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Abstract
There is a substantial curricular overlap between calculus and physics, yet introduc-
tory physics students often struggle to connect the two. We introduce a quantity-
based framing of the Fundamental Theorem of Calculus (FTC) to help unify learn-
ing across both disciplines. We propose a consistent approach to teaching definite 
integrals, including shared vocabulary and symbolism, to help students recognize 
how concepts like change, rate, and accumulation show up in both calculus and 
physics. We argue that the typical interpretation of the FTC in calculus, focusing on 
antiderivatives in closed form, doesn’t align well with how physicists use or con-
ceptualize integration. We advocate for an additional focus on Riemann sums and 
the underlying ideas of change, rate, products, and accumulation, which are funda-
mental in both fields. This approach can help students build a deeper, more coher-
ent understanding of both mathematics and physics quantity. By aligning learning 
objectives across the disciplines, we argue that students can develop a stronger 
understanding of foundational mathematical principles.
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Introduction

Physics is the science of change, quantified by an abundance of different physical 
quantities. Calculus, in turn, offers the formal tools to describe how these quanti-
ties vary and relate, providing a structure within which new physical quantities can 
emerge. The two disciplines–physics and calculus–are deeply intertwined. Recog-
nizing this, most STEM curricula require students, particularly those in physics and 
engineering, to complete calculus and calculus-based introductory physics courses 
early in their academic careers. These courses are intended to prepare students to rea-
son quantitatively and to apply calculus meaningfully in physical contexts. However, 
research shows that many students perceive a disconnect between doing mathematics 
and reasoning mathematically within physics contexts. This perceived divide limits 
their capacity to engage in meaningful quantitative reasoning. For instance, in a study 
by Taylor and Loverude (2023), a student described the disconnect plainly: “I have 
math and physics on different days, so I forget about math when I go to physics, I 
forget about physics when I go to math.” This comment highlights a broader issue: 
although students encounter overlapping concepts in math and physics, they often 
fail to incorporate them.

This disconnect is especially problematic given the central role that variable quan-
tities play in physics. While introductory physics courses introduce over a hundred 
physical quantities, instruction relies on a narrow set of familiar functions to describe 
their variation – many of these quantities share common covariational structures. 
Helping students recognize these patterns could enable them to apply calculus-based 
reasoning more fluently in physics.

This paper argues for a shared instructional goal across calculus and physics: that 
students understand why they use calculus–not just how to perform its procedures. 
Drawing on the framework of proceptual understanding of Gray and Tall (1994), we 
advocate that symbolic operations in calculus should evoke quantitative meaning, 
and vice versa. In other words, students should not only be procedurally fluent but 
conceptually grounded in their use of calculus to model changing quantities.

To support this goal, we present a quantity-centered framing of the Fundamental 
Theorem of Calculus (FTC) rooted in physics modeling. Our approach emphasizes 
that quantities–carefully defined and contextually meaningful–form the conceptual 
bridge between mathematics and physics. Physical modeling enables prediction and 
explanation by connecting measurable quantities through mathematical relation-
ships. In this view, each calculus operation serves a purpose grounded in physical 
reasoning. For example, consider the quantity of flux. Broadly, flux measures how 
much of something passes through a surface, a concept involving both rate and 
amount. Depending on the context, flux may be defined as a rate per unit area (e.g., 
particle flux) or as a measure of a field through a surface (e.g., electric or magnetic 
flux). Despite differing mathematical treatments, the core idea remains consistent: 
flux quantifies the movement of something through a real or imaginary surface. In 
electricity and magnetism, integrating flux over a surface relates to the quantity of 
a source, such as charge or current. In thermodynamics, particle flux connects to 
thermal properties of a system. Across domains, the physical world motivates the 
mathematics; calculus becomes necessary, not optional.
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The framing we propose is designed to support instructors in organizing their 
teaching around essential physics quantities and their mathematical representations. 
We envision this structure guiding the design of instructional activities, shaping 
classroom discussions, and fostering interdisciplinary connections between calculus 
and physics. More specifically, we provide a quantity-based framing of the FTC for 
instructors aiming to create learning environments in which students:

	● Spend meaningful time exploring the foundational ideas of amount, change, rate 
of change, interval, and accumulation in contexts that matter to them. Leveraging 
students’ prior knowledge of physics can help them make sense of calculus. Nam-
ing and describing quantities, not just symbolizing them, supports engagement 
with and deeper understanding of physics.

	● Prioritize conceptual understanding over procedural speed (Thompson, 1994). 
Instruction should connect mathematical procedures to their conceptual roots. 
This includes explicit discussions that deepen students’ understanding of how 
mathematical expressions adapt across different contexts, with attention to the 
meanings of symbols and how variable values change.

The physical world provides a natural context in which calculus becomes intel-
lectually necessary (Harel’s, 2008). This necessity creates opportunities for deeper 
learning. Our goal is to provide a structure through which calculus instructors can 
meaningfully integrate physics-based quantities, thus supporting student learning of 
the FTC and promoting transfer across disciplines.

We align our work with recommendations from Ely and Jones (2023):

“Reasoning with definite integrals is a key skill for calculus students to develop 
as part of their curriculum, and the ability to interpret integrals in the context of 
modeling with quantities is critical to the learning of calculus.”

Despite recent efforts to include modeling in mathematics courses, many physics 
courses do not expect students to engage in genuine calculus reasoning. Physics text-
books often avoid situations where variable quantities are combined with other vari-
able quantities, largely because students are typically ill-equipped mathematically 
to reason with them. As a result, many relationships are simplified to constant-rate 
approximations to keep the physics storyline manageable (Loverude, 2025).

Von Korff and Rebello (2012) provide evidence of the instructional challenge 
that quantitative reasoning with variable quantities poses in physics. In a case study, 
they conducted a series of teaching interviews with a student, for a total of 14 hours 
throughout the term, to characterize and support her understanding of definite inte-
grals in mechanics contexts, guided by insights from mathematics education research 
(Zandieh, 2000). While their approach showed promise in helping the student make 
connections between calculus and physics, as an intervention it is not feasible to scale 
up. Much of their effort focused on helping the student develop foundational ideas 
that could have been introduced earlier in calculus instruction – rate, change, and 
accumulation.
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This paper responds to the need for calculus students to develop a deeper under-
standing of the foundational ideas of rate, change, and accumulation. Avoiding cal-
culus in physics instruction shortchanges students, and the disconnect between the 
disciplines undermines both. We argue that coordinated instructional efforts between 
calculus and physics are not only necessary but achievable, and our physics quantity-
based framing of the FTC presents one step in that direction.

In the sections that follow, we outline our framing and its research foundations, 
and make recommendations for its uptake as well as future research directions. Spe-
cifically, in §  “Background” we review relevant research on student learning and 
knowledge construction, highlighting both key resources and difficulties students 
bring from calculus into physics, as well as a current quantities-focused framing of 
the FTC from the mathematics research literature. In § “An FTC Framing of Phys-
ics Modeling”, we build on existing quantities-focused FTC research and extend it 
into the realm of physics, illustrating how the FTC functions as a profound knowl-
edge structure that can support students’ reasoning in physics. In § “FTC Physics 
Framing: Research Foundations”, we discuss research findings which reveal current 
learning obstacles that our framing can help instructors navigate. In §“An FTC Phys-
ics-Framing for Calculus Instruction”, we present a physics quantity-based framing 
of the FTC that can inform both physics and calculus instruction. This framing meets 
the objectives of both addressing the obstacles from the prior section, and bridg-
ing disciplinary divides in support of more coherent learning trajectories. Lastly, in 
§ “Conclusion”, we outline directions for future research and development and dis-
cuss existing instructional materials that can serve as a foundation.

Background

Conceptual Foundations of the FTC

In the context of a calculus course both historically and conventionally, integrals 
are introduced as representing areas under curves in a Cartesian coordinate system. 
This geometric interpretation is a powerful abstraction rooted in a basic quantitative 
principle: if a quantity Q changes at a constant rate q(x) over an interval of length 
∆x, then the change in Q, denoted ∆Q, is given by q(x)∆x. This product can be 
represented graphically as the area of a rectangle with height q(x) and width ∆x.

When the rate of change q(x) varies over the interval [x, x + ∆x], we can approxi-
mate it as constant over that interval to obtain an estimate for ∆Q. As ∆x becomes 
smaller, the approximation improves, and summing these over the interval [a,  b] 
yields an increasingly accurate estimate of the total change in Q. In the limit as 
∆x → 0, the sum approaches the exact change in Q, and thus, the area under the 
graph of f(x) over [a, b] comes to represent the total change in a quantity whose rate 
of change is given by f(x). This connection underlies the conventional association of 
definite integrals with the area under a curve.

However, it is important to emphasize that this geometric interpretation is specific 
to Cartesian coordinates. It does not hold in other coordinate systems, such as polar 
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or semi-logarithmic systems, where the relationship between area and accumulated 
change is not preserved in the same way.

Over time, area bounded by curves have become the customary meaning of inte-
grals. The fact that the integral 

´ b

a
f(x)dx represents a value of a quantity not hav-

ing values f(x) or x is often lost in presentation and discussion. Students learn that 
an integral is an area. Also lost is the fact that in 

´ b

a
f(x)dx, every value of f(x) is a 

rate of change of an accumulating quantity with respect to a quantity having value x.
The Fundamental Theorem of Calculus (FTC) is typically stated in two parts, as 

in § 5.3, Briggs et al. (2011):
Let f be a continuous function on an interval [a, b]. Let the function F be defined 

as F (x) =
´ x

a
f(t)dt. Then

	 1. F ′(x) = f(x) (F is defined as the antiderivative of f)

	
2.

ˆ b

a

f(x)dx = F (b) − F (a) (evaluate the values of F at boundaries)

It is important to note that x is the independent variable in the definition of F. There 
are natural interpretations of x and t when F is interpreted as an accumulation func-
tion. The value of x, the upper limit of integration, varies when modeling any quantity 
that accumulates. As for t, for any value of x, that is for any specific accumulation, 
the value of t varies from a to x, which gives us a specific value for accumulation for 
a specific value of x. The meaning of F then is the net accumulation in the quantity 
being modeled for any interval of accumulation determined by a and x.

In the first equation above, we see that the meaning we must give f in 
´ x

a
f(t)dt is 

that values of f are values of the accumulating quantity’s rate of change with respect 
to the quantity whose value is x. This is not to say that the original meaning of f(x) 
must be a rate of change. Instead it says that the value of the accumulating quantity’s 
rate of change with respect to x is identical to the value of f(x). If the accumulating 
quantity has unit UF  and the independent quantity has unit Ux, then f(x), as a rate of 
change of accumulation, will have the unit UF  per Ux.

The customary significance of the first equation above in the FTC comes from 
the (usually previously established) fact that any two antiderivatives of f differ at 
most by a constant. So, if you can find a function G defined in closed form whose 

derivative is f, then you can calculate the value of F(b), or 
´ b

a
f(x)dx, by calcu-

lating G(b) − G(a). This standard FTC interpretation allows for efficiently hand-
calculating definite integrals whenever a closes-form antiderivative exists, which was 
invaluable before the age of computers. But it comes at a price. The connections 
among concepts of change, rate, products and accumulation, which are essential to 
the mathematical sense that physicists make with physical quantities is, lost.
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Consider now, the Fundamental Theorem of Calculus as a relationship between 
fundamental mathematical quantities1. In his foundational work on calculus, Isaac 
Newton introduced the terms fluent and fluxion to describe what are now understood 
as functions and their derivatives, respectively. A fluent denoted a quantity that varies 
continuously over time, while a fluxion represented its instantaneous rate of change. 
Newton framed the essential problems of the calculus in two parts: first, to determine 
the fluxion given a fluent–what is now recognized as the process of differentiation; 
and second, to recover the fluent from its fluxion–what we now term indefinite inte-
gration. For instance, given the fluent x(t) = vot, its fluxion for all values of t is vo. 
While Newton’s notation and terminology were initially influential, they were ulti-
mately replaced by the differential and integral notation developed independently by 
Leibniz.

A productive understanding of the FTC for physics is, in effect, similar to New-
ton’s ideas of change and variation–considering all quantities as flowing or having 
flowed. When quantities flow, they have a rate of change with respect to some other 
quantity. This rate of change is the rate at which the quantity accumulates. In our 
characterization, a productive understanding of situations as embodying the FTC is 
based in these ways of seeing the world.

	● If you understand a quantity as varying, it occurs to you immediately that any 
value is an amount of accumulation. The quantity built to that amount.

	● If you understand two quantities as varying in relation to each other, it occurs to 
you immediately that each quantity’s value varies at some rate of change with 
respect to the other.

	● If you understand two quantities’ values as varying at some rate of change with 
respect to each other, it occurs to you immediately that their values accumulate 
with respect to each other.

We emphasize that the above dispositions are pre-symbolic. They are ways of seeing 
the world, not ways of interpreting mathematical statements. They provide individu-
als with a disposition to see situations as modeled appropriately with integrals or 
derivatives, which embody rates and accumulation. These ways of thinking are them-
selves dependent on students developing other dispositions earlier in their schooling, 
regarding creating quantity – having a disposition to ask, “What is being measured? 
How is it measured? What does a particular measure mean?”, and variation – imagin-
ing total variation is an accumulation of small variations2 .

The FTC relates the rate of change of quantity A with respect to quantity B with 
the accumulation of quantity A in relation to quantity B by way of summing the 
product of its rate of change over infinitesimal intervals of change in its independent 
quantity and the size of those intervals. It tells a rich story of the interplay between 
quantities as they change.

1 There are two ways we can consider the FTC – in the mathematical context of a standard calculus course 
and in its quantitative significance.
2 It is unfortunate that many students are mystified as to how an area in a coordinate system gives an 
amount of distance, work, or force (Jones, 2015).
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Figure 1 illustrates several important ideas about the relationship between a func-
tion f and its accumulation function F. First, although f does not have an elementary 
(closed-form) antiderivative, it still has a well-defined antiderivative in the sense of 
the Fundamental Theorem of Calculus:

	
F (x) =

ˆ x

a

f(t) dt.

Figure 1 demonstrates this relationship by approximating the derivative F ′(x) using 
the difference quotient:

	
rF (x) = F (x + h) − F (x)

h
.

On the left, where h = 1, the approximation of F ′(x) is relatively poor. On the right, 
with a much smaller step size (h = 0.001), the approximation significantly improves. 
At this resolution, the graphs of y = f(x) and y = rF (x) are nearly indistinguish-
able, visually confirming that F ′(x) = f(x).

In other words, Fig. 1 illustrates that at each point x, the value of f(x) corresponds 
to the instantaneous rate of change of the accumulation function F. Figure 1 embod-
ies two additional aspects. 

Fig. 1  An accumulation function F defined in open form and its approximate rate of change function 
rF  for two values of h. Left: h = 1; Right: h = 0.001. The graphs of f and rF  appear to coincide 
over sufficiently small intervals–illustrating that F ′(x) = f(x). Notice that while f does not have an 
elementary (closed-form) antiderivative, it does have an antiderivative–namely F (x) =

´ x
a f(t)dt
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1.	 The function F defined as F (x) =
´ x

a
f(t)dt is treated in this graphing program 

as a first-class function –it can be evaluated, graphed, composed with other func-
tions, etc. We propose that students actively defining accumulation functions and 
using those definitions as first-class functions can be a benefit to their concep-
tions of integrals as mathematical objects that have meaning in the context being 
modeled.3

2.	 The use of function notation is central to mathematics at levels of precalculus and 
beyond. However, function notation is used in physics (too) sparingly. This is a 
potential roadblock for students in relating calculus in mathematics with calculus 
in physics.

To retain a focus on quantification that is essential in students’ physics courses, and 
better aligned with Newton’s framing, we advocate a focus of calculus teaching that 
elevates Riemann-sum reasoning (summing up products of two quantities – a rate of 
change and an infinitesimal change) and de-emphasizes a focus on finding closed-
form antiderivatives to solve a problem. Antiderivatives achieved their prominence 
historically because they enabled physicists and mathematicians to hand-calculate 
definite integrals. Today this is a nicety, but computing devices today allow accept-
able approximate solutions expressed as summations. Wagner (2018) provides evi-
dence for the cognitive dissonance students experience based on their educational 
experiences focused on the importance of the antiderivative in solving definite inte-
grals. He contends that Riemann sum-based reasoning doesn’t align with solution 
processes using antiderivatives. The use of computing devices for calculating Rie-
mann sums can produce acceptable approximations to definite integrals. The founda-
tional mathematical quantities of accumulation, change and rate of change are central 
to enriching the learning of calculus, and its role in the quantification of physics.

Quantification and Physics Quantities

Quantification is a foundational cognitive process in both mathematics and physics, 
yet its role is often under emphasized in standard calculus instruction. In physics, 
conceptual understanding begins with identifying and defining quantities–attributes 
of physical phenomena that can be measured or calculated–and then establishing 
meaningful relationships among them. Many of these relationships are multiplicative 
or proportional in nature, forming the basis for reasoning with rates of change and 
accumulation about systems in motion.

Quantities such as momentum, force, and density are not introduced arbitrarily. 
Rather, they emerge through conceptual reasoning grounded in intuitive or experi-
ential understanding. For example, momentum arises from the idea that both mass 
and velocity contribute to an object’s “quantity of motion.” The relationship p = mv 
reflects the intuition that doubling either mass or velocity should double the momen-
tum. Similarly, density is not just the result of dividing mass by volume; it expresses 
how mass is distributed in space, formalized as ρ = m

V . These quantities are con-

3 This is akin to calls for computational mathematics, wherein the introduction or use of any major math-
ematical quantity is accompanied by the matter of how to produce a value of it. (Peters Burton, 2020).
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structed, not just computed: they encode relationships that must be interpreted as 
meaningful, not merely manipulated symbolically.

Quantification also involves the ability to symbolically represent quantities and 
their relationships. Students must learn to interpret and use letters and symbols not 
merely as placeholders in equations but as representations of measurable, variable 
quantities–each with units, and often with direction or sign. Vector quantities, for 
example, require additional representational fluency. Notational conventions such as 
vector hats (e.g., ı̂, ȷ̂, k̂), subscripts (e.g., Fx, vinitial), and signed scalars (e.g., posi-
tive and negative values for direction) are not simply formal embellishments; they 
convey crucial conceptual information about orientation, reference frames, and inter-
action. These representational demands complicate quantification but are essential 
for modeling physical systems accurately.

Further, distinctions between variables, parameters, and constants are critical 
to understanding how quantities behave across and within physical situations. As 
Thompson Carlson (2017) clarify, parameters are quantities treated as fixed within 
a particular context, though they may vary from situation to situation. In contrast, 
variables change within the context of a single scenario. Confusing these roles can 
obscure the structure of a mathematical model and hinder students’ reasoning in both 
physics and mathematics. As Philip (1992) emphasizes, keeping track of how a sym-
bol is being used–whether as a parameter, constant, or variable–is vital for meaning-
ful interpretation of mathematical expressions. We emphasize that the heavy use of 
symbolizing in physics contexts renders this distinction essential to understanding 
models.

Research has demonstrated that reasoning grounded in quantification and pro-
portionality supports more robust mathematical understanding. For instance, Ellis 
(2007) found that students who engaged in emergent-ratio reasoning–constructing 
ratios from relationships between quantities–were more successful in generalizing 
about linearity and providing valid justifications than those who relied on pattern-
based or procedural strategies. Similarly, Moore et al. (2009) reported that attending 
to students’ construction of quantitative relationships within context enabled them to 
engage more successfully in mathematical modeling. These findings suggest that rea-
soning about quantities in context strengthens both conceptual mathematical under-
standing and transfer to new problems.

The absence of this grounding in many calculus classrooms contributes to a persis-
tent disconnect between formal mathematical procedures and physical meaning. In a 
study by Bajracharya et al. (2023), mathematics majors were asked to make sense of 
a negative definite integral. The researchers found that invoking a physical context–
a stretched spring–helped students understand the meaning of dx as representing a 
small physical displacement, rather than just a symbolic directive for integration. 
One student remarked that the context led them to realize that “dx” was not simply 
a variable for use in symbolic manipulation, but “represented something”–a small, 
measurable quantity. This example illustrates the cognitive power of grounding cal-
culus in physical interpretation, as well as the epistemological divide many students 
perceive between “pure” mathematics and physical reasoning.

Taken together, these findings argue for a more deliberate integration of quantifi-
cation into calculus instruction. Helping students develop a flexible and meaningful 
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understanding of how quantities are defined, related, and represented–both symboli-
cally and conceptually–offers a pathway toward deeper mathematical reasoning and 
greater relevance to scientific contexts.

Symbolic Forms and Symbolic Blending Frameworks

Contrary to popular “separate world” models in mathematics education, in which 
mathematics and the rest of the world occupy separate mental spaces (Blum and Leiß, 
2007), mathematics education researchers studying student problem-solving report 
that students engage in a continuous contextual validation of their mathematization 
(Czocher, 2016; Sealey, 2014; Borromeo Ferri, 2007). These findings are consistent 
with other research that shows expert physics modeling as a tight blend of phys-
ics and mathematical worlds (Zimmerman, 2025), and that physics majors reason 
productively when they blend these worlds (Schermerhorn and Thompson, 2023; 
Van den Eynde, 2021). Even introductory physics students are more efficient when 
they blend these worlds (Kuo et al., 2013). The interplay between quantities and 
mathematics is inseparable in physics. We approach this work treating the mathemat-
ics that is used in physics as a conceptual blend of physics quantities and mathemati-
cal objects. The conceptual blending framework is a theory of cognition developed 
by Fauconnier and Turner in which elements from distinct scenarios are “blended” in 
a subconscious process (Fauconnier and Turner, 2002).

We consider quantities and mathematical objects to be inseparable, nonetheless 
they are made up of small pieces of blended knowledge. Cognitive resources are the 
fine-grained pieces of knowledge that people use to create a thought, and mathemat-
ics with quantities is the grain size of thought in physics. Resources are knowledge 
structures a person draws upon to understand and solve physics problems, includ-
ing elements like declarative, experiential and procedural knowledge, spatial rea-
soning, visual imagery etc. that are needed to effectively engage with the problem. 
The resources students combine when reasoning with definite integrals in physics 
contexts are not the techniques for solving an integral but consist of smaller compo-
nents like concepts of rate, change, derivatives, summations, or differentials. Argu-
ably, knowledge-in-pieces is consistent with the Riemann sum-based reasoning, and 
at best neutral regarding an antiderivative representation.

According to coordination class theory of learning, resources are organized and 
reorganized over time; as students move through their course curricula, they develop 
coordinated sets of resources that represents repeated patterns in reasoning (di 
Sessa, 2005). Sherin (2001) studied third-semester calculus-based physics students 
as they collaboratively solved unfamiliar problems, and developed a framework for 
categorizing symbolic forms–compact cognitive structures that integrate procedural 
and experiential knowledge about quantities and their representations.

Dorko and Speer (2015) applied Sherin’s framework to analyze how calculus stu-
dents reason about area and volume. They developed a “measurement” symbolic 
form that combines numeric value and unit as one. The authors observed that students 
who wrote correct units could explain dimensions of planar figures and solids, and 
connect this knowledge to the shapes’ units. In contrast, students who struggled with 
units also struggled with dimensionality. White Brahmia (2019) extended the work 
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of Dorko and Speer and developed a“quantity” symbolic form central to physics 
reasoning which establishes sign (+ or −) as a feature of physics quantity, in addition 
to numeric value and unit because of the varied and essential information the sign 
carries about the physical quantity (White Brahmia et al., 2020).

One of Sherin’s forms that is particularly relevant in the context of this paper is 
the“parts-of-a-whole” form, where a whole quantity is made up of several smaller, 
additive parts, typically indicated by multiple terms added together using plus signs 
(+). Meredith and Marrongelle (2008) investigated how students apply integration 
in solving electrostatics problems in introductory calculus-based physics, analyzed 
through Sherin’s symbolic forms framework. They found that students have many 
strong, purely-mathematical resources but often struggle to apply them in physics 
contexts. One set of resources that were productive involved Riemann sums; the 
researchers characterized students notions of summing up small contributions as 
Sherin’s “parts-of-a-whole” form, and observed students used it frequently and pro-
ductively to guide their work solving definite integrals in this context.

Jones (2013) investigated how experienced calculus students understand and con-
ceptualize integration, focusing on the role of symbolic forms in their reasoning. 
Through this analysis, Jones highlighted the significance of the “adding up pieces” 
interpretation within the symbolic forms framework. His findings support the per-
spective shared by other researchers that emphasizing accumulation and the process 
of summing infinitesimal contributions can enhance students’ conceptual grasp of the 
integral and improve their ability to apply it flexibly across varied contexts. Oehrt-
man and Simmons (2023) developed an emergent model of how introductory calcu-
lus students construct and interpret definite integrals to model physical quantities. 
The authors emphasize the importance of quantitative reasoning and a parts-of-a-
whole framing in students’ understanding of definite integrals.

Many researchers in physics education agree that mathematics and physics are a 
conceptual blend, based on Fauconnier and Turner’s conceptual blending framework 
(Bing and Redish, 2009; White Brahmia et al., 2021). Schermerhorn and Thomp-
son (2023) introduce a “symbolic blending” theoretical framework, which combines 
Sherin’s symbolic forms and Fauconnier and Turner’s conceptual blending frame-
works in physics. The symbolic blending model combines the mathematical structure 
of equations (symbolic forms) with the contextual understanding of physics concepts 
(conceptual blending). The authors argue for the benefits of a symbolic blending 
model for disentangling mathematical justification from contextual knowledge in 
physics, even though students and experts are holding both in mind at all times. 
Symbolic blending facilitates envisioning a framework in which student resources 
can be fostered in both calculus and physics courses, with each retaining their own 
disciplinary learning objectives.

Although mathematics and physics are inseparable for physicists, mathematics 
courses can play a critical role in strengthening students’ understanding of the math-
ematical objects that underpin physical quantities. That strengthening must happen 
in the contexts of physical quantities; we propose several in § “An FTC Framing of 
Physics Modeling”, as well as a structure for supporting students’ learning of key 
calculus objects in § “An FTC Physics-Framing for Calculus Instruction”.
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FTC: Parts-of-a-Whole Symbolic Form

We’ve established that quantities can enhance students’ understanding of what they 
are doing when they solve a definite integral, and that a parts-of-a-whole symbolic 
form is productive in a variety of contexts for students in calculus and in physics. The 
mathematical abstractions of rate, accumulation, product and change as relationships 
between physical quantities are so important in physics, that frequently they become 
new quantities and given their own name, and are connected through the Fundamen-
tal Theorem of Calculus (FTC).

In this section we present a formulation of the FTC that focuses on mathematical 
abstractions and their symbolic representations (Thompson, 1994; Samuels, 2022), 
that lends itself well to adaptation in physics contexts. Samuels (2022) framework 
focuses on the quantities of amount, change, rate and accumulation (ACRA). The 
author applies the ACRA formulation to the evaluation theorem of the FTC:

	

ˆ b

a

F ′(x)dx = F (b) − F (a)

Table 1 represents Samuel’s ACRA framework. F(x) is the value of the accumulat-
ing quantity represented by the dependent variable, and x is the value of a quantity 
represented by the independent variable. F(x) and x are amounts, F ′(x) is a rate of 
change (RoC) of accumulation with respect to x. The right side of the equation rep-
resents the change in F(x). On the left side is an integral, or an infinite sum, which 
also represents an accumulation. The terms being summed are each the product of 
the RoC of F(x), and an (infinitesimal) change in x. The authors contend that the four 
essential quantities of calculus are: Amount, Change, Rate, Accumulation. An impor-
tant emphasis, both in instruction and in the assessment of learning, is that F ′(x) is 
a rate–the RoC of accumulation with respect to variations in x. These four quantities 
(Amount, Change, Rate, and Accumulation) and relationships among them form the 
ACRA framework.

In physics contexts, an amount would be the measured value, including its units, 
of a quantified property (Thompson and Carlson, 2017). A variable is used to rep-
resent an amount of something. In the next section, we leverage Samuel’s ACRA 
framework of the FTC to connect these ideas to foundational relationships between 
quantities in physics through the FTC.

Table 1  The ACRA framework: Mathematical abstractions and the FTC (Samuels, 2022)
FTC: F (b) − F (a) =

´ b
a dF =

´ b
a

dF
dx

dx =
´ b

a F ′(x)dx

Total Change Accum Accumulation Accu-
mulation

Total change Infinite sum of dep. 
variable change

Infinite sum of dep. vari-
able change for each input 
change × input change

Infinite 
sum of 
rate × 
input 
change
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An FTC Framing of Physics Modeling

Within the first weeks of the electromagnetism course, which is typically taken con-
currently with the integral calculus course where the FTC is first mentioned, physics 
students are expected to learn new abstract physical quantities through definite inte-
grals. The integrals relate electric force and field to their sources in an intricate story 
of the interplay between these vector quantities. It is assumed that students immedi-
ately recognize that they are summing up products and quantifying the accumulation.

As an example of the complexities involved for the introductory physics student, 
we turn our focus specifically to Gauss’s Law (see Fig. 2), for its rich blend of math-
ematical abstractions – varied symbolizing, multiplicative structures involving both 
vector and scalar physical quantities, and a vector-valued differential. Gauss’s law 
equates the electric flux (the accumulation on the left-hand side of the equation) to the 
total amount of electric charge, Qenc, which is enclosed by the imaginary shape. The 
labeled arrows radiating out from the shape represent the vector values of the electric 
field and area differential, respectively, at several points on the surface. The two sides 
of the equation are made equal by the inclusion of a physical constant, εo. An alter-
nate representation makes the rate-change product more transparent here, consistent 
with ACRA. The product of εo and E⃗ is a quantity, D⃗, known as the flux density, or 
the area RoC of the flux, rendering Gauss’s law: 

¸
εoE⃗d⃗A =

¸
D⃗d⃗A = Qenc.

Gauss’s law demonstrates that a solid understanding of the integral as a sum of 
small products can help students begin understanding what is being said here, despite 
the heavy symbolizing and other abstractions. If students can rely on mathematics to 
help guide them here, they can immediately see the integrand is tiny bits of some-
thing that result from the dot product of an electric field vector and a small interval 
area vector. The integral sums up the small bits to find the total flux. All of that rea-
soning can take place fairly straightforwardly by minimizing the distraction from the 
complexities of the mathematics. Thereby, students’ minds are freed to focus on the 
physics notion that the net flux is proportional to the charge enclosed by the surface 
– which is one of the four fundamental ideas that form the basis of classical electro-
magnetism, represented as one of Maxwell’s equations.

Fig. 2  Gauss’s law relates the elec-
tric flux to the amount of charge 
enclosed in the Gaussian surface. 
The accumulation on left hand side 
is the total flux, and it is propor-
tional to the charge enclosed
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Li and Singh (2017) report that students learning Gauss’s law struggle with under-
standing the principle of superposition (despite the summing up that is represented 
by the integral) and making a distinction between the electric field (vector quantity, 
represented by the E⃗), and the electric flux, the (scalar) accumulation. Student dif-
ficulties recognizing the process of summing up small products quantities in physics 
integrals is common. In Section “FTC Physics Framing: Research Foundations” we 
present other evidence from research in much less abstract contexts.

Gauss’s law is far out of scope as a context for a calculus course, but is shared 
here as an example of the complexity that calculus takes on in introductory physics 
which can be simplified if students come prepared to think in terms of the framing 
characterized in Table 1.

In this section we described connections, as centralized in Table 2, that can be 
made in the context of the fundamental theorem of calculus (FTC), building on the 
ACRA framing of Table 1. The top three rows of Table 2 replicate Table 1 and then 
extend it into the physics domain by delineating examples where the ACRA framing 
shows up in the very first course in physics. Building on these examples in a calculus 
course can better equip students to conceptualize the relationships between rates of 
change, accumulation and other quantities that are central to physics models using 
examples that are within the zone of proximal development for students and instruc-
tors. Supporting students’ quantitative reasoning with these contexts can help prepare 
them to use that reasoning in more complicated ones, like Gauss’s law.

A first course in calculus-based introductory physics typically spans kinematics, 
Newton’s laws and the conservation of energy and momentum. Most courses start by 
developing the ideas foundational to the kinematics equations – position and velocity 

Table 2  Foundational quantities in physics and the FTC. The values of the function F are accumulations 
over an interval of its argument

F (b) − F (a) =
´ b

a dF =
´ b

a
dF
dx

dx =
´ b

a F ′(x)dx

Quantity Change Sum of 
Changes

Rate Sum of Rate×
Change

Accumulation

Total change Infinite sum of 
dep. variable 
change

Infinite sum of dep. 
variable change for 
each input change × 
input change

Infinite sum of rate × 
input change

∆v1,2 v(t2) − v(t1) =
´ t2

t1
dv =

´ t2
t1

dv
dt

dt =
´ t2

t1
a(t)dt

Change in velocity Same as above Same as above Infinite sum of accel-
eration × time interval

displacement1 x(t2) − x(t1) =
´ t2

t1
dx =

´ t2
t1

dx
dt

dt =
´ t2

t1
v(t)dt

Change in position Same as above Same as above Infinite sum of veloc-
ity × time interval

work done on 
system3

U(x2) − U(x1) =
´ x2

x1
dU =

´ x2
x1

dU
dx

dx =
´ x2

x1
F (x)dx

Change in system 
potential energy

Same as above Same as above Infinite sum of force 
× displacement

impulse4 p(t2) − p(t1) =
´ t2

t1
dp =

´ t2
t1

dp
dt

dt =
´ t2

t1
F (t)dt

Change in system 
momentum

Same as above Same as above Infinite sum of force 
× time interval

F1Kinematics 2Newton’s Laws 3Conservation of Energy 4Conservation of Momentum
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equations as a function of time for constant acceleration motion. Our framing starts 
there as well.

Kinematic Equations

The first day of physics typically begins with a description of motion in one dimen-
sion at a steady speed. The concept of a time RoC first appears in physics with veloc-
ity as:

	 x(t) = xo + vot

The quantity acceleration , a, is soon introduced as the time RoC of velocity. By 
analogy, a kinematics equation for constant acceleration motion in one dimension is 
introduced.

	 v(t) = vo + at

A non-zero change in the velocity vector, ∆v = vf − vo, indicates that the system is 
accelerating and therefore, by Newton’s 2nd law, there is an unbalanced force acting 
on it. ∆v is one of the most important quantities that guides thinking in introductory 
physics; the scalar components of vector quantities are used in one dimension for 
simplicity, as written above. Note that finding the difference between the initial and 
final values of the velocity is one way of determining its change, but the FTC pro-
vides another way using rate, multiplication and sum to determine an accumulation 
that is generalizable beyond the standard constant-acceleration motion of kinematics.

	

ˆ b

a

F ′(x)dx = F (b) − F (a)

Summing up the rate (the acceleration) multiplied by each (infinitesimal) time inter-
val results in an accumulation that is ∆v. In the case of constant acceleration, the 
integral is more machinery than is necessary. But the act of setting up this mathemati-
cal machinery in the context of learning about the FTC can set students up to see 
how rates – even non-constant ones– are used to calculate change. Quantifying rates 
of change and using them to help determine change is a recurrent pattern in physics 
(and other STEM) modeling that can be introduced through the use of quantities in 
calculus instruction.

An example of a changing rate students will encounter in their first week of phys-
ics is the uniformly changing velocity described by the kinematic equations. The 
accumulated effect is a displacement, ∆x that can be found using the FTC, more 
generally allowing for any form of variation in the velocity,

	
x(t) = xo +

ˆ
v(t)dt
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∆x =

ˆ
v(t)dt

See Table 2 for a summary of these recurring patterns in the kinematics equations, 
and the structure for the pattern as outlined in the FTC.

Conservation Laws

Energy and momentum are students’ entry points to understanding the conservation 
laws in physics, with each remaining constant in a closed system. When the system 
is not closed, the mechanisms of work and impulse quantify changes in energy and 
momentum, respectively. These conservation laws serve as foundational principles, 
guiding reasoning across all areas of physics. The FTC offers a symbolic template 
for representing changes in these quantities, linking accumulated change to rates of 
change in a mathematically coherent way.

The total energy of a system is changed when an object from outside the system 
exerts a force on the system while it changes position along the line of the force. The 
change in the system energy is equal to the accumulated effect of a force acting over 
a distance. This accumulation is so important, it is a named quantity– work. Here, the 
force both causes and quantifies the rate at which work is done as the position varies.

The total momentum of a system is changed when an object from outside the 
system exerts a force on the system over a time interval. The change in the total 
momentum is equal to the accumulated effect of a force acting over a time interval. 
This accumulation is also so important, it is a named quantity– impulse. Here, the 
force both causes and quantifies the rate at which the momentum changes as time var-
ies. See Table 2 for a summary of these recurring patterns in the conservation laws.

We emphasize that the significance, and practical differences, between the inde-
pendent and the dependent variables here go beyond their positions in the equation. 
Force causes systems to change resulting in an accumulated change in quantities. The 
recurring patterns that are reflected in the quantities that make up the FTC provides a 
way of thinking about the relationships among various quantities, providing a learn-
ing opportunity for students to more deeply understand foundational ideas in both 
mathematics and physics. We argue that Table 2 is just a sample of the many other 
contexts where this framing appears in the introductory physics sequence.

In the next section, we describe research foundations for the quantity-based 
framing of the FTC that we make in the § “An FTC Physics-Framing for Calculus 
Instruction”.

FTC Physics Framing: Research Foundations

The symbolic blending of the FTC quantities in physics contexts presents a signifi-
cant challenge each time students encounter new topics in physics. At the heart of this 
difficulty is sensemaking with quantities and operations, and their meaning both in a 
mathematical sense and a physical one. We’ll provide evidence here of obstacles to 
making mathematical meaning in the context of physically realistic contexts.
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Specifically, the evidence will reveal obstacles:

	● Overemphasis on an exact, continuous function as the only correct solution: 
Emphasizing closed-form antiderivatives over a Riemann sum interpretation of 
the FTC reinforces a view of a single immutable model.

	● Confounding limits and infinitesimals: The differential represents a physical 
quantity, which cannot disappear. Students’ image of an amount approaching zero 
presents a cognitive barrier for many of them.

	● Symbolizing of quantities can render meaning opaque:Moving from f(x) to, 
say P(V), and understanding the meaning of d in dx can be render meaning-mak-
ing very challenging for students, especially when the symbols represent physical 
quantities.

Exactness and Correctness

Many students complete their study of calculus without being able to interpret the 
definite integral as a sum, conflating the techniques they’ve learned to do in pursuit 
of a continuous, closed form solution with the mathematical meaning of the integral. 
Jones (2015) argues this is possibly due to the overemphasis on area-under-a-curve 
and antiderivative techniques and underemphasis on Riemann sum-based reasoning 
in their instruction, a priority that reinforces a view of exact, continuous functions as 
the definitive and correct solutions in mathematics. This framing aligns with math-
ematical values, where exactness, continuity, and formal derivation often define what 
counts as a correct answer.

However, this perspective can be misleading when applied to physics. In phys-
ics, correctness is rooted in empirical evidence: mathematical models are valued not 
for their formal exactness but for how well they approximate and explain observed 
data. The disciplinary differences are transparent in a study conducted by Roundy et 
al. (2015) with faculty in mathematics, physics, and engineering. The subjects were 
asked to measure a specific derivative dx

dFx
 using a device that allowed them to make 

(and measure) changes in Fx (an interval ∆Fx) and measure the resulting changes 
in x. They report that the physicists and engineers immediately set to task designing 
a way to measure a derivative by measuring the change in the dependent variable x 
over intervals of ∆Fx and calculating the ratio. The mathematicians spent much of 
the interview making meaning of the symbols used, and eventually set to work col-
lecting data to find a function that they could differentiate symbolically. Through 
interaction with the interviewer, they did not consider a computed average RoC to be 
a derivative, regardless of its precision. The physicists and engineers knew that their 
computation was an approximation, but they also knew how to ensure that it was a 
good one. We argue that the mathematicians in this context were conflating exact-
ness with correctness. Figure 1 demonstrates a value of h that is only as small as it 
needs to be in order to meet the need, in this case the need is the screen resolution of 
“sameness”.

An equation-based model in physics is an idealized representation of real-world 
patterns, not an absolute truth. The epistemology of science holds that if future data 
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reveals a better-fitting model, then that new model is considered more correct. Thus, 
while mathematics may prioritize the elegance and precision of closed-form solu-
tions, physics treats mathematical functions as provisional tools–approximations 
subject to revision based on evidence.

Infinitesimals in the Zero Limit

The results of the Roundy et al. (2015) experiment exemplify an important disci-
plinary rift, namely the meaning made by “dx”. Some people mean it as a signal 
for the variable of integration. Others think of it as a vanishing amount “going to 
zero”, as in lim dx → 0. Others think of both “dx” and “dy” as variables related by 
dy = f ′(x)dx, in the tradition of Fréchet. Others yet think of “dx” as an infinitesimal 
magnitude as in the tradition of Robinson’s non-standard analysis–a number that is 
greater than 0 and smaller than any positive real number. Finally, others, mainly sci-
entists, think of “dx” as meaning an amount of a quantity small enough to produce 
acceptably accurate results in computations.

We see the Fréchet interpretation (values of dx and dy vary) and the scientific 
interpretation (small enough to give acceptable approximations) as consistent and 
mutually supportive, and both being compatible with Robinson’s notion of infinitesi-
mal. Fréchet’s approach provides a conceptual foundation for linear approximation 
even at the level of infinitesimal change. Thompson et al. (2019) melded these three 
meanings into their development of integrals and derivatives without formally stating 
any one of them, which is also reflected in the Samuels (2022) ACRA framework.

The Zandieh (2000) model of students’ understanding of derivatives offers a use-
ful framework for identifying barriers to transferring calculus knowledge to physics 
contexts. The model conceptualizes understanding in terms of hierarchical “layers”. 
At the most basic level is the ratio layer, where the derivative is understood as a ratio 
of two finite quantities. The next is the limit layer, which requires students to imagine 
the denominator of that ratio approaching zero. At the highest level is the function 
layer, where the derivative is conceived as a function in its own right. Importantly, 
conceptual understanding–not just procedural fluency–at each layer is necessary to 
build toward the next. This layered view helps illuminate why many students, even 
those with strong procedural skills, struggle to apply derivatives meaningfully in 
physical situations.

Layer one is foundational to a Riemann-sum interpretation for the integral. 
Regarding layer two, there is ample evidence that students struggle to make meaning 
of a differential, specifically in the context of it being infinitesimal–not zero, but not 
different from 0 by any positive real amount. Oehrtman (2009) reports on student 
reasoning in which there is a collapse in dimension, “...corresponding to the indepen-
dent variable in the limit ... going to zero, this dimension was ultimately imagined 
to vanish.”

Physics can, and does, accommodate an interval that is slightly greater than the 
zero. While students can follow this reasoning, the heavy emphasis on dx pointing to 
a variable of integration or dx being infinitesimally small in their math courses, with 
no alternative interpretation, leaves them feeling hesitant to engage in this kind of 
“sloppiness” in physics. Meredith and Marrongelle (2008) found that the notion of a 
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limit going to zero can hinder students’ understanding of integrals as sums, especially 
when they don’t understand that dx is never 0 in lim

dx→0, dx̸=0
. The authors argue that 

students need guided instruction to reinterpret mathematical concepts in physics con-
texts, where summation of all pieces is a foundational idea. Jones (2013) observed 
an unproductive resource of adding up the integrand, which supports Meredith and 
Marrongelle’s and Oehrtman’s observations of confusion that can set in when obliged 
to think of differentials uniquely in the context of limits. Nguyen and Rebello (2011) 
asked students to interpret infinitesimal intervals of area, d⃗A, in a physics context. 
Even though they productively used a summing up reasoning to interpret the inte-
gral, they felt that d⃗A refers to a changing area (process), rather than a small element 
of area (quantity). The authors contend that helping students to make a distinction 
between a process and a quantity may require some instruction targeted at the stu-
dent’s physical intuition about infinitesimals. Von Korff and Rebello (2012) state that, 
in their approach that has shown promise, “the integral can also be constructed by 
summing an ’infinite’ number of infinitesimal products, although a traditional calcu-
lus framework would not allow this.”

Increasingly, mathematics education researchers argue for the pedagogical value 
of treating differentials as infinitesimal change in calculus (Ely and Jones, 2023; 
Ely, 2017; Thompson and Dreyfus, 2016). The authors present evidence that fram-
ing change as a small quantity supports students in making meaningful sense of the 
mathematics they are engaging with.

There are also arguments that differentials play a key pedagogical role in under-
standing calculus. Modeling two continuously covarying quantities–rather than 
discrete, incremental changes–can better support mathemtics students’ conceptual 
development of limits. For example, Castillo-Garsow et al. (2013) present case stud-
ies of high school students reasoning about variation and argue that smooth images of 
change (differentials) are more powerful than “chunky” ones in contexts of covaria-
tion. As they note:

“Chunky thinking generates chunky conceptions of variation, whereas smooth 
thinking generates smooth conceptions... A smooth conception involves attend-
ing to all states continuously, without privileging unit values that invite count-
ing. In contrast, chunky conceptions always yield countable products, no matter 
how small the chunk.”

We note here that most work in mathematics on student thinking with quantities has 
been done in the contexts of independent variables that students experience – time, 
volume of water flowing through a pipe, etc. Mathematics students can readily visu-
alize what appears to them to be a continuous process. But the physical world is not 
continuous in extremely small scales, which is a realm where a lot of physics takes 
place. There are units that do privilege a basis for counting and they never go to zero. 
The notion of lim dx → 0 is in disagreement with physics in the small. The objec-
tives of physics and of mathematics can be quite different. In physics, the mathemat-
ics that students encounter models the physical world. Continuous functions can be 
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used as approximations to the world they describe, not the other way around. The 
physical world is a chunky place.

We argue here that chunky infinitesimals that are not nearly equal to zero are con-
sistent with the realities of the physical world. Zero-limit infinitesimals may serve 
an important purpose as a procedural cue to the variable of integration and, opera-
tionally, there is nothing wrong with that approach - it helps you efficiently get an 
answer. But as a method it has strayed far from Newton’s notions of why you would 
want to perform the integral in the first place, which is very important for students 
who will use calculus in other courses. We argue strongly here that infinitesimals– 
both chunky ones and those at the zero limit – should exist side-by-side in calculus 
courses offered to students who intend to pursue their studies in the physical sciences 
and engineering.

Symbolizing in the FTC

In a study of calculus students’ understanding while problem-solving with definite 
integrals that involve physical quantities (velocity, force, energy and pressure), 
Sealey (2014) reports that “conceptualizing the product of f(x) and ∆x proves to be 
the most complex part of the problem-solving process, despite the simplicity of the 
mathematical operations required in this step.” Students struggled to understand how 
to form the product of two quantities, such as velocity and time, pressure and area, 
or force and distance, and how this product contributes to the overall calculation 
as an accumulation. We suspect that students’ difficulties may stem from them not 
expecting the product to contribute to a quantity that accumulates (Thompson, 1994; 
Thompson and Silverman, 2008).

Sealey also notes that students did not struggle with the concept of a sum of ele-
ments going to infinity. Instead, it was the limit of the infinitesimal approaching zero 
that was problematic, and not the notion of limits writ large. Sealey included an 
orienting layer to her Riemann Integral Framework, which involves students mak-
ing quantitative sense of the variables and quantities given in a problem before, and 
while, engaging in calculations. She found that students often revisited this layer 
throughout the problem-solving process, contributing to the growing body of evi-
dence that the blending of physics quantity and the calculus was continual (Zimmer-
man et al., 2025; Czocher, 2016; Schermerhorn and Thompson, 2023) .

Von Korff and Rebello (2012) emphasize the time it takes, and the significance of, 
symbolizing in the context of the FTC. In their experiment they found it necessary to 
provide direct instruction more than once to help the student understand the meaning 
of the symbols, but only at points when the student was ready to make meaning of 
those symbols. When the calculus symbolizing is combined with the many different 
letters used to represent both scalar and vector physical quantities, the representa-
tions require significant decoding, as exemplified in § “An FTC Framing of Physics 
Modeling” with Gauss’s law.
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An FTC Physics-Framing for Calculus Instruction

A first step toward making the connections between calculus and physics explicit 
to students is to incorporate physical quantities into calculus instruction. We frame 
foundational physics quantities that students are already familiar with from prior 
instruction through their connections to calculus (see Table 2). These quantities can 
be framed through the FTC as change, rates of change and accumulations. A focus 
on quantities relies on Riemann sums of bits of accumulation made by a rate times a 
change as a sensemaking device for why we do calculus, not just how we do it.

In conjunction with modifications in calculus instruction, we envision careful, 
and mathematically correct, discussions in physics around select physical quanti-
ties, highlighting how calculus reasoning facilitates thinking about quantities as they 
change over a given interval, and the physical implications of that change. There is 
little time devoted in a typical physics course to helping students make these kinds of 
connections, and there should be.

We’ve presented findings from physics and mathematics education research sug-
gesting that making symbolizing an explicit part of instruction will help students to 
better understand the quantities and operations they represent. In Table 3, we provide 
a structure so that instructors from both disciplines can draw attention to the sym-
bolizing associated with ACRA, providing students adequate opportunity to fully 
comprehend sigma notation and indices, as well as ∆ and d. We emphasize that this 
structure can guide instruction and discussion that may help address the challenges 
discussed in § “FTC Physics Framing: Research Foundations”. In addition to sym-
bols, we’ve included language and explicit reasoning around the quantification of 
change, rate and accumulation, and their representations in calculus and physics, that 
can be particularly valuable to students taking both courses. Table 3 extracts salient 
features of Table 2, and generalizes them such that the reasoning could be recognized 
across the many other contexts students will encounter in their subsequent course-
work. In the remainder of this section we provide more detail for the structure of 
Table 3.

Table 3  FTC symbols and quantities common across calculus and physics
operators quantities language examples

change, interval d ,∆ dy ,∆x dep. variable change impulse as change 
of momentum,

indep. variable interval displacement as 
change of position

rate of change 
(RoC)

∆
∆x

∆y
∆x

ratio of change to interval 
of change

acc. as the time 
rate of velocity

d
dx

dy
dx

force as the time 
rate of momentum

accumulation ∑ ∑
i

( dy
dx

)idxi sum of many small pieces work, impulse
´ b

a

´ b
a f ′(x)dx
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Change as Physical Quantity

One of the beauties of careful mathematical formalism is its generalizabilty. Unless 
the variables are quantities, there is no particular preference for which variable is the 
independent variable, designated by x, and which is the dependent variable, desig-
nated y. The RoC is quantified simply as the change in y divided by the change in 
x – which has the quantitative meaning that the change in y is some number of times 
as large as the change in x.

The physical world adds a layer of constraint to the calculus it uses in that the mod-
els must be testable. That testability involves visualizing an experiment in which you 
manipulate the quantity represented by independent variable by changing its value, 
and predict the value of the dependent variable based on the function that relates 
them, and then measure the dependent variable to test the model. In addition, some 
quantities (e.g. position, time) are much easier to measure than others (e.g. ener-
gies). Nearly all of the quantitative functions students encounter in their first physics 
courses are functions either of position or of time.

In the context of actual measurement, the scientist chooses an interval size (∆x) 
and measures the change in the dependent quantity (∆y) over that interval. While 
both (∆y) and (∆x) are considered “change” in mathematics (and reflected in Table 
1), they are very different kinds of change. In the context of measurement one is 
manipulated and the other is a response, even though they covary. This relationship 
in experimentation is not unique to physics, so is generalizable across other science 
and engineering contexts.

We suggest referring to the change in the independent variable, (∆x), as an inter-
val of change, emphasizing that the resulting change in the dependent variable, (∆y), 
depends on this interval (See Table 3). This framing aligns more naturally with exper-
imental practices and broader reasoning in physics than a simplified input-output 
model might imply, and may help support more productive blending of mathematical 
and physical thinking. We propose a structure that focuses on change in the depen-
dent variable and an interval of the independent variable. This framing is particularly 
useful in the context of physical quantity measurement, as described above.

Regarding these quantities in the context of the ACRA framework for conceptual 
learning of the FTC in calculus, we’d like to advocate for the inclusion of interval 
as a fundamental mathematical quantity as well (compare Tables 1 to 3). It can serve 
both as a bridge between STEM models and prior calculus instruction, as well as giv-
ing more meaning in mathematics courses to the concepts of independent and depen-
dent variables – supplementing their symbolic representations, positions on the axes 
of a graph, and framing as input-output. We extend the ACRA acronym to be ACRIA, 
to emphasize the importance of this distinction in experimental science.

We note that a common challenge in learning physics is that change is a quantity 
that is different from the quantity itself. The change in the energy or momentum of a 
system, or the change in the velocity of an object are commonly conflated with the 
quantities themselves (Rosenquist and McDermott,  1987). Several changes are so 
important in physics that they are given their own name – displacement as a change 
in position, impulse as a change in momentum, work as a change in system energy. 
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We believe that early and frequent use of quantity in mathematics can help students 
recognize amount and change as different additive structures.

Rate as Physical Quantity

A RoC, seen in mathematics as the change in y over the change in x, can be thought of 
as a change in y over an interval ∆x – the change in y that occurs as the independent 
quantity’s value varies through an interval. This difference goes beyond semantics; it 
is more generalized than the everyday notion of time-rates, and it is how a physicist 
envisions rate. The concept of unit rate,“a change in the numerator for every unit of 
change in the denominator” is helpful here, especially when we apply proportional 
reasoning to accommodate non-unit changes in the denominator and when we apply 
smooth continuous variational reasoning to dx.

In some cases, the models generalize to physically meaningful situations in the 
ways mathematics allows, with no attribution as to why one quantity or another 
changes. One could think of a bidirectional causality – a small time interval for an 
object in motion will result in a small change in position. Or, conversely, a small dis-
placement implies that there must have been a change in time. Position and its RoC, 
velocity, and its RoC, acceleration are names given to rates that help quantify motion, 
and carry no information about why the quantities change.

The conservation laws are different from the kinematics quantities, even though 
they are structurally identical mathematically. They all represent models in which the 
measured change of the independent variable is physically caused by the RoC in the 
integral. For the conservation laws, the change of momentum, and the change in the 
potential energy are due to the force exerted over an interval – the force is the time 
RoC of the momentum, and the position RoC of the potential energy. The meaning 
that these quantities carry are central to the conservation laws of physics. By contrast, 
acceleration is not a cause of a velocity change, just a time rate at which it happens. 
Unlike the kinematic quantities, manipulating energy or momentum intervals and 
finding the corresponding position or time change makes scant physical sense.

We propose a structure that focuses on RoC as a ratio of a change in the dependent 
variable in relation to an interval of the independent variable, as described above. It 
is important to emphasize that rate as quantity, is different from the quantity itself. 
In addition to the conflating a quantity and its RoC in the context of integration as 
described in § “Background”, we note that it is also common for introductory physics 
students to conflate a quantity, its change and its RoC. Some examples of these dis-
tinctions are position, displacement and velocity as the time rate-of-change (RoC) of 
position; velocity, change-in-velocity, and acceleration as the time RoC of velocity; 
mass and density as the volume RoC of the mass, absolute pressure, pressure change 
and the volume RoC of the pressure, and so many more.

Accumulation as Physical Quantity

Visualizing the integral as summing up small bits is valuable in physics. Accumula-
tions connect graphical representations, which are foundational to expert reasoning, 
with quantities that carry physical meaning (Zimmerman et al., 2025). The accumula-
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tion of the product of changing rates over short time intervals is at the foundation of 
kinematics. Similarly, the area under a force-position graph can be taken to represent 
an energy change when dU

dx  is taken to be a RoC of system mechanical energy with 
respect to position. The area under the a force-time graph can be taken to represent 
a momentum change when dp

dt  is taken as a RoC of momentum with respect to time. 
The interplay between these quantities is at the heart of the conservation laws of 
physics.

Physical Quantities Include Units

We emphasize that amount, change, RoC, interval, and accumulation are all quantities 
with associated units, and that working meaningfully with these quantities requires 
attending to their units–both for students and for experts. In most calculus textbooks, 
kinematic variables are introduced with units, but these are often quickly abandoned 
once calculations begin. This practice is pedagogically flawed, especially for students 
studying or planning to study physics. Units are not auxiliary; they are integral to the 
very definition of a quantity and are essential for expert reasoning in applied contexts. 
Including units consistently throughout the calculation process is not merely helpful, 
it is crucial for developing a conceptual understanding of what calculus is doing. 
Take, for example, the equation W =

´
Fdx. A common student difficulty in physics 

is conflating force and work as similar or interchangeable quantities (Lindsey et al., 
2009). If calculus instruction systematically includes units, students can begin to see 
that they are summing products of two distinct quantities–force (N) and displacement 
(m)–and that, through dimensional reasoning, work and force must be fundamentally 
different. Even though the precise distinction between them will be developed in 
physics, the epistemic framing, that units matter and help distinguish one quantity 
from another, lays a critical foundation for deeper learning.

We strongly urge instructors to use physics quantities – velocity, acceleration, 
force, position, displacement, energy change, time, time interval, and momentum 
change– and explicitly include units when teaching with foundational quantities in 
calculus courses. Supporting students in identifying the mathematical role of each 
quantity, whether as a change, a rate, an interval, or an accumulation, not only deep-
ens their understanding of core calculus concepts but also prepares them to engage 
more productively with the scientific ideas these quantities represent.

Implications for Research and Development

Future Directions in Instruction and Research

In § “An FTC Physics-Framing for Calculus Instruction” we present a quantities-
based framing in Table 3 that can inform instruction of both integration and differen-
tiation. It is often assumed that the “chunkiness” of the physical world is a concern 
beyond the scope of a first-year calculus course. However, we argue that engaging 
with this idea, particularly through the lens of infinitesimals, is not only appropriate 
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but pedagogically valuable. One compelling rationale is that a significant portion of 
time in calculus courses is currently spent on manipulating compound functions that 
have little or no relevance outside of pure mathematics. In contrast, most functions 
that appear in real-world applications, particularly in introductory physics, are math-
ematically simple.

A recent survey of a standard calculus-based physics textbook supports this view 
(see Fig. 3). The overwhelming majority of models involve only linear, inverse pro-
portionality, or quadratic functions, with over 80% of all functions falling into these 
basic categories (White Brahmia, 2023). This suggests that the emphasis on more 
complex, composite functions in introductory calculus may not reflect the kinds of 
reasoning students need when applying mathematics in scientific contexts. By reduc-
ing the time devoted to teaching mathematically sophisticated, but contextually rare, 
functions educators could instead foreground the conceptual development of the 
tools described in Table 3, including the symbols students encounter frequently but 
often struggle to interpret meaningfully.

Concerns may arise that introducing a “chunky” or physically grounded interpre-
tation of dx is inconsistent with the goals of a calculus course, which traditionally 
relies on abstract, limit-based definitions. However, recent research by McCarty and 
Sealey (2024) reveals a surprising degree of variation among expert mathematicians 
in how they conceptualize differentials. Notably, a significant subset reasoned about 
dx in ways consistent with the physics perspective, that is, as a small but finite inter-
val that can carry physical meaning. These findings suggest that there is room, even 
among experts, for multiple, context-dependent interpretations of differentials.

We propose that fostering this kind of flexible reasoning in students, especially the 
ability to invoke infinitesimals in a selective manner when appropriate to the context, 
should be considered a desirable learning outcome in calculus education. Rather than 
treating the infinitesimal as a relic of pre-rigorous calculus, we can embrace it as a 
bridge between the abstract mathematical world and the tangible physical one. Doing 

Fig. 3  Distribution of functions in a typical introductory physics textbook (Elert, 2023)
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so not only aligns calculus instruction more closely with its applications but also 
equips students with a more versatile conceptual toolkit.

We hasten to add that our long list of proposals entails a number of research agen-
das regarding obstacles to implementing them in calculus or physics instruction and 
obstacles students could encounter in forming new meanings and ways of thinking. 
Among them are:

	● In § “Background” we proposed that thinking with the FTC rests upon disposi-
tions that students should develop in middle school and high school mathemat-
ics. Schools in the U.S. are particularly poor at developing these ways of think-
ing, among both high school students and teachers (Frank and Thompson, 2021; 
Thompson and Harel, 2021; Yoon and Thompson, 2020; Byerley and Thompson, 
2017; Yoon et al., 2015; Thompson and Carlson, 2017). We call for international 
studies to examine ways various countries support (or not) students’ learning in 
middle and high school that is propaedeutic for later learning in a calculus that 
emphasizes the FTC.

	● To what extent is the nature and content of students’ understandings of various 
quantities a deciding factor in their recognition of situations as involving the 
FTC? For example, to what extent is the way they envision the way a quantity 
varies conducive or obstructive to envision it accumulating? In what ways must 
they understand quantities’ relationships in a situation before it occurs to them 
there is a RoC between them? Do answers to these questions differ for different 
quantities?

	● What types of support do mathematics or physics instructors need to highlight the 
FTC in ways we have suggested? Studies from Carlson’s Pathways to Calculus 
project suggest it is possible for instructors to adapt, but it involves a great effort 
for them to rethink the ideas they teach and to redirect their thinking to what stu-
dents understand from instruction (Carlson et al., 2023; 2024).

In what follows we consider both research yet to be explored, and research-vali-
dated materials that can help interested instructors and researchers move the work 
described in this paper forward.

Approximating with Riemann Sums

In a Riemann sum approach, the central question becomes: What counts as an accept-
able approximation, and how can you tell when you have one? In the study by Roundy 
et al. (2015), this question is explored in the context of disciplinary differences. How 
do engineers and physicists determine that an approximation is sufficiently accurate, 
and why might mathematicians reject that same approximation as inadequate? In 
§  “FTC Physics Framing: Research Foundations”, we describe research into how 
students reason with Riemann sums in physics contexts. Despite the importance of 
this topic, there is a noticeable lack of research; studies in this area are scarce, leaving 
many open questions about how students learn to use Riemann sums with quantities, 
and what constitutes effective instructional practice in a calculus course. We view this 
as a fertile area for interdisciplinary collaboration and research. To begin addressing 
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this gap, we describe a set of research-validated instructional materials designed to 
help seed what we hope will become a vibrant area of development.

In the development of their textbook, Thompson, Ashbrook, and Milner 
approached accumulation using Cauchy’s notion of convergence rather than the more 
traditional Weierstrassian notion of limit (Thompson et al., 2019). In this framework, 
an integral approximation is considered “essentially equal to” the exact value when 
successive terms in the approximation differ negligibly, according to locally defined 
tolerance levels. This reframing aligns well with how approximations are used in 
applied contexts. Complementing this, Jones (2015) examined students’ understand-
ing of definite integrals through three interpretive lenses: area, antiderivative, and 
accumulation. He found that students who understood integrals in terms of accumu-
lation were significantly more successful in making sense of physics and engineer-
ing applications than those who relied on area or antiderivative meanings. Similarly, 
Oehrtman (2008) developed an “approximation structure” that emphasizes limits in 
terms of the process of refining approximations. For example, students learn to esti-
mate instantaneous rates of change by calculating average rates over smaller intervals 
and observing how these approximations improve, thus building toward a concep-
tual understanding of the derivative and the integral as limits. These materials are 
available as part of the Clear Calculus lab activity set developed by Oehrtman and 
colleagues at Oklahoma State University (Oehrtman, 2012), and in the free online 
textbook authored by Thompson, Ashbrook, and Milner (Thompson et al., 2019).

We envision instructors not only using these resources but also adapting and 
expanding them to meet the specific needs of their students. These examples demon-
strate the potential for enriching the standard calculus syllabus with applications that 
emphasize approximation, accumulation, and real-world reasoning – key ideas at the 
intersection of mathematics, physics, and engineering.

Quantifying Physics and Conceptualizing Mathematical Operations

Integrating physics quantities into calculus instruction remains an underexplored 
area of research, with most existing studies focusing narrowly on kinematics. How-
ever, substantial questions remain unanswered: What empirical evidence supports the 
cognitive benefits of engaging students in quantification within a calculus course? 
and How does the inclusion of diverse physical quantities align with, or potentially 
complicate, instructors’ learning objectives in calculus?

We are not suggesting that calculus instructors introduce new physics content into 
their courses. Rather, we recommend leveraging students’ prior exposure to familiar 
physical quantities to support mathematical sensemaking. Instruction should empha-
size the mathematical construction of quantities, such as momentum, velocity, or 
pressure, and the reasoning that justifies their quantification. For example: Why is 
momentum quantified as mass times velocity? Why is speed expressed as distance 
divided by time?

These kinds of questions invite students to engage in proportional reasoning, 
which is an essential cognitive resource for interpreting rates and accumulations. 
Consider momentum. Understanding it as the product of mass and velocity stems 
from the idea that both mass and speed contribute to an object’s resistance to stop-
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ping. Doubling either quantity doubles the momentum, reflecting two simultaneous 
proportional relationships. Furthermore, because stopping an object requires oppos-
ing its motion, directionality becomes relevant, making it clear that momentum must 
be a vector quantity.

In addition to deepening students’ understanding of individual quantities, instruc-
tion should help students explore the relationships among them. Questions such as, 
How is kinetic energy related to work? How is force related to momentum? or How 
is acceleration related to velocity? can guide students toward recognizing when and 
why calculus concepts like rate of change or accumulation are applicable. These rela-
tionships need not be the focus of entire lessons; even brief, targeted instructional 
moments can enhance students’ capacity to interpret and model applied contexts 
more effectively.

While engaging students with physics-based ratio and product quantities such as 
energy or work may seem challenging in the traditional structure of a mathematics 
course, where such concepts are often treated as outside the discipline’s scope, we 
argue that doing so is not only feasible but beneficial. To support this approach, we 
describe a set of existing instructional materials that can serve as productive start-
ing points for instructors and researchers. These materials, we hope, will also serve 
to catalyze further curriculum development and empirical investigation within this 
important interdisciplinary space.

Physics Invention Tasks (PITs) are designed to engage students in authentic quan-
tification by inventing meaningful quantities–typically ratios or products–to char-
acterize physical systems (White Brahmia et al., 2024). Using data from carefully 
crafted contrasting cases, students identify invariants before formal instruction, sup-
porting deeper conceptual understanding. PITs ramp from everyday contexts to core 
physics ideas such as velocity, acceleration, work, and momentum, and have been 
successfully field-tested at both pre-college and college levels.

PITs are grounded in the Inventing with Contrasting Cases (ICC) framework 
developed by Schwartz and colleagues, which promotes preparation for future learn-
ing by giving students productive opportunities to structure problems and recognize 
key patterns (Schwartz, 2004; Schwartz et al., 2011).

For example, in a “clown crowdedness” task, students invent a measure to describe 
how packed a bus is by comparing cases with varying numbers of clowns and bus 
sizes (Schwartz et al., 2011). Success requires coordinating both variables in a single 
quantity– leading to a RoC like density. In another study, Schwartz 2004 asked stu-
dents to invent a measure for statistical spread using data sets with identical means 
but differing variability. Students’ invented indices often resembled standard devia-
tion, and this generative work improved later understanding and transfer.

These examples illustrate how invention tasks help students attend to structure and 
meaning, which is essential for ACRIA. PITs extend this approach to physics and 
calculus, helping students build conceptual foundations for key STEM ideas through 
invention, pattern recognition, and principled reasoning.

RoC, change, sum and product quantities can, and should, be explored prior to tak-
ing calculus. The Precalculus: Pathways to Calculus curriculum includes a textbook, 
workbook, and a range of supplemental materials designed to support students in con-
structing foundational calculus ideas–many of which are especially relevant to physics 
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(Carlson et al., 2020). The curriculum emphasizes the development of concepts such 
as constant and changing rates of change through the lens of covariational reasoning, 
a research-supported approach that helps students understand how quantities change in 
relation to one another (e.g., Carlson et al., 2002; Thompson, 1994). Rather than priori-
tizing broad exposure to a wide array of function types, the materials focus on build-
ing a deep understanding of core functions through multiple representations–symbolic, 
graphical, numerical, and contextual–and through meaningful applications. Notably, 
the curriculum includes vector quantities, as well as sequences and series as tools for 
approximation, aligning with the kinds of reasoning required in physics contexts. By 
embedding mathematical ideas in authentic modeling situations and treating student 
knowledge construction as central, rather than an afterthought, the Pathways curriculum 
reflects contemporary research in mathematics education that highlights the importance 
of active, contextualized learning for conceptual development.

Lastly, these recommendations raise a broader question about the role of emerging 
technologies in enhancing learning. Platforms like Desmos (2011) and PhET (2002) 
offer dynamic alternatives to static graphs of flowing quantities, helping students 
visualize covarying change and relationships between physical quantities. While 
static representations have instructional value, they often fall short in conveying con-
tinuous change. Interactive tools can make abstract concepts–such as accumulation 
and rate of change–more concrete and accessible, and we encourage their use in 
instruction in thoughtful ways.

To grasp the idea of summing many small changes to approximate a total change, 
or to understand zero-limit rates of change, students must engage actively in con-
structing these concepts. Supporting that engagement is not straightforward. Tech-
nological tools have a learning curve, and are not simply a way to “see” abstract 
quantities. Students should learn not just how to operate the tool, but how to interpret 
what they are seeing; the technology must support their reasoning development. This 
long-standing challenge in STEM education highlights the importance of thoughtful 
instructional design.

Conclusion

Since the time of Newton, the disciplines of calculus and physics hae been deeply 
intertwined, yet their current instruction often misses opportunities for synergy. In 
our work, we demonstrate that the act of quantifying in physics–which frequently 
involves reasoning about change, rates, products, and sums–presents a substantial 
cognitive challenge. This challenge can result in cognitive overload when students 
hold unproductive or fragmented meanings for the mathematics used to construct 
symbolic representations. While procedural fluency in calculus is important, phys-
ics students often fail to see meaningful connections between the calculus they have 
learned and the physical phenomena they are asked to understand.

To address this disconnect, we propose a quantities-based framing of the Funda-
mental Theorem of Calculus (FTC) for both calculus and physics instruction. We 
argue that instructional time in calculus should be strategically reallocated to deepen 
students’ understanding of integrals and derivatives as they relate to quantities–spe-
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cifically, those that emerge from viewing the world through the lenses of rate of 
change (RoC) and accumulation.

One way to create space for this reconceptualization is to narrow the range of 
function types that students are expected to master procedurally. Another is to place 
greater emphasis on integrals as accumulations and derivatives as rates of change 
of accumulations. Our approach to the FTC is grounded in this idea: that RoC and 
accumulation are two sides of the same conceptual coin. The traditional treatment of 
the FTC in mathematics emphasizes a procedural link, that closed-form antideriva-
tives should be used to compute definite integrals. In contrast, our proposed approach 
highlights a quantitative connection: integrals represent accumulations resulting 
from quantities varying at (possibly non-constant) rates of change, and the quantities 
involved in a rate of change are themselves co-accumulating.

Further compounding the challenge, physics introduces additional mathematical 
complexity. Students must symbolize concepts and reconcile the use of vector quanti-
ties, despite encountering only scalar quantities in their prior mathematics education. 
Success in physics requires both procedural competence and deep quantitative under-
standing of rate, change, and accumulation, particularly as related through the FTC. 
Without a solid conceptual foundation in how these ideas connect, students struggle 
to learn these new mathematical layers in physics.

We argue that both disciplines would benefit from a shared instructional goal: for 
students to develop what Gray and Tall (1994) termed a proceptual understanding of 
calculus. This means that symbolic procedures and quantitative meanings become mutu-
ally evocative, thinking about one naturally invokes the other. In the context of definite 
integrals, such an understanding would allow students to fluidly move between symbolic 
expressions and their underlying quantitative interpretations. In this paper we presented 
an FTC physics-framing for calculus instruction in Tables 2 and 3 that can help calculus 
instructors find a path forward to fostering improved cross-disciplinary learning.

Fostering this kind of dual understanding promises to enrich student learning in 
both calculus and physics. By framing the FTC in terms of quantities, and by empha-
sizing the reciprocal relationship between rate and accumulation, we can support 
students in developing a more integrated and transferable understanding of change 
across disciplinary boundaries.
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