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Perspectives on Advanced
Mathematical Thinking

Annie Selden and John Selden
Department of Mathematical Sciences
New Mexico State University

This article sets the stage for the following 3 articles. It opens with a brief history of
attempts to characterize advanced mathematical thinking, beginning with the delib-
erations of the Advanced Mathematical Thinking Working Group of the Interna-
tional Group for the Psychology of Mathematics Education. It then locates the arti-
cles within 4 recurring themes: (a) the distinction between identifying kinds of
thinking that might be regarded as advanced at any grade level, and taking as ad-
vanced any thinking about mathematical topics considered advanced; (b) the utility
of characterizing such thinking for integrating the entire curriculum; (c) general tests,
or criteria, for identifying advanced mathematical thinking; and (d) an emphasis on
advancing mathematical practices. Finally, it points out some commonalities and dif-
ferences among the 3 following articles.

This introduction and the following three articles discuss several diverse views of
advanced mathematical thinking (AMT). We first provide a brief overview of the
landscape, without developing any particular aspect in detail, and then locate these
three articles within four recurring themes found in the growing literature. All
three articles discuss ways of thinking about or doing mathematics that the authors
consider beneficial for students. Sometimes referred to as “mathematical habits of
mind” or “mathematical practices,” these ways of thinking about and doing mathe-
matics may be fairly widely regarded as productive, but are often left to the implicit
curriculum. That is, they are usually not taught explicitly, and in current school
curricula, may not be considered by teachers as part of their responsibility. Indeed,
some teachers may not see such habits of mind as capable of being taught. Perhaps
that is one reason the recent RAND Mathematics Study Panel advocated the teach-
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ing and learning of mathematical practices as one of three large focal areas for fu-
ture research in mathematics education (Ball, 2003). We conclude with a brief
comparison of the three articles.

We hope that by laying out some recurring themes in the discussions of AMT
that further progress in designing and implementing curricula will be encouraged,
and that by introducing aspects of advanced mathematical thinking or its precur-
sors earlier, the K—16, or even the K—graduate school curricula can become better
integrated. In this, we are encouraged by the most recent NCTM Principles and
Standards for School Mathematics (2000) that recommend Problem Solving, Rea-
soning and Proof, Communication, Connections, and Representation Standards
for all instructional programs from prekindergarten through Grade 12. These pro-
cess standards include the recommendation that all instructional programs should
enable students to: (a) apply and adapt a variety of appropriate strategies to solve
problems; (b) select and use various types of reasoning and methods of proof; (c)
analyze and evaluate the mathematical thinking and strategies of others; (d) under-
stand how mathematical ideas interconnect; and (e) select, apply, and translate
among mathematical representations to solve problems. Parts of the discussions of
AMT in this issue can be interpreted as if they were an attempt to come to a better
understanding of what these five NCTM recommendations mean, and perhaps,
also to supplement them.

A BRIEF HISTORY

From initial considerations thereof, the term advanced mathematical thinking has
been fraught with ambiguity—does the term advanced refer to the mathematics, or
to the thinking, or to both? Clearly, more advanced topics in the curriculum, such
as calculus or differential equations, cannot be grasped without a solid understand-
ing of more elementary topics, such as function and rate of change. These, in turn,
depend on an understanding of proportion and number. Also, the thinking lies on a
continuum—processes such as analyzing, conjecturing, defining, formalizing,
proving, generalizing, and synthesizing, although more frequent in advanced
mathematics, can and should develop from elementary grades onward (See
Dreyfus, 1990).

Researchinto cognitive, and other aspects, of mathematical thinking and learning
began with elementary topics, such as the acquisition of early number concepts. In-
deed, research on more elementary concepts was predominant in the work of the In-
ternational Group for the Psychology of Mathematics Education (PME) from its be-
ginning in 1976 until the mid-1980s (Dreyfus, 1990). Then, in 1985, aPME Working
Group on Advanced Mathematical Thinking was formed, and it continued meeting
until the late-1990s. For practical purposes, when initial discussions failed to co-
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alesce around a single satisfactory definition, this Working Group focused its efforts
on the teaching and learning of mathematics at the tertiary level.!

Three products resulted from the deliberations of this PME Working Group: (a)
a chapter on advanced mathematical thinking authored by Tommy Dreyfus in an
International Commission on Mathematical Instruction Study Series volume fea-
turing the work of PME (Nesher & Kilpatrick, 1990); (b) a volume that considered
the nature of advanced mathematical thinking, cognitive theory, and overviews of
research into the teaching and learning of such advanced topics as limits, differen-
tial equations, infinity, and proof (Tall, 1991); and (c) a special issue of Educa-
tional Studies in Mathematics devoted to advanced mathematical thinking
(Dreyfus, 1995).

Inthe second of these, Tall (1991, p. 20) asserted that “The move from elementary
to AMT involves a significant transition: that from describing to defining, from con-
vincing to proving in a logical manner based on definitions.” Expanding on this in a
subsequent PME plenary address, Tall (1995) stated that cognitive growth from ele-
mentary to AMT can be hypothesized as starting “from ‘perception of” and ‘action
on’ objects in the external world, building through two parallel developments—one
visuo-spatial to verbal-deductive, the other successive process-to-object encapsula-
tions using manipulable symbols” (p. 63) leading eventually “from the equilibrium
of visual conviction and proceptual manipulation to defined objects and formal de-
duction.... The full range of creative advanced mathematical thinking is mainly the
province of professional mathematicians and their students” (p. 71).

Somewhat later, beginning in 1998, related issues were taken up by a Working
Group of the North American Chapter of the International Group for the Psychol-
ogy of Mathematics Education (PME-NA) titled, The Role of Advanced Mathe-
matical Thinking in Mathematics Education Reform. This PME-NA Working
Group began by discussing such questions as what kinds of earlier experiences
might help students make the transition to the kinds of AMT that postsecondary
students are often asked to engage in (Heid, Ferrini-Mundy, Graham, & Harel,
1998). This rather naturally metamorphosed into efforts at characterizing AMT
and looking for seeds thereof that are, or could be, planted early in students’ mathe-
matical careers. For example, the tendency to interpret a concept in multiple ways
can be useful for problem solving at various levels (Heid et al., 1999). Three per-
spectives emerged:

1. AMT deals with the kind of thinking that occurs mainly at the collegiate or
graduate levels and requires precise reasoning about ideas that are not entirely ac-
cessible to the five senses. This view is expanded upon in the Edwards, Dubinsky,
and McDonald article (this issue).

IThis is our own observation, based on participating in all but the first few meetings of the Working
Group.
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2. A consideration of AMT as involving the overcoming of epistemological
obstacles, together with ways of thinking that are helpful in this. This view has
been extended to the current Harel and Sowder article (this issue).

3. A preference for focusing on “advancing mathematical activity” centered
around expanded definitions of horizontal and vertical mathematizing (Treffers,
1987) as exemplified by the mathematical practices of symbolizing, algo-
rithmatizing, and defining. This view has been expanded into the current Rasmus-
sen, Zandieh, King, and Teppo article (this issue; see Heid, Harel, Ferrini-Mundy,
& Graham, 2000).

Over the past 10 or so years, “advanced mathematical thinking” has come to be
a descriptor, or key word, that authors can, and often do, use to describe their re-
search for journals such as the Journal for Research in Mathematics Education
(JRME). As with all such descriptors, it is left to authors to determine which key
words describe their research, and thus, the phrase has come to mean “whatever the
author chooses it to mean” (E. Silver, past editor of JRME, personal communica-
tion, April 8, 2003). The main effect of this, perhaps resulting from authors taking
their cue from the bulk of the research reported in Tall’s (1991) seminal volume,
seems to have been that the term is often used to signal mathematics education re-
search at the tertiary level. Although Thompson (1993) titled his review of the Tall
(1991) volume, Yes, Virginia, Some Children Do Grow Up to Be Mathematicians,
he also noted that Tall had emphasized that “advanced mathematical thinking does
not begin after high school” and that “this thinking must begin in the first grade.”
Pimm (1995), in his rather critical review of the Tall (1991) volume, observed that
the adjective “advanced” had been applied, by the book’s chapter authors, vari-
ously to describe both the mathematics and the thinking. Pimm, noting that one can
always advance beyond the state one is currently in, questioned whether there is
even such an entity as AMT.

That AMT should have something to do with the nature of advanced mathemat-
ics, toward which one can view elementary mathematics as aiming, as well as
something to do with the practices of mathematicians, does not seem in doubt.
However, exactly what features might characterize that mathematics and that
thinking continues to be deliberated. Furthermore, exactly how one might foster
such thinking in a seamless way so that the seeds, or precursors, of that thinking are
planted and nurtured from early on is still an open question—a question addressed
in this issue.

Although the NCTM Principles and Standards for School Mathematics (2000)
advocate that the process standards (problem solving, reasoning and proof, com-
munication, connections, and representation) be integrated across instructional
programs from prekindergarten through Grade 12—in effect, that students’ mathe-
matical thinking should become progressively more advanced—accomplishing
this is no easy task. However, there are some indications of how early exposure to
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challenging mathematical ideas can provide experiences upon which to draw for
subsequent, sometimes much later, mathematical generalizations and abstractions
(cf. Maher & Martino, 1996a, 1996b, 1997; Maher & Speiser, 1997).

What special kinds of thinking, by undergraduates, graduate students, and
mathematicians are especially associated with advanced mathematics? Indeed,
what kinds of mathematics might reasonably be regarded as advanced within the
kindergarten through graduate school curricula?

FOUR RECURRING THEMES

Our review of the literature, together with the three articles herein, suggests four
general themes regarding the nature of, and possible characterizations of, ad-
vanced mathematical thinking.

Advanced Thinking Versus Advanced Mathematics

The first theme concerns the distinction between, on the one hand, directly iden-
tifying the kinds of mathematical thinking that could be regarded as advanced at
any age or grade level, and on the other hand, of taking as advanced the kinds of
thinking characteristic of mathematical topics that could themselves be identi-
fied as advanced. For example, Edwards et al. (this issue) discuss this distinction
in the introduction to their contribution. In practice, however, these two distinct
points of view often support each other. That is, to argue that some kind of
thinking, say the habits of mind and abilities associated with handling abstrac-
tion, is advanced, one can note that such thinking often occurs in thinking about
advanced topics, such as abstract algebra. Conversely, if one needed to argue
that abstract algebra was advanced, one might note that much of the thinking in-
volved is indeed abstract.

The Utility of Characterizing Advanced
Mathematical Thinking

A second theme concerns the utility of identifying or characterizing various kinds
of AMT. Once a kind of thinking, such as generalizing, has been identified as ad-
vanced, it seems more likely that some form of it, or at least a precursor to it, could
be analyzed and taught earlier in the kindergarten through graduate school curricu-
lum. This would allow the curriculum to be better integrated by providing
long-range goals for instruction that go beyond satisfying the mathematical needs
of everyday life in a technological society. This theme appears to have played a
considerable role in the development of the current NCTM Principles and Stan-
dards for School Mathematics (2000). There is also an “existence proof” of how a
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series of relatively small, but coherent, long-term interventions with one group of
students over a number of years can lead to remarkable instances of AMT, includ-
ing the development by students, on their own, of the idea of proof (Maher &
Martino, 1996a, 1996b).

Consider the case of Stephanie, one of a number of children with whom Maher
and Martino (1996a, 1996b, 1997) began their long-range, but occasional, inter-
ventions commencing in Grade 1. By Grade 3, the children had begun building
physical models and justifying their solutions to the following problem: How
many different towers of heights 3, 4, or 5 can be made using red and yellow
blocks? Stephanie, not only justified her solutions, she validated or rejected

her own ideas and the ideas of others on the basis of whether or not they made sense
to her. ... She recorded her tower arrangements first by drawing pictures of towers
and placing a single letter on each cube to represent its color, and then by inventing a
notation of letters to represent the color cubes. (Maher & Speiser, 1997, p. 174)

She used spontaneous heuristics like guess and check, looking for patterns, and
thinking of a simpler problem, and developed arguments to support proposed parts
of solutions, and extensions thereof, to build more complete solutions. Occasional
interventions continued for Stephanie through Grade 7. Then in Grade 8 she
moved to another community and another school and her mathematics was a con-
ventional algebra course. The researchers interviewed her that year about the coef-
ficients of (a + b)? and (a + b)3. About the latter, she said “So there’s a cubed ...
And there’s three a squared b and there’s three ab squared and there’s b cubed. ...
Isn’t that the same thing?” Asked what she meant, she replied, “As the towers.” It
turned out, upon further questioning, that Stephanie had been visualizing red and
yellow towers of height 3 to organize the products a’#v. (For a more complete dis-
cussion, see Maher & Speiser, 1997.) Stephanie then used the towers of blocks
metaphor to develop the coefficients of expressions such as (a + b + ¢)*, a remark-
able achievement that prompted Speiser, upon presenting his paper at PME-21 in
Lahti, Finland, to remark, “I wish some of my [university] students were able to
reason that well.”

Criteria for Advancedness

A third theme focuses on finding what could be called very general tests, or crite-
ria, for identifying AMT that might be considered at many grade levels throughout
the curriculum. Harel and Sowder (this issue) suggest such a very general test.
Their central idea is that AMT involves, to some degree, at least one of the three
characteristics of epistemological obstacles. An epistemological obstacle is a bit of
knowledge, rather than a lack of knowledge, that somehow inherently stands in the
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way of acquiring subsequent, more general, knowledge. It is sufficiently robust to
withstand occasional contradictions. Finally, such an obstacle should turn up in the
historical development of mathematics. Harel and Sowder consider the influence
of an epistemological obstacle to be a matter of degree and state that its influence is
often blended with that of one or more didactic obstacles, that is, obstacles some-
how arising from the teaching itself rather than from the nature of what is to be
learned.

Edwards et al. (this issue) also take this tack, proposing a different, although
not necessarily conflicting test. They develop the idea that thinking might be re-
garded as advanced if it depends on deductive reasoning and does not depend di-
rectly upon sensory perception. While they acknowledge that “exemplary mathe-
matical thinking may occur at any age of student and level of mathematics,” they
wish to reserve the term “advanced mathematical thinking” for thinking that in-
volves “rigorous and deductive reasoning about mathematical objects that are
unavailable to our five senses.” Although this kind of advancedness can occur at
a number of levels and we have previously mentioned the remarkable degree to
which young students can engage in deductive reasoning, it seems unlikely that
such students would often reason about mathematical objects unavailable to the
five senses. Indeed, we see students as slowly progressing from first tacitly
viewing the objects of mathematics as part of, or closely associated with, the
physical world, and consequently as possessing descriptive definitions. Even-
tually some students come to view mathematical objects as abstract and brought
into existence by analytic definitions,? such as that of group in abstract algebra.
To illustrate how mathematical objects might be seen at the beginning of such a
progression, consider a mathematically naive individual observing 3 red apples.
That there are 3 and that they are red would have, more or less, the same status,
namely, that of properties of physical objects. Somewhat later, the number 3
might come to be seen as an object in its own right, but one that is part of, or as-
sociated with, the physical world. Such objects have descriptive definitions that
should correctly mirror the corresponding physical objects or situations. These
initial perspectives of mathematical objects, and their corresponding descriptive
definitions, are quite different from perspectives taken much later when using

2Although analytic definitions can be inspired by physical situations, they are often considered as
ultimately reducible to undefined terms; hence, one cannot regard them as right or wrong. By contrast,
although descriptive, or synthetic, definitions describe existing objects or situations often associated
with the physical world, such as democracy or whole number addition, they can be regarded as right or
wrong. Moreover, when using an analytic definition, it is essential to attend to all parts of the definition.
However, by contrast, although synthetic definitions often provide incomplete and redundant descrip-
tions, it not always essential to attend to all parts of such definitions. Difficulties arising from under-
graduate students treating mathematical definitions as descriptive, rather than analytic, have been de-
scribed by Edwards and Ward (2004).
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analytic definitions that, although they may be inspired by physical observations,
are more or less reducible to undefined terms.3

The utility of the Edwards et al., idea of advanced mathematical thinking as
“unavailable to the five senses,” and the idea of a progression of students’ views re-
garding the status of mathematical objects, can be illustrated by examining a sug-
gestion offered at a recent seminar. We were discussing various systematic errors
that some fourth- and fifth-grade pupils’ make when comparing the size of decimal
numbers (Resnick et al., 1989). The offered suggestion was: Why not simply avoid
all of the cited problems by defining, and directly using, x <y if and only if x — y is
negative? However, it seems unlikely that one could clear up pupils’ difficulties
stemming from their previous whole number and fraction knowledge by simply
defining away the problem. As noted by Resnick et al. (1989), fourth- and
fifth-grade pupils making such errors are likely to see decimals, and their compari-
sons, as extensions of whole numbers or fractions studied earlier. Thus, they are
likely to see decimals as numbers derived from the physical world. For such pupils,
whole numbers, fractions, and even decimals may be “out there” in the physical
world, and as such, only capable of being described. Thus, for these pupils, it
seems inappropriate to attempt to redefine the concept of “less than” by simply in-
troducing this abstract, analytic definition. Trying to do so might result in making
little change in how the pupils actually make decimal comparisons.

Advancing Mathematical Practices

Finally, a fourth theme consists of elucidating specific kinds of mathematical prac-
tices, together with describing the development of the associated thinking. One
very general practice, that occurs across the K—16 curriculum and in the work of
mathematicians, might be called structuring real world and mathematical prob-
lems. Mathematicians such as Hadamard (1945) and Thurston (1994) have tried,
often through introspection, to understand their own, and other mathematicians’
creative structuring processes. By structuring, we mean the introduction of nota-
tion, diagrams, definitions, analyses, etc., to a class of problems to facilitate their
solution—in some cases by converting them to other kinds of problems. This may
involve the creation of structures, for example, symbols new to the practitioners.

30ne could ask: What is the utility of having students move from viewing the objects of mathemat-
ics as descriptively defined aspects of the physical world, to viewing them as analytically defined ab-
stract objects? One answer is: In constructing and understanding proofs, it is essential to attend to all
parts of a definition—something unnecessary for other kinds of arguments based on descriptive defini-
tions of physical objects or situations. Another answer is: Mathematics today is exceptionally reli-
able—barring the later discovery of errors, when a theorem is proved, “it stays proved.” This reliability,
and indeed independence from place and time, depends not only on careful logic, but also on the use of
analytic definitions. The kind of unreliability that can result from treating mathematical definitions as
descriptive can be seen in Proofs and Refutations (Lakatos, 1976).
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An example of structuring is provided by the mathematizing, in particular, the
symbolizing, elucidated in the article by Rasmussen et al. (this issue). Starting
with either a real world or a mathematical problem, mathematizing is a process of
consideration and reflection that alternates between two forms—horizontal, dur-
ing which the mathematics at hand becomes more familiar and is broadened, and
vertical, during which new mathematics (notation, algorithms, definitions, etc.) is
created. Such mathematizing can be seen especially well in the kind of inquiry-ori-
ented classrooms, in which students routinely come to explain and justify their
thinking, from which Rasmussen et al. (this issue) draw their examples. Although
their article describes the mathematical activity of undergraduates, the authors pro-
pose that the notion of mathematizing that they develop is “not limited to grade or
content levels.”

Another more commonly taught kind of structuring is modeling that may not in-
volve the creation of new mathematical objects. In the traditional view of model-
ing, a student typically starts with a problem in a familiar setting (real world or
mathematical) and adds (or focuses on some aspect of) structure, such as variables,
diagrams, equations, functions, etc., with a view to converting the given problem
into a more tractable one in a (or another) familiar mathematical domain. For ex-
ample, tertiary students might be asked to show that, in Euclidean geometry, an-
gles cannot be trisected (using only straightedge and compass) first by converting
the problem to one about fields, and then to one about Galois groups in the hope
that the new problem might be easier to solve. Students are usually not asked to
“see” for themselves the relationship between two such disparate domains as Eu-
clidean geometry and abstract algebra. If students are asked to “see” for them-
selves such relationships, then even problems in applying first calculus (without
explanations of how to solve them, or even whether to use calculus) can become
nonroutine modeling problems.

That such “seeing” is difficult at any level can be observed in the work of Lobato
and Siebert (2002) in the case of Terry, a student who had recently completed Alge-
bra 1 in Grade 8. In a summer teaching experiment, Terry and other students were
asked what measurements they would take to determine the steepness of a wheel-
chairramp (without explicitly asking them to consider slope). Terry initially focused
on the height of the ramp and considered its length to be a dependent variable. As it
turned out, Terry’s reasoning evolved through quite a number of stages (described in
detail by the authors), and it took instructor-facilitation to get him to see steepness as
afunction of the two independently varying quantities, height and length. Perhaps in
Terry’s defense and certainly as a caution to others who might attempt a similar
teaching experiment, the authors note that “there are five other ratios that also pro-
vide mathematically consistent, albeit unconventional, measures of steepness
(namely slant height to length, slant height to height, length to height, height to slant
height, and length to slant height)” making it less likely that “a student would natu-
rally focus on the particular ratio of height to length” (p. 111).
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In elucidating specific kinds of mathematical practices and the creative ways
students might arrive at them, we suggest that examinations of structuring, and in
particular, the examples of symbolizing, algorithmatizing, and defining in Ras-
mussen et al. (this issue), do not nearly exhaust the possibilities. Much of the math-
ematics education research literature at the undergraduate level, although not di-
rectly about the nature of advanced thinking, or couched in terms of mathematical
practices, nevertheless suggests promising areas for investigation. For example,
one of our articles (Selden & Selden, 2003) is about mid-level undergraduates’
ability to check the correctness of proofs and the ways they go about it, but does not
give a detailed delineation of the kind of practices or thinking involved. However,
it does note that this complex kind of thinking, that we called validation, is wide-
spread among mathematicians and suggests it may eventually be fairly well de-
scribed. The empirical part of the study suggests that current mid-level U.S. uni-
versity students are not good at validating proofs, but our experience suggests
many graduate students and mathematicians can do so quite reliably. Thus, the ar-
ticle implicitly suggests that students who continue in mathematics need to im-
prove the practice of validating proofs. While there is currently little direct instruc-
tion in this practice, students who learn to validate proofs on their own might be
considered as engaged in a form of mathematizing.

Much of the literature at the undergraduate level provides similar indications of
features of mathematical practices or thinking. This includes examinations of
problem solving (Arcavi, Kessel, Meira, & Smith, 1998; Schoenfeld, 1985), stud-
ies of students dealing with definitions (Dahlberg & Housman, 1997; Edwards,
1997; Rasmussen & Zandieh, 2000), investigations of students dealing with such
abstract algebra concepts as isomorphism and quotient group (Dubinsky, 1997;
Leron, Hazzan, & Zazkis, 1995), considerations of reasoning in linear algebra
(Sierpinska, Defence, Khatcherian, & Saldanha, 1997) and reflections on unifying
and generalizing concepts (Dorier, 1995), among many others.

COMMONALITIES AND DIFFERENCES

In addition to locating the following articles in this issue within the four recurring
themes—advanced thinking versus advanced mathematics, the utility of character-
izing such thinking, criteria for advancedness, and advancing practices, it might be
useful to compare them directly.

Harel and Sowder (this issue) have a very general test, or criterion, for AMT,
namely that one should be able to see in a student’s “way of thinking” at least one
of the three characteristics of an epistemological obstacle. While such thinking re-
fers to individual students, it is likely to occur in association with a wide variety of
mathematical topics and at many levels throughout a student’s entire mathematical
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education. For example, AMT is likely to occur not only in reasoning about higher
dimensional vector spaces but also, much earlier, in proportional reasoning.
Edwards et al. (this issue) also have a very general test, but a different one. In
their view, AMT depends on rigorous deductive reasoning about mathematical no-
tions inaccessible to the five senses. Just as with Harel and Sowder (this issue), this
kind of thinking refers to individuals, but is likely to occur in studying certain top-
ics and at many levels. However, unlike Harel and Sowder, it is unlikely to occur
very often during preuniversity studies. As with Harel and Sowder’s view, such
AMT is likely to occur in reasoning about higher dimensional vector spaces; how-
ever, in contrast to that view, it is unlikely to be involved in proportional reasoning.
Rasmussen et al. (this issue) take a very different perspective. The other two ar-
ticles propose differing views of AMT, but such thinking is always about mathe-
matical objects—limits, uncountable sets, groups, proportions, even proofs. In
contrast, Rasmussen et al. are more concerned with how students can invent, or re-
invent, for themselves at least some portions of such mathematical objects. In other
words, their view of “advancing” is not so much about a student’s thinking at a
given time, as about the way the student develops that thinking over time and con-
structs some of the accompanying mathematics. Such development and construc-
tion of mathematical ideas is often encouraged when a teacher and fellow students
cooperate in maintaining a classroom culture suitable for mathematizing, espe-
cially vertical mathematizing. As with Harel and Sowder’s perspective, this can
occur at many levels throughout a student’s entire education. However, unlike the
other two views on advanced mathematical thinking, it is unlikely that the topic
alone, whether it be higher dimensional vector spaces or proportionality, would re-
sult in students engaging in vertical mathematizing, that is, in their advancing.
To draw a metaphor from linear algebra, the three perspectives in the following
three articles move the discussion of advanced mathematical thinking forward in
independent ways—ways that we hope will inspire much more work.
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