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I first provide a bit of historical background on a theory of students’ development of algebraic reasoning through 
quantitative reasoning. The quantitative reasoning part of the theory gained some popularity, but its most important 
features (at least in my thinking), the parts explicitly related to algebraic reasoning, received little notice. I then point to 
important work that extended the quantitative reasoning part of this theory in important ways (e.g., Lobato, Reed, 
Ellis, Norton, Castillo-Garsow, and Moore) and discuss how the “little noticed” aspects could inform that work in 
useful ways. I also discuss how a focus in school mathematics on quantitative reasoning and its extension into algebra 
could be leveraged with regard to students’ engagement in authentic mathematical modeling.  Finally, I extend the 
theory of quantitative reasoning, with a focus on quantitative covariation, to include reasoning with magnitudes and 
discuss examples of how rich, coherent understandings of magnitudes can be foundational for advanced reasoning in 
analytic geometry, calculus, differential equations, and analysis. 

In 1990 I presented a theory of quantitative reasoning (Thompson, 1990) that proposed 
meanings for quantity, quantitative structure, and quantitative reasoning that could provide a 
foundation for theories of how to promote and support algebraic reasoning. I never attempted to 
publish that paper, as its purpose was to concentrate my thinking rather than to generate a 
publication. To a large extent, that strategy worked. A number of articles and book chapters 
followed from it, each examining a small part of the theory, and that theory continues to be at the 
core of my current work with theories of instruction and learning in the context of instruction. But 
none of this work revisited the theory in its entirety. Since then I’ve gained, I hope, perspective on 
what are the central aspects of quantitative reasoning, and I hope to take this opportunity to revisit 
them. 

Central Tenets of a Theory of Quantitative Reasoning 

A quantity is in a mind, it is not in the world 
Johnson (2008) gives a fascinating account of Lavoisier’s experiments leading up to the discovery of 
oxygen in the late 1700s. In the mid-centuries (circa 1600-1800, especially 1690-1760), when 
scientists witnessed something burning they saw a release of phlogiston—the stuff that objects 
contain that revealed itself in flames. Phlogiston was a real substance to them. The original object, 
before burning, contained phlogiston and calx—calx being the stuff that stays behind like ash after 
phlogiston leaves. Their mental model of combustion was of something being released, not 
something being combined. Attempts to quantify phlogiston—to determine how much of it a 
substance contained—built, over many years, to Lavoisier’s conclusion that the model in which 
phlogiston played a key role was not viable, and that there is no such thing as phlogiston. In other 
words, phlogiston was a quantity until it was a mistake. 

                                                
1 Preparation of this paper was supported by National Science Foundation Grant No. EHR-0353470. Any 
conclusions or recommendations stated here are those of the authors and do not necessarily reflect official 
positions of NSF.  
2 Many ideas expressed in this paper developed through intense conversations with the late Jim Kaput over 
the period 1985-1995. It is impossible to untangle my and Jim’s thinking without his participation. I apologize 
to Jim’s memory for my inability to do this. 
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The point that quantities are mental constructions, and that their creation is often effortful, 
is central to mathematics education. Too often quantities, such as area and volume, are taken as 
obvious, and hence there is no attention given to student’s construction of quantity through the 
dialectic object-attribute-quantification. Instead, textbook writers and teachers just use them to 
teach.  

Jason Silverman and I (Silverman & Thompson, 2008) pointed this out as revealed in Marty 
Simon’s work with teachers on helping them understand multiplication as a quantifying operation 
(Simon & Blume, 1994). We noted that many of Simon’s pre-service teachers took a region as a unit 
of area, and that a measure of area was simply copying that region repeatedly to cover another 
region and counting the number of copies. Thus, while measuring a larger rectangle with a unit 
rectangle those students objected when Simon turned the unit rectangle 90 degrees after covering 
the first row. They saw Simon’s method producing “overlapping areas”. They did not see Simon 
using the smaller rectangle as a ruler, whereby he used its edge to measure the lengths of the larger 
rectangle’s edges.3 They did not see either measured area or a unit of area as being composed of two 
lengths combined multiplicatively.  

 
Figure 1. An “erred” measurement process (from Silverman & Thompson, 2008) 

In another article I described Simon’s students’ way of thinking—of units of area or units of 
volume as objects to be counted—as one-dimensional area and one-dimensional volume 
(Thompson, 2000) and discussed the obstacles this way of thinking poses for understanding 
Euclidean dimension in a way that supports understanding fractal dimension. In that article I also 
described children reconceptualizing multiplication as a quantitative operation. I asked a group of 
5th-graders the following question: 

 
Figure 2. We have a rectangle that is 4 inches wide and 3 centimeters high. Suppose we did 
the silly thing and multiplied 3 by 4 to get its area. We would get 12. But 12 what? 

The ensuing discussion went on for 35 minutes before one child asked timidly, “Would it be 
12 rectangles that are 1 cm by 1 inch?” In the next 10 minutes children worked to understand how it 
was that (1) it made sense, in multiplying length by width, they were somehow generating rectangles, 

                                                
3 I hasten to make clear that Simon intended to have his students experience the dilemma of whether “turning 
the unit rectangle” was a legitimate way to measure the area of a larger rectangle. 
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and (2) that the only thing they needed to know about a “covering collection” was the unit-length of 
each side of the basic area unit. To understand multiplication as a quantification of area they needed 
to reconceptualize one unit of area (“amount of region”) as a multiplicatively-structured object. 

To pre-service teachers for whom area was a thing to be covered by chunks of area, 
measuring area as if by a ruler made no sense. Nor did their conception of area have the property of 
bi-proportionality—that if you make one dimension n times as large and another dimension m times 
as large, the resulting area is nm times as large. Only covering and counting made sense. For area to 
entail proportionality, they needed to develop a different quantity that they would call area—one 
that is created multiplicatively. To return to the example of phlogiston, those for whom the theory 
of phlogiston explained combustion, phlogiston existed. It was a substance that was key to their 
understanding of combustion. They saw it manifested in everyday experience. But they had not 
quantified it. In the process of attempting to quantify phlogiston, and thereby gain greater insight 
into the nature of combustion, new realizations emerged. 

The stance that quantities are in minds, not in the world, is for educators, not scientists. Of 
course scientists are well aware that the best they can do is build models of the way the world 
“really” works. But they could not do science if they did not take their models as depicting reality 
“as it is”. Educators, however, must be constantly aware that what is in students’ minds is what 
matters. The stance that quantities are in minds, not in the world, actively supports being attentive to 
how students conceive situations and serves as an active reminder that their conceptions of even the 
most “obvious” aspects of a situation are likely to differ from ours in important ways. 

Quantification is a real ly  big  deal  
In (Thompson, 1994d) I said this about quantification. 

Quantification is a process by which one assigns numerical values to 
qualities. That is, quantification is a process of direct or indirect 
measurement. One does not need to actually carry out a 
quantification process for a quantity in order to conceive it. Rather, 
the only prerequisite for a conception of a quantity is to have a 
process in mind. Of course, a person’s grasp of a process may change 
as he or she re-conceives the quality and the process in relation to 
one another. 

I wish I had not said this, for it is commonly understood that I meant precisely what I said—
that quantification is merely a process of assigning numbers to an attribute of an object. I didn’t 
mean this at all, and the remainder of that article, which analyzed one child’s construction of speed 
as a quantity, documented the dialectic between her progressive conceptualization of motion as 
entailing the simultaneous accumulation of two quantities (distance and time) and conceptualizing a 
quantification of that simultaneous accumulation. Here conceptualization of each—speed as a 
quantity and proportional correspondence as her quantification of it—went hand in hand. They 
were inseparable. 

Luis Saldanha and I (Thompson & Saldanha, 2003) developed another example of the power 
of quantification as a root of mathematical thinking. We considered the question, “What is torque 
and how might one quantify it?” While I would never claim that our conceptual analysis was 
definitive with respect to learning the idea of torque, I believe it does reflect the dialectic between 
conceptualizing a quantity and conceptualizing its quantification. The central questions were, 

• What is the object one conceives when conceiving torque? 
• What is the attribute of that object that one quantifies?  
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• What is one unit of torque? 
The answer to (1) can only be that it is a system that you are quantifying—a system that 

involves something turning around a fixed point that somehow behaves differently the farther from 
that fixed point you are. The answer to (2) of course involves (1). The attribute of that system is 
something like “amount of twist”, the awareness that it takes more shoulder strength to hold a pail 
of water farther from your body than closer. The answer to (3) is more complicated. It is the 
realization that (a) any quantification of torque must take into account, simultaneously, the distance 
that a force is applied from the fixed end and the amount of force being applied (and thus a unit of 
twistiness is say, Newton-meter or foot-pound), and (b) that amount of twistiness is proportional to 
each of those components—if we apply the same force at thrice the distance we get thrice the 
amount of twistiness. If we apply thrice the force at the same distance, we get thrice the twistiness. 
Thus, whatever amount of twistiness is produced by 1 force-unit at 1 distance-unit, a force of n 
force-units at 1 distance unit will be n times as great, and a force of 1 force-unit at a distance of m 
distance-units will be m times as great. Put more formally, if T(1,1) is the amount of twistiness 
produced by 1 force-unit applied at 1-distance unit from a fixed point, then T(n,1) = nT(1,1) and 
T(1,m) = mT(1,1). Therefore T(n,m) = mnT(1,1). Thus, we “multiply force times distance” to quantify 
torque.  

As an extension of this example regarding torque, and building off the ways of thinking 
described in (Thompson & Silverman, 2008), if students combine an understanding of torque with 
an understanding of accumulation, then it is not hard for them to imagine a method for 
conceptualizing the total torque generated by an object of varying density that has one end fixed. 
Imagine slicing the object into super-thin pieces that are vertical to the axis of twist, imagining each 
slice to be of uniform density, and summing the torque generated by each as if each is generates 
torque independently. The sum is your total torque. However, this method is unavailable to students 
who have not conceptualized torque and accumulation appropriately: torque as constituted 
multiplicatively by a force acting at a distance from a fixed point and a total amount of a quantity as 
generated by accumulating little bits of it. 

The dialectic between students conceptualizing a quantity and conceptualizing a 
quantification of it is so important that I’ll share a third example. A class of 8th-grade students in 
central Illinois was curious about why grain silos explode (the news reported one having exploded 
the prior day). I decided to leverage that curiosity into an ad-hoc unit on quantification—on creating 
the quantity “explosiveness” and how one might measure the explosiveness of a grain silo. Students 
were stymied until someone remembered, from science, that an explosion is just fast burning, and so 
something must burn to produce a silo explosion. Then one student remembered throwing a pinch 
of flour into a campfire and seeing it burst into flames. Oh, grain dust is what burns! But if grain 
dust is all on the ground, you could hit it with a blowtorch and it wouldn’t burn. What’s going on? 
Another student recalled that burning is just oxidation, and that oxidation happens only at a 
material’s surface, so maybe when grain dust is all on the floor there just isn’t enough exposed 
surface for it to burn. Where does that take us? Oh! When dust is on the floor, only the top, thin 
layer is exposed to air. When dust is “in the air”, each individual dust particle is surrounded by air! 
Where does that take us? Well, maybe if we think about the amount of grain dust (by volume) in 
relation to the amount of surface area exposed that will give us a measure of explosiveness? But 
wait, doesn’t the size of the silo matter? Oh, you need to think of the amount of surface area in 
relation to the volume of dust, per cubic foot of air in the silo. They ended, after several days of 
intense debate, with a unit of measure being cm2 of “dust surface area” per cm3 of “dust volume” 



 THOMPSON 

37 

per ft3 of “silo volume” as their unit in which they would measure a silo’s explosiveness4. They 
figured that there would be a low range of measurements that indicate “not explosive”, a mid-range 
of measurements that indicate “it depends on other things” (e.g., the exact composition of the dust), 
and a high range of measurements that indicate “highly explosive”. They wondered about how to 
figure the total particulate surface area of some amount of dust, but they were confident that this 
was possible if you assumed all dust particles had a given diameter. 

Whether students ended with a good measure of explosiveness or a poor measure actually is 
not relevant to the significance of their activity. Rather, the significance is that in coming up with a 
measure that satisfied them, they needed to build from models they already had (combustion 
happens at an object’s surface; explosions happen by rapid oxidation5) and they needed to engage in 
a dialectic between conceptualizing the attribute being measured (explosiveness and how things 
exploded) and the way in which they would measure it (by comparing relative amounts of related 
quantities). 

Another aspect of this example is important for school mathematics. Once students had 
conceptualized explosiveness (how it works) and measures of it, we could start doing mathematics. 
“Suppose there are two silos having the same volume and having the same volume of grain dust in 
the air, but the diameter of individual particles’ in one silo is twice the diameter of particles in the 
other. How explosive is one silo relative to the other?” On the other side of this example is the 
point that, without students having a working model of explosions and without them having 
conceptualized a measure of explosiveness, that question would have been meaningless to them. 

To come full circle regarding quantification, I wish that instead of saying that quantification 
is the process of assigning numerical values to a quality I had said this: 

Quantification is the process of conceptualizing an object and an attribute of it so that the attribute 
has a unit of measure, and the attribute’s measure entails a proportional relationship (linear, bi-
linear, or multi-linear) with its unit.  

Sometimes the process of quantification might take minutes, other times years, and other times 
generations. 
 This expanded definition of quantification, to me, provides an explicit link between science 
education and mathematics education. We must take quantification seriously if we want to develop 
instructional and curricular strategies for having students’ mathematics be of use to them in dealing 
with their worlds.6 By “their worlds” I include more than students’ physical worlds. Economics 
abounds with quantities that students conceptualize poorly (e.g., principal, interest, compounded 
interest, annual interest rate, monthly interest rate, profit, loss, revenue, expense, marginal cost, etc.), 
and which, properly conceptualized, would enable people to make wise decisions and avoid costly 
mistakes. Issues of scale have their conceptual roots in quantification. Paulos’ (1988) classic book on 
                                                
4 I still find it fascinating that in this sophisticated conversation they felt that they needed “small units” like 
cm2 and cm3 to measure attributes of dust particles, but cm3 was too small a unit to measure the volume of a 
silo. 
5 They did not consider that chemical explosions do not involve oxidation, but, again, this hardly matters 
here. 
6 Bob Mayes noted that many science educators find my meaning of quantitative reasoning “too mathy”. My 
reply, to reiterate a point that I made in (Thompson, 1994b), was that while math education must take 
scientific reasoning more seriously as a source of mathematical reasoning, science education must take 
mathematical reasoning more seriously as a source of scientific reasoning. I still maintain that science 
education could profit from attending with greater clarity to quantity and quantitative reasoning as I describe 
them here.  
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innumeracy is an account of the consequences of our populace’s failures in quantification—of failing 
to conceptualize aspects of our world so that they are measurable in some unit, which completely 
obstructs their ability to reason quantitatively. 

Quantitative operations are not the same as numerical operations (but they are related) 
Steffe (1991a, 1991b) provided what I consider to be the foundational analysis of the mental 
operations that generate quantity. In these papers he describes the operations of segmenting and 
unitizing as foundational for generating concepts of measured quantity. So, in the strict sense that 
Steffe develops, operations that generate quantity and operations that generate number are tightly 
related. 
 Without contradicting Steffe, I’d like us to enter the world of children and teachers. Children 
often employ numerical operations that have no quantitative significance. They might have 
quantitative roots, but at the moment of employing them they often do not reflect operations on 
quantities. They might even be highly structured with regard to numerical underpinnings, entailing 
composite units and multiplicative relationships. But again, they can do this without imagining 
something being quantified. 
 In 1993 I wrote about six 5th-grade children’s additive reasoning (Thompson, 1993). In that 
article I defined difference as a quantity resulting from comparing two quantities additively—“the 
amount by which one quantity exceeds or falls short of another”. Thus, a difference, as a result of a 
comparison, is a quantity. But it is a quantity that exists within a structure: (Quantity A, Quantity B, 
Result of Comparing). I also gave examples of how, in a complex situation, one could potentially use 
any arithmetic operation, not just subtraction, to evaluate that quantity. I also gave an example of the 
children using subtraction but not knowing what quantity they had just evaluated. This example 
deserves repeating for the present conversation. It involves a rather lengthy excerpt, so I apologize 
in advance. I will focus upon lines 57-92, but those lines make sense only in the context of the 
discussion that precedes them. 

Problem 2: 
Two fellows, Brother A and Brother B, each had sisters, Sister A and Sister B. 
The two fellows argued about which one stood taller over his sister. 
It turned out that Brother A won by 17 centimeters. 
Brother A was 186 cm tall. 
Sister A was 87 cm tall. 
Brother B was _____ cm tall. 
Sister B was _____ cm tall. 
Put numbers in the blanks so that everything works out.7 

1. PT: Okay. Do this one as a team. Put numbers in the blanks so that everything works out. 
Pause as children read the text. 

2. Jill:  … (inaudible) … Well, actually, Brother B has to be at least 17 cm shorter than Brother A. 
3. Molly: But it says that Brother A won by 17 cm. 
4. Jill: I know. 
5. Molly: So that means …  

                                                
7 The children had solved a problem using the same context, but with numbers instead of blanks, so they had 
already sorted out the assumption that Brother A compared himself to Sister A and Brother B compared 
himself to Sister B. 
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6. Jill: So that means he (Brother B) has to be at least 17 cm shorter …  
7. Molly: Yeah, at least. 
8. Jill: No wait … no it doesn’t, because … not it doesn’t, because …  
9. Molly: It says she could be shorter than him if the difference is small. Pause. But if Brother A won 

by 17 cm, that means that Sister B must be at least 17 cm taller than Sister A. 
10. Jill: Uh-uh (no). If Brother B is shorter, then she can’t be. 

Pause. 
11. Jill: Well we could put …  
12. Molly: Like the last one we had. 
13. Jill: Well, you could put that Brother B was 150 cm tall and Sister B was 149 cm tall. 
14. Peter: How do you know that would work? 
15. Molly: But Brother A still has to win by 17 cm. 
16. Don: Oh, so Brother B … yeah would be 17 … oh no, he wouldn’t … But he could be 17 cm 

shorter. He doesn’t have to be, but he could be. 
Pause. 

17. Don: I don’t think it matters what we put in there. 
18. Jill: Ummm … Brother A had to win by 17 cm. 
19. Don: (Quietly.) I don’t think it matters. 

20. ⎭
⎬
⎫Molly:

Peter:   Yes it does. Brother A has to win by 17 cm. 

21. Molly: As long as he wins by 17 cm, you could put anything in. 
22. Peter: But what do you mean that he wins by 17 cm? 
23. Molly: He has to be 17 cm taller than Sister A … than …  
24. Jill: Brother B is than Sister B. 
25. Peter: Oh, I know. 

Pause. 
26. PT: You have any numbers in there yet? 
27. All: No. 
28. PT: Good discussion! … Are you trying to figure out what the first number is? 

Pause. 
29. Jill: Wait. Lets find out the difference between Brother A and Sister A. 
30. Don: It’s easy. 
31. Molly: It’s 99. 
32. Don: It’s 98 … 99. 
33. Molly: So, Sister B must be 17 cm … must be 99 minus 17. 
34. Jill: She could be. 
35. Molly: She could be, because he has to win by 17 cm. 
36. Peter: 99 minus 17 … 83. 
37. Don: It’s 82. 
38. Peter: She could be 82. But what would Brother B be? 
39. Molly: So, she could be 82 cm tall. But she doesn’t have to be 82 cm tall. 
40. Jill: She could be 82 cm or lower. 
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41. Molly: He’d [she’d?] have to win by 17 cm …  
42. Peter: Brother B? 
43. Molly: Brother A. 
44. Jill: But then Brother B can’t be … we could make Brother B be 90 … we could make Brother B 

be the same thing. 
45. Peter: You could make Brother B be 100. 
46. Molly: No, you couldn’t, because, then he’d be … I don’t know. 
47. PT: What does the 82 mean? 
48. Jill: That’s the difference between Sister A and Brother A. 
49. PT: The 82 is? 

50. ⎭
⎬
⎫Jill:

Don:   No, it isn’t. 99 is. 

51. Molly: But he had to win by 17 cm, so we took away 17 from 99 … So Brother B would have to be 
the same as Brother A. [To Jill] We could do it that way. 

52. Jill: Uh-huh (yes) …  
53. Peter: 186 …  
54. Jill: Then Brother B would win. 
55. Peter: No he wouldn’t 
56. Molly: Yes he would. 
57. PT: Could I ask you to think about something … Try this. Think about what the 82 means. 

Long pause. 
58. Jill: inaudible … okay, so the difference between Brother A and Sister A and subtracted … uh … 

how much … he won … by (to Molly) …  
Pause. 

59. Molly: Huh? 
60. Jill:  … We took the difference between Brother A and Sister A. Does everybody understand 

that? 
61. All: Yeah. 
62. Jill: And then we took away how much Brother A won by. 
63. All: Yeah. 
64. Molly: Yes … yes … yes! 
65. Peter: (Giggles at Molly.) So 186 …  
66. PT: (To Jill) And you got 82, right? Now, what does the 82 stand for? 

Pause. 
67. Jill: Uhhhhh …  
68. All: (Giggles.) 
69. PT: Well, what does that 99 stand for? 
70. Molly: How much the difference is … Oh, so the 82 could be the difference between Brother B 

and Sister B. 
71. PT: Is that what it is? 
72. Don: It could. 
73. PT: Or is that how tall Sister B is? 
74. Molly: It couldn’t be how tall she is because then Brother B would win. 
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75. Peter: No it wouldn’t. He could be 82 or more. 
76. Jill: She has to be shorter than 90 cm … or taller …  
77. Don: It doesn’t matter. 
78. Peter: This would work … 185 and 82. 
79. PT: Would Brother A win by 17 cm, Peter? 
80. Peter:  … no. 
81. Molly: He has to win by 17 cm, so you could have Sister B be 127 cm shorter than Sister A. 
82. Peter: It could be 99. That would be 17 difference. 

Pause. 
83. PT: Let’s think again. The 99 stands for what? 

84. ⎭
⎬
⎫Jill:

Don:   How much difference there is between Sister A and Brother A. 

85. Molly: I know. I know. You can subtract 82 minus 186 and then you’d get 104. And 104 is 17 more 
than 87. 
Pause. 

86. Don: Huh? 
87. PT: Explain it again, Molly. But instead of talking about the arithmetic, talk about what it is that 

you are thinking. 
88. Molly: The first thing we did was the difference between Brother A and Sister A, and it was 99. And 

minus 17 is 82. 
89. Jill: But what was the 82 for? 
90. Molly: Huh? 
91. Jill: What does the 82 stand for? 
92. Molly: I don’t know. 

The structure of this problem is that it entails a quantitative difference that compares two 
quantitative differences (see Figure 3). In lines 1-56 the children determined that Brother A stood 99 
cm taller than Sister A. They conceptualized the quantitative difference between their heights and 
subtracted to evaluate it. In lines 57-92 they intuited that Brother A winning the argument by 17 cm 
meant that the difference they found possessed an excess of 17 cm over something. In line 70 Molly 
wondered (correctly) whether the 82 (99-17) could be the difference between Brother B and Sister 
B, but her reply to my question in lines 71 and 73 suggested that this was not a necessary conclusion 
for her.8  The remainder of the excerpt suggested to me that though they knew that there was a 
comparison between Brother B’s and Sister B’s heights, that knowledge did not bring to mind a 
quantitative structure in which the result of that comparison existed as a quantity in its own right. 
Thus, my interpretation was that these students could compare two quantities additively to form a 
quantitative difference, but their operation of comparison was not such that knowing that a quantity 
is a difference brings with it the awareness that two other quantities must be compared to produce 
it. This explains their inclination to try to put “82” somehow into the height of Brother B or Sister 
B. Not thinking of a difference as a quantitative structure is similar to students being given a speed 
and not thinking automatically that distance and time must be involved, too. 

                                                
8 Earlier parts of the article show clearly that the children felt free to push back when I questioned their 
conclusions and they were confident in them. 
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Figure 3. Structure of the problem as a comparison of differences. 

So, to be clear, in my usage, quantitative operations are those operations of thought by which one 
constitutes situations quantitatively. Numerical operations are the operations by which one 
establishes numerical relationships among their measures. Quantitative and numerical operations are 
certainly related developmentally, but in any particular moment they are not the same even though 
in very simple situations children (and teachers9) can confound them unproblematically. 

Dispositions that allow students to create algebra from quantitative reasoning 
Ellis (2007) gives a compelling account of the important role that quantitative reasoning plays in 
students’ operations of generalizing, and of the role that generalizing plays in students’ development 
of algebraic reasoning. She outlines a number of generalizing actions students employ that, when 
grounded in quantitative reasoning, produce more and stronger generalizations than when students 
attempt to generalize from numerical or calculational patterns. I have little to offer that extends Ellis’ 
work, but I believe I can say something about other processes at play both within and in addition to 
the generalizing actions she identified. 
 In (Thompson, 1990) I identified a number of dispositions and a process of abstraction that 
can aid students’ construction of algebraic reasoning from quantitative reasoning. Briefly, the are: 

A disposition to represent calculations 
It is common in Asian and Russian primary mathematics curricula to have students write the 
arithmetic they would perform to resolve a situation without calculating the result. This practice has 
a salutary effect: Students can see the values of the quantities that are described in the situation and 
see where these values fit into a solution. Thus, unevaluated expressions are reminders to the 
student writing them, and hints to students reading them, to the underlying quantitative structure 
giving rise to the calculation. This provides opportunities for pseudo-empirical abstraction (Piaget, 
2001), which is to reason about the products of one’s reasoning as if reasoning about objects in the 
world, which is propaedeutic for students’ eventual reflective abstraction of their reasoning. 
 Students’ disposition to write numerical formulas for their calculations produces many 
opportunities for thinking about what one does with quantities’ values in specific situations and with 

                                                
9 And researchers. 

Bro A Sis A Bro B Sis B

17 cm

186 cm 87 cm
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patterns of known information. Numbers then become almost symbolic. Thus, when a student has 
exercised repeatedly the disposition to write numerical formulas, they feel little resistance to using a 
letter to represent a value that they do not know. Thus, a disposition to write numerical formulas for 
evaluating a quantity leads to a disposition to write formulas that involve representations of to-be-
known values of quantities. 

A disposition to propagate information 
Quantitative reasoning provides the means for imagining a situation quantitatively. But quantitative 
reasoning that entails only quantitative operations cannot answer questions about a quantity’s 
numerical value. Learning how to evaluate a quantity is part of quantifying it. For example, the 
process of evaluating a ratio entails proportional correspondence: If 7 dollars corresponds to 3 
loaves of bread, then 1/3 of 7 dollars corresponds to 1/3 of 3 loaves (whence division to evaluate a 
ratio, assuming constancy of price). 
 But often in complex quantitative settings we have partial information, whence the need to 
propagate information (as in the example of Brothers A and B). Thus, to resolve the situation 
students must add information they derive to their understanding of the setting and then attempt to 
resolve the situation further. Propagation is made possible by two conditions: being aware of 
quantitative structure and being aware of numerical operations to perform to evaluate a quantity in 
that structure. 

A disposition to propagate information is essential for students to deal with complex 
quantitative situations. Moreover, students need to be able to evaluate quantities both canonically 
and non-canonically. Here is a detailed list of canonical and non-canonical operations that is 
essential for students to propagate inferred information throughout a quantitative structure.10 
1) Canonical Arithmetic for Quantitative Relationships: Arithmetic operation to evaluate a quantity that results 

from a quantitative operation. 
 

Structure 
Arithmetic Operation to Evaluate 
the Resultant Quantity 

- A quantity is the result of an additive combination of two 
quantities11 

Addition 

- A quantity is the result of an additive comparison of two 
quantities 

Subtraction 

- A quantity is the result of a multiplicative combination of two 
quantities 

Multiplication 

- A quantity is the result of a multiplicative comparison of two 
quantities 

Division 

- A quantity is the result of an instantiation of a rate Multiplication 

- A quantity is the result of a composition of ratios Multiplication 

                                                
10 This list is sufficient for middle school mathematics and most of high school. It can easily be extended. 
11 “Additive combination” includes disjunctive combinations, such as “Put 3 apples with 4 oranges.” The unit 
for this particular combination is APPLE|ORANGE—any item in this combination is an apple or an orange. 
Paying attention to the unit avoids the asymmetry of Schwartz’s (1988) scheme of calling the resulting unit a 
“fruit.” That is, if the unit of the combination is fruit, then from “Sally has 7 [fruit], four of which are 
[orange]” we cannot conclude that she has 3 apples. However, from “Sally has 7 [apple|orange], four of 
which are [orange]” we can, indeed, conclude that she has 3 apples. 
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- A quantity is the result of a composition of rates Multiplication 
2)  Non-canonical Arithmetic for Subordinate Quantities in a Quantitative Relationship: Arithmetic operation to 

evaluate a quantity that is an operand of a quantitative operation.  
 In the case where the value of a resultant quantity is known but the value of one of the 
operand quantities is unknown, students must decide upon an inferred numerical operation that is 
based on knowledge of the canonical operation. 

- If a = b * c, then c = a ÷ b and b = a ÷ c. 
- If a = b ÷ c, then c = b ÷ a and b = a * c.  
- If a = b + c, then c = a - b and b = a - c. 
- If a = b - c, then c = b - a and b = a + c. 

 I imagine that students could internalize these relationships in any of several ways depending 
on the sophistication of their quantitative reasoning. The ideal case would be that they construct 
these non-canonical operations as generalizations from a combination of quantitative and numerical 
operations.  
3)  Any time a quantity is evaluated or has a formula constructed for it, every structure of which that quantity is part 

is examined to see if anything new can be inferred about it. If new information can be inferred, then an inference is 
made and propagation continues. 
If a student has both a disposition to write formulas for quantities (either arithmetical or 

algebraic) and a disposition to propagate information, then they are positioned to write complex 
algebraic formulas to represent values of quantities in a situation. 
 Students who are disposed to write formulas for evaluating a quantity are still not positioned 
to write equations. They must also be willing to write formulas to evaluate a quantity for which they 
already know a value or for which they have already written a formula. When they have a formula 
for evaluating a quantity together with a value that the formula must produce, they have an equation. 
When they have two formulas for evaluating a single quantity’s value, they have an equation. 

A disposition to think with abstract units 
Mathematicians typically say that a scalar is a “dimensionless” quantity—a ratio between two 
quantities in the same unit. This, however, is more an artifact of an arithmetic of units than of 
conceptual analysis. There are many situations where it is not only sensible, but desirable to retain 
units in a rate involving quantities having the same unit. Here is one example. 

Jane is a golfer with a keen eye but a weak swing. She can accurately 

estimate distances, but consistently hits the ball 
4
5  ths as far as she 

needs to hit it. If Jane is 150 yards from where she wants the ball to 
go, what estimate should she use in order to hit the ball far enough? 

Jane has a constant “hit rate”. The value of that rate is 
4
5 . The unit of that rate is “yd/yd.” 

Together these mean that there are 
4
5  th yards of “hit” per each yard of distance to the hole. To 

consider 
4
5  as a scalar in this situation would be unnatural. A unit of “yd/yd” follows naturally from 

conceiving the situation quantitatively (and with the knowledge that golfing distances are measured 
in yards). 
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The interpretation of Jane’s hit rate as having a unit of yd/yd is not necessary, and perhaps 

seems unnatural to a sophisticated reader. The statement “… hits the ball 
4
5  ths as far as she needs 

to hit it” does not, itself, imply a unit for Jane’s hit rate. Rather, it is the unit yd for Wants to Hit and 
yd for Estimated Distance that suggests the unit yd/yd for Jane’s hit rate. 

The crux of the issue of scalars resides in the question: Can one quantitatively interpret the 

statement “… hits the ball 
4
5  ths as far as she needs to hit it” independently of specific context (i.e., 

units of other quantities)? Yes, by conceiving of a situation in terms of parametric units. The idea of 
parametric units is the same as that of parametric values. You know that a unit will be associated 
with a quantity, but it need not be given specifically to know something about the quantity. A unit 
can be attached to the quantity when one’s understanding of the situation becomes specific enough 
to warrant it. 

The notion of parametric units can be made explicit by putting a question mark as the first 
character in a unit-name. The question mark indicates that the unit is a parameter; the name itself is 
used as a matching variable so that, once bound by the matching process in checking the consistency 
of a quantitative structure, the same name implies the same unit wherever it is used within the 
structure of a quantity’s unit.12 Thus, we could say that the unit of Jane’s hit rate is 4/5 ?L1/?L1, 
meaning that this works as long as she measures her estimate and her actual hit length in the same 
unit. The actual unit would be determined to make the quantitative structure coherent (e.g., yards in 
Jane’s case). 

A disposition to reason with magnitudes 
I follow Wildi (1991) in the way I speak about quantities’ magnitudes. The idea he tries to capture is, 
for example, that someone’s height is the same regardless of the unit in which you measure it. A 
person has the same “amount of height” whether measured in inches, centimeters, meters, miles, 
kilometers, or light years. He captures this formally with the equation Q = m Qu( ) u , which he 
intended as “the magnitude of quantity Q is the measure of Q, in units of u, times as large as the 
magnitude of u.” To put it another way, and to continue this example, a measure of a person’s 
height is the magnitude of that person’s height in relation to the magnitude of the unit in which you 
measure it. Of course the definition is circular, but it is circular only to the extent that we must 
define the magnitude of a unit – the amount of a quantity that the unit comprises—outside the 
formula. But this is common: The magnitude of one foot is the length of this (as we hold up a 
titanium bar borrowed from the U.S. Bureau of Standards).  

The idea of quantitative magnitude is nontrivial for elementary grades students. It must be 
raised in context repeatedly, with specific quantities, over their schooling. One way to develop the 
idea of quantitative magnitude is to take seriously the idea of unit conversions, but not by rote. 
Rather, the idea of unit conversions should be built upon the idea that if the measure of a quantity is 
Mu in units of u, then its measure is 12Mu in units of magnitude (1/12) u  and its measure is 

                                                
12 Whether the same parameter-name needs to imply the same binding throughout a structure is unclear. If a 
non-parametric unit name were to be thought of as binding to itself, then the answer would have to be that 
the same parameter-name in different quantity’s units would have to represent the same binding. However, it 
seems entirely reasonable that a person could be thinking of parametric units for different quantities, use the 
same “mental symbol” in constructing the quantity’s units, but intend them to be different. In essence, the 
issue is whether bindings are local to a quantity-as-conceived or global to the person-as-conceiver. I imagine 
that either could be the case for any given individual. 
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(1/12)Mu in units of magnitude 12 u . If a unit of length named Fred is 3 times as long as the unit 
Gertrude, then my height in Freds will be 1/3 my height in Gertrudes. 

Thinking of a quantity in terms of its magnitude involves the same conceptual operations as 
thinking about inverse variation. Indeed, students can build the conceptual operations of inverse 
variation reflectively from reasoning about quantitative magnitudes. Also, when a student 
understands magnitude by a scheme of operations that entails inverse variation, then she can take a 
unit-less length to represent a quantity’s magnitude with the full knowledge that this length actually 
represents a class of unit-measure pairs. She can also reason about a quantity whose value is labeled, 
say, “15.3” without units by understanding that the unit’s magnitude is 1/15.3 of the quantities’ 
magnitude—even when neither is stated or known. I suspect that students who can resolve complex 
situations using only magnitudes are also adept at reasoning with parametric units. 

Quantitative Reasoning, Covariation, and Generalization13 
To segue into issues of quantitative reasoning and modeling I shall first examine ideas of covariation 
and generalization. The importance of covariational reasoning for modeling is that the operations 
that compose covariational reasoning are the very operations that enable one to see invariant 
relationships among quantities in dynamic situations. The importance of generalization for 
mathematical modeling is that generalizing is what one does when representing relationships among 
quantities in static situations, and imagining those relationships to remain the same under changed 
circumstances is tightly related to covariational reasoning. 

Covariation 
  Quantitative reasoning is often portrayed as a foundation for arithmetic and algebra, which it 
is. What is less well understood is the central role that quantitative reasoning can play in students’ 
learning and using concepts that are foundational to calculus and differential equations. There is the 
obvious role that quantitative reasoning plays in making sense of situations in which calculus is 
embedded and about quantities in them. The less well understood aspect of quantitative reasoning is 
the foundation it provides for holding in mind invariant relationships among quantities’ values as 
they vary in dynamic situations. An elementary school student might envision a situation in which 
one tree is three times as tall as another. What she will find difficult is to imagine this relationship 
holding over time as the trees grow—imagining that the taller tree is always three times as tall as its 
neighbor as each of them grow. The two instances reveal a stark contrast between two ways of 
thinking. In the first instance, “three times as tall” is a description of a static relationship. In the 
second instance, “three times as tall” is an invariant relationship between two quantities whose 
values vary. The second instance involves a way of thinking that is foundational for the concepts of 
variable and function in calculus.  
 The mathematics of variation involves imagining a quantity whose value varies. It is easy to 
say what variation is, but it is nontrivial for students to develop the conceptual operations that allow 
them to see variation in quantities and quantitative situations. The concept of variation of which I 
speak is, for me, best captured like this: Suppose x represents a quantity’s value. That the quantity’s 
value varies is to say that one anticipates its measure having different values at different moments in 
time. So a varying quantity’s value might be represented as   x = x(t) , where t represents (conceptual) 
time. I prefer, though, to characterize variation mathematically in a way that captures the idea that 
                                                
13 The discussion in this section builds considerably from earlier papers on rate of change (Thompson & 
Thompson, 1996; Thompson, 1994a, 1994d; Thompson & Thompson, 1994) and on concepts of function 
(Saldanha & Thompson, 1998; Thompson, 1994a, 1994c).  Carlos Castillo-Garsow has helped me understand 
why these ideas were not evident in those papers from a reader’s perspective. 
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variation always happens over an interval. So, let D = domain(t), the values of conceptual time over 
which t ranges. Let Dε be the domain of t, but in intervals of size ε, which means that 

   
D = t , t + ε( )

t

 ,14 where t can take any value of conceptual time. In other words, D is not partitioned 

into intervals of size ε. Instead, one anticipates that it will be covered with intervals of size ε. I 
emphasized “anticipate” to convey that I do not envision people actually imagining a cover of an 
interval. The purpose of speaking of a covering instead of a partition is that one can imagine a 
quantity’s value varying within an interval in chunks, but with the immediate and persistent 
realization that any chunk of completed variation can be re-conceived as entailing continuous 
variation.  

With the above characterization in place, variation in one variable, x, can be expressed as 
xε = x tε( ) , where tε  represents the interval   t, t + ε[ )  and t varies through conceptual time.15 I 
recognize immediately the difficulties with this formulation, but what I hope to capture is the idea 
that in thinking of a varying magnitude, even at momentary times, we are imagining a small interval 
of conceptual time through which the variation happens.16 

This formulation of variation tries to capture the conceptual operations behind an image of a 
growing magnitude, like a line segment getting longer. A particular, static, magnitude has a value of 
x t( ) . But in thinking of the magnitude varying, we imagine it varying in microscopic bits, each bit 
itself entailing variation upon close inspection. The importance that students build this image early is 
implicated by studies showing that calculus students do not see variables varying (Carlson, 1997, 
1998; Jacobs, 2002; Trigueros & Jacobs, 2008). 

I can now represent a conception of two quantities’ values covarying as 

  
xε , yε( ) = x tε( ), y tε( )( ) . I intend the pair xε , yε( )  to represent conceiving of a multiplicative object—

an object that is produced by uniting in mind two or more quantities simultaneously. Examples are 
• A rectangle’s length, width, and area;  
• A point’s location in two directions simultaneously from a reference point;  
• The value of one quantity and the value of another quantity that is related to it in some 

natural or deterministic way; 
• The values of two quantities as they each vary in time, such as an object’s location and its 

velocity at that location. 
This formulation of covariation resembles, in many ways, traditional definitions of a function 

defined parametrically and of definitions of a relation between two sets. But classical definitions of 
parametric functions, set relations, etc. do not make an explicit representation of how people 
imagine variables varying or how they unite two functions to make an invariant relationship between 
them. Marilyn Carlson and Mike Oehrtman have written extensively about the importance of 
covariational reasoning as a foundation for students’ understandings of function (Carlson, 1998; 
Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson & Oehrtman, 2005; Carlson, Persson, & Smith, 

                                                
14 I am not concerned at this moment with whether intervals should be open, closed, or half open/half 
closed. I am concerned with capturing the dynamic between covering and varying. 
15 That is, think of a value that varies by infinitesimal amounts, and varies within those amounts as well. In 
other words, variation, as a way of thinking, is recursive. We define variation within a ε-sized interval in the 
same way we define variation within intervals it contains and within any interval that contains it. I am 
indebted to Carlos Castillo-Garsow for discussions that led to this characterization of variation. 
16 The phrase “through which the variation happens” is of paramount importance. Even when thinking of 
variation happening in bits, we want students to imagine that variation happens within bits as well. 
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2003; Oehrtman, 2002; Oehrtman, Carlson, & Thompson, 2008). What I’ve offered here, I believe, 
is a new way of thinking about covariation and its relationship to quantitative reasoning.17 

In summary, there are two considerations in examining students’ construction of quantitative 
covariation. The first is conceiving the quantities themselves and images of them that entail their 
values varying. The second is to conceptualize the multiplicative object made by uniting those 
quantities in thought and maintaining that unit while also maintaining a dynamic image of the 
situation in which it is embedded. This act, of uniting two quantities conceptually within an image of 
a situation that changes while staying the same, is nontrivial. Yet it is at the heart of using 
mathematics to model dynamic situations.  

Two recent studies examined aspects of students’ abilities to model dynamic situations 
through a focus on ways of understanding covariation. Carlos Castillo-Garsow (2010) focused 
students’ understandings covariation and rate of change and their implication for understanding 
exponential growth.  Kevin Moore (2010) examined students’ construction of trigonometric 
functions through a focus on ways of understanding angle measure and the covariation of angle 
measure and trigonometric ratio. These two studies are instructive for ways in which a focus on 
quantitative reasoning opens new perspectives on students’ understanding of functions and their 
abilities to engage in mathematical modeling. 

Castillo-Garsow (2010), in a teaching experiment involving two high school junior Algebra 
II students,  used the context of interest-bearing bank accounts as the general theme by which he 
broached issues of covariation, rate of change, and exponential growth. He scaffolded tasks that 
portrayed the value of an account growing according to different bank policies regarding how they 
reported the value of an account. Some banks reported account values at the moment of inquiry as 
the amount at the beginning of the interest period, and increased the reported value only at the end 
of the interest period. Other banks reported accounts’ values as having grown linearly from the 
moment of initial deposit to the moment of inquiry. The two policies would produce the same 
amount of earned interest at the end of an interest period, but resulted in different reported values 
during an interest period. The first policy (increase only at end of interest period) produces a step 
function for the value of an account in relation to the number of years it is on deposit. The second 
policy produces a linear function of account value in relation to the number of years it is on deposit. 

Castillo-Garsow then crossed the two reporting policies with a policy of compounding 
earned interest —some banks reported accounts’ values as changing only at the end of a 
compounding period and other banks reported accounts’ values as having grown linearly within a 
compounding period. The first policy produces a step function that grows geometrically, and its rate 
of change of account value with respect to the number of years on deposit is zero almost 
everywhere. Where it is not zero, the rate of change does not exist. The second policy produces a 
                                                
17 A complete analysis of variation and covariation would certainly involve looking at the development of 
concepts of simultaneity and time. The idea of simultaneity has its roots in what Inhelder and Piaget originally 
called “multiplicative operations” (e.g., Inhelder & Piaget, 1969, pp. 42-43) and in students’ construction of 
time as a quantity (Feagans, 1980; Glasersfeld, 1996; Kamii & Russell, 2010; Lovell & Slater, 1960; 
Natsopoulos & Abadzi, 1986; Piaget, 1970). By “multiplicative operations” Inhelder and Piaget meant the 
construction of logical “and”—the operation of having in mind two attributes of an object simultaneously. 
An object could be a triangle, and it could be blue. Inhelder and Piaget claimed that it is while constructing 
concrete mental operations that a child comes to see an object as being simultaneously a triangle and blue. 
They characterized multiplicative operations as being the source of multiple classification (sort objects on two 
characteristics simultaneously) and multiple seriation (order objects on two measures simultaneously). The 
idea of conceptual time is that of a measured duration, where operations of measure vary with the 
sophistication and development of the person imagining it. A full discussion of both simultaneity and time is 
clearly not possible in this paper. 
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continuous function whose rate of change of account value with respect to number of years on 
deposit is proportional to the account’s value at the beginning of the compounding period. This rate 
of change exists at all moments in time except at the end of a compounding period. 

In an extension of the continuous model, Castillo-Garsow also introduced a banking policy 
that he called the “per capita” policy—each dollar earns interest at a simple rate. The model is 
extended by how the bank treats the interest accrued by each dollar—either by putting it in a 
separate, non-interest account or by adding it to the account that earned it. 

Though Castillo-Garsow’s results are too intricate to convey in this brief account, there are 
two aspects to his experiment that are important for the present discussion. The first point is the 
potentially powerful distinctions that a focus on quantitative reasoning can introduce into studies of 
learning and teaching. It is by maintaining a tight focus on quantitative reasoning that Castillo-
Garsow developed the intricate interaction among ways of thinking about covariation, rate of 
change, and exponential growth that he embodied in tasks. The second point is that his analysis of 
covariation and rate of change reinforce the first point made in this paper—that it is useful to see 
quantities as being in minds, not as being in the world. In particular, Castillo-Garsow found that 
how one imagines that quantities’ values vary has dramatic implications for how one conceives 
situations that embody variation. The two students in Castillo-Garsow’s teaching experiment, whom 
he called Tiffany and Derek, saw variables varying in two very different ways. Tiffany saw variables 
varying in completed chunks. Derek had a mixed view of variation—variables could vary in chunks, 
but they also varied continuously within completed chunks. Tiffany had developed an understanding 
of rate of change that amounted to seeing how much something changed in total, and then 
distributed that change to any sub-interval of time according to the fraction that the sub-interval’s 
length was of the overall interval. For example, if an account earned interest at the rate of 8% per 
year, then in 3 months the account would earn 1/4 of what it would have earned in one year. But 
the one-year-change was the only change that occurred in Tiffany’s thinking. In Tiffany’s thinking, 
the account’s earned interest did not pass through the 1/4-year amount on its way to the one-year 
amount. Rather, the 1/4-year amount was an amount to be computed ad hoc. Derek, who thought 
of time passing continuously and thought of an account having a value at each moment in time, 
thought more in terms of the account changing at the rate of a number of dollars per year for some 
number of years, and the number of years needn’t be a whole number. Earned interest accrued 
continuously. Tiffany could not see that the accounts rate of change with respect to time was 
proportional to the account’s value. Derek saw this relationship intuitively. 
 Moore’s (2010) teaching experiment is the only study of which I am aware that looked 
closely at students’ understanding of angle measure quantitatively. By this I mean that if a degree or 
a radian is a measure of something, it must be some attribute of an angle. Moreover, the 
quantification process must result in the attribute and the unit in which it is measured being related 
naturally, and it must mean that a degree and a radian are essentially the same thing, except one is a 
scaled version of the other. Moore began with a suggestion I had made in (Thompson, Carlson, & 
Silverman, 2007) and in (Thompson, 2008), which was that to see angle measure as a result of a 
quantification process, then the attribute of an angle had to be something like “openness” and its 
measure must be a subtended arc length measured in a unit of arc that is proportional to a circle’s 
circumference.18 Moore built an instructional unit upon the problematique of what one measures to 
“measure an angle”, and that problematized the question of what such a measure means. His 
targeted meaning of angle measure was that one measures an angle’s openness by measuring the arc 
                                                
18 After publishing these articles, I learned from David Bressoud that what I proposed was, in fact, the 
conceptualization of angle measure that had predominated until the early 1900’s, when triangle trigonometry 
gained ascendance (Bressoud, 2010). 
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that it subtends in a circle centered at its vertex. The matter of unit is important, because a unit of 
absolute length (e.g., cm) does not work. Circles of different radii will give different measures of 
openness for the same angle, and we do not want that. We want the size of the circle to be 
immaterial. Moore’s solution was to take arc length measured in any unit that is proportional to a 
circle’s circumference as the unit of arc length. Arc lengths that are 1/360th a circle’s circumference 
are traditionally called one degree. Europeans sometimes use an arc length that is 1/400th a circle’s 
circumference (called a grad). Arc lengths that are the length of a circle’s radius also work.19 In effect, 
Moore’s proposal for conceptualizing angle measure as measured arc, in effect, turns every circle 
into a unit circle. 
 The idea of variation in an angle’s measure turns out to be nontrivial for many students and 
teachers. I asked a group of teachers with whom I worked, and who thought of trigonometry in 
terms of SOH-CAH-TOA20, to show an angle of 30 degrees. I then asked them to show how to 
think about that angle increasing in measure. Figure 4 shows the diagrams they drew. The triangle on 
the left is one with a 30° angle. The figure on the right is their depiction of that angle varying. 
Notice that to vary the angle’s measure they varied the length of the side opposite the angle. This 
group of teachers also could not say what was being measured when an angle in their triangle has a 
measure of 30°. Clearly, this conception of an angle’s variation will cause their students immense 
problems when attempting to envision the behavior of, say, sin(x) as the value of x varies. Indeed, 
they will have a hard time building a coherent meaning of what x represents. 

 
Figure 4. Teachers’ version of an angle of 30° and how to envision increasing it. 

 Moore (2010) conducted his teaching experiment with three precalculus students who had 
no discernable concept of angle measure or covariation of quantities. His intense focus on angle 
measure had the effect that two students developed strong understandings of sine and cosine as 
functions of an angle measure. Moore argued that it was their explicit attention to quantities and 
covariation of quantities that enabled them to build a coherent body of meanings by which they 
envisioned sine and cosine as a relationship between angle measure and vertical and horizontal 
displacement from a circle’s center. His focus on quantitative reasoning also revealed that the one 
student who did not thrive failed to do so because of a persistent inattention to quantities in settings. 

                                                
19 It is incorrect to call this unit a radian. A radian is an equivalence class of arc lengths each subtended by an 
angle that subtends an arc of length one radius on any one of them. 
20 SOH-CAH-TOA: Sine is Opposite over Hypotenuse, Cosine is Adjacent over Hypotenuse, Tangent is 
Opposite over Adjacent. 
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 I am puzzled that mathematicians seem to have so little interest in the idea of covariation. I 
suspect that one reason is their abiding interest in structure, and covariation, on its face, can seem 
unstructural. I suspect also that their personal development of covariational reasoning happened 
without their awareness and simply became a legacy way of thinking. Finally, mathematical reforms 
of from 1800 to 1930 banished ideas of motion, time, and infinitesimals from the concept of 
function (Kleiner, 1989; Kleiner, 2001). The reason to banish motion and time was to accommodate 
the creation of functions that pushed the boundaries of then current definitions, such as functions 
that are continuous everywhere but differentiable nowhere and functions that are continuous on the 
irrational numbers but discontinuous on the rational numbers. These functions are defined using 
limits, and such limit function cannot be imagined in terms of covarying quantities. 

Generalization 
I already mentioned the work of Amy Ellis. She is investigating the role that quantitative reasoning 
plays in students’ abilities to make mathematical generalizations from their work in applied settings 
(e.g., Ellis, 2007). Her work has the potential of explaining the historically mixed results that others 
have found when investigating the impact of students’ use of concrete manipulatives on their 
mathematical learning (Caglayan & Olive, 2010; Cobb, 1995; Izsak, Tillema, & Tunc-Pekkan, 2008; 
Kratzer & Willoughby, 1973; Meira, 1991; Sowell, 1989; Thompson, 1992; Wearne & Hiebert, 1988). 
In essence, it could be that the effectiveness of using concrete materials depends upon the extent to 
which students are reasoning quantitatively while using them, the nature of their quantification of 
the materials (i.e., the kinds of quantities they construct), and the extent to which they form 
generalizations from their quantitative reasoning. More broadly, Ellis’ work on generalization in 
algebra has implications for thinking about mathematical modeling. A mathematical model is a 
generalization of one’s understanding of a situation’s inner mechanics—of “how it works”.  
 The idea of transfer of learning is integral to the idea of generalization. Joanne Lobato has 
examined the age-old issue of transfer-of-learning, but from a actor-centered perspective (Lobato, 
2006; Lobato & Siebert, 2002) instead of from a problem-centered perspective. Lobato’s work is 
tightly connected to the idea of quantitative reasoning as described here, most specifically with 
regard to students’ understanding of ratio-as-measure (Lobato & Thanheiser, 2002). Her approach 
to transfer is more than simply an application of a theory of quantitative reasoning. Rather, she takes 
the stance that it is when a knower’s ways of thinking remain invariant across settings that they have 
“transferred” their learning from one setting to another. The traditional stance on transfer is that 
one transfers successfully by applying a solution method used to solve one problem to a problem 
that is isomorphic to it (isomorphic modulo solution method). Lobato found that way of thinking 
problematic with regard to transfer as a learning mechanism and as a construct to use in fine-grained 
analyses of students’ thinking. Instead, she defines transfer as taking place when the student sees two 
situations as being essentially the same. To see the difference between Lobato’s and the traditional 
way of thinking about transfer I’ll refer to a phenomenon appearing in two different studies of 
quantitative reasoning (Thompson, 1994d; Thompson & Thompson, 1994). In both studies children 
were presented with situations that asked them to determine an amount of time to cover a given 
distance at a given speed. One could say that students divided distance by speed to get time. But we 
discovered that this characterization is inaccurate. What the children did was to imagine measuring 
the given distance in units of a speed-length. The number of speed-lengths contained in the given 
distance told them the number of seconds that an object traveled (one second for each speed-
length). Thus, they divided to find the number of speed-lengths in the given distance. When next 
given the task of finding a speed that would have a moving object cover a given number of feet in a 
given number of seconds, children resorted to guessing a speed and testing to see how well it 
worked.  
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From a traditional perspective, this story has nothing to do with transfer. The problems were 
not isomorphic and the students did not use the same solution method. But from a quantitative 
perspective this story has everything to do with the idea of transfer. In both cases children 
assimilated the situation of relating distance, time, and speed to a scheme of operations that entailed 
measuring a distance with another distance to get a time. In the latter case, their goal was to find a 
speed-length that would make an object travel a given distance in a given time. In the service of that 
goal, the children imagined measuring the given distance in units of a guessed speed-length, the 
guess being guided by an estimate of how many speed lengths it would take to create the given 
number of seconds. In a sense, they were searching for a ruler of the right length by which to 
measure the to-be-traveled distance. The larger point, however, is that the children saw the two 
situations as essentially identical. They transferred their way of thinking about distance, speed, and 
time from the first setting to the second by using that same way of thinking to understand them 
both. Lobato’s reconceived view of transfer has tremendous implications for the design of 
instruction and curricula that aim at both respecting and fostering students’ abilities to see 
mathematical similarity across settings. 

Quantitative Reasoning and Modeling 
Mathematical modeling is simply mathematics in the context of quantitative reasoning. It is the use 
of mathematical notation and methods to express and to reason about relationships among 
quantities. Indeed, quantitative reasoning together with propagation of formulas covers most of 
what can be called modeling in K-12 mathematics. But both school and university texts in the 
United States give little attention to quantitative reasoning as I’ve described it here. Let me give a 
few examples of ways the two can be used reflexively. 

• In algebra, simple equations are taught as forms to operate upon. x/5 = 17, for example is 
offered as an opportunity to multiply both sides by 5. Approached quantitatively, it would be 
an opportunity to reason about relative size: “17 is one-fifth as large as x. This means that x, 
being 5 one-fifths of x, is five 17’s, or x = 5*17.” 

• In my earlier discussion of quantitative reasoning and algebra, complex expressions become 
models of the quantitative relationships that give rise to expressions and equations through 
the propagation of information within a quantitative structure. A complete expression or 
equation, to a student mindful of how she got it, then represents the quantitative relationships 
she created in comprehending the situation. 
It is often unrecognized that quantitative reasoning plays an important role in using calculus 

in applied settings. For example, Moore, Weber, and Carlson (in preparation) describe students 
solving “the box problem” (Figure 5), a standard calculus optimization problem. One result was that 
many students were stymied from the outset because they did not understand how one could make a 
box by folding the sheet of paper. More commonly, students did not know how to write an 
expression that represented the length and width of the box’s base. Some students could write the 
expression V = x(11− 2x)(8.5 − 2x)  as the box’s volume given a cutout of size x, but they could 
not say what in the box varies and what stays the same if you vary the value of x. Finally, and I 
found this most surprising, some students who set up the problem appropriately, and determined 
the maximum volume, nevertheless thought that cutting a square from each corner was simply a 
condition of the problem, that you needn’t cut squares in order to make a box. They did not realize 
that cutting anything other than a square, or cutting different sized squares, would produce a “box” 
whose sides would not fit together. Moore et al. argue that all these difficulties are clearly grounded 
in problems of quantitative reasoning.  
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Figure 5. The Box Problem 

Other studies in our group are finding interesting connections between students’ difficulties 
in calculus and their impoverished quantitative reasoning. Carla Stroud (in preparation) found that 
students’ understanding of instantaneous rate of change has no connection whatsoever to constant 
or average rate of change. In their thinking, velocity is a property of an object, just as its weight is a 
property. This revealed itself in their responses to this question. 

When the Space Shuttle is launched it speeds up continuously until its 
main thruster stops burning. During this time it is never going at a 
constant speed. What, then, would it mean to say that the Space 
Shuttle was going precisely 182.3784 miles/hour at precisely 2.1827 
seconds after liftoff? 

All 11 of her subjects, who had completed Calculus I or Calculus II, said something to effect 
that it would mean that at 2.1827 seconds its speedometer read 182.3784 miles/hour. In their 
thinking, instantaneous speed is simply the number at which the object’s speedometer’s needle 
points were you to freeze time. No one ever wondered about how such a speedometer might work 
or how you could ascertain its correctness. Nor did they relate it to average speed over an interval of 
time and a limiting process. Their study of calculus produced the idea that calculus has formulas that 
magically produce these numbers that speedometers point at. 

My group’s current project is to develop a calculus that is firmly grounded in two principles: 
That calculus is about quantities and their covariation, and in Guershon Harel’s necessity principle 
(Harel, 1998, 2008). The necessity principle, briefly, is that an idea should arise as a result of students 
feeling an intellectual need—that the idea provides a resolution of some problem or dilemma. While 
I cannot describe this effort here, I must say that a focus on quantitative reasoning fits perfectly with 
Harel’s dictum of mathematics arising out of intellectual necessity. 
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