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I must begin by thanking Gülseren Karagöz Akar, Ismail Özgür Zembat, and Selahattin 
Arslan for including me in their effort to produce this book. While I am listed as an editor, 
they did the heavy lifting of conceptualizing the book and working with authors. My role was 
more as a consultant than an editor. I am nevertheless grateful they thought to include me. 

Origins of a Theory of Quantitative Reasoning and its Applicability 

Humans have been reasoning quantitatively for thousands of years. I did not invent 
quantitative reasoning. I developed a theory of quantitative reasoning—a theory with the aim 
of explaining how individuals might come to reason about the world as they see it through a 
measurement lens (including not seeing it through a measurement lens) and implications for 
students’ mathematical learning. My early work was motivated by wanting to understand 
students’ difficulties with story problems—descriptions of settings designed by textbook 
authors that included a question about the setting. This interest was sparked in the spring of 
1985 by James Greeno in his presentation of Valerie Shalin’s work (Shalin, 1987; Shalin & 
Bee, 1985) to the mathematics education faculty at San Diego State University. Shalin 
designed a computer interface of notecards to represent quantities and arrows among 
notecards to show relationships. I realized Shalin had devised a way to represent relationships 
among quantities without having to rely on formulas or expressions. Shalin had not, however, 
explicated what she meant by quantity or quantitative relationship, nor did she include a 
theory of how relationships among quantities imply methods for evaluating them. However, I 
immediately saw the theoretical power of having a way to represent quantities and 
relationships without formulas or expressions. 

In 1986 I was invited to contribute a chapter on artificial intelligence (AI) in mathematics 
education to an NCTM publication on learning and teaching algebra (Thompson, 1989). I 
wanted to include a discussion of Shalin’s and Greeno’s computer program, but was 
unsuccessful in obtaining more information about it. I therefore decided to write an AI 
program, Word Problem Analyst (WPA), inspired by Shalin’s interface and discuss the 
aspects of quantitative reasoning as I conceived it embodied in the program. I will not recap 
all the insights I gained from writing WPA (and revising it over the next four years) except to 
say writing it, with support from the US National Science Foundation, provided a testbed for 
creating a scheme theory for ideas of quantity and the development of mathematical 
reasoning from quantitative reasoning (Thompson, 1990, 2011).  

The following problem and Figures 1-7 illustrate the use of WPA to model someone 
conceptualizing a problem in terms of quantities and relationships among quantities and the 
algebra that can be inferred from this structure. 

MEA Export is to deliver an oil valve to Costa Rica. The valve’s price is 
$5000. Freight charges to Costa Rica are $100. Insurance is 1.25% of Costa 
Rica’s total cost. Costa Rica’s total cost includes the costs of the valve, 
insurance, and freight. What is Costa Rica’s total cost? (Thompson, 1990, 
p. 39) 

Figure 1 shows a person’s (say, José’s) conception that there are six quantities involved in 
this situation: Total Cost to Costa Rica, the costs of Freight, Valve, and Insurance, the 
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Insurance Rate, and the cost of Insurance and Freight together. At this moment José has not 
conceptualized any relationships among quantities. Each notecard reflects the schematic 
nature of a conceived quantity—a natural language description of an object’s attribute, a unit 
in which the attribute is measured, and a potential value for the quantity’s measure. Each 
notecard also has a “Formula Cell”. This represents José’s anticipation that a quantity’s value 
might be calculated from relationships with other quantities. 

 

 
Figure 1. José’s understanding of quantities involved in the situation 

Figure 2 shows the relationships José envisioned among quantities: Total Cost is made by 
an additive combination of Insurance & Freight and the cost of the Valve. Insurance & 
Freight is made by an additive combination of the cost of Insurance and the cost of Freight. 
The cost of Insurance is made by instantiating the Insurance Rate with the Total Cost to 
Costa Rica. Notice that at this moment, José has not thought about any calculations. 
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Figure 2. José’s conception of relationships among quantities in the situation 

Figure 3 shows that José has now attended to the information given in the problem 
statement. Freight has a value of 100 dollars, Valve Cost has a value of 5000 dollars, and 
Insurance Rate has a value of 1.25/100 dollars of insurance per dollar of cost. Notice that, at 
this moment, José cannot make any inferences about values of other quantities. 

 

 
Figure 3. Adding information given in the problem to José’s conception of the situation 

Figure 4 shows José’s decision to let C stand for the value of Total Cost to Costa Rica. 
Figure 5 shows an immediate consequence of letting C stand for the value of Total Cost—
since Total Cost is made by an additive combination of Insurance & Freight and Valve Cost, 
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and Valve Cost has a value of 5000, the value of Insurance and Freight must be C – 5000 
dollars. 

 
Figure 4. Using “C” to stand for the value of Total Cost 

 

 
Figure 5. Inferring a formula to compute the value of Insurance & Freight 

Figure 6 shows the next propagation. Since Insurance is made by instantiating Insurance 
Rate with the value of Total Cost, the value of Insurance will be C * 0.0125 dollars. Figure 7 
reflects José’s openness to deriving a formula for a quantity for which he already knows a 
value. Insurance & Freight is made by an additive combination of Insurance and Freight, 
and since its value is C – 5000 and Freight’s value is 100, José infers that a formula to 
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compute Freight’s value is C – 5000 – 0.0125C. But the value this formula must yield is the 
value of Freight, which is 100.1 In other words, by reasoning quantitatively, José ended with 
the equation C – 5000 – 0.125C = 100. 

 
Figure 6. Inferring a formula to calculate the value of Insurance 

 
Figure 7. Inferring a formula for the value of Freight even though it has a known value of 

100 

José’s conceptualization of the Costa Rica situation is not unique. It can be conceptualized 
in many ways. Indeed, in Thompson (1990) I illustrate how even simple problems can have 

 
1 The brackets in the Freight notecard indicate that José ignored the fact he already knows a value of Freight 

in order to infer a formula to compute Freight’s value. 



Thompson, P. W. (2023). Quantitative reasoning as an educational lens. In Karagöz Akar, G., 
Özgür Zembat, I. Arslan, S., & Thompson, P. W. (Eds.) Quantitative Reasoning in 
Mathematics and Science Education (pp. 5-20). Zurich, Springer Cham. 

 

very different underlying conceptualizations in terms of quantities and relationships 
composing it yet yield the same arithmetic or algebra. 

There are three significant differences between Shalin’s model and the theory I developed. 
First,  Shalin’s model did not have an underlying theory of quantity or quantification, except 
for the arithmetic or units developed by Schwartz (1988). An arithmetic of units, such as 

, or , conflates arithmetic operations and quantitative 
operations. It is not a theory of quantitative reasoning. Rather, units are treated as if they are 
numbers or variables. An arithmetic of units is implied by quantitative reasoning, but it is not 
a theory of it. Second, the theory addressed how one propagates information throughout a 
quantitative structure when knowing only partial information about the context. The theory of 
propagation is the foundation of the model’s hypotheses about students’ transitions from 
quantity-based arithmetic to quantity-based algebra (and beyond). Third, Shalin did not make 
a distinction between quantitative operations and arithmetic operations, which resulted in 
confounding type of quantity with an arithmetic operation to calculate its value, such as 
describing a quantity as a difference simply because, in a particular situation, subtraction is 
used to calculate its value (see Greeno, 1987 p. 77).  

Finally, the WPA model of José’s conception of the Costa Rica situation presumed he had 
mature schemes for the quantities and quantitative operations depicted therein. WPA was 
meant to model implications of reasoning quantitatively for algebraic reasoning. It did not 
address ways learners construct quantities and quantitative operations. The theory I expressed 
in Thompson (1990) provided a foundation for later studies that brought coherence to 
understanding the development of students’ schemes for quantitative comparisons, variation 
and covariation, ratio and rate, geometric and exponential growth, uses of notation, function, 
probability and statistics, and many ideas specific to calculus. 

Chapters in This Book 

I am surprised and gratified that many people found this early work, and later expansions 
of it, useful in their research. The chapters in this book show creative uses of quantitative 
reasoning as a lens for making sense of students’ reasoning, for design of instruction, for 
curriculum design and evaluation, for teacher professional development, and for design of 
assessments. Johnson’s use of Harel’s notion of intellectual need as a motive for why 
students might seek relationships between quantities whose values vary is novel and 
powerful. Moore et al.’s focus on students’ creation of abstract quantitative structures 
addresses the question of how students might generalize their quantitative reasoning in 
specific contexts to broader areas of application. Karagöz Akar, Watanabe and Turan created 
a novel way of examining mathematics textbooks by the criterion of ways they support or 
inhibit students’ quantitative reasoning. Paoletti extends a framework for thinking about 
students’ variational and covariational reasoning by filling a gap in it, while Ellis et al. build 
a learning progression based in variational and covariational reasoning to address students’ 
development over early grades of schemes for function. Karagöz Akar, Zembat, Arslan and 
Belin leverage quantitative reasoning to address the issue of students’ difficulties in 
conceiving motions in the plane as functions mapping  to . Carlson et al. leverage 
quantitative reasoning to address the question of how to support teachers in transitioning 
from speaking to students as if to themselves to engaging students in reflective discourse 
aimed at students’ construction of coherent systems of mathematical meanings. I am 
especially gratified to see three chapters by science educators leveraging a theory originally 
aimed to support learning and teaching mathematics to address issues within science 
education. Jin et al. apply quantitative reasoning as a theme to enhance curricular coherence 
across grade levels and across a broad array of scientific concepts. González uses quantitative 

cm ⋅ cm = cm2 (ft/sec)/sec = ft/sec2

ℝ2 ℝ2
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reasoning, especially distinctions between ratio as a quantity and rate as a quantity, to 
examine students’ meanings for ideas central to understanding climate change. White 
Brahmia and Olsho turn the lens around. Instead of using quantitative reasoning as a lens on 
students’ reasoning in physics, they use physics as a context to assess students’ quantitative 
reasoning. Nunes and Bryant take an approach to quantitative reasoning more in line with 
Schwartz (1988), in which numbers represent quantities and arithmetic operations imply 
operations on quantities. 

I suspect one reason quantitative reasoning has found such broad applicability is its 
fundamental stance that quantities are in a mind, not in the world. This stance forces anyone 
adopting it to examine ways learners understand situations presented to them. It forces us to 
ask, “What is this situation to the learner?” As Carlson et al. (this volume) document, 
adopting this stance is nontrivial for instructors who are accustomed to apply criteria of 
coherence only to their own understandings, not to ways their students might understand the 
situations presented to them or might understand their instructor’s actions and utterances 
regarding a situation. 

Another possible reason quantitative reasoning has been found broad applicability is that 
using it forces one to employ a level of qualitative precision that is uncommon in 
mathematics instruction, yet beneficial for students’ learning. Distinctions among object, 
attribute, and measure are often unaddressed by mathematics teachers—as witnessed by the 
common proclivity among teachers and students to write statements like “D = distance”. 
Carlson et al. (this volume) document difficulties precalculus instructors create for 
themselves and their students by their lack of precision about contextual meanings of 
numbers, variables, and expressions. 

Conceptualizing Units and Conceptualizing Quantification: Aspects of Quantitative 
Reasoning Needing Greater Attention 

Early on in developing this theory of quantitative reasoning I proposed that a quantity is a 
scheme—someone’s conception of an object and an attribute of it the person has conceived 
as measurable in an appropriate unit. I also spoke repeatedly of the synergy among a person’s 
conceptions of object, attribute, and measurability—they each mature as the person gains 
clarity on the others. In Thompson (2011) I gave a brief recount of 8th-graders’ construction 
of “explosiveness of a grain silo” as a quantity. They engaged in extended discussions of just 
what was it that was explosive: The silo? The grain in the silo? Dust in the silo? Dust in the 
air within the silo? They also had to settle on a mechanism for explosions, eventually settling 
on oxidation at the surface of grain dust particles. This led them eventually to a unit of grain 
silo explosiveness: cm2 of “dust surface area” per cm3 of “dust volume” per ft3 of “silo 
volume” in which the dust is dispersed.  

I offered the example of grain silo explosiveness to illustrate the messiness of quantitative 
reasoning that often is unaddressed in studies employing a quantitative reasoning lens. But 
we need not go to uncommon quantities like “grain silo explosiveness” to see the 
interdependence among conceptualizations of object, attribute, and unit. In Thompson (2000) 
I spoke of ways students often understand area and volume as one-dimensional quantities. 
Area is one-dimensional when one conceives the unit as having one dimension—a square 
region of a particular size. Then all areas are just counts of that one-dimensional unit. 
Similarly, volume is one-dimensional when one conceives the unit as having one 
dimension—a cubic object of a particular size. Then all volumes are just counts of that one-
dimensional unit. Brady and Lehrer (2020) clarified that a unit of area is conceived as two-
dimensional when one conceives it as generated by two segments, one being swept along the 
other. This is the imagistic equivalent of understanding the interior of a rectangle being 
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formed by the cross product of two perpendicular lines viewed as sets of points. Karagöz 
Akar et al.’s chapter on isometries makes a similar point with respect to conceptualizing the 
Cartesian plane as . You obtain a two-dimensional object by the quantitative 
operation of multiplicative combination of two one-dimensional objects. Area and volume 
are just two instances of quantities teachers and researchers take as unproblematic in 
conceiving their unit when in fact students often conceive them in ways that are problematic 
for their comprehension of situations involving them. 

In the following paragraphs, I offer two additional examples to illustrate the messiness of 
quantification and how attention to units can be helpful to students in understanding 
mathematical or scientific ideas. The first is conceptualizing interest rate as actually being a 
rate of change of one quantity with respect to another. The second is the quantification of 
kinetic energy. 

Quantification of Interest Rate as a Rate of Change 

To specify a quantity as a rate of change, we must state two quantities whose values 
covary. They vary with respect to each other. The “rate of change” attribute of two quantities 
covarying is captured by a statement of the amount one varies in relation to variations in the 
other. 

 Here are three definitions of interest rate by commonly accepted authorities: 
1. “The cost of borrowing money from a lender is represented as a percentage of the 

principal loan amount, called the interest rate.” U.S Federal Housing 
Administration https://www.fha.com/define/interest-rate  

2. “The amount earned on a savings, checking, or money market account, or on an 
investment, as a certificate of deposit or bond, typically expressed as an annual 
percentage of the account balance or investment sum.” Dictionary.com 
https://www.dictionary.com/browse/interest-rate 

3. “The percentage usually on an annual basis that is paid by the borrower to the 
lender for a loan of money.” Meriam-Webster.com https://www.merriam-
webster.com/dictionary/rate of interest 

I find it peculiar that, despite purporting to define interest rate, none of these statements 
actually defines a rate of change of one quantity with respect to another. 

Imagine a bank advertisement as follows:  
We pay 3% interest per year on your deposit. 

What quantities are involved in this practice of charging or paying interest? What are their 
units? What is the rate of change of one quantity with respect to another that is the “rate”? 

The quantities are interest paid (dollars of interest), dollars on balance (basis of the 
percentage), and an amount of time (number of years balance is on deposit). Regarding the 
rate—what is it? Is it a rate of change of balance with respect to time? The rate of change of 
interest earned with respect to time? 

The crux of the matter is to understand that “3%” has a unit: dollars of interest per dollar 
on balance. The unit of “3% interest per year” is ($interest/$balance)/year. The bank will pay 
interest at the rate of 0.03 dollars interest per dollar of balance per year. There is yet one open 
question: What constitutes the balance upon which interest is computed? Is it the current 
balance at the time of computing interest, or is it the initial balance at the time of opening the 
account? 

The difference between simple interest and compound interest is much easier to 
understand when we answer these questions explicitly. “We pay 3% interest per year on your 
deposit, compounded quarterly” means that at the end of each quarter they will add to your 
balance the amount earned at the rate of (($0.03 interest per $1.00 balance at beginning of 

ℝ2 = ℝ × ℝ
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compounding period) per year) earned in 1/4 year. You earn interest over a quarter year at 1/4 
the rate you would earn over a year. This is like speeding up at a rate of 10 (km/hr)/hr for 1/4 
hour. Your speed increases at a rate per 1/4 hour that is 1/4 the rate for an hour, or at a rate of 
(2.5 km/hr) per 1/4 hour. 

The idea of the unit of an interest rate is related to students’ difficulties distinguishing 
between linear and geometric growth. Graphs given in Figure 8 show two ways to understand 
the phrase “… increases at a rate of 20% per month.” Figure 8a shows 20% of the original 
amount (e.g., $2) added to the current value (e.g., $10) to get the next value (e.g., $12). The 
same amount is added at the end of each month. Figure 8b shows 20% of the current month’s 
value added to get the next month’s value. Since the current value increases each month, the 
amount added at the end of each month increases. 

 
Figure 8. Two ways to interpret the phrase, "… increases at a rate of 20% per month". 

The phrase “… increases at a rate of 20% per month” is ambiguous regarding which 
interpretation the speaker intends a listener to make. Being clear about the quantities and their 
units is clarifying. The first would be “… increases at a rate of ($0.20 interest per dollar of 
initial balance) per month”, whereas the second would be, “… increases at a rate of ($0.20 
interest per dollar of current balance) per month”. 

Quantification of Kinetic Energy 

A characteristic of physical quantities is how deeply their conceptualizations are 
interconnected. Energy is commonly defined as “the capacity to do work” (Encyclopedia 
Britannica, 2022). The idea of work is tied to the idea of applying a force to move an object 
some distance, while force is the idea of accelerating an object (having mass) from one 
velocity to another velocity. The meaning of kinetic energy is the work required to bring an 
object having mass m from velocity v to velocity 0.2  

 
2 I have limited these descriptions to mechanical quantities to avoid dealing with the complexities of their electro and 
thermal equivalents. 
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Jin et al. (this volume) speak of students’ understanding of kinetic energy in terms of 
implications they draw from a formula for quantifying its measure, namely 𝐸 = !

"
𝑚𝑣", for 

how an object’s kinetic energy changes when its velocity changes. Some students think 
doubling an object’s velocity doubles its kinetic energy. Other students think doubling its 
velocity quadruples its kinetic energy. The issue Jin et al. addressed is students’ abilities to 
reason about the implications of a quantification expressed in a formula. I address a more 
foundational issue—the quantitative reasoning involved in quantifying kinetic energy to end 
with the formula 𝐸 = !

"
𝑚𝑣". My aim here is to illustrate how conceptualizations of object, 

attribute, and quantifications are intertwined. 
To quantify kinetic energy, we must identify an object and its attribute as a starting point 

of quantification—to determine a method by which to measure it and the unit in which it will 
be measured. In the case of kinetic energy, the “object” is anything having mass. One 
attribute is its motion—it is moving (at least momentarily) at a constant velocity. Another 
attribute is the effort (work) required to stop its motion. Work, as a quantity, is a force 
applied over a distance. The object’s velocity, however, is not constant. Its velocity decreases 
as work is applied to it. 

A slight twist which makes envisioning kinetic energy easier is to realize the energy 
required to bring an object from velocity v to velocity 0 is the same as the energy required to 
bring it from velocity 0 to velocity v.  

Breaking down these components, and envisioning the object’s velocity changing in little 
bits as it accelerates from 0 to v, we get 
• a force of measure F is created by accelerating a mass of measure m at a rate of 
measure a,  
• a small bit of acceleration is created by changing an object’s velocity by a variation of 
measure dv during a variation of time of measure dt,  
• a small variation in distance ds is made by going at velocity 𝑣 for a small variation in 
time dt,  
• a small variation of work is created by applying a force of measure F over a small 
variation in distance of measure ds, and  
• a small variation in an object’s kinetic energy of measure dE is created by a small 
variation in work of measure 𝐹𝑑𝑠 that varies its velocity. 

Symbolically, taking F as a measure of force, E as a measure of kinetic energy, and dE, 
dv, dt, and ds as infinitesimal variations in kinetic energy, velocity, time, and distance, 
respectively: 
 

 

 
So, a small variation in an object’s kinetic energy is its momentum times a small variation in 
its velocity. This says an object’s momentum at any velocity is its rate of change of kinetic 
energy with respect to velocity.  

F = m a , a = dv
dt

, ds = v dt, dE = F ds
− − − − −− − − − − − − − − − − − −

dE = F ds
= m a ds

= m ( dv
dt ) v dt

= mv dv
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Recalling that the work required to decelerate an object from v to 0 is the same as the work 
required to accelerate it from 0 to v, an object’s kinetic energy is the (hyper) sum of all 
infinitesimal variations in its kinetic energy as velocity varies from 0 to v. Symbolically:3 
 

 

 
As I said earlier, a full, robust understanding of this quantification of kinetic energy 

requires understanding constituent quantities’ units (units of mass, time, distance) and the 
units of quantities created from them (acceleration, force, momentum, work, kinetic 
energy)—but not in the sense of an arithmetic of units. Rather, I mean one must understand 
units in the sense of Bridgman’s (1922) dimensional analysis, which attends to the creation 
of quantities from other quantities while attending to the nature of their attributes. Bridgman 
wrote, for example, [𝐹] = [𝑚][𝑎] to convey that the quantity force is formed by the 
quantitative operation of multiplicative combination—by accelerating an object having mass. 
He wrote 𝐹 = 𝑚𝑎 to represent how you calculate a measure of force, ending with a number 
with a unit that is consistent with the quantity’s dimension. If you measure a mass in kg and 
acceleration in ((meters per second) per second), the unit of force is , meaning a 
mass measured in kg is accelerated at a rate measured in ((meters per second) per second).  

How might students know to multiply m and a to calculate a measure of force? Hopefully, 
from schemes they constructed through experimentation4, that force is proportional to both 
mass and acceleration. If we increase by a factor of j the mass being accelerated at a rate a, 
the force of accelerating it increases by a factor of j; if we increase the acceleration of an 
object by a factor of k, meaning its velocity increases k times as rapidly with respect to time, 
the force of accelerating it increases by a factor of k. Let 𝐹(𝑗, 𝑘) represent a measure of the 
force of accelerating an object of j mass units at a rate of k acceleration units. Then 𝐹(𝑗, 𝑘) =
𝐹(𝑗 ⋅ 1, 𝑘 ⋅ 1) = 𝑗 ⋅ 𝑘	𝐹(1,1). This says the measure of force that accelerates a mass of 
measure j mass units at a rate of measure k acceleration units is 𝑗 ⋅ 𝑘 times as large as the 
force of accelerating a mass of measure 1 mass unit at a rate of change of velocity with 
respect to time of 1 acceleration unit. 

Lastly, there is another question we should hope students ask with respect to quantification 
of kinetic energy. Since kinetic energy is equivalent to an amount of work, they hopefully ask 
whether !

"
𝑚𝑣", our quantification of kinetic energy, actually quantifies an amount of work. 

If it does, then the derived unit of !
"
𝑚𝑣" must, in line with Bridgman, accord with a force 

 
3 I acknowledge that this derivation relies on students' understanding of integrals as a (hyper) sum of infinitesimal variations 
and on their understanding of the relationship between a rate of change function and its accumulation functions. However, 
they could approximate any object’s kinetic energy to an acceptable accuracy with Desmos using the finite sum 

𝐸approx(𝑣) = ∑
&'(

)/+)
𝑚(𝑖𝛥𝑣)𝛥𝑣, where ∆v is a small increment in velocity. See Thompson et al. (2019, Ch 5) for a full 

development of these ideas. 
4 Of course, the experimentation that affords students an opportunity to construct such schemes must be crafted carefully so 
their abstractions are from their own activity. 

E(v) = ∫
v

0
mu du

= 1
2 mu2

u=v

u=0

= 1
2 mv2

kg ⋅ ((m/s)/s)
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applied over a distance. Its unit must be of dimension [𝐹][𝑑]. Here is where arithmetic of 
units is useful.  

The standard unit of force in the kg-meter-second system is the Newton (N), or 1 kg 
accelerated at 1 (m/s)/s. Keeping track of units, and using m as a measure of mass and v as a 
measure of velocity in the kg-meter-second system, we get 
 

 

 
The unit of !

"
𝑚𝑣" in the kg-meter-second system is the Newton-meter, which is of dimension 

[𝐹][𝑑], so it is a unit of work. 

Connections with Chapters in This Book 

The examples of conceptualizing and quantifying force and kinetic energy tie together 
themes developed in several chapters of this volume: Brahmia and Oshlo’s focus on 
quantification as a central aspect of scientific reasoning, Johnson’s focus on mathematizing a 
la Freudenthal via an intellectual need for relationships, Jin et al.’s focus on mathematizing 
as a bridge between mathematics and science, Paoletti et al.’s and Ellis et al.’s focus on 
variation and covariation as foundational ways of thinking for students to develop 
understandings of functions, Moore et al.’s focus on abstracted quantitative structures as a 
target for students’ quantitative reasoning, Gonzalez’ proposal of quantitative reasoning and 
quantification as a central theme in climate science.  

Moreover, if we consider these quantifications of force and kinetic energy as conceptual 
analyses of understandings we hope students construct—as a teacher’s key developmental 
understandings of force and kinetic energy—then Carlson et al.’s analysis comes into play. 
As they explain, teachers must reflect upon their own quantitative understandings to become 
conscious of the intricacies entailed in their goals of instruction and must decenter to consider 
how one might support students in developing these understandings via conventions of 
speaking with meaning and emergent symbolization.  

The example of work as a quantity relates to Moore et al.’s construct of abstract 
quantitative structure in a profound way. Understanding work dimensionally, as [F][d], is to 
understand the quantitative structure of work and to understand that units will be involved, 
but the exact units need not be specified—they just need to be coherent with the quantities of 
force and distance. The example of kinetic energy also is related to Karagöz Akar, Watanabe 
and Turan’s use of quantitative reasoning as a lens to examine mathematics textbooks’ 
coherence. Does a textbook support teachers to engage students in reflective discourse aimed 
at their conceptualization of quantities, their quantification, and situations involving them that 
textbook authors purport to address? 

The representation of kinetic energy as a function of velocity, ,  relates to 
Johnson’s stance regarding intellectual need for relationships, Ellis et al.’s conceptual 
analysis of functions, and Paoletti’s analysis of covariational reasoning. For a student (or 
instructor) to even consider writing “E(v)” requires they (1) seek a relationship between 
velocity and kinetic energy that remains invariant as velocity varies, (2) envision velocity 

1
2 mv2 → kg ⋅ m2 /s2

→ (kg ⋅ (m /s2) ⋅ m
→ (kg ⋅ (m /s)/s) ⋅ m
→ N ⋅ m
→ [F ][d ]

E(v) = 1
2 mv2
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varying smoothly from 0 to v regardless of the amount of time this acceleration takes, and (3) 
understand the notation “E(v)” through a scheme that entails an image of velocity and kinetic 
energy varying simultaneously and varying in a way that each value of velocity determines a 
value of kinetic energy (see Yoon & Thompson, 2020). 

I can imagine mathematics educators questioning the examples of quantifying force and 
kinetic energy as being largely relevant to science education and less relevant to mathematics 
education. I disagree. Anyone who has taught arithmetic, algebra, precalculus or calculus in 
the United States has seen their students arrive at solutions to applied problems with little 
meaning or inappropriate meanings for numbers or variables in their answer. This is a serious 
problem. The solution to the problem of meaning, however, must be systemic. To take 
quantitative reasoning seriously in mathematics and science education requires attention to 
having students conceptualize quantities and methods and meanings of their measures 
throughout their schooling. This can range from asking students what quantity their 
arithmetic has evaluated, to asking them what an appropriate unit for the area of a rectangle 
of height 3 jibs and width of 4 jabs would be, to how one might convert measures of fuel 
efficiency from miles per gallon to kilometers per liter, to asking them for a useful unit of 
effort to complete a job (e.g., person-hour), and so on. 

Moore et al.’s construct of abstract quantitative structure might be behind experts’ 
utterances like “speed times time equals distance”. They of course do not mean speed in any 
unit times time in any unit equals distance in any unit. Rather, they presume, without saying, 
this is true for a coherent system of units for speed, time, and distance. This brings to mind 
Carlson et al.’s explanation of the necessity for instructors to examine their own 
understandings and presumptions in order to consider how their expressions of them might be 
interpreted by students who will interpret teacher’s utterances and actions through schemes 
quite unlike the teacher’s. 

Conclusion 

I once again praise the authors’ work expressed in this volume and my colleagues who 
brought this collective work to our attention. I hope my call to give greater attention to the 
details of students’ and teachers’ conceptualizations of object, attribute, and measure is useful 
for those employing quantitative reasoning as a lens in mathematics and science education. I 
suspect doing this will give greater insight into difficulties students experience in learning 
mathematics and science and difficulties teachers experience in promoting such learning. 
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