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Abstract  Most students, even those who desire to succeed in school, are intellectu-
ally aimless in mathematics classes because often they do not realize an intellectual 
need for what we intend to teach them. The notion of intellectual need is inextricably 
linked to the notion of epistemological justification: the learners’ discernment of how 
and why a particular piece of knowledge came to be. This chapter addresses historical 
and philosophical aspects of these two notions, as well as ways teachers can be aware 
of students’ intellectual need and address it directly in the mathematics classroom.

Years of experience with schools have left me with a strong impression that most 
students, even those who are eager to succeed in school, feel intellectually aimless 
in mathematics classes because we (teachers) fail to help them realize an intellec-
tual need for what we intend to teach them. The main goal of this chapter is to define 
intellectual need, discuss its manifestations in mathematical practice, and demon-
strate its absence and potential presence in mathematics instruction.

Intellectual need is inextricably linked to problem solving. Problem solving is 
usually defined as engagement in a problem “for which the solution method is not 
known in advance” (NCTM, 2000, p. 52). Alas, many of the situations students 
encounter in school satisfy this definition and yet do not constitute “true” problem 
solving because, from the students’ perspective, these problems are often devoid of 
any intellectual purpose. Thus, another goal of this chapter is to advance the per-
spective, articulated by many other scholars (e.g., Brownell, 1946; Davis, 1992; 
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Hiebert, 1997; Schoenfeld, 1985; Thompson, 1985), that problem solving is not just 
a goal, but also the means—the only means—for learning mathematics.

The chapter is organized around five sections. The first section briefly outlines a 
set of underlying premises in which the concept of intellectual need resides. The 
second section defines the concept of intellectual need on the basis of these premises. 
The third section defines five categories of intellectual needs, describes their func-
tions in mathematical practices, and offers concrete curricular implications. The 
fourth section introduces several common fundamental characteristics to these needs. 
They are fundamental because without them the concept of intellectual need is both 
pedagogically and epistemologically incoherent. The last section abstracts the themes 
of the paper into a definition of learning and a consequent instructional principle.

�Underlying Premises

The perspective put forth in this paper is oriented within the Piagetian theory of 
equilibration and is part of a conceptual framework called DNR-based instruction in 
mathematics (DNR). DNR can be thought of as a system consisting of three catego-
ries of constructs: premises—explicit assumptions underlying the DNR concepts 
and claims; concepts oriented within these premises; and instructional principles—
claims about the potential effect of teaching actions on student learning justifiable 
in terms of these premises and empirical observations. The initials D, N, and R stand 
for the three foundational instructional principles of the framework: Duality, 
Necessity, and Repeated reasoning. Here we only discuss the four DNR premises 
that are needed for our definition (see Fig. 6.1) of intellectual need: the knowledge 

Premise
Knowledge of Mathematics Knowledge of mathematics consists of two related

but different categories of knowledge: all the ways of
understanding and ways of thinking that have been
institutionalized throughout history.

Knowing Knowing is a developmental process that proceeds
through a continual tension between assimilation and
accommodation, directed toward a (temporary)
equilibrium.

Knowledge - Knowing Linkage Any piece of knowledge humans know is an outcome
of their resolution of a problematic situation.

Subjectivity Any observations humans claim tohave made are
due to what their mental structure attributes to their
environment.

Fig. 6.1  Four DNR premises
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(of mathematics) premise, the knowing premise, the knowledge-knowing linkage 
premise, and the subjectivity premise.1

Antecedent to the concepts of way of understanding and way of thinking referred 
to in the Knowledge of Mathematics Premise is the primary concept of mental act. 
Examples of mental acts include the acts of interpreting, conjecturing, inferring, prov-
ing, explaining, structuring, generalizing, applying, predicting, classifying, searching, 
and problem solving. When one carries out a mental act, one produces a particular 
outcome. For example, when reading a string of symbols, a statement, or a problem, 
one of the mental acts a person carries out is the interpreting act, which, in turn, results 
in a particular meaning for it. Similarly, upon encountering an assertion, one may 
carry out the justification act and produce, accordingly, a particular justification. Such 
a product of a mental act is called a way of understanding associated with that act. 
Different individuals are likely to produce different ways of understanding associated 
with the same mental act. For example, students engaged in a dynamic geometry soft-
ware activity may carry out conjecturing and justifying acts and, accordingly, produce 
different conjectures and justifications. Each conjecture and justification is a way of 
understanding—a product of the conjecturing act and justification act, respectively.

A common cognitive characteristic of a person’s (or a community’s) ways of 
understanding associated with a particular mental act is referred to as that person’s 
way of thinking associated with that act. For example, a teacher or a researcher may 
infer (from a multitude of observations) one or more of the following characteris-
tics: that a student’s interpretations of arithmetic operations are characteristically 
inflexible, devoid of quantitative referents, or, alternatively, flexible and connected 
to other concepts; that a student’s justifications of mathematical assertions are typi-
cally based on empirical evidence or, alternatively, based on rules of deduction. 
Each of these characteristics is a way of thinking. It is important to emphasize that 
in DNR, ways of understanding and ways of thinking are distinguished from their 
qualities. Namely, one’s way of understanding or way of thinking can be judged as 
correct or wrong, useful or impractical in a given context. Of course, the goal is to 
help students gradually advance their ways of understanding and ways of thinking 
toward those that have been institutionalized in the mathematics community.

The Knowing Premise is after Piaget and is about the mechanism of knowing: 
that the means—the only means—of knowing is a process of assimilation and 
accommodation. Disequilibrium, or perturbation, is a state that results when one 
encounters an obstacle or fails to assimilate. It leads the mental system to seek equi-
librium, that is, to reach a balance between the structure of the mind and the envi-
ronment. Its cognitive effect in suitable emotional conditions is that the subject feels 
compelled “to go beyond his current state and strike out in new directions” (Piaget, 
1985, p. 10). Equilibrium, on the other hand, is a state in which one perceives suc-
cess in removing such an obstacle. In Piaget’s terms, it occurs when one modifies 

1 These are four of the eight DNR premises (see Harel, 1998, 2008a, 2008b, 2008c).
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his or her viewpoint (accommodation) and is able, as a result, to integrate new ideas 
toward the solution of the problem (assimilation).

The Knowledge-Knowing Linkage Premise, too, is inferable from Piaget, and is 
consistent with Brousseau’s claim that “for every piece of knowledge there exists a 
fundamental situation to give it an appropriate meaning” (Brousseau, 1997, p. 42). 
The Subjectivity Premise orients our interpretations of the actions and views of the 
learner. Many scholars (e.g., Confrey, 1991; Dubinsky, 1991; Steffe & Thompson, 
2000; Steffe, Cobb, & von Glasersfeld, 1988) have articulated essential implica-
tions of the Subjectivity Premise to mathematics curriculum and instruction.

These and the rest of the DNR premises (see Harel, 2008b, 2008c) were not con-
ceived a priori, but emerged in the process of reflection on and exploration of justi-
fications for the DNR concepts and claims.

�Definition

With these premises at hand, we can now define the concept of intellectual need and 
its associated concept, epistemological justification. If K is a piece of knowledge 
possessed by an individual or a community, then, by the Knowing-Knowledge 
Linkage Premise, there exists a problematic situation S out of which K arose. S (as 
well as K) is subjective, by the Subjectivity Premise, in the sense that it is a pertur-
bational state resulting from an individual’s encounter with a situation that is incom-
patible with, or presents a problem that is unsolvable by, his or her current 
knowledge. Such a problematic situation S, prior to the construction of K, is referred 
to as an individual’s intellectual need: S is the need to reach equilibrium by learning 
a new piece of knowledge. Thus, intellectual need has to do with disciplinary knowl-
edge being created out of people’s current knowledge through engagement in prob-
lematic situations conceived as such by them. One may experience S without 
succeeding to construct K. That is, intellectual need is only a necessary condition 
for constructing an intended piece of knowledge, and, as discussed below, other 
motivational conditions are also necessary. Methodologically, however, intellectual 
need is best observed when we see that (a) one’s engagement in the problematic 
situation S has led one to construct the intended piece of knowledge K and (b) one 
sees how K resolves S. The latter relation between S and K is crucial, in that it con-
stitutes the geneses of mathematical knowledge—the perceived reasons for its birth 
in the eyes of the learner. We call this relation epistemological justification. An 
individual’s or the institutionalized epistemological justification may not (and often 
does not) coincide with the historical epistemological justification. For example, 
many central concepts of real analysis—and some argue the entire field of real anal-
ysis (Bressoud, 1994)—were intellectually necessitated from Fourier’s solution to 
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reconceptualization of the concept of function. Specifically, the expansion 
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was not conceived as a function, because

functions were polynomials; roots, powers, and logarithms; trigonometric functions and 
their inverses; and whatever could be built up by addition, subtraction, multiplication, divi-
sion, or composition of these functions. Functions had graphs with unbroken curves. 
Functions had derivatives and Taylor series. Fourier’s cosine series flew in the face of every-
thing that was known about the behavior of functions. (Bressoud, 1994, p. 7).2

Thus, the historical epistemological justification for the concept of function is not 
necessarily that currently held by most mathematicians.

�Categories of Intellectual Need

Although laying claim to neither completeness nor uniqueness, I offer five categories 
of intellectual needs: (1) need for certainty, (2) need for causality, (3) need for com-
putation, (4) need for communication, and (5) need for structure. In modern mathe-
matical practices these categories of needs are inextricably linked, which makes it 
difficult to discuss them in isolation. Despite this difficulty, they will be discussed in 
separate sections in an effort to demonstrate the existence of each need and to better 
elucidate their distinctions. Each of these sections is divided into two parts. The first 
part (a) defines the respective need, (b) discusses its cognitive primitives (preconcep-
tualizations whose function is to orient us to the intellectual needs we experience 
when we learn mathematics3), and (c) illustrates its occurrence in the history of math-
ematics. The second part of each section discusses pedagogical considerations of the 
respective need.4 None of these discussions intends to provide a comprehensive epis-
temological, historical, cognitive, or instructional account for any of these needs; 
rather, the goal is to describe the intended meaning for each need and illustrate its 
function in mathematical practice and its possible application in the teaching of 
mathematics. Nor are these discussions of equal length. The need for computation, 
for example, occupies the largest space due to its ubiquity in mathematical practice, 
on the one hand, and its special role in mathematics curricula, on the other hand.

2 See also Lakatos (1976, Footnote 3, pp. 19–20, Footnote 2, pp. 22–23, and Appendix 2,  
pp. 151–152) for an interesting discussion on a similar resistance “monstrous” conceptualization 
of function.
3 Here and elsewhere in this chapter it is essential to understand the phrase “learn mathematics” in 
the sense described earlier, that is, in accordance with the Knowledge of Mathematics Premise and 
the definition of learning presented earlier.
4 Since the discussion of pedagogical considerations follow the discussion of historical phenomena, 
it is important to state our belief that the intellectual necessity for a learner need not—and in most 
cases cannot—be the one that occurred in the history of mathematics.
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�Need for Certainty

Definition and function. When an individual (or a community) considers an assertion, 
he or she conceives it either as a fact or as a conjecture—an assertion made by a per-
son who has doubts about its truth. The assertion ceases to be a conjecture and becomes 
a fact in his or her view once the person becomes certain of its truth. The need for 
certainty is the natural human desire to know whether a conjecture is true—whether 
it  is a fact. When the person fulfills this need, through whatever means deemed 
appropriate by him or her, the person gains new knowledge about the conjecture.

We reserve the term proving for the mental act one carries out to achieve certainty 
about a conjecture, and explaining (to be discussed in the next section) for the mental 
act one carries out to understand the cause for a conjecture to be true or false. A person 
is said to have proved an assertion if the person has produced an argument that con-
vinced him or her that the assertion is true. Such an argument is called proof. The 
proof someone produces may not be one that is acceptable by the mathematics com-
munity, but it is a proof for the person who has produced it. Hence, a proof is a way of 
understanding; it is a cognitive product of one’s mental act of proving. A proof scheme, 
on the other hand, is a way of thinking; it is a collective cognitive characteristic of the 
proofs one produces. Proof schemes can be thought of as the means by which one 
obtains certainty. For example, a proof scheme may be empirical, where conviction is 
reached through perceptual or inductive observations (e.g., drawings, measurements, 
a series of examples, etc.), or deductive, where conviction is reached through applica-
tion of rules of logic (see Harel (2008a) for a more thorough discussion).

Humans’ instinctual desire to seek certainty is a cognitive primitive to the math-
ematical certainty reached through deductive proof schemes. Throughout history, 
proof schemes have not been static but varied from civilization to civilization, gen-
eration to generation within the same civilization, and community to community 
within the same generation (Kleiner, 1991). For example, the Babylonians merely 
prescribed specific solutions to specific problems, and so their proof schemes were 
mainly empirical. The deductive proof scheme—that is, the approach of establishing 
mathematical certainty by deducing facts from accepted principles—was first con-
ceived by the Greeks and continues to dominate the mathematics discipline today.

Pedagogical considerations. Our subjectivity toward the meaning of proof does not 
imply ambiguous goals in the teaching of this concept. Ultimately, the goal is to help 
students learn to produce mathematical proofs and acquire mathematical proof 
schemes. A proof or a proof scheme is mathematical if it is consistent with those 
shared and practiced in contemporary mathematics. It is due to these schemes and 
practices that mathematicians trust the validation process of proofs established by 
the mathematics community. Clearly a mathematician is certain of a result when he 
or she proved it or read its proof. However, mathematicians are certain of numerous 
results, especially those outside their mathematical specialty, whose proofs they 
have not read. They accept a result if it has been validated by a mathematician they 
trust or has gone through a certification process by the community (e.g., published in 
a reputable journal). Auslander (2008) points out that this process of validation and 
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certification “is an indication that we are part of a community whose members trust 
one another,” and that “mathematics could not be a coherent discipline, as opposed 
to a random collection of techniques and results, without [this process]” (p. 64).

These socio-mathematical norms for conviction are fundamentally different 
from the norms prevalent in the mathematics classroom. Strong evidence exists that 
students at all grade levels, and even school teachers, draw certainty from undesir-
able proof schemes, such as verification on the basis of specific examples (the 
inductive proof scheme), appearances in drawings (the perceptual proof scheme), 
forms in which a proof is conveyed (the ritualistic proof scheme), and teacher’s 
authority (the authoritative proof scheme) (Harel & Sowder, 1998, 2007). These 
behaviors are not surprising, given common teaching practices. Harel and Rabin 
(2010) identified a series of teaching practices that might account for the strong 
presence of these proof schemes among students. These practices include the fol-
lowing: the teacher’s answers to students’ questions mainly tell them how to per-
form a task and whether an action is correct or incorrect; the justification of the need 
for content taught is social rather than intellectual; and the teacher’s justifications 
are mainly authoritative, and those that are not authoritative are mainly empirical 
rather than deductive.

Beyond such detrimental teaching practices, other intuitively sound teaching 
practices aimed at changing students’ undesirable proof scheme have turned out to 
be largely ineffective. In particular, raising skepticism as to whether an assertion is 
true beyond the cases evaluated, and showing the limitations inherent in the use of 
examples through situations where an assertion is true for a very large number n of 
cases but untrue for the n +1 case, does not, in most cases, alter students’ proof-
related behaviors. This observation was made repeatedly in my teaching experi-
ments with undergraduate math and engineering students as well as in-service 
teachers. An explanation for this phenomenon rests on the recognition that doubts 
and conviction—and more generally disequilibrium and equilibrium—are interde-
pendent. A person’s doubts about an observation cannot be defined independently 
of what constitutes certainty for him or her, and, conversely, a person’s certainty 
cannot be defined independently of what doubt is for that person. The presence of 
doubts necessarily implies the presence of conditions for their removal, and, con-
versely, a fulfillment of these conditions is necessary for attaining certainty. Thus, 
since the students viewed their actions of verifying an assertion in a finite number 
of cases as sufficient for removing their doubts about the truth of the assertion, the 
question of whether the assertion is true beyond the cases evaluated is unlikely to 
generate intellectual perturbation with the students. Moreover, since in most cases 
the teacher’s verification actions confirm what the students have already concluded, 
these actions add little or nothing to the students’ conviction about the truth or fal-
sity of the assertion. The counterexample cases students (rarely) encounter, where 
assertions are true for a large number of cases but untrue for all cases, do not shake 
students’ confidence in their empirical methods of proving. This is so because stu-
dents’ conditions for gaining certainty have not been fulfilled; the attempt to bring 
students to doubt their empirical proving methods is done by a method those stu-
dents do not accept in the first place.

6  Intellectual Need
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The experience of disequilibrium cannot be described independently of its 
corresponding experience of equilibrium, and, therefore, as a form of perturbational 
experience, intellectual need cannot be determined independently of what satisfies 
it. An important implication of this observation is that curriculum developers and 
teachers must think hard as to what constitutes perturbation and equilibrium for 
students and how to enculturate them into a milieu of mathematical perturbations 
and equilibriums. The rest of this chapter is an attempt to make a contribution 
toward defining the content of this milieu.

�Need for Causality

Definition and function. Certainty is achieved when an individual determines (by 
whatever means he or she deems appropriate) that an assertion is true. Truth alone, 
however, may not be the only aim for the individual, and he or she may desire to 
know why the assertion is true—the cause that makes it true. Thus, the need for 
causality is one’s desire to explain, to determine a cause of a phenomenon. 
“Mathematicians routinely distinguish proofs that merely demonstrate from proofs 
which explain” (Steiner, 1978, p. 135). For many, the role of mathematical proofs 
goes beyond achieving certainty—to show that something is true; rather, “they’re 
there to show … why [an assertion] is true,” as Gleason, one of the solvers of 
Hilbert’s Fifth Problem (Yandell, 2002, p. 150), points out. Two millennia before 
him, Aristotle, in his Posterior Analytic, asserted,

We suppose ourselves to possess unqualified scientific knowledge of a thing, as opposed to 
knowing it in the accidental way in which the sophist knows, when we think that we know 
the cause on which the fact depends as the cause of the fact and of no other. (p. 4)

Like with certainty, humans’ instinctual desire to explain phenomena in their 
environments serves as a cognitive primitive to mathematical justification. The dis-
tinction between achieving certainty and finding causality in mathematics was the 
focus of a debate during the sixteenth and seventeenth centuries. Some philosophers 
of this period argued that mathematics is not a perfect science because mathematics 
is concerned with mere certainty rather than cause: Mathematicians are satisfied 
when they arrive at a conclusion by logical implications but do not require the dem-
onstration of the cause of their conclusion (Mancosu, 1996). These philosophers 
point, for example, to Euclid’s proof of Proposition 1.32 (the sum of the three inte-
rior angles of any triangle ABC is equal to 180°). Consider Euclid’s proof of this 
proposition (Fig. 6.2).

In this proof, these philosophers argue, the cause of the property that is proved is 
absent. The two facts to which the proof appeals—the one about the auxiliary seg-
ment CE and the one about the external angle ACD—cannot be the true cause of the 
property, for the property holds whether or not the segment CE is produced and the 
angle ACD considered. A causal proof, according to these philosophers, gives not 
just evidence of the truth of the theorem but of the cause for the proposition’s truth.

Proof by contradiction was another example of a noncausal proof in the eyes of 
these philosophers. When a statement “A implies B” is proved by showing how not 
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B (and A) leads logically to an absurdity, we do not learn anything about the causal 
relationship between A and B. Nor, continued these philosophers to argue, do we 
gain any insight into how the result was obtained. Proofs by contradiction continued 
to be controversial until the late nineteenth and early twentieth centuries. In 1888, 
for example, Hilbert astonished the mathematical community of the time when he 
proved the Gordan conjecture: There is a finite “basis” from which all algebraic 
invariants of a given polynomial form could be constructed by applying a specified 
set of additions and multiplications. It was more the form of Hilbert’s solution than 
the shear success in solving an open problem that was controversial. Hilbert didn’t 
find a basis that everyone had been searching for; he merely proved that if we accept 
Aristotle’s law of the excluded middle (“Any statement is either true or its negation 
is true”) then such a basis had to exist, whether we could produce it or not.

At first this result was greeted with disbelief. Gordan said, “Das ist nicht Mathematic. Das 
ist Theology.” Cayley at first failed to grasp the proof. Lindemann thought the proof unheim-
lich (“uncomfortable, sinister, weird”). Only Klein got it right away: “Wholly simple and, 
therefore, logically compelling.” Within the next five years organized opposition disap-
peared, and this was the result that initially made Hilbert’s reputation. (Yandell, 2002, p. 12)

Why was Hilbert’s use of proof by contradiction so controversial? After all, he was 
not the first to use this method of argument? According to Yandell, previous uses had 
not dealt with a subject of such obvious calculational complexity. A pure existence 
proof does not produce a specific object that can be checked—one had to trust the 
logical consistency of the growing body of mathematics to trust the proof. The pres-
ence of an actual object that can be evaluated provides more than mere certainty; it 
constitutes a cause (in the Aristotelian sense) for the observed phenomenon.

The philosophical stance about the scientific nature of understanding and its 
implication that mathematical proofs must conform to the Aristotelian definition of 
science seems to have played a role, perhaps implicitly, in Grassmann’s (1809–1877) 
work. According to Lewis (2004), when Grassmann published his theory of exten-
sion (Ausdehnungslehre) in 1844, and again, in a modified version, in 1862, it went 
unnoticed, partly due to its novel and large-scale discoveries, and partly due to its 
novel method of presentation. The latter is of particular relevance to our discussion 
about the need for certainty versus the need for causality. Grassmann insisted on a 
presentation that met the highest standards of rigor, on the one hand, and provided 
the reader with a clear understanding of the epistemological justifications behind his 
concepts and proofs, on the other. Grassmann’s insistence on such a presentation, 
according to Lewis, goes beyond pedagogical considerations to help the reader 

Construct CE parallel toAB . Then the alternate angles
BAC and ACE are congruent and the corresponding
angles ABC  and ECD are congruent. Hence,
m(  BAC ) + m(  ABC ) + m(  ACB )=180°.

A B

C

D

E

Fig. 6.2  Euclid’s proof for the triangle angle sum theorem
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grasp his new concepts and techniques; rather, Grassmann “appears to regard the 
pedagogical involvement as an essential part of the justification of mathematics as a 
science” (p. 19).

Recall that proving and explaining are two different, yet related, mental acts: the 
first is carried out to remove doubts, and the second to determine cause. Accordingly, 
a proof is a way of understanding associated with the mental act of proving, and an 
explanation is a way of understanding associated with the mental act of explaining. 
Often, when facing a particular assertion or arriving at a conjecture, one may carry 
out the two mental acts of proving and explaining together, resulting in a single 
product that is both a proof and an explanation—it removes doubts about the truth 
of the assertion and provides a reason, or a cause, for its truth. The issue of what 
makes a proof a causal proof (i.e., proof and explanation) was addressed by Steiner 
(1978). He distinguishes between proofs that prove and proofs that explain, but his 
distinction is a priori, independent of the individual’s conceptions. This distinction 
and its corresponding ontological position are adopted by Hanna (1990), who argues 
that proofs by mathematical induction, for example, are proofs that prove but do not 
explain. Our position is different. We hold that it is the individual’s scheme of 
doubts, truths, and convictions in a given context that determines whether an argu-
ment is a proof or an explanation.

Pedagogical considerations. This historical analysis, together with the findings dis-
cussed earlier about the ineffectiveness of some intuitively sound teaching prac-
tices, led to a pedagogical lesson regarding the transition from undesirable proof 
schemes, especially the empirical proof schemes, to deductive proof schemes. The 
idea is to shift students’ attention from certainty to cause. Rather than justifying the 
need for deductive proofs by raising questions about the logical legitimacy of 
empirical proofs—which, as indicated earlier, turned out to have little or no pertur-
bational effect—we turned students’ attention to the cause (or causes) that makes an 
assertion true or false. By repeatedly attending to explanations as well as to proofs, 
we aimed at enculturating students into the habit of seeking to understand cause, not 
only attaining certainty. To illustrate how this can be done, consider the following 
episode: A group of in-service secondary teachers participating in a professional 
development summer institute were given the Quilt Problem (Fig. 6.3).

A company makes square quilts. Each quilt is made out of small congruent squares, where the squares on the
main diagonals are black and the rest are white. The cost of a quilt is calculated as follows: Materials: $1.00 for
each black square and $0.50 for each white square; Labor: $0.25 for each square. To order a quilt, one must
specify the number of black squares, or the number of white squares, or the total number of squares on the
following order form:

Number of Black Squares Number of White Squares Total of Squares

April, Bonnie, and Chad ordered three identical quilts. Each of the three filled out a different order form. April
entered the number of black squares in the Black Cell. The other two entered the same number as April’s, but
accidentally Bonnie entered her number in the Whites Cell, and Chad entered his number in the Total Cell.
April was charged $139.25.  How much money were Bonnie and Chad charged?

Fig. 6.3  The Quilt Problem
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The teacher participants worked in small groups on the problem for some time, 
and then each group presented its solution (whether complete or partial). Nina,5 a 
teacher participant in the institute, presented her group’s solution. The solution con-
siders two cases: an even-sized quilt and an odd-sized quilt. Our discussion here 
pertains to the odd-sized case, but for the sake of completeness the even-sized case 
is also presented.

Nina noted that viewing each partial cost in terms of units of $0 25.  excludes the 
possibility that the quilt is of an even-sized dimension, for if the dimension were 
even then each partial cost, and therefore the total cost as well, would comprise an 
even number of $ .0 25 − units. But the total cost ($139 25. ) comprises an odd number 
of these units. For the odd-sized case, Nina first wrote the two lines in Fig. 6.4:
where x is the size of the quilt (the number of squares on each side). Following this, 
she proceeded to solve the algebraic equation. When asked by one of the teacher 
participants in the class why the number of whites is ( )x −1 2, Nina responded by 
presenting a table (see Fig. 6.5).

Nina indicated that this table was the result of an effort by her group to express 
the number of white squares as a function of the quilt’s size. Based on these special 
cases, the group concluded that for an x-sized quilt, the number of white squares is 

4
1

2

2
x −



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, or ( )x −1 2.

In the discussion that followed this presentation, it was clear that the class as a 
whole was impressed by Nina’s solution, and was convinced that the generalization 
was valid. Rather than dwelling on the question of how we know the pattern 

Fig. 6.4  Nina’s equations

Size # White Squares
1 0
3 4 (4×1)

5 16
5-1

(3 1) (1 4) 4(4) 4(2 2) 4
2

æ ö2× + × = = × = × ç ÷
è ø

7 36
7 1

4(9) 4(3 3) 4
2

-æ ö2= × = × ç ÷
è ø

...

x
2

21 ( 1)
4 4 ( 1)

2 4

x x x- -æ ö2× = × = -ç ÷
è ø

Fig. 6.5  Nina’s pattern for 
the number of white squares

5 Pseudonyms.
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continues to be valid for all positive odd integers, the instructor presented an alter-
native solution offered by John, one of the teacher participants in an earlier summer 
institute. In John’s solution, x is an odd number representing the size of the quilt (the 
number of square on its side). Removing the middle row and middle column of 
squares (those containing the black square shared by the main diagonals) leaves 

four “subsquares” having 
x −





1

2

2

 squares, including black squares from the diag-

onals (Fig. 6.6). So, excluding the row and column previously removed, there would 

be a total of 4
1

2

2
x −





, or x −( )1
2

, squares in the four subsquares. Since each black 

square along the diagonal corresponds to one square that had been removed by 
eliminating the row and column containing the center black square, the number of 
white squares in an x -sized quilt remains x −( )1

2
.

The teacher participants had been impressed by Nina’s solution and they were 
equally impressed by John’s solution. The general consensus among the teachers 
was that both solutions are convincing, but John’s solution has an added value; it 
reveals the reason (i.e., the cause) for why the number of white squares is x −( )1

2
.6

Our experience from these professional development institutes and other teach-
ing experiments is that through repeated experiences such as the one described 
here—of comparing empirical solutions (such as Nina’s) with causal solutions 
(such as John’s)—learners gradually come to the realization that one type of reason-
ing is of more intellectual value than the other. Whereas empirical reasoning pro-
vides them with certainty (because of their robust empirical proof scheme), causal 
reasoning provides them with both certainty and enlightenment (understanding of 
cause). We observed a change in the teacher participants’ argumentation for 

Fig. 6.6  The drawing that 
accompanied John’s solution

6 Other solutions were offered by the class. For example, one solution examined all the possible 
cases for the size of the quilt, and another solution simply calculated the number of white squares 
by subtracting the number of black squares from the total number of squares.
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ascertainment and persuasion after having gone through this experience for an 
extended period of time. Thus, shifting the focus from certainty to causality seems 
to have effected the teacher participants’ schemes of doubts and, in turn, their proof 
schemes. Though they continued to produce empirical proofs, they also sought 
casual justifications.7

�Need for Computation

Definition and function. After Piaget, quantifying is the act of transforming a sensa-
tion (i.e., a perceptual action scheme—visual, auditory, tactile, etc.) into a quan-
tity—a measurable sensation. For example, the sensation fastness is transformed 
into speed; heaviness into weight; extent into length, area, or volume; pushing or 
pulling into force; rotational twist into torque; hotness into heat (i.e., thermal 
energy), etc. Some sensations might be difficult to quantify; “texture,” “taste,” 
“pain,” “happiness,” and “instructional quality” are examples. The quantification 
process involves assigning a unit of measure to a quantity; for example, “mph,” 
“gram,” “Newton meter,” and “square meter” are unit measures assigned to the 
quantities “speed,” “weight,” “torque,” and “area,” respectively. As can be seen from 
these examples, often quantification is a nested act: one quantity is constructed from 
previously formed quantities.

Sensations such as fastness and heaviness constitute cognitive primitives to the 
need to quantify, which is one expression of the need to compute. Another expres-
sion is the act of determining a missing quantity from a set of quantitative con-
straints, as when, for example, one seeks to determine the dimensions of a right 
triangle from its area and the ratio of two of its sides. Collectively, these two expres-
sions of the need to compute manifest humans’ desire to accurately compare differ-
ent sensations, determine their interrelationships, and, in turn, better understand and 
control their own physical and social environment.

The need to compute is not the invention of modern mathematics. The 
Babylonians (around 2000 B.C.) engaged in problems that required determining the 
value of a quantity from other given quantities. For example, they invented proce-
dures for solving what we now view as quadratic equations (e.g., how to find the 
side of a square when the difference between the area and the side is given). This 
practice of computing continued to develop in different cultures throughout history, 
and it led gradually to the development of symbolic algebra, and, in turn, to new 
mathematical concepts (such as complex numbers, equations, and polynomials) and 
a system of symbols to represent these concepts. These invented symbols necessi-
tated the creation of new concepts. For example, the Babylonian numerical system 

7 This transition involved interesting cognitive disequilibria, which are not discussed in this paper.
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is a positional notation system (i.e., utilizes the principle of “place value”) but 
denotes all the multiples k n60±  by the same sign (e.g., the string of symbols, , 
might mean 2 60 2( ) + , 2 60 2 602( ) ( )+ , or 2 60 2 603 2( ) ( )+ ). The computational ambi-
guity of this system necessitated the conception of zero as a number and the intro-
duction of this number into calculation. This conception, in turn, led to the creation 
of the numerical system of our present time, which removed the ambiguity and 
advanced the computational effectiveness of the place value system used by 
Babylonians. Another example of how the need for computation led to the creation 
of symbols, and, in turn, to the creation of new concepts, is from a later period. The 
Leibnitzian notation Df , D f2 , etc. was needed to display the number of successive 
differentiations, but it also suggested the possibility of extending the meaning of 
D fa  for negative and fractional a. Davis and Hersh (1981) point out that this inven-
tion contributed powerfully to the development of abstract algebra in the mid-nine-
teenth century. In addition, this notation may have necessitated, or at least helped to 
advance, the object conception of function (in the sense of Dubinsky, 1991), namely, 
that f , in addition to being a process that assigns to a given input-number a single 
output-number, is itself an operand (an input) for another process, D. Overall, the 
nature of computing evolved rather slowly. As late as the fifteenth century, mathe-
maticians lacked the ability to compute with symbols independent of their spatial 
referents—and encountered major difficulties as a result. For example, a major 
obstacle in justifying the formula for the roots of the cubic equation was the inabil-
ity to figure out the identity ( )a b a a b ab b− = − + −3 3 2 2 33 3 , whose proof required 
dissection of a cube in three-dimensional space (Tignol, 1988). Only later, with the 
work of Cardono (1501–1576), was the formula for the cubic equation justified by 
means of symbolic algebra—specifically, by transforming different forms of cubic 
equations into systems of equations.

To compute by means of symbolic algebra reflects two inseparable abilities: (a) 
the ability to represent a situation symbolically and manipulate the representing 
symbols as if they have a life of their own, without necessarily attending to their 
reference, and (b) the ability to pause at will during the manipulation process in 
order to probe into the referential meanings for the symbols involved in the manipu-
lation. The attempt to form a referential meaning need not always succeed or even 
occur. What matters is that the person who carries out the manipulation has the abil-
ity to investigate, when needed, the referential meaning of any symbol and transfor-
mation involved. In this paper, the need to compute is in the sense of this definition, 
in that it refers to one’s desire to quantify, determine a missing object or construct an 
object (e.g., a number, geometric figure, function, or matrix), determine the property 
of an object or relations among objects, etc. by means of symbolic algebra. It also 
includes the need to find more efficient computational methods, such as one might 
need to extend computations to larger numbers in a reasonable “running time.”

Historically, the practice of manipulating symbols without necessarily examining 
their meanings played a significant role in the development of mathematics. For 
example, during the nineteenth century a significant work was done in differential 
and difference calculus using a technique called “operational method,” a method 
whose results are obtained by symbol manipulations without understanding their 
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meaning, and in many cases in violation of well-established mathematical rules (see, 
for example, the derivation of the Euler–MacLaurin summation formula for approx-
imating integrals by sums, in Friedman (1991)). Mathematicians sought meaning for 
the operational method, and with the aid of functional analysis, which emerged early 
in the twentieth century, they were able to justify many of its techniques.

Computing by means of symbolic algebra marked a revolutionary change in the 
history of mathematics. In particular, it provided a conceptual foundation for the 
critical shift from “results of operations” as the object of study to the operations 
themselves as the object of study. While the Greeks restricted their attention to attri-
butes of spatial configurations and paid no attention to the operations underlying 
them, nineteenth-century mathematics investigated the operations, their algebraic 
representations, and their structures. For example, Euclidean constructions using 
only a compass and straightedge were translated into statements about the construc-
tability of real numbers, which, in turn, led to observations about the structure of 
constructible numbers. A deeper investigation into the theory of fields led to the 
understanding of why certain constructions are possible whereas others are not. The 
Greeks had no means to build such an understanding, since they did not attend to the 
nature of the operations underlying Euclidean construction. Thus, by means of sym-
bolic algebra and analytic geometry, mathematicians realized that all Euclidean 
geometry problems can be solved by a single approach, that of reducing the prob-
lems into equations and applying algebraic techniques to solve them. Euclidean 
straightedge-and-compass constructions were understood to be equivalent to equa-
tions, and hence the solvability of a Euclidean problem became equivalent to the 
solvability of the corresponding equation(s) in the constructible field.

Pedagogical considerations. The need for computation, perhaps the most powerful 
need in the context of school mathematics, is rarely utilized adequately. For exam-
ple, after learning how to multiply polynomials, secondary-school students typi-
cally learn techniques for factoring polynomials, and then how to apply these 
techniques to simplify rational expressions. Judging from the students’ perspective, 
the tasks of multiplying and factoring polynomials and simplifying rational expres-
sions are intellectually purposeless. They learn to transform one form of expression 
into another without a clear understanding of the mathematical purpose such trans-
formations serve and the circumstances under which one form of expression is more 
advantageous than another. A case in point is the way the quadratic formula is 
taught. Some algebra textbooks present the quadratic formula before the method of 
completing the square. Seldom do students see an intellectual purpose for the latter 
method (i.e., to solve quadratic equations and to derive a general formula for their 
solutions), rendering completing the square problems intellectually purposeless to 
most students. An alternative approach that would intellectually necessitate such 
problems builds on what the students know: Assuming that the students have already 
learned how to solve equations of the form ( )x T L+ =2 , the teacher’s action would 
be geared toward helping them manipulate the quadratic equation ax bx c2 0+ + =  
with a goal in mind—that of transforming the latter equation form into the former 
known equation form but maintaining the solution set unchanged. The intellectual 
gain is that students learn that algebraic expressions are reformed for a reason.
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Often problems used to introduce a new concept do not demonstrate the intel-
lectual benefit of the concept at the time of its introduction. For example, some 
high-school mathematics texts introduce the idea of using equations to solve word 
problems through trivial, one-step addition or multiplication word problems (see 
Harel, 2009). This approach is contrived, and is unlikely to intellectually necessitate 
this idea since students can easily solve such problems with tools already available 
to them. To make this point clearer, it is worth presenting an alternative approach—
one that is more likely to intellectually necessitate algebraic tools to solve word 
problems. In this alternative approach, students first learn to solve nontrivial word 
problems with their current arithmetic tools. For example, they can reason about 
problems of the following kind directly, without any explicit use of variables.

Towns A and B are 280 miles apart. At 12:00 PM, a car leaves A toward B, and a truck 
leaves B toward A. The car drives at 80 m/h and the truck at 60 m/h. When will they meet?

Students can do so by, for example, reasoning as follows:

After 1 h, the car drives 80 miles and the truck 60 miles. Together they drive 140 miles. In 
2  h, the car drives 160 miles and the truck 120 miles. Together they drive 280 miles. 
Therefore, they will meet at 2:00 PM.

Through this kind of reasoning, students develop the habit of building coherent 
images for the problems—a habit they often lack.

These problems can then be gradually modified (in context, as well as in quanti-
ties) so as to make them harder to solve with arithmetic tools alone, whereby neces-
sitating the use of algebraic tools. For example, varying the distance between the two 
towns through the sequence of numbers, 420, 350, 245, and 309, results in a new 
sequence of problems with increasing degree of difficulty. Students still can solve 
these problems with their arithmetic tools but the problems become harder as the 
relationship between the given distance and the quantity 140 (the sum of the two 
given speeds) becomes less obvious. For example, for the case where the distance is 
245 miles, the time it takes until the two vehicles meet must be between 1 and 2 h, 

and so one might search through the values 1 h and 15 min 80
75

60
60

75

60
245+ =





?

, 1 h 

and 30 min 80
90

60
60

90

60
245+ =





?

, and 1 h and 45 min 80
105

60
60

105

60
245+ =





?

, and find 

that the last value is the time sought for. This activity of varying the time needed can 
give rise to the concept of variable (or unknown) and, in turn, to the equation, 
80 60 245x x+ = . Granted, this is not the only approach to intellectually necessitate 
the use of algebraic tools for solving word problems. However, whatever approach is 
used, it is critical to give students ample opportunities to repeatedly reason about 
problems with their current arithmetic tools and to gradually lead them to incorporate 
new, algebraic tools. The goal is for students to learn to build coherent mental repre-
sentations for the quantities involved in the problem and to intellectually necessitate 
the use of equations to represent these relationships. An added value of this approach 
is the development of computational fluency with numbers (especially fractions).
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The inadequate use of the need for computation is prevalent in undergraduate 
mathematics as well. For example, typically, linear algebra textbooks introduce the 
pivotal concepts of “eigenvalue,” “eigenvector,” and “matrix diagonalization” with 
statements such as the following:

The concepts of “eigenvalue” and “eigenvector” are needed to deal with the problem of 
factoring an n n×  matrix A into a product of the form XDX −1, where D is diagonal. The 
latter factorization would provide important information about A, such as its rank and 
determinant.

The concepts of “eigenvalue” and “eigenvector” are needed to deal with the problem of 
computing a higher order of power of a given matrix, to study the long-term behavior of 
linear systems.

The concepts of “eigenvalue” and “eigenvector” are needed to deal with a problem that 
arises frequently in application of linear algebra—that of finding values of a scalar param-
eter l for which there exists x ≠ 0 satisfying Ax x= l , where A is a square matrix.

Each of these introductory statements aims at pointing out to the student an impor-
tant problem. While the problem is intellectually intrinsic to its poser (a university 
instructor), it is most likely to be alien to the students, since a student in an elemen-
tary linear algebra course is unlikely to realize from such statements the true nature 
of the problem, its mathematical importance, and the role the concepts to be taught 
(“eigenvalue,” “eigenvector,” and “diagonalization”) play in determining its 
solution.

An alternative approach, based particularly on students’ intellectual need for 
computation, is through linear systems of differential equations. In what follows, 
I briefly outline part of a unit in a linear algebra course I have taught numerous 
times, some of which as teaching experiments. The goal of the unit is to necessitate 
fundamental ideas of the Eigen Theory, from the basic concepts of eigenvalue, 
eigenvector, diagonalization, and their related theorems up to the Jordan Theorem 
(i.e., “Every vector is a linear combination of generalized eigenvectors.”) and its 
related Jordan Canonical Form. The unit begins with an investigation of the linear 
system of differential equations:

	

AY t Y t

Y C

( ) ( )

( )

=
=





′

0
	

(*)

(Here A is a square matrix, and the matrix A and the vector C, the initial condition 
vector, are over the complex field.) Obviously, this system and its representation in 
a matrix form do not emerge in a vacuum, but out of a context established in previ-
ous units. The investigation consists of a series of stages. Here I focus on the first 
several stages that lead up to the concept of diagonalization.

In the first stage of the investigation, we help students analogize system (*) to the 
scalar case:

	

ay t y t

y c

( ) ( )

( )

=
=





′

0
	

(**)
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(Here a and c are real numbers.) The students are familiar with this equation and its 
(unique) solution, y t c at( ) = e , from their calculus classes. To refresh their memory of 
this topic, we assign them (prior to the start of the unit on Eigen Theory) a few 
problems involving this equation and the exponential function power series. 
Students notice the similarity in form between (*) and (**), and accordingly offer 
the analogous expression, Y t C At( ) = e , as a solution to system (*). It takes some 
prompting from the instructor for the students to attend to the meaning of the objects 
and operations involved in this expression. After some discussion, the students offer 
to rewrite the product At as tA, and ask about the meaning of the phrase “e to the 
power of a matrix.” At this point, students’ attention is centered on this phrase, and 
so questions concerning the dimension of the matrix and whether the product C tAe  is 
meaningful are not raised. Often, but not always, students suggest that eB is the 
matrix with the entries ( ) ,

,e eB
i j

Bi j= . With this definition at hand,8 the instructor pro-
vides a special case of system (*) and asks the students to verify whether the expres-
sion Y t C At( ) = e  is a solution to the system, as they have conjectured. In this process, 
the students first realize the need to reverse the order of the product C Ate  into eAtC, 
and then conclude that the revised expression Y t CtA( ) = e , under their definition of 
the matrix-valued exponential function, is not a solution to system (*). Consequently, 
students conclude that the solution to system (*) must be of different form from the 
one they offered; it does not occur to them to seek a different definition for the 
matrix-valued exponential function.

The second phase of the investigation commences with the instructor suggesting 
a different approach for defining this function. He reminds the students of the defini-
tion of the real-valued function eb as a power series (a topic they reviewed in the 
preceding unit). Some students suggest analogizing eB to eb; namely, that analogous 
to eb i

i
i b=

=

∞∑ ( / !)1
0

, we define eB i

i
i B=

=

∞∑ ( / !)1
0

. Again, despite the use of the 
term “define,” students do not view the latter equality as a definition but as a formula, 
perhaps because the former equality was derived from a Taylor expansion rather 
stated as a definition. Nor do they raise any concern about the convergence of the 
series. Furthermore, only when the instructor asks the class to compute eB for a par-
ticular simple 2 2×  matrix B do the students realize that eB is meaningless unless B is 
a squared matrix, and consequently they observe that eB too is a squared matrix. With 
this new definition at hand, the instructor leads the class in the process of verifying 
that Y t C t i A CtA i

i

i( ) ( / !)= =
=

∞∑e
0

 is a solution to system (*). As with the question of 
convergence, the question of uniqueness too is never addressed in this class.

In the third phase of the investigation, the instructor returns to the above solu-
tion in its expansion form (Y t C t i A CtA i

i

i( ) ( / !)= =
=

∞∑e
0

) and points out the fol-
lowing critical observation: If AC C= l  for some scalar l, then the solution to 
system (*) is easily computable. Specifically, it is Y t Ct( ) = el , for under this con-
dition Y t t i A C t i C t i C Ci

i

i i

i

i i

i

t( ) ( / !) ( / !) (( ) / !)= = = =
=

∞

=

∞

=

∞∑ ∑ ∑0 0 0
l l eλ . This 

8 The use of the term “definition” here should not imply that the students’ intention was to define—
in the mathematical sense of the term—the concept “e to the power of a matrix” (see the discussion 
on definitional reasoning).
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observation necessitates attention to the relationship AC C= l , and therefore a 
name: C  is called an eigenvector of A  and l  its corresponding eigenvalue. 
Following a few examples of solving system (*), the instructor (and in a few cases 
a student) raises the question about the computability of the solution in cases 
where the condition vector is not an eigenvector of the coefficient matrix. The 
instructor suggests looking at the case where C is not an eigenvector of A but it is 
a linear combination of eigenvectors of A. We proceed to show that in this case 
too the solution to system (*) is easily computable. Specifically Y t a Cii

n t
i

i( ) =
=∑ 1

el , 
where C a Cii

n

i=
=∑ 1

 and AC Ci i i= l . This result is then used to conclude that if the 
coefficient matrix has a basis of eigenvectors then for any condition vector the 
solution to system (*) is easily computable. Such a matrix, therefore, is of a com-
putational significance, and hence it warrants attention. This concludes the third 
phase of the investigation.
The content of the next phases depends on the level of the course. For an elementary 
linear algebra course, the proceeding phases deal with the factorization of matrices 
with a basis of eigenvectors (i.e., diagonalization) and change of basis. For the more 
advanced linear algebra course, the proceeding phases continue the investigation of 
the computability of the solution to system (*). The investigation leads up to the 
Jordan Theorem (and its related Canonical Form), which yields the interesting 
results that the solution to system (*) is always easily computable.

All the alternative approaches discussed here demonstrate how both conditions 
(a) and (b) in our definition of computing by means of symbolic algebra are imple-
mented. It is never the case that every single symbol in the manipulation process is 
referential. Rather, it is only in critical stages (viewed as such by the person who 
carries the symbol manipulations) that one forms, or attempts to form, referential 
meanings. One does not usually attend to interpretation in the middle of symbol 
manipulations unless one encounters a barrier or recognizes a symbolic form that is 
of interest to the problem at hand. Thus, for most of the process the symbols are 
treated as if they have a life of their own. It is in this sense that symbol manipulation 
skills should be understood and, accordingly, be taught.

�Needs for Communication

Definition and function. In mathematics, the need for communication refers collec-
tively to two reflexive acts: formulating and formalizing. Formulating is the act of 
transforming strings of spoken language into algebraic expressions (i.e., expression 
amenable to computation by means of symbolic algebra as discussed in the preced-
ing section). Formalization is the act of externalizing the exact intended meaning of 
an idea or a concept or the logical basis underlying an argument. A cognitive primi-
tive of these two acts is the act of conveying and exchanging ideas by means of a 
spoken language and gestures, which are defining features of humans.

In modern mathematics the acts of formulation and formalizations are reflexive 
in that as one formalizes a mathematical idea it is often necessary to formulate it, 
and, conversely, as one formulates an idea one often encounters a need to formalize it. 
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Historically, however, the need for formulation seems to have emerged well after 
the need for formalization. At least in the Western world the need for formalization 
began with Greeks, whereas that of formulating with Viete (1540–1603) and Stevin 
(1548–1620). These two scholars are viewed by historians as milestones in the evo-
lution of the need for formulation, and, in turn, in the evolution of the need for for-
malization beyond the Greeks. Until then, the exchange of mathematical ideas was 
largely colloquial (i.e., idiomatic and conversational). The Babylonians (around 
2000 B.C.), for example, used only text to exchange problems and procedures for 
their solutions, as can be seen in one of their tablets:

I have subtracted from the area the side of my square: 14.30 [meaning, the result is 14.30]. 
[To solve], divide 1 into two parts: 30. Multiply 30 and 30: 15. You add to 14.30, and 
14.30.15 has the root 29.30. You add to 29.30 the 30 which you have multiplied by itself: 
30, and this is the side of the square. (Tignol, 1988, p. 7).

The arithmetic here is in base 60, so, for example, 14.30 in base 10 is 14 × 60 + 30 = 870. 
Tignol points out that the “Babylonians had no symbol to indicate the absence of a 
number or to indicate that certain numbers are intended as fractions. For instance, 
when 1 is divided by 2, the result which is indicated as 30 really means 30 × 60−1, 
i.e., 0.5” (p. 7).

Three and a half millennia later, Cardano began to formulate the notation of 
equations. For example, the equation x x2 2 48+ =  is written by Cardano as, “1. 
quad. P : 2 pos. aeq. 48 (quad. for ‘quadratum’; pos. for ‘positiones’ and aeq. for 
‘aequatur’)” (Tignol, 1988, p. 36). An essential characteristic of this type of nota-
tion is that its syntax is in the form of a spoken language. Of course, it is both sim-
plistic and wrong to bundle a span of over three millennia of development of 
mathematical notation into a single characteristic. This is not our intention here. 
Rather, we merely aim at pointing to one of the features of the notational conven-
tions of the time: the use of immediate, natural tools of a spoken language to 
exchange ideas. Remarkably, this level of notation was sufficient to attain major 
achievements, the most notable of which is the solution of the cubic equation.

Pedagogical considerations. Spoken knowledge is an essential means for the develop-
ment of the need for (mathematical) communication. Consider the following exam-
ple: Students may be satisfied with their intuitive explanation of why lim /

x
x

→∞
=1 0,

which typically is communicated through a statement such as the following: 
“ lim /

x
x

→∞
=1 0  because the larger x gets the closer 1 / x is to 0.” A teacher whose goal 

is to help students see a need to formulate and formalize their concept of limit might 
proceed, upon hearing this explanation, by writing it on the board along with the 
graphs of f x x( ) /= 1  and g x( ) = −1  (see Fig. 6.7).

Then the teacher may point out to the students that based on their own statement 
one can rightly argue lim /

x
x

→∞
= −1 1 , because, by their own words, “the larger x  

gets the closer 1 / x is to −1.” This exchange may, as our experience confirms, 
result in a conflict for the students, whereby they see a need to formulate and for-
malize their idea of limit.

The reflexive nature between the need for formulation and the need for formal-
ization is best captured by Thompson (1992), in analyzing the use of concrete 
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materials in elementary mathematics instruction: “When students are aware of 
reciprocal relationships between notation and reasoning they may be more inclined 
to concentrate on their reasoning when experiencing difficulty and concentrate less 
on performing correct notational actions” (p. 124). Thompson places students’ use 
of concrete materials in the context of their development of the use of notation to 
express their reasoning. He points out that authoritative need deprives students from 
the opportunity to see a (intellectual) need for formalization:

Students’ reenactment of a prescribed procedure does not give them opportunities to con-
struct constraints in their meanings and reasoning—they meet constraints only because they 
are obliged to adhere to prescription, and it matters little that the prescriptions entail use of 
concrete materials. In reenacting prescribed procedures, students do not experience con-
straints as arising from tensions between their attempts to say what they have in mind and 
their attempts to be systematic in their expressions of it. (p. 124)

Conversely, it is the need for formalization that compels students to formulate 
(or reformulate) their symbolic system:

As students come to be systematic in their expressions of reasoning and make a commit-
ment to express their reasoning within their system, that same systematicity places con-
straints on the reasoning they wish to express. When students are aware of the constraining 
influence exerted by their arbitrary use of notation, they may feel freer to modify their 
standard uses of notation to express better what they have in mind. (p. 124)

Repeated application of the need for formulation and formalization is necessary 
to advance students’ conception of the notion of mathematical definition. This con-
ception is associated with definitional reasoning—a way of thinking by which one 
defines objects and proves assertions in terms of mathematical definitions. A math-
ematical definition is a description that applies to all objects to be defined and only 
to them. A crucial feature of this way of thinking is that with it one is compelled to 
conclude logically that there can be only one mathematical definition for a concept 
within a given theory; namely, if D

1
 and D

2
 are such definitions for a concept C, then 

D
1
 is a logical consequence of D

2
, or vice versa; otherwise, C is not well defined. 

Typically, students’ definitions of concepts are not mathematical, even if the 

Fig. 6.7  The graphs of 
f x x( ) /= 1  and 
g x( ) = −1
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concepts were defined to them mathematically. Understanding the notion of math-
ematical definition and appreciating the role and value of mathematical definitions 
in proving is a developmental process, which is not achieved for most students until 
adulthood (if at all). Many students even in advanced grades do not possess defini-
tional reasoning. For instance, in Van Hiele’s (1980) model, only in the highest 
stage of geometric reasoning are students’ definitions of Euclidean objects mathe-
matical (see Burger & Shaughnessy, 1986). Definitional reasoning is largely absent 
among college students as well, even among undergraduate mathematics and engi-
neering majors (Harel, 1999). For example, when asked to define “invertible matrix,” 
many linear algebra students stated a series of equivalent properties (e.g., “a square 
matrix with a non-zero determinant,” “a square matrix with full rank,” etc.) rather 
than a definition. The fact that they provided more than one such property is an 
indication that they were not thinking in terms of mathematical definition.

�Need for Structure

Definition and function. The need for structure is the need to reorganize the knowl-
edge one has learned into a logical structure. A critical element in this definition is 
the verb “to reorganize,” and, by implication, its source verb “to organize.” The verb 
“to organize” implies an action on something that already exists, and the verb “to 
reorganize” implies that something has already been organized. Accordingly, the 
need for structure is not a forward need; that is, one does not feel intellectually 
compelled to learn new knowledge in a particular order and from that fit a predeter-
mined structure; rather, one assimilates knowledge into one’s existing structure, and 
reorganizes it if and when one perceives a need to do so. The nature of the structure 
into which one organizes one’s own knowledge is idiosyncratic and depends entirely 
on one’s past experience. Such a structure is unlikely to be logically hierarchical, 
and even mathematicians are unlikely to involuntarily organize their knowledge into 
a systematic logical structure. Thus, the term “reorganize” in the above definition 
recognizes that individual learners or communities of learners first organize the 
mathematical knowledge they learn in a form determined by their existing cognitive 
structures; later they may meet the need to reorganize what they have learned into a 
logical structure. The history of Euclidian geometry illustrates this point. Perhaps 
the most recognized mathematical structure is Euclid’s Elements, a geometrical edi-
fice organized in a logical structure where each assertion depends on the previous 
ones. Relevant to our discussion here are two historical observations. First, the 
development of the theorems in the Euclid’s Elements did not follow a systematic 
logical progression, as it is laid out in this treatise, but evolved largely unsystemati-
cally over several centuries. Second, it was the need to organize this accumulated 
body of knowledge that led to the production of the logical structure of axioms, defi-
nitions, and propositions, as we know it; it was the need to perfect this structure that, 
in turn, led to the two-millennium-long attempt to prove the parallel postulate.
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The need for structure often leads to the discovery of unifying principles (e.g., 
associativity), common elements to different systems (e.g., the identity element), 
invariants (e.g., for the quadratic form, ax bx cy2 2+ + , the form b ac2 4−  remains 
unchanged under rotations and scalar changes of the axes), and similarities or analo-
gies of form, which may, in turn, lead to recognizing isomorphism between differ-
ent systems. It also often leads to a unification of scattered ideas into a single 
concept. “Convergence,” as was formalized by Cauchy in 1827, is an example of 
knowledge reorganization. The particularities of convergence were well known and 
widely used prior to this time, but Cauchy’s formalization reorganized and unified 
this knowledge into a single concept: “convergence.”

Sometimes the need for structure compels us to define objects in a particular 
way. For example, we define x0 1=  for x ≠ 0  in order for the familiar law of 

exponents to hold for nonzero bases, x . Specifically 1
1

1
1 1 0= = = =−x

x

x

x
x x . On the 

other hand, 00 is excluded in this definition because it leads to the ill-founded state-

ment, 0
0

0
0 = . The proposed definition 0 10 =  is not forced by any demands of 

consistency with laws of exponents. That being said, mathematicians frequently 

adopt the convention that 0 10 =  anyway, in order, for example, to make the bino-
mial theorem and Taylor’s theorem valid for zero values of a variable.

Another important aspect of the need for structure is the need to make connec-
tions—for example, the need to analogize structures, problems, and solutions to 
problems. H. Bass (personal communication, May 15, 2012) calls these aspects 
theory building. Our earlier discussion concerning Eigen Theory provides an exam-
ple for the need to analogize structures. We have seen how students successfully 
analogized between two structures: from a scalar differential equation to a matrix 
differential equation, and from a real-valued exponential function to a matrix-valued 
exponential function.

As to the role of analogy in mathematical practice, this topic has been debated 
widely in the literature in cognitive psychology and mathematics education (see, for 
example, English, 1997; Simon & Hayes, 1976). For the sake of completeness, how-
ever, I briefly discuss here one example. Consider the problem, “In how many ways 
can 8 identical chocolate bars be distributed into three groups, where none of the bars 
are to be broken and each group must contain at least one bar?” A tenth-grade student 
solved the problem by analogizing it to what was to him a simpler problem. He began 
by saying something to the effect that when the eight bars are placed in a row, seven 
spaces (one space between two bars) are created. Each choice of two spaces among 
the seven will determine one possible distribution. For example, if the second and 
seventh spaces are selected, the corresponding distribution is as follows: one group 
consists of two bars, the second group of five bars, and the third group of one bar. 
Thus, the student reduced the original problem into a different, familiar problem—in 
how many ways can two objects (spaces in our case) be chosen among seven objects? 

The student then easily determined the answer to be  7
2

7

7 2 2
21



 =

−
=

!

( )! !
.
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Pedagogical considerations. As is evident throughout the history of mathematics, 
the rigor of a logical structure—that is, the level of scrupulousness in which a math-
ematical argument is examined—is not absolute, but a process of continual devel-
opment. Intellectual need applies here too. It is a vital guide in determining the level 
of rigor suitable for a particular group of students. The question is always whether 
students, given their current knowledge and mathematical maturity, can see a need 
for an idea we intend to teach them. Often students are asked to provide justifica-
tions to claims they view as self-evident. This is particularly true for certain proper-
ties of the real numbers and geometrical objects. We observed, for example, a 
ninth-grade teacher, teaching algebra and geometry, who requires his students to 
accompany each assertion written on the left-hand side of two-column proofs by a 
reason on the right-hand column. Students in his geometry class were required to 
justify the assertion “AB AB≅ ” by the phrase “reflexive property” and the assertion 
“If ∠ = °ABC 30  and ∠ = °CBD 45 , then ∠ = °ABD 75 ” by “additive property.” 
Similarly, students in his class were required to justify the assertion “a b b a+ = + ” 
by the phrase “commutative property,” “( ) ( )a b c a b c+ + = + + ” by “associative 
property,” and “( )− = −1 b b” by “multiplying by −1 property.” It turned out that both 
the teacher and his students viewed these assertion as obvious (ones that require no 
justification) but all felt compelled to follow rules; the students had to follow rules 
imposed by their teacher, and the teacher those imposed by the textbook. Thus, the 
task to justify was alien to the teacher and to his students, and the tasks added no 
understanding of logical structure or rigor.

The requirement to justify operations on real numbers in terms of basic properties 
such as “commutativity,” “associativity,” and “identity” is not exclusive to second-
ary school mathematics; it is also common in elementary mathematics. Here, too, 
the task to justify is commonly alien to both the teachers and students. For example, 
a fifth-grade teacher assigned the problem: “Use properties to find n in the following 
equations: (1) 55 8 55+ = +n , (2) 8 2 3 2 3+ + = + +( ) ( )n , and (3) 17 0+ = n.” The 
properties referred to in this assignment are the commutative, associative, and iden-
tity properties. Students were expected to solve the three problems by resorting to 
these three properties, respectively. The attention of many of these fifth graders was 
focused solely on the teacher’s demand to use these properties rather than on the 
quantitative meaning of the equations. There were students who solved each of these 
problems directly (e.g., in Problem 1, some students first added 55 and 8 to get 63, 
and then looked for and found a number whose sum with 55 is 63), and then accom-
panied their answer by the property they guessed to be the one expected by the 
teacher (“commutative property,” in Problem 1). From the students’ point of view, 
the task to use the properties to find the unknown n is likely to have been intellectu-
ally alien (merely to satisfy the teacher’s will) rather than intellectually intrinsic (to 
solve a problem they find intellectually puzzling). The teacher’s justification for the 
task she assigned, too, was intellectually alien: “So that students will do well when 
tested on these properties.”

Geometry is perhaps the only place in high-school mathematics where a rela-
tively complete and rigorous mathematical structure can be necessitated. Deductive 
geometry can be treated in numerous ways and in different levels of rigor. Deciding 
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what constitutes an “adequate level of rigor” is crucial, of course. Earlier works, 
especially the work by Van Hiele (1980), suggest that subtle concepts and axioms, 
such as those related to “betweenness” and “separation,” must be dealt with intui-
tively. However, the progression from definitions and intuitive axioms to theorems 
and from one theorem to the next must be coherent, be logical, and exhibit a clear 
mathematical structure. In passing, I speculate that a program that sequences its 
instructional unit so that neutral geometry (a geometry without the parallel postu-
late) precedes Euclidean geometry (a geometry with the parallel postulate) would 
enhance students’ understanding of the concept of logical structure.

Unfortunately, some current high-school geometry textbooks amount to empiri-
cal observations of geometric facts; they have little or nothing to do with deductive 
geometry (for an extended detailed review, see Harel (2009)). There is definitely a 
need for intuitive treatment of geometry in any textbook, especially one intended for 
high-school students. But the experiential geometry presented in these texts is 
hardly utilized to develop geometry as a deductive system. In one of the texts 
reviewed, most assertions appear in the form of conjectures and most of the conjec-
tures are not proved deductively. It is difficult, if not impossible, to systematically 
differentiate which of the conjectures are postulates and which are theorems. It is 
difficult to learn from these texts what a mathematical definition is or to distinguish 
between a necessary condition and sufficient condition. Another text presents the 
entire mathematical content through problems (an approach we support wholeheart-
edly) but fails to convey a clear mathematical structure. It is not clear which asser-
tions are to be proved and which are not, and which are needed for the deductive 
progressions and which are not. Only one who knows the development in advance 
is likely to identify a deductive structure for the material from the set of problems in 
a given lesson. And to identify such a structure, it is necessary to go over the entire 
set of problems, including the homework problems. If, for example, one skips cer-
tain problems on uniqueness of perpendicularity, an important piece of the structure 
would be missing. Similarly, other problems appear as homework problems and yet 
they are needed for the development of a logical progression. Furthermore, even if 
all the problems are assigned and solved correctly, without a guide as to how these 
problems, together with some problems from the lesson, form a logical structure, it 
is difficult, if not impossible, to organize the material within a deductive structure.

�Summary

We have identified five categories of intellectual need: (1) the need for certainty is 
the need to prove, to remove doubts. One’s certainty is achieved when one deter-
mines, by whatever means one deems appropriate, that an assertion is true. Truth 
alone, however, may not be the only need of an individual, who may also strive to 
explain why the assertion is true. (2) The need for causality is the need to explain—
to determine a cause of a phenomenon, to understand what makes a phenomenon 
the way it is. This need does not refer to physical causality in some real-world 
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situation being mathematically modeled, but to logical explanation within the math-
ematics itself. (3) The need for computation includes the need to quantify and to 
calculate values of quantities and relations among them by means of symbolic alge-
bra. (4) The need for communication consists of two reflexive needs: the need for 
formulation—the need to transform strings of spoken language into algebraic 
expressions—and the need for formalization—the need to externalize the exact 
meaning of ideas and concepts and the logical justification for arguments. (5) The 
need for structure includes the need to reorganize knowledge learned into a logical 
structure.

As was indicated earlier, in modern mathematical practices these five needs are 
inextricably linked, and the reason for discussing them in different sections was 
merely to demonstrate the existence of each and to explicate their distinctions. The 
need for computation, in particular, is strongly connected to other needs. For exam-
ple, the need to compute the roots of the cubic equations led to advances in expo-
nential notation, which, in turn, has helped to abolish the psychological barrier of 
dealing with the third degree “by placing all the powers of the unknown on an equal 
footing” (Tignol, 1988, p. 38).

Collectively, these five needs are ingrained in all aspects of mathematical prac-
tice—in forming hypotheses, proving and explaining proofs, establishing common 
interpretations, definitions, notations, and conventions, describing mathematical 
ideas unambiguously, etc. They have driven the historical development of mathe-
matics and characterized the organization and practice of the subject today. In mod-
ern mathematical practice different needs often occur concurrently. DNR-based 
instruction is structured, so these same needs drive student learning of specific top-
ics, and by realizing the different needs that drive mathematical practice, students 
are likely to construct a global understanding of the epistemology of mathematics 
as a discipline. The notion of intellectual need is related to the Realistic Mathematics 
Education (Gravemeijer, 1994) dictum that students must engage in mathematical 
activities that are real to them, for which they see a purpose. Initially, this may mean 
problems arising in the “real” (nonmathematical) world, but as students progress, 
mathematics becomes part of their world and “self-contained” or “abstract” math-
ematical problems become equally real. Thus, again, what stimulates intellectual 
need depends on the learner at any given time.

�Fundamental Characteristics of Intellectual Need

This discussion of intellectual need is unfinished without addressing its fundamen-
tal characteristics. Without these characteristics, the concept of intellectual need is 
devoid of instructional value and lacks sufficient epistemological basis. The deci-
sion to postpone the presentation of these characteristics to the end, after an exten-
sive discussion of the definitions, functions, and pedagogical implications of the 
five categories of intellectual needs, was purely pedagogical (to first allow for the 
formation of a solid concept image for the concept definition of intellectual need).
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�Subjectivity

Intellectual needs are subjective. When we talk about intellectual need we always 
refer to the need of the learner, not the need of a teacher or an observer. There should 
be no ambiguity about the sources of intellectual need—it is a learner’s conception, 
not a teacher’s conception. And since intellectual need depends on the learner’s 
background and knowledge, what constitutes an intellectual need for one particular 
population of students may not be so for another population of students. This view 
is rooted in the Subjectivity Premise and entailed from the very definition of intel-
lectual need. Without it, the concept of intellectual need, as well as other central 
concepts of DNR such as ways of understanding and ways of thinking, loses its 
substance. In particular, the pedagogical discussions discussed previously would be 
devoid of instructional value should one lose sight of where intellectual needs reside.

�Innateness and Cognitive Primitives

The five needs discussed here are not claimed to be exhaustive or final; additional or 
different categories might be found. Further, and more important, these categories 
are not static constructs; rather, they have developed over millennia of mathematics 
practice and are likely to continue to develop in the future. This historical fact leads 
to the hypothesis that intellectual needs are learned, not innate. If accepted, as we 
do, this hypothesis has two consequences. The first consequence is pedagogical. 
Intellectual needs cannot be taken for granted in mathematics teaching. A continual 
and sustained instructional effort is necessary for students’ mathematical behaviors 
to become oriented within and driven by these needs.

The second consequence is epistemological. If intellectual needs are learned, not 
innate, then by the Knowledge-Knowing Linkage Premise, they evolve out of reso-
lutions of problematic situations. But then one is compelled to conclude that the 
learning of an intellectual need A requires the occurrence of an intellectual need B, 
which in turn requires the occurrence of an intellectual need C and so on, ad infini-
tum. To resolve this puzzle, we need a second conjecture: intellectual needs have 
cognitive primitives, whose role is to orient us to the intellectual needs we experi-
ence when we learn mathematics. In this respect, they are like subitizing (Kaufman 
et al., 1949), the ability to recognize the number of briefly presented items without 
actually counting, whose function is to orient us to recognize numerosity as a prop-
erty that can be measured (English & Halford, 1995). For example, as we have 
discussed earlier, the need for communication occurs in mathematical practice when 
one is compelled to express ideas in a form and syntax that is amenable to computa-
tion by means of symbolic algebra, or when one is compelled to externalize the 
exact intended meaning of a concept and its logical basis (as when we ensure that a 
concept is well defined). A cognitive primitive to this need is the act of conveying 
and exchanging ideas by means of a spoken language and gestures, which is a defin-
ing feature of humans.
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�Interdependency

Intellectual need cannot be determined independently of what satisfies it. Human’s 
experience of disequilibrium cannot be described independently of its correspond-
ing experience of equilibrium, and, therefore, as a form of perturbational experi-
ence, intellectual need cannot be determined independently of what satisfies it.9 For 
example, to understand the nature of one’s doubts about a particular assertion, it is 
necessary to understand what evidence would be sufficient for that person to remove 
these doubts. And, conversely, to understand why a person is certain about an asser-
tion, it is necessary to understand what caused him or her to doubt the assertion 
before he or she became certain of its truth.

�Intellectual Need Versus Affective Need

Often there is confusion between intellectual need and application. Cognitively and 
pedagogically, the term “application” refers to those problematic situations that aim 
at helping students solidify mathematical knowledge they have already learned. 
Intellectual need problems, on the other hand, aim at eliciting knowledge students 
are yet to learn. This does not mean that problems from other fields cannot serve as 
intellectual need problems. As we know from history, many mathematical concepts 
emerged from the need to solve problems in fields outside mathematics.

One’s engagement in a problem can be purely affective (e.g., self-interest) or 
social (e.g., to cure diseases, clean the environment, develop forensic tools to 
achieve justice, etc.). Affective need is different from intellectual need. While intel-
lectual need has to do with the epistemology of a discipline, affective need has to do 
with people’s desire, volition, interest, self-determination, and the like. Affective 
need is the drive to initially engage in a problem and pursue its solution. As such, it 
is strongly linked to social and cultural values and conventions. For example, by and 
large, students accept the obligation to attend school to learn, an obligation rooted in 
the cultural values and social conventions of the society in which we live. This need 
may manifest itself in different but interrelated ways. First, there is the need that 
originates from external expectation, explicit or implicit, by authoritative figures, 
such as teachers, parents, and society in general. This need is particularly dominant 
in current teaching practices and is utilized through a complex system of rewards and 
punishments (e.g., grades, contests, etc.). Second, there is the need driven by causes 
of self-advancement, such as a desire to advance one’s social stature or improve 

9 More precisely, intellectual need cannot be determined independently of what hypothetically sat-
isfies it. The added qualification (“hypothetically”) is needed, for otherwise this claim would mean 
that the experience of disequilibrium over famous unsolved problems such as the Riemann hypoth-
esis would not be describable.
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one’s economic conditions. Third, there is the need that stems from a desire to 
advance societal causes, such as technological, political, environmental, and social 
justice causes. Such causes might be less global, as when one might go into medicine 
because a sibling has some complex medical condition. Common to these types of 
need is a sense of a social obligation, to an authority, to oneself within a community, 
or to the society in general. Affective needs thus belong to the field of motivation, 
which addresses conditions that activate and boost (or, alternatively, halt and inhibit) 
learning in general. Undoubtedly questions about the fulfillment of such conditions 
are of paramount importance, but these are beyond the scope of this chapter.

�Local Intellectual Need Versus Global Intellectual Need

By the Knowledge-Knowing Linkage Premise any piece of mathematical knowl-
edge is an outcome of a resolution to a problematic situation. These situations, how-
ever, do not usually occur haphazardly, but emerge along paths toward a resolution 
of a major problem. Such a problematic situation, understood as such by an indi-
vidual, is referred to as a global intellectual necessity. A problem that emerges along 
the way to solve a major problem is referred to as a local intellectual need. This is a 
rough characterization, of course, since it is not uncommon that some of these inter-
mediate problems become themselves major milestones, or global necessities. The 
pedagogical goal is that students develop a general image of the overall problem 
toward which all activities relate. I illustrate this point with two examples.

Linear algebra. A curriculum in elementary linear algebra can be developed in 
numerous ways. What is said here is not to advocate one way over another. Rather, 
the goal is to illustrate the application of global necessity in teaching elementary 
linear algebra. If, for example, one decides to teach this topic from a matrix theory 
perspective, one might start with systems of equations, both linear and nonlinear. 
Systems of equations, if understood by the students as quantitative constraints on a 
set of unknowns, constitute a need for computation—the need to determine the 
value of the unknowns by means of symbolic algebra. Students entering their first 
course in linear algebra are familiar with systems of equations and understand their 
importance (in solving word problems, for example). Once this need is in place—
and our experience suggests that undergraduate students do realize this need—stu-
dents can be brought to appreciate the importance of a special kind of systems of 
equations, those whose equations are linear. This can be done in different ways, for 
example by showing how the solution of certain nonlinear systems cannot be found 
accurately but can be approximated by suitable linear systems, or by showing how 
many application problems can be modeled by linear systems. The leading ques-
tions would constitute global need. Such questions include the following: Given a 
linear system, how do we solve it? Are there ways to solve linear systems systemati-
cally—algorithmically, that is? Can we determine, without necessarily solving the 
system, if the system has a solution? If the system is solvable, how many solutions 
does it have? Can the system have a finite number of solutions? If yes, what are the 
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necessary and sufficient conditions for this to happen? When the system has infi-
nitely many solutions (a situation students should observe early on), can all the 
solutions be listed? The need for formulation then is applied to translate these ques-
tions in formal terms involving central concepts, such as “linear combination,” “lin-
ear independence,” “basis,” etc. What is crucial here is that students come to 
understand that any new concept is formed to advance investigation of these ques-
tions (see Harel, 1998). Once the scalar case (i.e., systems whose unknown are 
numbers) is completed, one can turn to systems of differential equations. As we 
discussed earlier, we introduced the global need for Eigen Theory through the ques-
tion whether it is always the case that the solution of a linear system of differential 
equations with an initial condition is easily computable. Through it we necessitated 
fundamental concepts of the Eigen Theory, from the basic concepts of eigenvalue, 
eigenvector, diagonalization, and their related theorems up to the Jordan Theorem 
and its related Jordan Canonical Form.

Rate of change. The concept of rate of change can be necessitated around the need 
to model reality. When seeking a function to model a natural phenomenon, the data 
typically available consist of how the phenomenon changes. Thus, one of the main 
purposes of examining rates of change is to use some information about the rate to 
gain information about a function, a purpose which is often masked in traditional 
calculus courses. We (Harel, Fuller, Rabin, & Stevens (n.d.)) have designed a 
sequence of problems consistent with this purpose as a global necessity. We began 
with a set of problems on functions—in particular, problems in which the objective 
is to describe a physical situation (e.g., At any time, what is the population?). One 
of our primary goals was that students understand functions as models of reality. In 
these problems, attending to rate of change is necessary for determining a model. 
The need to determine a model, in turn, necessitates an in-depth study of rates of 
change—in particular, an exploration of average rate of change, which leads natu-
rally to an intuitive notion of instantaneous rate of change. The need for communi-
cation—in this case the need to communicate to others a precise definition of 
“approaches” and “arbitrarily close”—demands the formalization of our intuitive 
notion (i.e., the definition of the derivative). With the definition of the derivative in 
hand, we prove properties of functions that follow from properties of their deriva-
tives. Many of these properties are intuitive, but the need for certainty (to know that 
something is true) demands formal proof. Truth alone, however, is not our only aim; 
we desire students to know why something is true, and thus appeal to the need for 
causality.

�Concluding Remark

In its current form, DNR is primarily concerned with the intellectual components, 
not with the motivational components, of perturbation, though its definition of 
learning incorporates intellectual needs and affective needs, as well as the ways of 
understanding and ways of thinking currently held by the learner. Specifically,
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Learning is a continuum of disequilibrium-equilibrium phases manifested by (a) intellec-
tual needs and affective needs that instigate or result from these phases and (b) ways of 
understanding or ways of thinking that are utilized and newly constructed during these 
phases. (Harel, 2008b, p. 897)

Learning in DNR, thus, is driven by exposure to problematic situations that result in 
a learner experiencing perturbation, or disequilibrium in the Piagetian sense. The 
drive to resolve these perturbations has both psychological and intellectual compo-
nents. The psychological components pertain to the learner’s motivation, whereas 
the intellectual components pertain to epistemology—the structure of the knowl-
edge domain in question, both for the learner as an individual and as the domain 
developed historically and is viewed by experts today.

In essence, this chapter deals with the question of how instruction can help stu-
dents experience the need to construct an epistemological justification for the 
knowledge we intend to teach them. The basis for this question is the stipulation, 
rooted in the DNR premises, that the responsibility of curriculum developers 
and teachers is to intellectually necessitate the mathematical knowledge intended 
for students to learn. Elsewhere I formulated this stipulation as an instructional 
principle, called the necessity principle: “For students to learn the mathematics we 
intend to teach them, they must see a need for it, where ‘need’ means intellectual 
need, not social or cultural need” (Harel, 2008b, p. 900). The pedagogical consid-
erations of the different intellectual needs are rooted in this fundamental principle. 
In all, this principle translates into the following four concrete instructional steps:

	1.	 Recognize what constitutes a global intellectual need for a particular population 
of students, relative to a particular subject (e.g., in linear algebra such a need 
might be solving systems of equations).

	2.	 Translate this need into a set of general questions formulated in terms that stu-
dents can understand and appreciate.

	3.	 Structure the subject around a sequence of problems whose solutions contribute 
to the investigation of these questions. These problems, in turn, serve as local 
necessities for the emergence of particular concepts needed to advance the inves-
tigation at hand.

	4.	 Help students elicit the concepts from solutions to these problems.
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