the relationship between the growth factor, b, and the interval, (x2—x1).

The final component understanding in Table 4 addresses the idea that a constant additive change
for x yields a constant ratio for y, regardless of the individual x-values; for instance, for a function
with a growth factor of 3, y will grow 9 times as large for any 2-week interval, regardless of whether
that interval occurs between x = 1 and x = 3 or between x = 101 and x = 103. Troy (TE2)
demonstrated an awareness of this idea when he sought to confirm that a plant with a growth factor
of 4 would grow 64 times as tall for 3 weeks. Working with a uniform table of data with x-values
ranging from 3 to 8, Troy took the height value at Week 6, which was 4,096 inches, and divided it by
the height value at Week 3, which was 64 inches. Finding the quotient to be 64, Troy then suggested
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that a way to check his work would be to take the quotient of two height values for a different 3-week
interval, between Week 4 and Week 7: “Try 256 [The plant’s height at Week 4] divided by Week 7.”

Students’ progressions through the learning trajectory

The existence of a learning trajectory does not imply that all students will progress through the
component understandings in an identical or similar path. In tracing the trajectories of individual
students through both teaching experiments, we identified multiple paths through the trajectory.
However, despite this variation, there also appeared a general progression of ideas that manifested in
different ways for different students. In order to discuss these similarities and differences, we present
three students’ progressions through the learning trajectory. All three progressions identify a parallel
development of covariation and correspondence reasoning, which we discuss in more detail in the
next section.

As a reminder, the final version of the EGLT was not in place before the development of the tasks
used in both teaching experiments, but rather emerged after the enactment of both teaching
experiments. It is the result not only of the retrospective analysis process, but was also influenced
by the initial hypothetical learning trajectory and by the understanding the students demonstrated at
the beginning of the teaching experiments. Thus the initial task sequences and the final learning
trajectory are related, but the component understandings in the trajectory emerged after the task
development process.

We present the task sequences enacted in the two teaching experiments in Figure 7. The graphs in
Figure 7 depict the progression of tasks and the component understandings targeted by each task;
this was determined after the completion of the final EGLT. Each graph is divided into days of the
teaching experiments, with TE1 consisting of 12 days and 54 tasks and TE2 consisting of 9 days and
37 tasks. The prefunctional stage is depicted in orange, early covariation stage in blue, correspon-
dence stage in purple, and the more sophisticated covariation ideas are shown in green.

Because the final learning trajectory was developed after the task sequences were developed, the
graphs depict the component understandings targeted by each task in relation to this final version,

Figure 7. Target component understandings for each task in the teaching experiments.
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rather than to the hypothetical version in place before the enactment of the teaching experiments.
Thus some component understandings on the trajectory are not targeted by any of the tasks. For
example, this is the case with Cov1, the implicit coordination of the change in y-values with the
change in x-values. This is a component understanding not targeted by any task because our
intention was to foster explicit coordination (Cov2). Cov1 emerged from our retrospective analysis,
and thus is part of the learning trajectory even though it was not an idea deliberately fostered by any
of the tasks. The same is true for the component understandings Cor1, Cor3, and Cor6, which were
all emergent understandings that were not targeted by the task sequence.

An important distinction between the two teaching experiments was that the second teaching
experiment only implemented about two thirds of the tasks used in the first teaching experiment. This
occurred due to the limited time frame of the second teaching experiment, which lasted only 9 days
instead of 12 days. Moreover, the tasks that were not implemented were the later tasks, which were
specifically aimed at sophisticated covariation reasoning. The lack of inclusion of these tasks is evident in
the individual trajectories of the majority of the students in the second teaching experiment.

Individual students’ trajectories
All of the students began with prefunctional reasoning. The students in TE1 then began to engage
with early covariational reasoning and then with correspondence reasoning, whereas the students in
TE2 more predominantly engaged with early covariation and correspondence reasoning concur-
rently. This may be due to differences in the students’ experiences with functions; the students in
TE1 were eighth-grade students with fewer classroom experiences with function families than the
students in TE2, who were rising ninth graders and may have been more comfortable with
correspondence reasoning in general.

All of the students roughly progressed in similar manners throughout the major stages of the
learning trajectory; individual differences appeared in (a) the degree to which students could engage
in sophisticated covariation reasoning, and (b) the prevalence and timing of the development of
correspondence reasoning. In this section we present the learning trajectories for three students:
Uditi, Jill, and Evan. In each case, the student’s trajectory is depicted along with the task trajectory
from Figure 7 superimposed on the same representation. The colored portions represent the
student’s actual trajectory, and the black outlines represent the superimposed task trajectory. This
enables a comparison between the intended component understandings targeted by each task and
the component understandings for which each student demonstrated evidence on that task. In some
cases, the evidence for a particular understanding was considered weak evidence by the research
team; these are depicted with lighter-colored boxes. Weak evidence occurred in cases in which the
research team thought it likely that a code applied to a student’s thinking, but the data were open to
multiple interpretations. For example, in one case Uditi determined that a Jactus grew 4,194,304
times as tall from Week 4 to Week 15. When asked whether the plant would always grow 4,194,304
as tall for any 11-week interval in time, and she wrote, “Yes, because it is the rate in which it is
growing for every 11 weeks and the equation shows that too.” Although her response appeared to
indicate an understanding that a constant interval in x yields a constant multiplicative growth in y
(Cov8), her written explanation was not conclusive and the transcript did now show any additional
discussion of this idea. Thus, we considered it plausible that Uditi’s understanding of Cov8 was
emerging.

Uditi (TE1). Uditi’s progression through the learning trajectory is depicted in Figure 8. The n/a for
Task 22 indicates that Uditi did not complete that task, and the 0 depicted in Task 43 indicates that
although Cov8 appears to be a targeted component understanding for that task, because it is outlined
in bold, it was not targeted; instead, the targeted component understandings for Task 43 were Cov5,
Cov7, and Cov9.

Uditi is one of the students who developed some of the most sophisticated and flexible ideas
about exponential growth, with her progression through the learning trajectory demonstrating
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multiple instances of the higher covariation understandings. Initially Uditi engaged in early covaria-
tion reasoning, and beginning on the third day, she demonstrated evidence of correspondence
reasoning, which continued throughout the rest of the teaching experiment. Early covariation
reasoning and correspondence reasoning co-occurred throughout the first half of the teaching
experiment. During the second half of the teaching experiment, Uditi developed sophisticated
covariation reasoning, which became a strong presence in her thinking overall while simultaneously
not eliminating earlier forms of reasoning. Uditi’s progress shows that early covariation ideas,
correspondence reasoning, and sophisticated covariation ideas all mutually occurred. For example,
Uditi’s strong covariational reasoning enabled her to develop a more sophisticated correspondence
strategy in which she did not have to rely on “the starting value” to find the height value at a given
time and thus build a correspondence equation. Instead, she could take a height value at any point in
time and multiply it by the growth factor raised to the power of the relevant time interval. For
example, when encountering a tripling Jactus with only two height values at Week 14 and Week 16,
Uditi had to determine whether a height of 0.6 inches at Week 1 was correct. In order to check, Uditi
multiplied 0.6 by 313 to see whether the new height was the same as the table’s value at Week 14.
Uditi could conceive of the expression 0.6(313) = 956,593.8 as a representation of how many times
taller the plant grew in a 13-week interval.

Jill (TE1). Jill’s progression can be seen in Figure 9. Jill was absent on Days 3 and 8, as shown by the
greyed out columns. Although Jill’s progression through the trajectory has many similarities to
Uditi’s, one can observe more gaps in her early covariation understanding. Jill engaged in covariation
reasoning less than Uditi did throughout the teaching experiment, and she relied heavily on her
correspondence thinking. During the last three days of the teaching experiment Jill began to develop
some sophisticated covariation component understandings, but she did not engage with Cov6 or
Cov7 at all, and demonstrated only one instance with weak evidence of Cov8. The third day of the
teaching experiment reflected a strong emphasis on building an understanding of covariation, and
Jill’s absence on that day may have hampered her development moving forward. Because Jill lacked a

Figure 8. Uditi’s progression through the learning trajectory.

Figure 9. Jill’s progression through the learning trajectory.
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robust understanding of covariation, she often relied on finding correspondence rules, even when
the tasks did not require it. Jill’s strong reliance on correspondence reasoning may have also been
responsible for the relatively late emergence of more sophisticated covariation component
understandings.

Evan (TE2). Evan’s progression through the learning trajectory (Figure 10) depicts some interesting
contrasts to Uditi and Jill’s. (The n/a depicted for Tasks 24 and 25 indicate that Evan did not
complete those tasks.) During the first three days of the teaching experiment, Evan frequently
demonstrated evidence of component understandings further along the trajectory than what was
intended in the tasks. For example, the first task on Day 2 was intended to elicit PR2, the idea that
repeated multiplication determines how the y-values grow over time. Evan demonstrated the
component understandings Cov2 and Cor1, showing an explicit coordination of the change in
y-values for a 1-unit change in x, and representing that coordination algebraically as y = bx.
Beginning with Day 4, however, Evan demonstrated evidence of the target component understand-
ings, or understandings below those targeted, similar to Uditi and Jill.

Evan was able to engage in both covariation reasoning and correspondence reasoning, but his
progression does not convey a robust grasp of the sophisticated covariation component under-
standings. In part this occurred because the structure of the second teaching experiment did not
always provide Evan with sufficient time to engage with the tasks he found particularly challenging.
However, it is notable that Evan demonstrated evidence of one of the most sophisticated covariation
component understandings, Cov7, the idea that one can determine an unknown growth factor by
taking the Δx’th root of x2/x1; this was a component understanding that neither Uditi nor Jill
demonstrated. It is also worth noting that Evan only participated in the teaching experiment for 9
days and 37 tasks in contrast to 12 days and 54 tasks. Given more time, we would expect to see a
stronger prevalence of sophisticated covariation reasoning in Evan’s progression.

The task sequence depicted in Figure 7 is not identical to any one student’s progression through
the learning trajectory. The students’ progressions did not mirror the progression of component
understandings the tasks were supposed to elicit, but across all three students one can observe the
covariation and correspondence perspectives developing in tandem. A strong emphasis on develop-
ing a covariation understanding of exponential growth was present in the tasks we developed and
enacted, which reflected our goals as researchers in privileging covariational reasoning. Our belief
was that an emphasis on covariation would support the development of meaningful correspondence
rules, which was borne out by the data. In general, the individual differences in students’ progres-
sions emphasize the point that a given task sequence is not determinative of student conceptual
development. One cannot ignore the role of instruction, students’ existing ways of thinking and

Figure 10. Evan’s progression through the learning trajectory.
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operating, students’ dispositions, the interactions students engage in with one another and with the
tools in their environment, and other factors in influencing student learning. However, we found the
exercise of identifying individual student progressions helpful in supporting our goals of under-
standing why the students developed the ideas that they did in relation to their mathematical activity
when engaging in the provided tasks.

Discussion

The construction of learning trajectories is a critical task facing mathematics education researchers
(Steffe, 2004), particularly for challenging or poorly understood conceptual areas. By offering an
empirically based learning trajectory articulating the development of students’ initial understanding
of exponential growth, our aim has been to contribute to the field’s knowledge of students’ learning
processes and how they can be supported. Our findings suggest that situating an exploration of
exponential growth in a scenario in which students can manipulate continuously covarying quan-
tities in a dynamic environment can foster their ability to coordinate multiplicative growth in y with
additive growth in x, a key element in understanding the nature of exponential growth. As a caveat,
we caution that the EGLT is grounded in data from two groups of students whose initial under-
standing of exponentiation was limited to models of repeated multiplication. Secondary students
with more in-depth exposure to exponential growth, particularly those who understand exponential
growth as a function, will likely follow a trajectory with different entry points.

In addition, the students’ abilities to coordinate the ratio of height values for corresponding time
intervals played a significant role in their development of algebraic representations. In general, the
students’ early covariational thinking preceded their ability to develop correspondence rules of the
form y = f(x). This was particularly true for the students in the first teaching experiment, who had
not yet had any formal exposure to nonlinear functions in school. This finding lends credence to
Smith and Confrey’s (1994) assertion that students typically approach functional relationships from
a covariational perspective first, although the instructional emphasis on covariation as enacted
through the task progression and the teacher-researchers’ mathematical emphases certainly played
a role as well.

EGLT offers a proof of concept that even with a relative lack of algebraic sophistication,
middle school students can generalize their understanding of exponential growth to view ba as a
factors of b, even for non-natural values of a, a finding suggested in theory by Weber (2002),
elaborated in Strom’s (2008) discussion of partial factors, and borne out in our data for one
student in particular, Uditi. Our findings suggest that reasoning with covarying quantities is a
critical aspect of building this particular understanding of exponential growth. Although the
Jactus context introduced some constraints, particularly in terms of limiting the growth factor to
four or less in order to enable numbers small enough for the students’ calculators to accom-
modate, we considered the constraints acceptable because the Jactus scenario offered a context in
which students could make meaningful sense of non-natural exponents by imagining the height
of the plant growing over time.

The students’ abilities to view an image of a plant growing smoothly over time, however, does not
mean that they achieved smooth continuous variation thinking (Thompson & Carlson, in press).
While it is efficacious to enable students to reason about quantities that, from the researcher’s
perspective, vary continuously rather than in a discrete manner, our data also indicate that placing
students in continuous contexts does not guarantee that students will then reason continuously.
Smooth continuous variation would require the ability to imagine variation in the height’s value as
its magnitude increases in bits while simultaneously anticipating that within each bit, the value varies
smoothly. This way of thinking is challenging for middle school students, in part because exponen-
tial growth is defined geometrically, with the function values forming a geometric progression. How
the students thought about growth covariationally involved considering a new value as the product
of a prior value and a growth factor, a manner of thinking that is inherently chunky.
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The students had to shift away from repeated-multiplication imagery in order to make sense of
larger intervals or partial intervals. Scenarios that afford these images, such as a growing plant, may
support this shift better than scenarios that are discrete, such as coins placed on a chessboard in a
doubling manner. Some students, such as Uditi and Benito, could ultimately think about variation in
the height’s value as increasing by intervals of a fixed size. Uditi in particular could consider time
varying for different intervals and knew that she could determine the plant’s height for any value in
between two time values. For example, she knew that if the plant grew for a tenth of a week, there is
a constant growth factor for a 1/10th time period, and that growth factor raised to the tenth power
yields the growth factor for a week.

Confrey and colleagues (2009) reminded us that a learning trajectory, while emphasizing students’
refinement of their own understanding, is also influenced by instruction. The EGLT is a reflection of
the research team’s emphasis on the coordination of covarying quantities, which is seen in the co-
evolution of the covariation and correspondence views both in the progression of tasks and in the
progressions of individual students. School mathematics instruction typically emphasizes the corre-
spondence perspective at the expense of covariational reasoning, which may foster a restricted
concept image of function, as students are not encouraged to think about change between variables
(Thompson & Carlson, in press). Students may therefore miss out on important opportunities to
meaningfully engage in correspondence rules, creating expressions and equations that represent a
flexible understanding of a constant ratio change in y for each constant additive change in
corresponding x-values according to the relation bx2�x1. A focus on correspondence rules alone
may run the risk of supporting a shallow understanding of exponential equations that is more
procedural than conceptual in nature (Ozgur et al., 2013). In contrast, researchers (e.g., Carlson
et al., 2002; Smith, 2003) have suggested that the covariation approach can support more powerful
generalizations that can be later expressed algebraically as a correspondence relationship; our
findings indicate that this can be the case for exponential growth.

Lesh and Yoon (2004) cautioned against assuming that a student identified as thinking at a
particular level in a trajectory will then function at that level across all other tasks. The individual
students’ progressions through the EGLT lend credence to this warning; in particular, evidence of a
student’s functioning at a particular component understanding or stage did not result in any student
remaining at that stage of thinking in a stable manner throughout the teaching experiment. Instead,
our findings indicate that students transition back and forth between different component under-
standings, continuing to demonstrate some of the foundational early ideas concurrently with more
sophisticated ones. Thus, it is important to provide repeated opportunities to reason through tasks
targeting the same ideas in order to allow students time to reflect on and solidify their thinking (Ellis,
Ozgur, Kulow, Williams, & Amidon, 2015).

Findings from the teaching experiments and the subsequent development of the EGLT suggest a
number of instructional implications to support algebra students’ emerging understanding of
exponential growth. First, students may enter an exponential functions unit without strong func-
tional reasoning in place; this may be particularly true for younger adolescents. It is therefore
important to begin addressing ideas of exponential growth by encouraging students to identify the
relevant quantities in a situation and to explore how those quantities co-vary. Students in the later
grades may be better poised to think covariationally if they enter a unit already reasoning with the
Cor1/Cov1 component understandings in place. Providing students with situations in which they
can observe, visualize, and manipulate the relevant quantities, such as the Jactus scenario, can
support these goals. Further, students’ abilities to coordinate growth between quantities may likely
be implicit at first, and they may require deliberate support in order to explicitly attend to how both
the x-values and the y-values change together.

The EGLT depicts one possible set of understandings students can develop when reasoning with
ideas about exponential growth. While it is not prescriptive, the learning trajectory offers a greater
understanding of students’ learning of a challenging topic along with insights into how particular
tasks and instructional moves can support such learning. These findings enabled us to identify a set
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of instructional and curricular recommendations for supporting students’ function understanding.
While it will be important to study the effects of scaling up such recommendations to whole-class
implementations, a task in which we are currently engaged, the learning trajectory itself serves as a
valuable tool for supporting curriculum design and framing pedagogical recommendations. These
findings contribute to a body of work aimed at explicating, understanding, and supporting students’
learning and development as they engage in mathematically challenging and meaningful ideas.
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