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INTRODUCTION

It is a trivial idea to consider that children (and students)
develop more and more complex competencies and concep-
tions by using their former knowledge to make sense of new
situations and try to grasp them. This process can be viewed
as a general process of adaptive behavior: assimilation and
accommodation, as Piaget first stressed it.

But most psychologists have tried to theorize about the
progressive complexity to children’'s competencies within
content-free frameworks: logic, information processing, lin-
guistics, or factor analysis. Piaget himself has sometimes
paid attention to the conceptual components of children’s
knowledge (space, time and speed, probability...) and
sometimes tried to reduce the conceptual complexity pro-
gressively mastered by children to some kind of general logi-
cal complexity, represented in his theory by such structures
as those of grouping, the INRC group, and combinatorics.

The conceptual field theory asserts that a more fruitful
approach to children’s cognitive development is provided by
using a framework referring to the contents of knowledge
themselves and to the conceptual analysis of the domain.
This approach has already provided enlightening results for
the acquisition of elementary arithmetic (additive structures,
multiplicative structures}; for elementary physics, biology, or
economics; for elementary algebra and geometry; and for dif-
ferent technological domains. As far as MCF (multiplicative
conceptuals field) is concerned, it is now clear that one can-
not reduce proportional reasoning, or the concepts of frac-
tion and ratio, or the algorithms of multiplication and divi-
sion, to any logical, information processing, or linguistic
reasoning. Logic, computer science and linguistics do not
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provide us with concepts sufficient to conceptualize the
world and help us meet the situations and problems that we
experience. This is true for the acquisition of rational knowl-
edge as well as for science itself. This epistemological point
of view is in line with, but goes far beyond the consequences
one can draw from, Godel's theorem.

The conceptual field theory also stresses that the acqui-
sition of knowledge is shaped by the situations and problems
first mastered and that knowledge has therefore many local
features. All concepts have a restricted domain of validity,
which varies with experience and cognitive development. The
conceptual field theory is a pragmatist theory, though that
does not mean it is empiricist. A problem is not a problem for
an individual unless the individual has concepts enabling
him or her to consider it as a problem for him or herself: the
process of simulating a problem goes far beyond the abstrac-
tion of regularities from the observable world. Problems are
practical and theoretical, and not merely empirical, even for
young children. When a class of problems is solved by an
individual (this means that he or she has developed an effi-
cient scheme to deal with all or nearly all the problems of the
class), the problematic character of that specific class passes
away. This new power enables one to tackle new situations and
objects and try to understand new properties and relation-
ships, and therefore to pose and recognize or consider new
problems for oneself. Thus, this process is a continuing cycle.

From my point of view, the most general features of the
multiplicative conceptual field are the following:

* Its framework is mathematical, in a wide sense of
mathematics. But the mathematics used to analyze
MCF takes account of the contrasts and interconnec-
tions among the conceptual operations needed to pro-
gressively master this field. I will illustrate this point
later.

* The situations and problems that offer a sound ex-
perential reference for MCF are not purely mathemati-
cal, especially at the elementary and early secondary
levels. The child's early experience of buying goods
and sharing sweets, and his or her first understanding
of speed, concentration, density, similarity, or proba-
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bility are essential. The didactical consequences of

this are important.
* The identification of the bulk of concepts needed to
analyze the bulk of MCF situations is an essential the-
oretical problem for researchers. I use the word bulk
instead of set, because the frontiers of MCF are not
strictly defined, neither in terms of the concepts nor
the situations and problems. There is also a dialectical
tie between situations and concepts in the sense that
each bulk depends heavily on the other. The concept of
a conceptual field represents some kind of equilibrium
between the need to classify the objects we have to
study in psychology and mathematics education and
the need to understand something about learning, de-
velopment, and teaching. Obviously, students move in
the whole repertoire of their mathematical competen-
cies, yet I consider MCF as a reasonable-sized object
for research and theory.
Finally, one must not minimize the role of language
and symbols in the development and the functioning of
thinking. This is, of course, true for MCF as well as for
additive structures, algebra, or mechanics. It is there-
fore essential to classify and analyze the variety of
symbolic and linguistic signifiers that we may use
when communicating and thinking about MCF, even
though signifiers are not concepts or conceptual oper-
ations but only stand for them. An essential theoreti-
cal and empirical task for researchers is to understand
why a particular symbolic representation can be help-
ful, under which conditions and when and why it can
be profitably replaced by a more abstract and general
one. The necessity to educate all students to a reason-
ably proficient level in algebra makes these consider-
ations essential.

The conceptual field theory is therefore a complex theo-
ry. This complexity is inevitable because we need to embrace,
in one single theoretical glance, the whole development of
the situations progressively mastered, of the concepts and
theorems required to operate efficiently in those situations,
and of the words and symbols that can effectively represent
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these concepts and operations to students, depending on
their cognitive levels.

Teaching is essential. Situations, verbal and symbolic
mediations, and scaffoldings of all kinds are the usual ways
by which teachers help students learn. Therefore one can
hardly hold a radical constructionist approach. I prefer to
speak of the appropriation process by which students make
social knowledge their own, personal knowledge, with the
help of teachers, parents, and peers (Vygotsky, 1962) This
point of view is a constructionist point of view, but in a re-
stricted meaning of the word: nobody, in place of the student,
can grasp the meaning of a problem (and eventually its solu-
tion), make sense of a mathematical sentence, or develop a
new mathematical scheme to be part of the student’s reper-
toire. The role of teachers is nevertheless essential, but I will
not develop this point in this chapter.

Intuitive Knowledge and Formal Knowledge

Because it contains an explicit reference to the idea of con-
cept, some researchers consider that the conceptual field
theory concerns the learning and teaching of explicit and
formalized concepts. This is not true. Its first aim is rather to
account for the knowledge contained in most ordinary ac-
tions, those performed at home, at work, at school, or at play
by children and adults. It also refers to the knowledge in-
volved in problem solving. Specifying the complete meaning
of the theory requires several kinds of clarification.

The conceptual field theory asserts that one needs math-
ematics to characterize with minimum ambiguity the knowl-
edge contained in ordinary mathematical competences. The
fact that this knowledge is intuitive and widely implicit must
not hide the fact that we need mathematical concepts and
theorems to analyze it. I have introduced the ideas of con-
cepts in action and theorems in action for that very purpose.
The expression intuitive knowledge clarifies nothing, except
that the subject uses his or her knowledge spontaneously,
without reflecting much on its contents and groundings. A
cognitive approach requires a more precise analysis, which
has to be mathematical for mathematical competencies.

However, and this is a second point to be clarified, one
cannot actually achieve this analysis using an a priori frame-

————
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work. The thesis that the analysis must be mathematical
does not mean that it can be found ready-made in mathemat-
ics. The classification of relationships and situations, and
the distinctions concerning the formation of the concepts of
fraction and rational number that the reader will find in this
chapter, have not been a primary focus of mathematicians.
However, these areas of study interest psychologists and re-
searchers in mathematics education. Great attention must
be devoted to the comparative difficulty of different classes of
problems and procedures and the different verbal expres-
sions and writings produced by students. Psychology has led
me, for example, to stress the fact that multiplication is not
usually conceived by children as a binary operation, that the
isomorphic properties of the linear function are more easily
grasped than the constant coefficient properties, and that
many ways of reasoning concern relationships between mag-
nitudes or quantities, rather than pure numbers.

Another point deserves clarification. Today, the litera-
ture is full of papers concerning real-life mathematical com-
petencies and real-life learning, as opposed to school mathe-
matics and school learning. This opposition is misleading in
the sense that no mathematical procedure observable in real-
life situations cannot potentially be found in the classroom,
provided students are offered a wide variety of situations to
deal with, rather than stereotyped algorithms. It is a real
problem that school (especially in some countries) does not
offer students a variety of meaningful situations and prob-
lems. But this problem must not be confused with my claim
that we need formal mathematics to characterize real-life
competencies.

The last point that may require clarification concerns
the need to establish more clearly the kinds of relationships
that connect the formation of intuitive knowledge with con-
sciousness, and make it more explicit. Vygotsky made a useful
distinction between consciousness before and conscious-
ness after, showing examples in which widely automated and
unconscious competencies could be developed first, followed
by some reflection and analysis, whereas in other examples,
consciousness and explication, were conditions for the
emergence of new competencies. The explication, symboliza-
tion, and even the formalization of mathematics may be more
crucial for certain competencies than for others, even at the
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elementary and early secondary levels. It is a crucial point for
a theory of teaching.

What Is MCF?

MCF is simultaneously a bulk of situations and a bulk of
concepts. A concept is made meaningful through a variety of
situations, and different aspects of the same concepts and
operations are involved in different situations. At the same
time, a situation cannot be analyzed with the help of just one
concept; at least several concepts are necessary. This is the
main reason that researchers should study conceptual fields
and not isolated situations or isolated concepts.

Another reason comes from the fact that students mas-
ter certain classes of situations before they master others; it
may take up to ten years for a student to go from the simplest
to the most complex ones. During that process, she or he will
have to deal with a variety of things: situations, words, algo-
rithms and schemes, symbols, diagrams and graphs . .. and
will learn sometimes by discovering, sometimes by repeating,
sometimes by representing and symbolizing, sometimes by
differentiating, sometimes by reducing different things to
one another. Because the landscape of knowledge acquisi-
tion is so complex, the theoretical framework of researchers
must also be complex.

From a conceptual point of view, MCF has the following
essential ingredients:

* multiplication and division;

* linear and bilinear (and n-linear) functions;

» ratio, rate, fraction, and rational numbers;

» dimensional analysis;

e linear mapping and linear combinations of magni-
tudes.

From a situational point of view, MCF comprises a rath-
er large number of situations that need to be classified and
analyzed carefully, so that one may describe a hierarchy of
possible competencies developed by students, inside and
outside school. It is the problem of analyzing the cognitive
tasks underlying these situations, and the procedures used
by students to deal with them, including erroneous proce-
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dures, that has pushed me to use such sophisticated con-
cepts as those just listed.

By considering the situations used in the classroom to
introduce multiplication and division, one is first compelled
to consider that multiplication and division are only the most
visible part of an enormous conceptual iceberg. School over-
estimates explicit knowledge and underestimates or even de-
values implicit knowledge; and one cannot readily analyze
simple multiplication or division problems within the pan-
oply of MCF. And yet the simple multiplication involved in the
calculation of the price of five miniature cars at the cost of $4
each, raises crucial questions.

1. The result is given in dollars, not miniature cars.
Why?

2. One can understand multiplication of 4 X 5 as the
interaction of paying $4, 5 times; but it would be impossible
to explain to 7- or 8-year-olds that multiplication of 5 X 4 is 4
iterations of 5: one cannot add miniature cars and find dol-
lars, and there is no reason to iterate 5, as only 5 miniature
cars have been bought.

3. 5 times more” is meaningful, as it is a scalar rela-
tionship and has no dimension. “4 times more” is meaning-
less. Of course the multiplication of 5 X 4 is meaningful, but
it represents a functional relationship between different pos-
sible quantities of cars and their costs.

4. These two multiplications rely upon different theo-
rems:

(a) scalar f(5) = 5f(1)

It is usually introduced through iterated addition and there-
fore relies upon the additive isomorphism property

f+1+1+1+1+1)=Ff(1)+f(1)+f(1)+f(1)+Sf(1)

from which the multiplicative isomorphism property f(n-1) =
nf(1) is conceptually derived.

(b) functional f(5) = 4-5

It uses the constant coefficient property f(x) = ax, instead of
the previous isomorphism property.
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5. The constant coefficient represents neither cars nor
dollars but dollars per car. Dimensional analysis is implicitly

present.

I have already analyzed this example elsewhere [Y&?rg—
naud, 1988), and I have also explained about the classifica-
tion of problems in earlier papers (Vergnaud 1.983; 1988}.
Therefore, here I will just review the main categories of multi-
plicative structures and stress the epistemological poir.lts
that appear to me to be the most essential (for more details,

see Vergnaud, 1983).

» Simple proportion:

M, M,
a b
c d

Calculate one of these four magnitudes knowing the

other three. '
« Concatenation of simple proportions:

a b
c d
S g
Calculate one of these six magnitudes knowing the

other five. . '
« Double proportion: calculate one of the six magnitudes

in the following table, knowing the other five.

M,
M, a b
M,
c S
d g

Which rate (b/a, d/c) is bigger? Or which ratio (c/a,
d/b)?
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It is clearly impossible to analyze the procedures used by
students in these situations without the framework of linear
and bilinear functions and the clear identification of the magni-
tudes involved: elementary, quotient, and product magnitudes.

The following example of a procedure used by some 10-
to 13-year-olds exemplifies the need for a sophisticated
mathematical framework to theorize about the intuitive
knowledge of students.

Given:The consumption of flour is on average 3.5 kg per
week for ten persons. Question: What quantity of flour is
needed for fifty persons over twenty-eight days? Answer: 5
times more persons, 4 times more days, 20 times more flour;
therefore 3.5 X 20 = 70 (kg)

It is impossible to give account of that reasoning with-
out making the hypothesis of the following implicit theorem
in the subject’s head:

Slnyx,y, npxp) = nyn, f(x;, x;)

Consumption (5 X 10,4 X 7) = 5 X 4 Consumption (10, 7)

Of course, this theorem is available because the ratio of 50
persons to 10 persons, and the ratio of 28 days to 7 days are
simple and visible. It would not be so easily applied to other
numerical values. Therefore, its scope of availability is lim-
ited. Yet it is a mathematical theorem, and can be expressed
in different ways:

1. In words: The consumption is proportional to the
number of persons when the number of days is held con-
stant; it is proportional to the number of days when the num-
ber of persons is held constant.

2. By a double-proportion table, as shown in Figure 2.1,

number of persons
x5

10 —— 50
number of days x5
7 35— 0O
x4 | \ | x4
28 a
consumption
Fig. 2.1

Double-proportion table.
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3. By a formula:

where

C = consumption,

P = number of persons,

D = numbers of days,

K = C(1, 1), consumption per person and per day.

C is proportional to P when D is constant and to D when P is
constant. Therefore, it is proportional to the product.

It is clear that these different modes of expressing the
same reasoning are not cognitively equivalent: The last one
is more difficult. These modes rather are complementary and
illustrate different ways of making explicit the same hidden
mathematical structure at different levels of abstraction.

Situations, Schemes, Concepts, and Symbols

The conceptual field theory is a psychological theory of cog-
nitive complexity. There are several ways to gain cognitive
complexity and several ways to fail at an attempt to gain cog-
nitive complexity.

The first, and very essential, way to make progress is to
learn to manage a new class of situations. The hierarchical
classification of multiplication and division problems, which
takes into account the conceptual structure, the domain of
experience used, and the numerical values, therefore, is im-
portant to the study of the growth of cognitive complexity. For
instance, the distinction between multiplication, division 1
(partition), and division 2 (quotation) is commonly accepted
as the first basis of MCF.

Multiplication Division type 1 Division type 2
M, M, M, M, M, M,
1 a 1 ? 1 a
b ? b c ? c

But this is true only when the domain of experience referred
to is conceptually easy (sharing discrete objects, buying
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goods) and when the numerical values are whole numbers
(small whole numbers for b). These situations provide the
first meaning for multiplication and division:

b times more, b times less

Division 2 already demands two more cognitive steps:
Find how many times a goes into c, or apply to c¢ the inverse
functional coefficient /a. These two operations are equiva-
lent mathematically, but not conceptually: The first one con-
sists of finding a scalar ratio, and the second one an inverse
quotient of dimensions.

Along similar developmental considerations, the primi-
tive conception of fractions comes from the partition struc-
ture and is usually available for very simple values: 1/2 first,
1/4 one or two years later, and 1/n (for n < 10) by the end of
elementary school. Archimedian fractions are therefore viewed
as both operators and quantities: 1/n is first viewed as divid-
ing by n some discrete or continuous quantity—it is there-
fore an operator—but the result is a fractionary quantity 1/n.

At the same time, young students use scalar ratios and
functional rates, as shown in fig. 2.2 They can therefore com-
bine Archimedean fractions and scalar ratios into non-
Archimedean fractions, p/q, provided p < q. Some examples
would include the following:

« Sharing a pastry cut into eight parts. What fraction is
eaten by 5 children who each eat one part?

* Sharing a bag of twenty-four sweets, divided into eight
parts. What fraction is eaten by five children? How
many sweets does each child eat? How many sweets
are eaten by all five children?

cakes costs cakes costs
x2
3 10 5 — 10
x4 l l x4 X2
12 0 12 — O
Fig. 2.2

Scalar ratios and functional rates.
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a b a 0O a

xn, i /my 1 my; 1
c Xn,n, c c d

X1, ! /ng 1 /mn, \ xn, | xn,/n,
e O e f e O

Note: n, and n, are any whole numbers.

Fig. 2.3
Combining scalar ratios.

They also combine scalar ratios in several different
ways, as shown in figure 2.3. The main conceptual difficulties
met by students in these combinations concern the commu-
tativity of division and multiplication

/n, and xn, = xn, and /n;
and the need to multiply when one combines two divisions
/n, and /n, = /(n; X n,)

It is worth noticing that during the elementary school
years, students are also introduced to double proportion in
two different domains:
as combinatorics

How many possible different colored houses can be
painted with three colors for the roof and four colors for
the walls?

How many possible couples of dancers can be formed
with five boys and 7 girls?

and as area and volume

What is the area of a room 5 meters long and 4 meters
wide?
In the latter case, formulas are usually taught

A=LXxXW V=L XWXH

Therefore, by the end of elementary school, students
have already been faced with some essential aspects of multi-
plicative structures. They have had to deal with different
problems of proportion, with different kinds of operations
involving ratios and rates, and with different types of symbol-
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isms. However, they can master only a small part of the con-
ceptual field; they still have a long way to go to understand it
fully. For instance, they have yet to build such high-level con-
cepts as those of rational number, function, and variable,
dependence and independence.

They also have to achieve more modest steps, such as
extending the scope of validity of their intuitive knowledge to
complex ratios and rates and to nonwhole numbers. It is now
well known that there are strong epistemological obstacles
to such extension: The beliefs that one cannot divide a num-
ber by a larger one, multiplication makes bigger and division
smaller, and so on. Students also have to extend their knowl-
edge of multiplicative structures to such difficult domains as
geometry (similarity and homothety), physics (density, me-
chanics), probability, and so forth. This extension raises a
sharp theoretical issue. From a cognitive point of view, apply-
ing multiplicative structures to new domains of experience is
both necessary to conceptualize them properly, and made
possible only if some specific conceptualization of the do-
main has taken place. It seems to be a vicious circle.

The vicious circle can be disrupted only if one develops
a reasonably complex theory of cognitive development and
learning, especially of the relationship between schemes,
concepts, and symbols.

What is a scheme? A scheme is defined as the invariant
organization of action for a certain class of situations. This
dynamic totality, introduced by Piaget (after Kant), to account
for both “sensory-motor skills” and “intellectual skills” re-
quires a strict and deep analysis if one wishes to understand
the relationship between competences and conceptions.

A scheme is finalized; goals imply expectations. A
scheme generates actions; it must contain rules. A scheme is
not a stereotype, as the sequence of actions depends on the
parameters of the situation: Its application involves hic et
nunc computations. A scheme also involves operational in-
variants: categories to pick up relevant information (con-
cepts in action) and propositions from which inferences are
made (theorems in action). All these aspects of a scheme are
illustrated in Figure 2.4.

This analysis makes it clear that no action is possible
without operational invariants that enable the subject to pick
up information and compute what to do and expect.

The theory of conceptual fields offers a way to under-
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rules of action

inferences
operational invariants _—_ goals and
(concepts in action and expectations
theorems in action)
Fig. 2.4

What does a scheme consist of?

stand how the intuitive knowledge contained in behavior
works. Intuitive knowledge is made essentially of operational
invariants, that is, concepts in action and theorems in action.
They are the “conceptual” part of schemes, however implicit
or explicit, conscious or unconscious they may be. If a
scheme addresses a class of situations, it must contain in-
variants that will be relevant over the whole class. This is
especially visible when a scheme is extended to a larger class
of situations. Transfer presupposes invariants as well as dif-
ferentiation and restriction.

Among the most important theorems in action devel-
oped by students, one finds the isomorphic properties of the
linear function

Jlx + x') = f(x) + f(x")
Jlx —x") = flx) — f(x")
Sleyxy + cax3) = cyf(x,) + cof(x,)

and the constant coefficient properties of the linear function

J(x) = ax

x = 1l/af(x)
and some specific properties of bilinear functions

Jleyxy,cox5) = ¢, flx;,X,)

Among the most important concepts in action devel-
oped by students, one find those of quantity and magnitude,
unit value, ratio and fraction, function and variable, constant
rate, dependence and independence, quotient and product of
dimensions.
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Concepts in action are necessary ingredients of theo-
rems in action, in the same way that propositional functions
and arguments are necessary ingredients of propositions.
But concepts are not theorems. They allow no derivation (or
inference, or computation); a derivation requires proposi-
tions. Propositions can be true or false; concepts can be only
relevant or irrelevant. Yet, there are no propositions without
concepts.

Reciprocally, there are no concepts without proposi-
tions, as it is the need to derive action from the representa-
tion of the world and have true (or at least truer) conceptions
of the world that makes concepts necessary. A computable
model of intuitive knowledge must comprise concepts in ac-
tion and theorems in action as essential ingredients of
schemes.

Schemes play the most essential part as they generate
actions. (Intellectual operations also are actions.) They can
generate actions because they contain operational invari-
ants, which constitute the core of representation.

But a concept is not fully a concept unless it is explicit
Moreover, the process of making concepts and theorems ex-
plicit helps one identify the relevant or irrelevant invariants.
Therefore, linguistic expressions, symbols, and symbolic
representations that may accompany, at the signifier level,
the formation of concepts and theorems, must also be stud-
ied. Explication and symbolization are an important path
through which cognitive complexity is gained.

Not only is it important that students be faced with a
variety of occasions to extend or restrict the scope of validity
and availability of their schemes and to develop new schemes,
but also they be helped by external means, like linguistic and
extralinguistic signifiers, in recognizing the invariant struc-
ture of different problems and therefore the possibility of
using the same schemes or similar ones. Not only is it impor-
tant that situations be clearly and exhaustively classified
from the point of view of their conceptual structure, but also
that the invariants (concepts and theorems) be worded, sym-
bolized, diagramed, or graphed so that they become elements
of explicit rational conceptions and do not remain elements
of only implicit schemes. This is probably a necessary condi-
tion for the transference of concepts and theorems to any
numerical values and to any domain of experience.
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As a matter of fact, transfer and generalization neces-
sarily require the recognition of the “same” structure in dif-
ferent situations. Does it help to associate specific words and
sentences or specific symbols to similar problems and rela-
tionships? In other words, is it helpful for students that hid-
den invariants and structures be made explicit? There is
probably no universal answer to this question, but it is likely
that making some relationships explicit can be helpful. This
is the reason why the conceptual field theory considers lan-
guage and symbols important. For instance, it is important to
express and eventually symbolize the structure of data and
questions, and to use words and symbols that can be used by
students. In the previous example of the consumption of
flour by fifty students over twenty-eight days, the double-
proportion table can be handled easily by a 10- to 15-year-old,
whereas the algebraic notation cannot.

The “table-and-arrow diagram™ offers many advantages.
It uses the properties of the two-dimensional space to repre-
sent some relevant properties of simple proportion and dou-
ble proportion. A list of its strengths for each type of propor-
tion follows.

e Simple proportion:

Parallelism is used to represent different kinds of
quantities or magnitudes.

Vertical arrows indicate ratios.

Horizontal arrows indicate functions and quotients of
magnitudes.

Combinations of arrows represent products of opera-
tors.

* Double proportion:

Orthogonality is used to represent independence.

Parallelism line to line or column to column repre-
sents proportion.

Margins are used to represent the values of the ele-
mentary magnitudes, and the inside of the table is used
to represent the values of the product magnitude.

Arrows are used to represent ratios, functions, and
combinations of ratios.

Words are important, but mathematical sentences are
usually complex when expressed in natural language. Alge-
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braic symbols are economical and powerful, but they make
theorems very abstract for children. The table-and-arrow dia-
gram is a prealgebraic representation that is less abstract
than algebra while still representing the essential relation-
ships. This is why I find it important to communicate about
MCF with the help of such a symbolic system. Students find it
fairly easy to use at the primary and early secondary level, and
many adults find it easier to use than algebra. This does not
mean that algebra is not necessary. Most students seem to
find both algebra and proportion tables useful for along while.

The status of an explicit and symbolized theorem is dif-
ferent from the status of an implicit local operational invari-
ant. But the former has no meaning if it is not grounded in the
latter, and the latter is available only in a limited range of
situations. Moreover, scientific concepts and theorems are
debatable and public. Implicit concepts and theorems by their
nature cannot be explicitly debated. Therefore an enormous
amount of the discussion that is expected from students in
the learning of mathematics could not take place if mathemat-
ics consisted only of schemes. There is a need for symbolizing
and formalizing, which makes mathematics different from a
bulk of schemes addressing a bulk of situations. The concept
oflinear function cannot emerge from dealing with proportion
problems only. It has to be worded and analyzed as a general
and comprehensive concept.

And yet situations and schemes are essential from a
psychological point of view. They are also essential for didac-
tics, as the capacity to invent complex and meaningful didac-
tic situations is probably the most genuine activity of profes-
sional teachers. As it is presented in this chapter, MCF is
reduced to its main elementary components. It is another
enterprise to combine these components to provide students
with more challenging and motivating situations. I have not
addressed that problem here.

CONCLUSION

The multiplicative conceptual field can be viewed as

* a set (bulk) of situations that require multiplication,
division, or combination of such operations;
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» a set (bulk) of schemes that are needed to deal with
these situations. Schemes are invariant organizations
of behavior for well-defined classes of problems; but
they can also be evoked to solve new problems;

e a set (bulk) of concepts and theorems that make it
possible to analyze the operations of thinking needed:
linear and nonlinear functions, fraction, ratio, rate and
rational number, dimensional analysis, vector space
theory. (These three concepts maybe explicit, but they
are very often implicit only in schemes.)

* a set (bulk) of formulations and symbolizations.

All four sets are necessary to understand how students
master more and more complex situations, more and more
profoundly and reliably, and to understand how teachers can
help them by presenting appropriate situations to them and
giving them appropriate explanations.

Especially important is the choice of situations that can
make new concepts or new aspects of a concept more mean-
ingful. We need to develop a powerful theory of teaching situa-
tions tied to both the epistemology of mathematics and the
psychology of learning mathematics.

Operational knowledge is an answer to genuine practical
and theoretical problems. This is apparent when one consid-
ers the history of science and the history of techniques and
technology. How much of this idea can we transpose into the
classroom?

Even if it is each individual student’s cognitive decision
to recognize or discover a new property of a concept, there is a
large set of possible ways for teachers to help students: orga-
nize interesting and mathematically fruitful situations and
activities, focus attention, explain and symbolize the relevant
relationships and operations of thinking, or reduce the gap
between the problem and its solution.

The practical competence of teachers must be analyzed
in terms of a strong cognitive theory of learning and teaching.
This is what the conceptual fields theory tries to provide. This
theory asserts that the core of cognitive development is con-
ceptualization. Therefore, we must devote all our attention to
the conceptual aspects of schemes and to the conceptual
analysis of the situations for which students develop their
schemes, in school or in real life. Words and symbols are
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nevertheless essential. Therefore we must also devote our
attention to the adequacy of linguistic and extralinguistic
means by which we help students identify invariants and rec-
ognize them as mathematical objects.
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