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ABSTRACT 
 

This dissertation report follows a three-paper format, with each paper having a 

different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas 

relative to its place within cognitive learning theories and research studies. In particular, I 

highlight specific ways mathematics education research uses conceptual analysis and 

discuss the implications of these uses for interpreting and leveraging results to produce 

empirically tested learning trajectories. From my summary and analysis I develop two 

recommendations for the cognitive researchers developing empirically supported learning 

trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within 

the researcher’s image of a broadly coherent trajectory for student learning and (2) that 

the field should work towards a common understanding for the meaning of a hypothetical 

learning trajectory. 

 In Paper 2 I argue that prior research in online learning has tested the impact of 

online courses on measures such as student retention rates, satisfaction scores, and GPA 

but that research is needed to describe the meanings students construct for mathematical 

ideas researchers have identified as critical to their success in future math courses and 

other STEM fields. This paper discusses the need for a new focus in studying online 

mathematics learning and calls for cognitive researchers to begin developing a productive 

methodology for examining the meanings students construct while engaged in online 

lessons. 

 Paper 3 describes the online Precalculus course intervention we designed around 

measurement imagery and quantitative reasoning as themes that unite topics across units. 

I report results relative to the meanings students developed for exponential functions and 
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related ideas (such as percent change and growth factors) while working through lessons 

in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test 

and pre-interview results, post-test and post-interview results, and observations from 

student behaviors while interacting with lessons. I demonstrate that the targeted meanings 

can be productive for students, show common unproductive meanings students possess as 

they enter Precalculus, highlight challenges and opportunities in teaching and learning in 

the online environment, and discuss needed adaptations to the intervention and future 

research opportunities informed by my results. 
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CHAPTER 1 

INTRODUCTION AND PROBLEM STATEMENT 

 Cobb (2007) argued that mathematics education “can be productively viewed as a 

design science, the collective mission of which involves developing, testing, and revising 

conjectured designs for supporting envisioned learning processes” (p. 7). His perspective 

was not entirely new, however. For example, Thompson (1985) described the importance 

of considering learners as situated within a trajectory through a curriculum and wrote that 

the primary “aim of mathematics education is to promote mathematical thinking” (p. 

189). A curriculum creates opportunities for students to construct a particular type of 

mathematical knowledge, under the teacher’s guidance, with the assumption that the 

knowledge students construct is never an exact copy of the knowledge the teacher 

intended they construct (or possesses herself). When the divergence appears large, 

revision and redesign are a natural part of crafting learning opportunities for students. 

Thompson (2013) demonstrated that a strong system of meanings is critical for teachers 

(and curriculum designers) and that effective lessons must require students to construct 

and apply a similarly strong system of meanings to be successful. A weak or incoherent 

system of meanings creates more space for students to construct incorrect or unhelpful 

meanings and for the teacher (or designer) to remain unaware of students’ constructions. 

 While there are many important open questions related to the teaching and 

learning of mathematics, one important research area seeks to describe a coherent set of 

powerful themes that guide student learning and teacher decision making throughout all 

levels of schooling and to describe powerful ways of understanding particular ideas that 

do work for students and fit productively into the larger coherent network of themes. For 
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example, Thompson (2008) suggested that mathematics from arithmetic through calculus 

can be organized into three general strands: the mathematics of quantity, the mathematics 

of variation, and the mathematics of representational equivalence. These themes can 

inform ways of understanding individual topics and guide instructional approaches while 

emphasizing deep connections across topics that reinforces a meaningful understanding 

of the larger themes.  

 In this dissertation study I sought to better understand how students develop 

productive meanings for exponential growth and related ideas within an online 

Precalculus course designed to build from and support reasoning about the key themes 

Thompson (2008) outlined. In the following pages I will outline my motivation for these 

decisions and specify my exact research questions. 

 

Teaching and Learning Exponential Growth 

Mathematics educators and mathematicians continue to debate the merits of 

covariational images of function relationships compared to correspondence images for 

grade school and undergraduate learners. For both students and teachers, understanding 

exponential functions seems particularly challenging regardless of how they 

conceptualize function relationships. An image of exponential growth grounded in 

repeated multiplication does not generalize well to evaluating an exponential function 

over its entire domain and students (and teachers) with such an image struggle to 

recognize situations that should be modeled with an exponential function and to 

understand the connection between their image and the closed-form representation of 

exponential functions (Davis, 2009; Ellis, Ozgur, Kulow, Dogan, & Amidon, 2016; 
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Presmeg & Nenduardo, 2005; Ström, 2008). A focus on repeated multiplication may 

overlook supporting images of growth factors as measurements of relative size and 

ignores issues of continuity and interpolation in evaluating the function at non-integer 

inputs. On the other hand, situations well-modeled by exponential growth are often 

described discretely (such as providing an annual percent change) and developing 

smoothly continuous reasoning for a function relationship with these characteristics 

requires coordinating several sophisticated ideas and may not support the development of 

common formulas.1 

The Common Core State Standards for Mathematics encourage reasoning about 

exponents and exponential functions. Standards related to these topics are spread across 

multiple domains and throughout the middle school and high school grade bands 

(National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2010). A selection of these standards are listed below. 

CCSS.MATH.CONTENT.8.EE.A.1 Know and apply the properties of integer 
exponents to generate equivalent numerical expressions. For example, 32 × 3-5 = 
3-3 = 1/33 = 1/27. 
CCSS.MATH.CONTENT.HSF.LE.A.1.A Prove that linear functions grow by 
equal differences over equal intervals, and that exponential functions grow by 
equal factors over equal intervals. 
CCSS.MATH.CONTENT.HSF.LE.A.2 Construct linear and exponential 
functions, including arithmetic and geometric sequences, given a graph, a 
description of a relationship, or two input-output pairs (include reading these from 
a table). 
CCSS.MATH.CONTENT.HSF.LE.A.3 Observe using graphs and tables that a 
quantity increasing exponentially eventually exceeds a quantity increasing 
linearly, quadratically, or (more generally) as a polynomial function. 
 

This emphasis is consistent with the important role exponential function reasoning plays 

in calculus, differential equations, complex analysis, modeling, interpreting common 

                                                      
1 I explain these ideas in more detail in Chapters 2, 3, and 5. 
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measurements such as pH, decibel levels, and the Richter scale, and understanding the 

relationships between measurements related by orders of magnitude (Castillo-Garsow, 

2010; Confrey, 1994; Ellis, Ozgur, Kulow, Williams, and Amidon, 2012, 2015; Weber 

2002, 2002a). While these standards generally describe using mathematical notation to 

represent products with repeated factors or the values of an exponential function, they do 

not explicitly outline the imagery associated with powerful understandings of exponential 

growth, useful ways of understanding the meaning of a constant growth factor beyond its 

use in calculating values, or how to support students in thinking about continuous 

exponential growth over some domain.  

By their nature, standards documents often lack this kind of support since they are 

usually designed to be lists of performance objectives for students at different ages. 

Without debating what standards should or should not address, the lack of such guidance 

is especially problematic for exponential growth where the standards authors tacitly 

convey the belief that understanding properties of natural exponents leads non-

problematically to understanding exponential growth and exponential models in general. 

This assumption is not true for many students.2 For example, only about 35% of college 

precalculus students who took Carlson, Oehrtman, & Engelke’s (2010) multiple choice 

Precalculus Concept Assessment at the end of their courses could identify the difference 

between the growth rates for the functions p(t) = 7(2)t and p(t) = 7(3)t (Research and 

Innovation in Mathematics and Science Education, 2007). Weber (2002, 2002a) provides 

further evidence of students’ impoverished understandings of exponential functions. He 

                                                      
2 The data described in the following examples was collected prior to the Common Core State Standards. 
However, exponential functions and related ideas such as percent comparisons and percent change have 
been a key part of states’ grade school standards for decades. 
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found that most college algebra and precalculus students receiving rules-based instruction 

could not provide an adequate justification for exponential and logarithmic properties 

only a few weeks after the topics were covered in class, nor could these students provide 

a rationale for why functions like f (x) = (½)x are decreasing. Finally, Table 1.1 shows 

U.S. 12th grader performance on several assessment items from the National Assessment 

of Educational Progress (National Center for Education Statistics). The results indicate 

that U.S. students are not developing useful and lasting meanings for growth patterns and 

percent change typically associated with exponential functions. But difficulties in 

understanding exponential growth are by no means limited to students. Ström (2008) and 

Davis (2009) reported that many teachers’ meanings for exponential functions and related 

ideas are similarly weak and unproductive. They both note that few studies exist 

exploring the link between teachers’ meanings for exponential growth and the meanings 

that students construct from classroom experiences. 

It is common for teachers and textbooks to define an exponential function as a 

relationship of the form f (x) = abx for real numbers a and b and to discuss evaluating the 

function at integer inputs using a metaphor of repeated multiplication. For example, the 

value of f (3) = ab3 could be thought of as “a times the product of b∙b∙b” which is 

consistent with a meaning of exponents students encounter in earlier grades. However, 

thinking of exponential growth in terms of repeated multiplication becomes more 

challenging when evaluating a function for rational inputs, such as f (3.2) = ab3.2. One 

must conceptualize rational exponents and their properties in order to assimilate the idea 

of repeated multiplication to rational inputs like reinterpreting ab3.2 in a form such as 

a(b1/10)32 where the repeated multiplication involves the factor b1/10 instead of b. Such a  
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Table 1.1 

Results from the National Assessment of Educational Progress (12th Grade) 

2009 Assessment [M1899E1] 
 
The population P of a certain town is given by the equation P = 50,000(1 + r)t, where r 
is the annual rate of population increase and t is the number of years since 1990. 
(a)  What was the population in 1990? 
Answer: _________________ 
(b)  In 2001 the population was 100,000. What was the annual rate of population 
increase? 
Answer: _________________ 
 
Incorrect:  38% of students 
Partial 2:   1% of students 
Partial 1:   46% of students 
*Correct   9% of students 
Omitted:    8% of students 
Off task:    2% of students 
 
2005 Assessment [M133801] 
 
A car costs $20,000. It decreases in value at the rate of 20 percent each year, based on 
the value at the beginning of that year. At the end of how many years will the value of 
the car first be less than half the cost? 
Answer: ______ years 
Justify your answer. 
 
Incorrect:  60% of students 
Partial 2:   5% of students 
Partial 1:   5% of students 
*Correct   26% of students 
Omitted:    4% of students 
 
2005 Assessment [M127001] 
 
The number of bacteria present in a laboratory sample after t days can be represented 
by 500(2)t. What is the initial number of bacteria present in the sample? 

A.  250        [10% of students] 
*B.  500      [33% of students] 
C.  750        [5% of students] 
D.  1,000     [46% of students] 
E.  2,000      [4% of students] 
                    [2% of students did not answer] 
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conceptualization requires a constantly updating recognition of the base for 

exponentiation. Even this modification, however, is inadequate to justify evaluating f (x) 

for irrational x or for conceptualizing how the algebraic representation f (x) = abx 

encapsulates the relationship between all values in the domain and range.3 This helps 

account for Ellis et al.’s (2012) observation that “exponential growth appears to be 

challenging to represent for both students and teachers, and it is difficult for teachers to 

both anticipate where students might struggle in learning about exponential properties 

and develop ideas for appropriate contexts that involve exponential growth (Davis, 2009; 

Weber, 2002)” (p.94).  

 

Online Learning 

 Nearly 30% of students at post-secondary institutions in the Fall 2015 semester 

enrolled in at least one distance-learning course (predominantly via online delivery), and 

both the number of post-secondary students enrolled in any distance-learning courses and 

the number of post-secondary students enrolled exclusively in distance-learning courses 

have consistently increased each year even while the overall post-secondary enrollment 

decreased (U.S. Department of Education, National Center for Education Statistics, 2013, 

2014, 2015, 2016, 2017, 2018). See Table 1.2. Most colleges and universities explain 

their growing distance-learning course offerings in terms of providing a public service, 

namely increasing access to university resources and programs. In addition, they cite 

student demand for such courses as a key factor in expanding distance-learning programs.  

                                                      
3 Functions like g(x) = 2x +1 don’t necessarily have the same issue. For example, I can think of the 
function’s value as twice the value of x for all real numbers x. 
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Table 1.2 

Post-Secondary Enrollment in Distance Learning Courses 
 

semester 
students enrolled 
in post-secondary 

courses 

students enrolled in any 
post-secondary distance-

learning course 

post-secondary students 
enrolled exclusively in 

distance-learning courses 
Fall 2012 20,642,819 5,444,701 (26.38%) 2,638,653 (12.78%) 
Fall 2013 20,375,789 5,522,194 (27.10%) 2,659,203 (13.05%) 
Fall 2014 20,207,369 5,750,417 (28.46%) 2,824,334 (13.98%) 
Fall 2015 19,977,270 5,954,121 (29.80%) 2,871,788 (14.38%) 
Fall 2016 19,988,204 5,965,813 (29.85%) 2,874,870 (14.38%) 

 
Amidst this growth in distance learning, Xu and Jaggars (2011, 2013) completed 

two large-scale studies that challenged an assumption at the heart of online learning: that 

the quality of educational opportunity in an online environment is approximately 

equivalent to in-person environments. They found that, all other factors being equal, the 

average post-secondary student’s likelihood of completing an online course is seven 

percent less than his likelihood of completing a comparable face-to-face course and that, 

even if the student completes the course, the average grade is 0.3 grade points lower. 

Among students from disadvantaged populations the numbers are even more skewed. 

Moreover, students enrolled in online courses in their study were, on average, better 

prepared for the courses than students taking in-person options and reported higher levels 

of self-motivation. Thus, “descriptive comparisons are likely to underestimate rather than 

overestimate the gap between online and face-to-face performance outcomes” (Xu & 

Jaggars, 2013, p. 55). These recent results are more damning than meta-analyses finding 

no significant impact of the learning environment on student success in the infancy of 

online learning (Swan, 2003; Twigg, 2003; Means, Toyama, Murphy, Bakia, & Jones, 

2009). 
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 Based on these findings, is it irresponsible for colleges and universities to 

continue expanding, or even offer, distance-learning options? There is little doubt that 

distance-learning courses provide an important service to students by providing them 

with options for completing coursework even if they do not live close to schools or have 

responsibilities that preclude regular attendance in scheduled class sessions. Distance-

learning also allows colleges to potentially recruit more students and provide additional 

pathways for students to complete their degree requirements in a timely manner. Rather 

than throw the baby out with the bathwater by eliminating such programs, post-secondary 

institutions must examine the quality of learning opportunities in their distance-learning 

courses. Xu and Jaggars (2013) describe qualitative research comparing online courses 

with their in-person equivalents. In the majority of cases professors creating an online 

course convert the comparable face-to-face courses to online versions without changing 

the approach or content. The activities and homework remain the same while in-class 

lectures are converted to video lectures or text. Even ignoring the initial quality of the in-

person lessons, not redesigning the course with the format in mind is professionally 

questionable. However, most colleges and universities do not require professors to attend 

training in online course design even when highly skilled support professionals exist on 

campus (Xu & Jaggars, 2013). 

 For researchers who want to study the effects of online learning environments, or 

for colleges and universities who want to continue to offer or expand their online course 

offerings, it is vital that they first develop, study, and refine courses designed explicitly to 

exist in an online environment. Furthermore, it is important that these courses are not 

designed around ineffective passive activities where students are expected to watch 
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lectures, take notes, and copy the methods in rote practice problems. Such methods do 

not work well for in-person instruction and seem to be even less effective for online 

courses (Freeman, Eddy, McDonough, Smith, Okoroafor, Jordt, & Wenderoth, 2014; Xu 

& Jaggars, 2013). 

 
Summary of Problem Statement and Research Questions 

 
 Ellis et al. (2012) call for research to improve our “understanding of how to foster 

students’ learning about exponential growth, and for identifying more effective models of 

instruction on exponential functions” (p. 94). I believe that the first step in this process is 

to complete a detailed conceptual analysis (Glasersfeld, 1995; Thompson, 2008) on the 

topic and test and refine a hypothetical learning trajectory (Simon, 1995). This provides a 

foundation so that future research builds from clearly stated learning goals relative to the 

images and mathematical reasoning we hope students construct. A shared vision, or at 

least a set of common understandings, can help all researchers working on the problem 

communicate clearly with one another and better frame their contributions within the 

mutual goal of improving the quality of instruction and, consequently, student learning 

about exponential functions. By situating my research within an online Precalculus 

course, I hoped to contribute to new ways of designing distance-learning opportunities 

for students that support students in successfully constructing powerful mathematical 

understandings instead of undermining the quality of their mathematical experiences. 

Answering the following research questions contributed to these goals. 



 

11 

RQ1:  What meanings do students have for exponential growth and related 

ideas before and after completing an online Precalculus course design 

to develop and leverage quantitative and covariational reasoning?4 

RQ2:  What features of the online course, specific lesson activities, and/or 

components in the hypothetical learning trajectory appear to support or 

hinder students in developing productive meanings for exponential 

growth and related ideas?  

 

A Comment on the Three-Paper Format for Dissertation Reports 

This dissertation report follows the three-paper formatted approved by ASU’s 

graduate college. Chapters 6-10 include these papers in their entirety as well as an 

introduction and conclusion focusing on common themes within the papers and 

discussing their contributions to the field. Since these papers are intended to stand on 

their own for submission to publications, it was often necessary to repeat sections of 

Chapters 1-5 within Chapters 6-10. Therefore, the reader may notice duplicated text 

sections and/or duplicated tables and figures across these chapters. In addition, the 

reference list for each paper is contained within the chapter containing that paper 

(Chapters 7-9). The reference list at the end of the dissertation document covers Chapters 

1-6, 10. 

  

                                                      
4 See Chapter 2 for a detailed description of quantitative and covariation reasoning. 
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CHAPTER 2 

THEORETICAL PERSPECTIVE 

[W]e have found it necessary to attribute mathematical realities to 
students that are independent of our own mathematical realities. By “independent 
of our own” we mean that we attribute mathematical concepts and operations to 
students that they have constructed as a result of their interactions in their 
physical and sociocultural mileau. In this attribution, we remain aware that we 
may not, and probably cannot, account for students’ mathematics using our own 
mathematical concepts and operations. Although our attribution of mathematical 
realities to students is a conceptual construct, it is grounded in the mathematical 
realities of students as we experience them. (Steffe & Thompson, 2000, p. 267) 
 

 

Background Theory 

 A background theory (or theoretical perspective) serves “to constrain the types of 

explanations we give, to frame our conceptions of what needs explaining, and to filter 

what may be taken as a legitimate problem” (Thompson, 2002, p. 192). It provides a lens 

to focus a researcher’s attention on a subset of the variables present in any research 

setting (Cobb, 2007; Tallman, 2015; Thompson, 2000, 2002). Background theories 

provide guidance on what aspects of the learning process must be explained, inform the 

characteristics of those explanations, and perhaps give insights into features of 

experiences that might effectively guide students in developing powerful mathematical 

meanings, but they do not specifically address “ways of thinking, believing, imagining, 

and interacting that might be propitious for students’ and teachers’ mathematical 

development” (Thompson, 2002, p. 194). This is the role of domain-specific theories 

such as quantitative reasoning, which I will discuss later in this chapter. 
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Piaget’s Genetic Epistemology 

Piaget’s genetic epistemology was an attempt in part to explain the origins and 

substance of knowledge within biological entities who cannot directly access any kind of 

external reality (Piaget, 1977). An individual organizes her experiences within schemes 

that include triggers (stimuli that assimilate to the scheme), actions associated with the 

stimuli, and some expectation of what outcome the action(s) will produce as a 

progression towards a goal or need not currently met (Glasersfeld, 1995; Piaget, 1971; 

Piaget & Inhelder, 1969). Actions include “all movement, all thought, or all emotions that 

respond to a need” (Piaget, 1967, p. 6). Interiorization is the process of reconstructing 

and organizing these actions so that an individual can reproduce the actions mentally 

without needing to repeat the corresponding physical actions while internalization 

describes an assimilation of a situation to a scheme with all of the meanings conferred by 

that scheme (Thompson, 1994c).  

To assimilate to a scheme is to provide meaning and the scheme’s entire contents, 

implications, inferences, connections, and actions encompass that meaning (Johnckheere, 

Mandelbrot, & Piaget, 1958). All experiences involve attempts to assimilate stimuli to a 

scheme. However, sometimes the actions associated with the scheme do not produce an 

outcome that the individual expects or he becomes aware of discontinuities in his scheme 

and the features of the situation. This causes a perturbation for that individual (or a state 

of disequilibrium) and “the original scheme is accommodated [emphasis added] by 

differentiating between conditions and subsequent implications of assimilation” 

(Thompson, 1994c, p. 183), a new scheme develops, or the individual resolves the issue 

in other ways (such as ignoring it) to achieve equilibrium.  
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Each action carries with it a context in which the action takes place, the action 

itself, and the action’s product. It is possible for an individual to differentiate the action 

from its context and product and to project the action to a level of mental representation 

(Tallman, 2015; Thompson, personal communication, March 14, 2015). Both Thompson 

and Tallman used the sine function to exemplify the process. When a student examines a 

graph of the sine function, he might pick key points and know that these somehow relate 

to locations on a circle. However, he might not recognize a varying angle measure and 

might not differentiate the act of moving along the circle from defining a specific value 

for sine. However, if the student’s attention is drawn to coordinating the actions of 

moving along a circle to trace out an arc subtended by an angle and to then measuring a 

vertical distance in units of the radius, then he can eventually differentiate the action from 

the result and create a mental representation of the coordinated actions. At this point he 

no longer needs the physical actions associated with evaluating the sine function to know 

that a sine value exists for every angle measure and to understand the value’s meaning. 

Once the action is represented mentally, the individual can reorganize his 

representations and make connections among projected actions. For example, he might 

coordinate projections of the sine function, cosine function, and arc length to create more 

robust connections between the schemes for each idea (Tallman, 2015; Thompson, 

personal communication, March 14, 2015). The entire process of differentiating, 

projecting, and coordinating actions is reflecting abstraction, and operating with this 

coordination at the level of representation is reflected abstraction (Piaget, 1977; 
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Thompson, personal communication, March 14, 2015).5 Reflecting abstraction is the 

engine that drives productive accommodations in a person’s schemes and “results in 

increasingly organized and refined cognitive schemes…[that inject] coherence into 

systems of organized actions” (Tallman, 2015, p. 72).  

 

Harel’s Duality, Necessity, and Repeated Reasoning (DNR) Framework 

Harel (2007, 2008a, 2008b, 2008c) and Harel and Sowder (1998, 2005) outlined a 

framework for mathematics instruction and learning utilizing Piaget’s genetic 

epistemology as a background theory. The DNR framework emphasizes the role of 

duality, necessity, and repeated reasoning in learning and teaching mathematics. 

     Duality. A mental act describes cognitive activities “such as interpreting, 

conjecturing, inferring, proving, explaining, structuring, generalizing, applying, 

predicting, classifying, searching, and problem solving” (Harel, 2008c, p. 2). Products 

are the results of engaging in a mental act and are often associated with observable 

behaviors, and each mental act has certain cognitive characteristics. Harel (2007, 2008a, 

2008b, 2008c) calls the product and character of a mental act a way of understanding and 

a way of thinking respectively and insists that the two shape and define each other.6 Harel 

                                                      
5 It is possible that the individual does not differentiate an object’s property generated from some action 
from the action itself. Piaget (1977) calls this pseudo-empirical abstraction. Tallman (2015) provides an 
excellent example. A student might produce an angle by rotating a terminal ray, and during this process an 
arc is traced out some distance from the angle’s vertex. The individual generates the subtended arc through 
the action of rotation, and if he does not see a property of subtended arc length in angles not produced from 
his own action of rotating a terminal ray then his notion of subtended arc length is a pseudo-empirical 
abstraction. Evidence of reflecting abstraction includes a student’s ability to imagine the process of 
recreating a given angle through rotation to talk about subtended arc length without performing the action. 
6 I am aware that Thompson and Harel have modified some key constructs within the DNR framework in 
upcoming papers. I chose not to address those modifications here since I did not have access to the articles. 
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commonly used the example of an empirical proof scheme7 to demonstrate his meaning. 

An empirical proof scheme is a way of thinking associated with the mental act of 

proving. It shapes the products generated by the mental act (proofs based on a finite 

number of examples). However, experience justifying an argument with finitely many 

examples is critical in the original development and strengthening of the way of thinking.  

     Necessity. For Harel, problem solving is the catalyst for all learning. In order to learn 

(that is, for an individual to modify existing schemes or develop new schemes), there 

must be a problem that the individual cannot solve using her current knowledge 

(schemes). Here “problem” is a highly subjective notion (Harel, 2013). For example, 

mathematicians conceptualized the Fundamental Theorem of Calculus as a solution to the 

challenge of bridging rate of change and accumulation problems (Thompson, 1994a). 

College students taking introductory Calculus courses rarely see the theorem as a solution 

to a particular problem they have conceptualized. Instead, it is often just another rule to 

memorize. A problem conceptualized by the individual defines an intellectual need, and 

Harel contrasted intellectual needs from psychological needs, which are the “motivational 

drives to initially engage in a problem and to pursue its solution” (Harel, 2008b, p. 898). 

He argued that psychological needs are rarely addressed in domain-specific theories but 

are quite important. Students uninterested in engaging with a mathematical situation or 

persisting in the face of challenges will not progress in modifying their schemes through 

repeated reasoning that supports reflecting abstraction. 

                                                      
7 An empirical proof scheme describes the belief (not necessarily conscious) that, when proving a 
mathematical fact or theorem, a finite number of valid examples is sufficient justification. 
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     Repeated reasoning and what it means to reason. Reasoning is “the process of 

forming conclusions, judgments, or inferences from facts or premises; or the reasons, 

arguments, proofs, etc., resulting from this process” (dictionary.com, 2017). Therefore, 

an adequate description of reasoning (particularly in mathematics) involves an 

explanatory theory for how a person interprets a task at hand, both in terms of the 

information present and a goal, and moves towards that particular goal. Genetic 

epistemology (Piaget, 1971, 1977), expanded as radical constructivism (Glasersfeld, 

1995), provides a useful perspective on reasoning. 

If reasoning is “the process of forming conclusions, judgments, or inferences from 

facts or premises,” then when an individual encounters what he perceives to be a set of 

premises or facts, the triggered scheme provides those premises with meaning. This 

scheme is an organization of actions, expected outcomes, goals, memories of prior 

experiences, and even other schemes. The individual carries out the actions associated 

with the triggered scheme to accomplish the perceived goal. This is consistent with 

describing a way of knowing as “The particular meaning students give to a term, 

sentence, or text, the solution they provide to a problem, or the justification they use to 

validate or refute an assertion” (Harel & Sowder, 2005, p. 29). Assimilation to a scheme 

and connecting the task at hand to ways of knowing tied to the triggered scheme 

describes mechanisms behind “the process of forming conclusions, judgments, or 

inferences from facts or premises” in general while respecting the internal and individual 

character of reasoning. 

Harel (2008c) wrote that “Students must practice reasoning in order to internalize, 

organize, and retain ways of understanding and ways of thinking” (p. 21). Note that what 
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Harel meant by “practice” is very different from common student activities in 

mathematics courses. In most classrooms students practice computations presented to 

them in the form of algorithms, formulas, and theorems. Even if students develop 

proficiency with these computations they tend to develop a view of mathematics as sets 

of rules and procedures to learn emphasizing accurate calculations. An alternative view is 

that learning involves developing justifications for mathematical actions and the student’s 

role is to produce his own rules and algorithms while developing more general ways of 

thinking (Harel & Sowder, 2005). Cooper (1991) coined the phrase repetitive experience 

to describe the latter as a way of contrasting these two beliefs about mathematics. 

To Cooper, talking about practice included a tacit assumption that what students 

practiced (from the teacher’s perspective) was in fact what they learned (Thompson, 

1991). However, as Thompson pointed out, this assumption betrays an observer-centric 

focus because what students actually learn from practice often differs from teachers’ 

intentions. Using the phrase repetitive experience serves as a reminder that “what we 

want repeated is the constitution of situations in ways that are propitious for generalizing 

assimilations, accommodation, and reflection” (Thompson, 1994c, p. 227). In developing 

and refining their schemes, students must have residual memories of having engaged in 

some specific reasoning before. Stable understandings that persist beyond momentary 

insights or intuition require repeated constructions of the same or similar reasoning 

(Thompson, 2013). This process of repeated construction is critical for the processes of 

internalization and reflecting abstraction (Cooper, 1991; Harel, 2008c, 2013; Thompson, 

1991, 1994c, 2013). As stable understandings develop, students no longer have to 
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reconstruct particular reasoning each time they encounter situations assimilated to that 

scheme. Instead, they can fluently and effortlessly apply their knowledge (Harel, 2008a). 

 

What Does it Mean to Understand? 

From a constructivist standpoint, both meaning and understanding refer to the 

components of an individual’s scheme (Thompson, 2013). An example involves the 

problem statement in Figure 2.1.  

 
Figure 2.1. A task I assimilate to my average rate of change scheme. 
 
When I read this problem statement, I interpret it as a question about average rate of 

change, meaning that I assimilate the context to my scheme of average rate of change, 

which includes a network of actions, expected results of acting, and related schemes 

(such as schemes for speed and constant speed). To respond to the question I would 

determine the constant speed John would need to travel to cover exactly 355 miles in 

exactly 3.5 hours and compare this result to personal experiences of driving, knowledge 

of speed limits, and/or an understanding of a car’s physical limitations. However, none of 

these issues are inherent to the problem – I bring all of this to table via the schemes to 

which I assimilate the problem statement. When someone else reads the prompt, there are 

a number of possibilities including 1) the individual does not have a scheme for average 

rate of change and thus assimilates the problem statement to some other scheme, 2) the 

individual assimilates the context to his scheme for average rate of change, but his 

scheme is organized differently from mine and includes different actions, expectations, 

John leaves Phoenix in a car at 9:30 am to drive to San Diego (a distance of 355 
miles) for a meeting with a business client. His meeting is at 1:00 p.m. Will John 
arrive at his meeting on time? 
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and related schemes and thus he reasons about the context in an entirely different way, or 

3) the individual possesses a scheme for average rate of change but this context is not 

assimilated to that scheme (for that individual, this is not a question about average rate of 

change at all). The main point is that describing specific problems or contexts as being 

“about” any particular mathematical idea is inappropriate. If I say the context in Figure 

2.1 is a problem about average rate of change it means that I have assimilated the context 

to my average rate of change scheme, and my actions and reasoning are dependent on my 

scheme’s contents and structure. It does not mean that the context triggers an average 

speed scheme for another person. 

This creates two primary challenges in trying to describe what a student 

understands or the meanings she constructs. First, without direct access to anyone else’s 

thoughts, any claims about a person’s understanding derive from models of that person’s 

schemes constructed based on her observable actions (Glasersfeld, 1995; Steffe & 

Thompson, 2000; Thompson, 2013). For example, presenting the problem statement from 

Table 3 to a student and observing the student’s actions, responses, comments, body 

language, and so on provides evidence for generating an initial model of the student’s 

triggered schemes. Ideally a researcher refines his initial model through additional tasks, 

especially questions that probe at the modeled scheme’s limits. The best working model 

is one that appears to explain all of the subject’s observable actions, but it is important 

not to mistake the model of the scheme with the scheme that exists in the individual’s 

mind. Second, even choosing a set of ideas to research (like exponential functions) 

betrays a researcher-centered orientation because there is no guarantee that students will 

assimilate any of the activities to a scheme the researcher would recognize as 
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encompassing exponential growth as he understands it. Therefore, a researcher must 

constantly be attentive to how students appear to have understood a given task or activity. 

 

Domain-Specific Theories 

Background theories provide guidance on what aspects of the learning process 

must be explained, inform the characteristics of those explanations, and perhaps give 

insights into features of experiences that might effectively guide students in developing 

powerful mathematical meanings, but they do not specifically address “ways of thinking, 

believing, imagining, and interacting that might be propitious for students’ and teachers’ 

mathematical development” (Thompson, 2002, p. 194). This is the role of domain-

specific theories such as quantitative reasoning. For example, genetic epistemology as a 

background theory does not provide explicit insights into how a person might develop 

productive meanings for an accumulation function. Mathematics education researchers 

must analyze examples of individuals engaging in mathematical reasoning as well as 

generate and test hypotheses about the kinds of reasoning that will benefit students’ 

mathematical development to create domain-specific theories that do address such issues 

(Thompson, 1991, 2002).  

In the following sections I describe quantitative and covariational reasoning, two 

interconnected domain-specific theories related to the development of algebraic and 

functional reasoning. They are theories designed to help “describe mathematical 

understandings we hope students will have and to describe understandings they do have, 

and [to describe] how students might express their understandings in action or 

communication” (Thompson, 2002, p. 195). Radical constructivism and genetic 
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epistemology provide the background framework for quantitative and covariational 

reasoning and thus dictate the commitments to which their tenets must adhere. In 

particular, the researchers who developed these theories take seriously the following 

features of radical constructivism and genetic epistemology (Thompson, 2002). 1) 

Humans have no direct access to any reality external to themselves. They can only access 

stimuli from their senses resulting in neurological activity that they can isolate from the 

stream of such activity, re-present from memory, or imagine. 2) A person does not have 

direct access to the thoughts or beliefs of any other person. 3) Anything someone “learns” 

from experience is based on her individual constructions even when an outsider attempts 

to direct these experiences. 

 

Quantitative Reasoning 

Engaging in quantitative reasoning involves conceptualizing a situation to form a 

quantitative structure that organizes relevant quantities and quantitative operations 

(Thompson, 1988, 1990, 1993, 1994c, 2011, 2012). A quantity is a measurable attribute 

of some object that exists in an individual’s mind, and the individual’s conceptualization 

of quantities he deems relevant generates a space of implications for his reasoning within 

any given mathematical situation (Smith and Thompson, 2007; Thompson, 1994c). For 

example, Moore and Carlson (2012) asked students to produce a graph relating a person’s 

total distance traveled while riding a Ferris wheel and the rider’s height above the 

ground. Most students’ graphs displayed incorrect concavity, leading Moore and Carlson 

to conclude that those students did not conceive of the quantities amount of change of the 
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total distance traveled and the amount of change of the rider’s height above the ground, 

and therefore could not account for them when producing their graphs. 

Quantification schemes are vital for truly conceptualizing a quantity because “[i]t 

is in the process of quantifying a quality that it becomes truly analyzed” (Thompson, 

1990, p. 5). Initial conceptions of a quantity might involve gross quantification (Piaget, 

1965; Saldanha & Thompson, 1998), or what Thompson, Carlson, Byerley, & Hatfield 

(2014) described as awareness of size, whereby the attribute’s size is loosely understood 

relative to experiential observations. For example, a person might conceptualize the 

amount of force it takes to move an object in a way that allows her to recognize larger or 

smaller force requirements, but she might not have a quantification scheme capable of 

producing consistent numerical values to represent a force’s magnitude. 

Extensive quantification is the most elementary example of “the process of 

conceptualizing an object and an attribute of it so that the attribute has a unit of measure, 

and the attribute’s measure entails a proportional relationship…with its unit” (Thompson, 

2011, p. 37) and describes quantification schemes for directly measurable quantities 

(such as length) using any unit that has “the same nature as the quantity being measured” 

(Wildi, 1991, p. 58). The measurement scheme’s sophistication can range from a 

straightforward process of reproducing the quantity’s magnitude by iterating the unit to 

an appreciation of the reciprocal relationship between the quantity’s measurement in 

some unit and the size of the unit along with an understanding that the quantity’s 

magnitude is independent of the choice of unit (Thompson et al., 2014). 

As an individual conceptualizes various quantities in a situation it is possible for 

him to recognize relationships between these quantities and to identify “a new quantity in 
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relation to one or more already conceived of quantities” (Thompson, 1994c, p. 185). A 

quantity of this type is an intensive quantity formed by conceptualizing a quantitative 

operation. A quantitative operation describes the mental operations of comparison 

between and/or coordination of previously conceptualized quantities (Thompson, 1990, 

1994c, 2011). The result is a new quantity that cannot be directly measured. Instead, its 

quantification scheme depends on the quantitative operation from which it arose 

(Johnson, 2014; Moore, 2010; Piaget, 1968; Schwartz, 1988; Simon & Placa, 2012; 

Thompson, 1990; Thompson et al., 2014). Examples of intensive quantities include 

multiplicative comparisons, rates of change, and per-capita measurements. 

 

Covariational Reasoning8 

An individual may draw distinctions between quantities that vary and those that 

remain constant when conceptualizing a situation. If she sees the situation as composed 

of quantities that change together and attempts to coordinate their variation, then she is 

engaging in covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; 

Saldanha & Thompson, 1998; Thompson & Carlson, 2017). Like quantitative reasoning, 

covariational reasoning is about how an individual conceptualizes a situation, and the 

manner in which an individual thinks about variation and covariation has implications for 

how she understands function relationships, representations, and connections between 

representations.  

                                                      
8 Note that the definition and descriptions I provide here are not universally accepted by all researchers who 
use the term “covariational reasoning” in their work. However, this description is consistent with 
quantitative reasoning as explained in the previous pages. See Chapter 3 for more information about 
alternative definitions of covariational reasoning. 
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Sophisticated covariational reasoning involves linking two continuously varying 

quantities to create a multiplicative object, a unification that combines the attributes of 

both quantities simultaneously (Saldanha & Thompson, 1998; Thompson, 2011; 

Thompson & Carlson, 2017). This coordination often begins with respect to experiential 

time as exemplified by Johnson (2012) and explained by Thompson (2012). Students in 

Johnson’s study coordinated the varying volume and height of water in a bottle by 

experiencing a corresponding change in each relative to experiential time, in this case the 

time that elapses as someone poured an amount of water into the bottle. Eventually a 

student can separate her physical experiences and her conceptualization of the 

relationship so that she sees time as a measurable quantity distinct from either volume or 

height. Instead of changes in experiential time causing variation in these quantities, she 

links the quantities’ magnitudes via conceptual time, meaning that she anticipates that at 

all moments there will be values for the height and volume of water in the bottle, that 

corresponding values are inextricably linked in a specific way, and that if she thinks 

about changes in one quantity (over some imagined interval of time) then she is explicitly 

aware of corresponding changes in the other quantity over the same interval of imagined 

time (Thompson, 2011; Thompson & Carlson, 2017).  

 

Quantitative Reasoning and Function Representations 

The way in which an individual conceptualizes variation and the degree to which 

he has formed a multiplicative object by uniting two covarying quantities in conceptual 

time have implications for his understanding of function representations, connections 

between representations, and meanings for algebraic representations and arithmetic 
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calculations. However, discussing multiple representations of functions is problematic if 

we emphasize representations independent of the individual conceptualizing what the 

representations are meant to model (Moore & Thompson, 2015; Thompson, 1994b). 

Thompson (1994b) said put it best when he wrote that “the core concept of ‘function’ is 

not represented by any of what are commonly called the multiple representations of 

function, but instead our making connections among representational activities produces 

a subjective sense of invariance” (p. 36). Conceptualizing quantitative structures and 

coordinating changes in quantities within these structures is foundational for building rich 

and powerful images of quantitative relationships so that issues of representation are 

natural extensions of an individual’s reasoning in context and connections between 

representations derive from his understanding of an invariant relationship characterized in 

different ways. Repeated reasoning about relationships within the quantitative structure 

provides the means for writing arithmetic or algebraic expressions representing the value 

of a quantity with respect to values of other quantities in the structure (Thompson, 2011).  

Thompson and Carlson (2017) argued that an awareness that something remains 

invariant even as two quantities’ values change in tandem is the foundation for a 

productive meaning of function based on “reasoning about constrained variation” (p. 

449). Coordinating continuous quantitative covariation is different from examining a 

table of values or plotting a few points and connecting them with a smooth curve. It 

involves specific attention to what one is measuring and, when tracking how the 

quantities change together, attending not just to the values before and after variation but 

at all moments during the variation. If someone has formed a multiplicative object 

composed of two covarying quantities and conceptualizes a graph as an emergent trace of 
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the relationship between the quantities’ values, then any meanings or generalizations he 

conceptualizes are properties of the covariation and are independent of the specific 

representations being generated (Moore & Thompson, 2015). This is a vital way of 

thinking that may allow someone to connect a relationship conceptualized quantitatively, 

the corresponding values of those quantities produced through quantification and 

numerical operations, an algebraic representation relating sets of corresponding 

measures, and the graph produced by allowing the quantities to covary while mentally 

linked as a multiplicative object. A table of values then may represent specific pairs of 

values determined by “freezing” the covariation some finite number of times and noting 

the quantities’ corresponding values. 

Perhaps the most challenging connection among traditional function 

representations is between algebraic formulas and graphs developed as emergent traces of 

covariation. Formulas often reinforce correspondence imagery of the type commonly 

represented by the “input-output” function machine. Ellis (2007, 2011) demonstrated that 

attention to conceptualizing quantitative structures facilitated students in flexibly viewing 

an algebraic formula relating numbers of rotations for different gears as modeling both a 

correspondence rule as well as a description of how the quantities changed together. 

Thompson (1994b) and Oehrtman, Carlson, and Thompson (2008) wrote that this 

flexibility requires a process conception of the algebraic formula. An individual with a 

process view of a formula is capable of seeing it as more than a means for producing a 

result based on prescribed calculations. The individual possesses a confidence that the 

formula represents the value of one quantity in terms of the values of other quantities, 

that the formula is self-evaluating (in the sense that the value exists independent of 
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actually needing to perform the calculations), and that if she runs through a continuum of 

values in the function’s domain that the formula produces all corresponding function 

values. In this way a rule of correspondence can be integrated into a covariational image 

of the function as the rule that relates the values of quantities joined in a multiplicative 

object as they vary in tandem. 

To summarize, an individual must first conceptualize quantities in a situation, 

organize them into quantitative structures, and develop quantification schemes in order to 

produce and make sense of numerical values representing the quantities’ measures. 

Reasoning about relationships within the quantitative structure then suggests reasonable 

arithmetic operations to evaluate intensive quantities and, eventually, algebraic 

expressions to represent one quantity’ value with respect to the values of other quantities. 

Uniting two quantities in thought and coordinating their values as they change together 

allows someone to develop graphical representations of the relationship as an emergent 

trace, and generalizations derived from the experience are likely to be conceptualized as 

properties of the covariation independent of any one particular representation. In 

addition, conceptualizing the quantitative structure and reasoning covariationally is the 

foundation for a productive meaning of function as constrained covariation and is the 

meaning behind the “something” being represented by tables, formulas, and graphs. 

 

The Role of Theory in this Particular Study 

 In this dissertation study I will rely on the background theories described in this 

chapter in two specific ways: 1) as a theoretical lens and 2) as a guiding principle for task 
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and lesson design along with domain-specific theories related to learning about functions 

and exponential growth. 

 

Constructivism as a Theoretical Lens 

 Conceding that students’ mathematical realities differ from my own means that, at 

best, I can only create models for students’ schemes based on observable behavior. Since 

this dissertation study does not entail a highly interactive teaching experiment, my 

opportunities to probe individual students’ schemes may be limited.9 Therefore, the 

intervention itself must be designed to elicit as much potential evidence of how students 

assimilate tasks and how their schemes are structured. One method will be to leverage a 

careful conceptual analysis of the ideas I want to promote through the intervention to 

reveal places where students could construct unintended meanings for these ideas. I can 

then structure questions and/or responses to questions students can select that might 

indicate characteristics of various categories of ways of knowing. A second method is to 

analyze monitoring data (like average number of attempts and average time spent on each 

attempt) relative to cornerstone tasks in the intervention for evidence of the ideas students 

struggled with. This can generate hypotheses for common ways of knowing students 

possessed coming in to the course and/or developed in earlier activities. Analyzing 

homework and assessment data might then indicate accommodations students made to 

their schemes during the intervention. A failure to attend to the issues described (such as 

assessing students on procedural skills and assuming that correct responses indicated 

certain scheme structures) could result in a lot of data that reveals few useful conclusions. 

                                                      
9 See Chapter 5 for specific details of my proposed study. 
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Constructivism as an Instructional Design Principle 

Knowing that students must construct their own meanings and knowing some of 

the mechanisms by which this construction occurs via individual activity suggests the 

kinds of tasks and activities that can provide opportunities for students to construct 

productive mathematical meanings. Thompson (1985) provides a compelling list of key 

design principles for curricula and a persuasive argument for each grounded in radical 

constructivism. His list is provided below, followed by a summary for why each principle 

is included. 

A mathematics curriculum should 
1.  Be problem based. 
2.  Promote reflective abstraction. 
3.  Contain (but not necessarily be limited to) questions that focus on 

relationships. 
4.  Have as its objective a cognitive structure that allows one to think with the 

structure of the subject matter. 
5.  Allow students to generate feedback from which they can judge the efficacy of 

their methods of thinking. (Thompson, 1985, p. 200) 
 

 Mathematical “problems” do not exist outside of the individual. The problem only 

exists in the manner in which it is conceptualized by that individual. When Thompson 

(1985) says that a mathematics curriculum should be based on problems, what he means 

is that a designer “must make explicit the nature of the knowledge that [he hopes] is 

constructed and make a case that the chosen activities will promote its construction” (p.  

192). Tasks should be chosen so that their completion is not routine for students, and 

furthermore the tasks should elicit and call attention to students’ patterns of reasoning 

while working through them. This provides the potential for students to make 

abstractions by reflecting on what remains invariant across a variety of problems and to 

differentiate, project, and coordinate mental actions (the process of reflecting 
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abstraction). This is important because, as mentioned previously, reflecting abstraction is 

the engine that drives productive accommodations in a person’s schemes and “results in 

increasingly organized and refined cognitive schemes…[that inject] coherence into 

systems of organized actions” (Tallman, 2015, p. 72). Put another way, “the key to the 

development of operative thought is…reflective abstraction” (Thompson, 1985, p. 196). 

 Operative thought involves mental representations of actions and consideration of 

the consequences of those actions that allows students to make propitious decisions about 

what to do next, and “allows them to see what they might do next in relation to what has 

already taken place” (Thompson, 1985, p. 194).10 Thus, operative thought implies the 

person is exercising a level of coordination and control over her reasoning. Furthermore, 

“once a student has created a structure of operations, he or she may reflect on the current 

state of affairs into that structure, and think in terms of possibilities: What would happen 

if I did (or did not) do this?” (Thompson, 1985, p. 197). A key aspect of operative 

thought is the conservation of relationships within a system regardless of variations in 

what is being considered. Thompson (1985) argues that promoting the development of 

operative thought is (or should be) the ultimate goal of mathematics instruction. In order 

for students to develop an understanding for the conservation of relationships within a 

system, they must engage in repeated reasoning about these relationships in ever-

increasingly sophisticated ways that support the mathematical structure of the ideas at 

hand.  

                                                      
10 Operative thought is contrasted with figurative thought, which describes a person’s thinking within a 
certain scheme and manifests itself in relation to that scheme as an inability to “go beyond the elements of a 
problem to a network of relationships” (Thompson, 1985, p. 195). 
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 The final component of Thompson’s design principles is that students must 

generate feedback that allows them to reflect on their thinking. When people interact with 

physical objects, the objects’ behavior provides instant feedback that facilitates scheme 

accommodations (what we might call “learning”). For example, children’s schemes for 

weight might initially involve the idea that larger objects weigh more than smaller 

objects. But eventually children must encounter objects to which this relationship does 

not hold. The physical property of the objects assures that this will be the case, and the 

child cannot stubbornly refuse to acknowledge the fact. The child must make 

accommodations to his scheme. However, it is also common for children’s multiplication 

schemes to include the idea that multiplication results in a product that is larger than 

either of the two initial factors (“multiplication makes bigger”) because early experiences 

with multiplication are usually restricted to products involving natural number factors. 

While I acknowledge that there are ways to physically represent the factors and product 

of multiplication, the structure of multiplication schemes involve mental actions. There is 

often nothing to “push back” against errors in mental actions, such as an emerging 

intuition that multiplication always produces larger numbers.11 Thompson’s proposed 

solution is to create situations where students are asked to make predictions based on 

their current thinking and for computer software to allow them to enter their prediction 

and either see for themselves whether their prediction is accurate or to compare their 

                                                      
11 Even when students acknowledge that multiplication does not always produce larger numbers, it is still 
possible for the intuition to dominate their reasoning about multiplication in subtle and insidious ways if 
the accommodation to their multiplication scheme involves allowing contradictions to the rule to exist as 
special cases but the rule itself to generally hold. Evidence of this kind of accommodation might include 
the tendency for students to multiply smaller magnitude numbers in a word problem or divide a larger 
magnitude number by a smaller magnitude number regardless of what those numbers represent within the 
quantitative structure of the situation. 
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prediction with what the outcome should be (according to the program). This immediate 

feedback can replicate a “push-back” similar to the way that the physical properties of the 

world push back against children as their schemes related to physical properties develop. 

It’s interesting to note that Thompson recognized very early how technology is uniquely 

suited to perform this role in facilitating effective mathematical learning experiences. 

Over 30 years since his 1985 paper, many students still do not experience the kinds of 

feedback-generating explorations Thompson described despite advances in technological 

sophistication or the general increase in teachers’ and students’ access to technology in 

the classroom. That is, they do not get to experience the mathematics “pushing back” 

against their attempts to reason about particular ideas. 

 Thompson’s five design principles are an excellent foundation for creating lessons 

in an online learning environment consistent with the background and domain-specific 

theories described in this chapter, and as much as practicable I will leverage these design 

principles in completing my conceptual analysis and hypothetical learning trajectory in 

Chapter 4. An online mathematics course provides both unique opportunities and 

tremendous challenges relative to these principles. Thompson is careful to point out that 

his curricular examples are not created with the intention that they are independent from a 

skilled instructor. No matter how carefully a teacher designs tasks or interactive software 

and no matter how many times the teacher has used the tasks, the obstacles students 

encounter, the hypotheses they generate, and the ways in which they attempt to express 

their reasoning vary. Leading conversations, asking the right questions, and making all 

manner of productive pedagogical moves takes a skilled instructor with a strong personal 

understanding of the relationship structure the problems are intended to support and a 
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clear idea of how the problems support students in developing similar cognitive 

structures. In addition, some students have negative affective reactions to lessons that 

don’t include explicit methods for producing expected answers. The online environment 

typically replaces the instructor with pre-programmed lessons students move through 

autonomously. An instructor might be attached to the class to oversee grades and to 

answer student questions, but that instructor is not actively leading lessons or addressing 

students’ emotional responses in the moment. These realities complicate the ability to 

provide high-quality mathematical learning experiences in an online course since all 

tasks, responses, comments, and follow-up questions must be pre-programmed. On the 

other hand, the high level of technology integration means that it might be easier to build 

a feedback process into every lesson where students expect to explore ideas with applets 

and to draw important conclusions from these interactions. A key part of the purpose of 

this dissertation study is to better understand how to successfully implement this design 

principle in online courses.  

 

Summary and Closing Comments 

 In this chapter I outlined constructivism as a background theory that influences 

my perspective for designing an online intervention for teaching exponential growth and 

related ideas and for analyzing data gathered from student behaviors while participating 

in the intervention. The domain-specific theories of quantitative and covariational 

reasoning provide particular insights into ways of thinking that can support productive 

ways of knowing exponential growth while also providing general instructional goals and 

connections that promote coherent understandings throughout the intervention and the 
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course as a whole. In the next chapter I provide a detailed literature review related to 

teaching and learning exponential growth and features of online courses that impact 

students’ learning experiences.   
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CHAPTER 3 

LITERATURE REVIEW 

Building sophisticated quantitative reasoning skills for the majority of students is 
not a one or two year program; it requires development throughout the 
elementary and middle school years. (Smith & Thompson, 2007, p. 43) 
 
As I outlined in Chapter 1, many students and teachers lack robust meanings for 

exponential growth and percent change. One likely reason is that common initial models 

of exponential growth as repeated multiplication do not generalize well to reasoning 

about an exponential function’s behavior over its entire domain. A thorough search of the 

literature revealed two different conceptual analyses describing potentially productive 

understandings of exponential growth in the context of supporting students’ covariational 

reasoning about functions. In this chapter I review Confrey and Smith’s and Thompson’s 

conceptual analyses and the implications of each for supporting productive student 

meanings of exponential growth and related ideas. Leveraging Confrey and Smith’s and 

Thompson’s perspectives is most productive when one carefully attends to their differing 

conceptual analyses and the broader contexts in which they make their recommendations 

for conceptualizing exponential growth. For example, they each have unique meanings 

for covariation, function, and rate, and their distinct images for these ideas are motivated 

by different learning goals and begin with different initial assumptions about an 

exponential function’s characteristics. Non-critical readings of their perspectives can 

suggest areas of agreement where none exist simply because they use the same common 

mathematical terminology to describe different underlying imagery and meanings. 
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Exponential Functions 

Thinking about functions from a quantitative and covariational perspective entails 

conceptualizing two quantities that vary, uniting them as a multiplicative object, and 

reflecting on what remains invariant as they change together. There are two different 

features of a situation that suggest an exponential function as an appropriate model. If the 

values of one quantity have a constant growth factor (or constant percent change) for all 

changes of some fixed size for a second quantity, then an exponential model is 

appropriate. Alternatively, if the rate of change of one quantity with respect to a second 

quantity is proportional to the value of the first quantity at all moments, then an 

exponential model is appropriate. Focusing on one feature or the other has implications 

for how learning may unfold and the implications for understanding future mathematical 

ideas. 

 

Confrey and Smith’s Conceptual Analysis 

Splitting. Confrey (1994) described splitting as a useful metaphor for thinking 

about multiplication and called it a primitive action similar to counting because it can 

form the basis of a numerical system. A split involves imagining equal-size copies of an 

original amount or partitioning an amount into equal-sized parts. See Figure 3.1. 

 
Figure 3.1. A split as an equal number of copies of an original amount (left) or 
partitioning into equal-sized parts (right) (Confrey, 1994). 
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Confrey then defined multiplication as the result of some n-split and division as 

examining one of the equal parts of a split relative to the whole.12 Confrey (1994) and 

Confrey and Smith (1995) argued that splitting serves as the basis for an alternative 

number system distinct from the rational numbers but with identical density where ratios 

instead of differences are the natural means of comparison and ratios are equivalent if 

they compare values separated by the same number of splits. For example, a sequence of 

“two-splits” is 1, 2, 4, 8, 16, … and the ratios 
16

2
 and 

32

4
 are equivalent because they 

each compare values separated by three two-splits. 

Covariation, rate of change, and function. Confrey (1994) and Confrey and 

Smith (1994, 1995) rely on a covariational meaning for function, although their definition 

differs from that of Thompson and his colleagues. They defined covariation as a process 

of coordinating successive values of two variables. For example, when given ordered sets 

of values for two variables x and y, students engage in covariational reasoning when they 

coordinate movement “from ym to ym+1 ... with movement from xm to xm+1” (Confrey, 

1994, p. 33).13 A function relationship is then “the juxtaposition of two sequences, each 

of which is generated independently through a pattern of data values” (1995, p. 67). 

Students are expected to identify patterns that emerge through repeated actions during 

this coordination, which forms the basis for generalizing properties and identifying 

                                                      
12 Confrey (1994) gave the following example. If you cut a cake into four equal parts, you can 
conceptualize the number of pieces after the split (“4”) or the size of one piece of cake relative to the size 
of the entire cake (“1/4”). 
 
13 Note that the use of “movement” here does not indicate that Confrey and Smith imagined a smooth 
variation from one value to another while imagining that the quantity also takes on all values in between. 
Their choice of coordinating sequences as their primary metaphor suggests that replacing “movement” with 
“a jump” would not affect their intended meaning. 
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operations that define the relationship between values of each variable. For example, a 

rate can be thought of as a unit-per-unit comparison where unit describes what remains 

constant in a repeated action (Confrey, 1994). This led them to define the notion of a 

constant multiplicative rate of change as a relationship with constant multiplicative 

changes in one quantity coordinated with constant additive changes in another quantity 

and function as “the juxtaposition of two sequences, each of which is generated 

independently through a pattern of data values” (Confrey & Smith, 1995, p. 67). Thus, an 

exponential function is a function with a constant multiplicative rate and derives from 

coordinating an arithmetic and geometric sequence as shown in Table 3.1.  

Table 3.1 

A Table of Values for an Exponential Function of y with Respect to x 

x 
(values in an 

arithmetic pattern) 

y 
(values in a 

geometric pattern) 
0 1 
1 4 
2 16 
3 64 
4 256 

 
Properties of exponential functions’ rates of change. Exponential functions 

play an important role in calculus and differential equations primarily because they have 

the unique property that the rate of change of the function at any point is proportional to 

the function’s value (expressed symbolically as dy/dx = ky for some constant k). Confrey 

and Smith do not begin with this property as a fundamental assumption of what it means 

for a function relationship to be exponential, but they do conjecture how one might 
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develop the idea.14 Students could envision multiplicative growth comparisons using bars 

as shown in Figure 3.2. Each bar is 1.4 times as long as the previous bar, but a person can 

also focus on the length in excess of the previous bar. See Figure 3.3. 

 
Figure 3.2. A sequence of bars with equal length ratios (Confrey & Smith, 1994, p. 159). 
 

 
Figure 3.3. Focusing on the length in excess of the previous bar (Confrey & Smith, 1994, 
p. 160). 
 
These excess lengths each represent 40% of the length of the previous bar, and each 

increase is also 1.4 times as long as the previous increase. “[I]t is only a short step to 

argue that the additive change (shaded areas) will always be the same proportion of the 

whole bar...[which becomes the property] that the derivative of any exponential function 

is directly proportional to the function itself” (p. 160).15 The value of e can emerge by 

                                                      
14 It is more accurate to say that their analyses can support students in understanding that the average rates 
of change of an exponential function over consecutive equally-sized intervals are proportional to the value 
of the function at the beginning of the interval when the geometric growth structure is assumed. 
15 Given how their definition of rate differs from conventional meanings, it is not clear how they intend 
students to transition from one meaning to the other or how they expect students to understand the meaning 
of a derivative or derivative function. 
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letting f (x) = ax, noting that the rate of change function is f ʹ(x) = k∙ax for some constant k, 

and then seeking the value of a such that k = 1. 

Building on Confrey and Smith’s conceptual analysis. Ström (2008) expanded 

Confrey and Smith’s idea of interpolation for exponential functions (determining 

intermediate function values that maintain the splitting structure of the function) by 

introducing the notion of partial growth factors to describe multiplicative changes for 

exponential function values that differed depending on the size of non-overlapping 

intervals subdividing the function’s domain. For example, if an exponential function has 

a one-unit growth factor of two, then when the domain is divided into intervals one unit 

long, the function value at the end of any interval is two times as large as the function 

value at the end of the previous interval. If the domain is divided into intervals of length 

0.1, then the function value at the end of any interval is 0.12  (or 10 2 ) times as large as the 

function value at the end of the previous interval. Thus, 0.12  is the 0.1-unit growth factor.  

Summary and comments. For Confrey and Smith an exponential function is the 

coordination of a counting and splitting structure and is based on one of the two primary 

characteristics of an exponential function (that the values of one quantity have a constant 

growth factor or constant percent change for all changes of some fixed size for a second 

quantity). There are several implications for this conceptual development. First, by 

building from basic notions of doubling, tripling, halving, etc., their development leads 

quite naturally to recognizing the appropriateness of exponential models in contexts 

where growth factors are easy to identify, and the coordination imagery for function 

relationships likely supports productive transitions to writing formulas representing 

generalized calculations for producing the values of an exponential function. However, 
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relying so heavily on the image of a multiplicative structure formed by subdividing the 

domain into equal-sized non-overlapping intervals is likely to promote discrete function 

reasoning as opposed to seeing a relationship as an emergent coordination of 

continuously covarying quantities. Thinking about partial growth factors, rates of change, 

or average rates of change in this context requires knowing the values at the beginning 

and end of an interval, so “in-between” values in the continuous relationship, if they are 

conceptualized at all, come along as afterthoughts similar to connecting discrete points on 

a graph to fill in the general behavior of a function. 

 

Thompson’s Conceptual Analysis 

Piecewise linear accumulation and the Fundamental Theorem of Calculus. 

Thompson’s (2008) development of exponential growth is part of a larger systematic and 

coherent approach to thinking about functions grounded in quantitative and covariational 

reasoning that he argued is necessary for thinking about the Fundamental Theorem of 

Calculus (FTC) as a relationship between rate of change and accumulation (Thompson, 

1994c, 2008).16 Therefore, he suggested defining exponential functions as relationships 

where the rate of change of one quantity with respect to a second quantity is proportional 

to the first quantity’s value at all times, which is consistent with the second key property 

of exponential functions I described earlier. He described his conceptual analysis relative 

to a simple interest model. 

Suppose a bank account earns simple interest updating continuously. The value of 

an account earning (100r)% annual interest on the original principle is a linear function of 

                                                      
16 See Appendix A. 
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the elapsed time since the initial deposit. If the bank updates its policy so that the 

principle used to calculate interest updates periodically, then the account balance is a 

piecewise linear function (and its rate of change function is a step function). Throughout 

any given interval the account value’s rate of change with respect to elapsed time is 

constant and proportional to the account balance at the start of the interval. See Figure 

3.4. 

 
Figure 3.4. A piecewise linear function with a rate of change proportional to the function 
value at the beginning of each interval. The relationship is defined by 

 ( ) (1 ) (1 )c cf x P r r P r x c        for 1c x c   , c  (Thompson, 2008). 

 
If the principle for calculating interest updates more frequently, then the model of the 

account balance with respect to time converges to an exponential function. See Figure 

3.5. 

Thompson’s image of exponential growth depends heavily on conceptualizing 

rate of change as a homogeneous relationship between the changes in two quantities. 

Over infinitesimal intervals of time a function’s rate of change is constant (or can be 

assumed to be constant) and thus change and accumulation occur simultaneously. An 

individual conceptualizing exponential growth in this way is capable of seeing an 
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Figure 3.5. The function converges to an exponential function as the number of times the 
principle is reset (n) increases without bound. The formula is 

     ( ) 1 1
nx nxr r r

n n nf x P P x nx
               which converges to ( ) rxf x Pe  as n increases 

without bound (Thompson, 2008). 
 
exponential function emergently as a coordination of two continuously covarying 

quantities. In addition, the notion of a constant growth factor as a relative size 

comparison of the function value at the beginning and end of any interval is a natural 

extension of understanding how the accumulation occurred. Finally, someone thinking 

about all functions as piecewise linear accumulation functions over infinitesimal intervals 

gives them a solid foundation for thinking about the FTC in a powerful way (Thompson, 

1994a, 2008). However, this understanding of exponential growth “accentuates the 

characteristic property of exponential functions (rate of change being proportional to the 

value of the function) at the expense of the intuition of doubling, tripling, etc. that comes 

from the idea of splitting” (Thompson, 2008, 42) and thus might be hard to develop in the 

context of situations where the emphasis is on constant growth factors or percent change 

(such as half-life or models developed from data). 

Reasoning about a growth factor in continuous covariation. Thompson 

acknowledged that his conceptual analysis is not easily applied in situations where the 

multiplicative structure is given (such as repeated doubling) and that “there is something 

inherently discrete” (personal communication, April 9, 2015) in conceptualizing a 
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relationship initially defined relative to a constant growth factor. However, a focus on 

splitting as the foundation for the meaning of growth factor and Confrey and Smith’s 

images of covariation and rate of change are potentially problematic for students’ long-

term mathematical development. For example, their image of covariation corresponds to 

what Thompson and Carlson (2017) call coordination of values or chunky continuous 

covariation. Castillo-Garsow (2010, 2012) and Castillo-Garsow, Johnson, and Moore 

(2013) demonstrated that chunky thinking is inherently problematic in many situations 

and that chunky thinking is not a gateway to thinking about continuous smooth 

covariation, which is a way of thinking that supports, among other things, a meaningful 

understanding of the FTC.17  

Thompson designed a didactic object18 to support students in attending to the 

meaning of growth factor over some interval as a relative size comparison of two 

instances of one quantity while still holding in mind continuous covariation as they 

imagined running through a continuum of values in the domain. The object is an applet 

allowing the user to define a growth factor of any size and then vary the value of the 

quantity represented on the horizontal axis of the graph. The applet shows the 

corresponding magnitude of the second quantity as well as the magnitude at the end of an 

interval of a given size. See Figure 3.6. 

During a class discussion Thompson draws students’ attention to the relative 

lengths of the segments, using the length of the left segment as the measurement unit for  

                                                      
17 See Appendix A. 
 
18 A didactic object is “‘a thing to talk about’ that is designed with the intention of supporting reflective 
mathematical discourse” (Thompson, 2002, p. 198). 
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Figure 3.6. An approximation of the visual display for Thompson’s applet for three 
different states. Note that as the slider moves, the x-value at the beginning of the interval 
changes through a slide (not a jump) but the width of the interval does not change. 
 
the length of the right segment. Although the segments’ lengths vary, their relative size 

remains invariant as the interval slides to the right. Also, note that students can discuss 

the meaning of the growth factor without paying particular attention to the specific values 

of the function at these points. This supports students’ development of a quantitative 

meaning for growth factor and de-emphasizes calculational meanings while still 

providing a context for deriving reasonable calculations to evaluate function values or 

growth factors. In addition, Thompson can support students in imagining the length of the 

segment growing from the first length to become the second length as it slides through 

the interval (personal communication, April 9, 2015). This imagery can support students 

in developing algorithmic approaches to calculate function values and building meanings 

for rational exponents emerging from coordination of smooth continuous covariation. 

 Building on Thompson’s conceptual analysis. Castillo-Garsow (2010, 2012; 

Castillo-Garsow, Johnson, & Moore, 2013) provided empirical support for Thompson’s 

conceptual analysis. In his dissertation study, Castillo-Garsow (2010) created a teaching 

experiment with two high school freshman algebra students (Tiffany and Derek) using 

Thompson’s simple interest approach to build a meaning for exponential growth. While 

coordinating the account value with elapsed time, and while coordinating the relationship 
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between the account’s growth rate and the account’s value, Tiffany consistently described 

change occurring in “chunks”. She talked about equal-sized changes in time and the 

resulting jump in the account value, and when pressed to focus on what was happening 

within one of these intervals, her language and written work suggested that she thought of 

subdividing the interval into smaller “chunks” and producing corresponding account 

values in a discrete pattern (like a sequence).19 Derek, on the other hand, made it clear 

that he was thinking about time passing continuously and that this meant that both the 

account value and the rate of growth were constantly updating by “flowing” from one 

value to the next. Castillo-Garsow et al. (2013) claim that the distinction indicates that the 

two students’ images of change differed. “When creating the graph, Tiffany conceived 

the account value as changing after a specified interval of time. In contrast, Derek 

conceived the account value as changing with continuous changes in time” (p. 33). These 

contrasting images of change, first noted by Saldanha and Thompson (1998) and termed 

“chunky variation” and “smooth variation” respectively by Castillo-Garsow (2010), had 

important implications for the students’ ability to reason about exponential growth. 

 Castillo-Garsow et al. (2013) argue that encouraging chunky variation thinking is 

common in U.S. mathematics instruction. Teachers and students change an independent 

variable in equal-sized steps, calculate the corresponding dependent variable values, 

graph these pairs as points, and then connect the points with a smooth curve. While the 

curve is meant to approximate the ordered pairs left unevaluated, at least three issues 

arise. First, students often never explicitly reason about the behavior of the function 

                                                      
19 Based on Castillo-Garsow’s description, Tiffany’s reasoning appears fairly consistent with Confrey and 
Smith’s recommended ways of understanding exponential growth. 
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within these intervals, commonly resulting in students thinking of graphs as curves 

passing through points but identifying the explicitly plotted points as the only ones that 

lie on the curve (Thompson & Carlson, 2017). Second, this approach makes it difficult to 

support images of continuous changes in quantities because students first imagine the 

change occurring in chunks, evaluate the results of these changes, and then (perhaps) “fill 

in” values between. Thus, values of the quantity are determined and conceived of out of 

temporal order and the individual’s initial conceptions of the function relationship are not 

generated through dynamic coordination of covarying quantities. Third, the size of the 

chunks is determined first, so the chosen interval size impacts the model’s accuracy since 

a person can easily overlook important features and behavior not captured by the 

intervals’ endpoints. In Castillo-Garsow’s study, Tiffany did not connect the points she 

plotted. Castillo-Garsow conjectured that this was because she was unfamiliar with both 

the context being considered and the type of function she was building. When students 

are familiar with a function family from repeated examples they often “fill in” function 

behavior between discrete points even if they do not have a sophisticated understanding 

of how the graph represents a coordination of the values for two covarying. This behavior 

is not ideal and differs from imagining an emergent function correspondence generated 

by coordinating variation in two quantities.  

Summary. Thompson’s work builds from a theory of quantitative reasoning 

(identifying quantities, quantification, and creating structured relationships among 

quantities). When the individual conceptualizes two quantities that change in tandem, an 

image of the function relationship derives from coordinating the quantities’ values such 

that at all moments of conceptual time each quantity’s magnitude or measurement 
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persists as they vary together. Thompson argues that this is a productive meaning for 

function both developmentally and for supporting images of change and accumulation 

that make the FTC conceptually accessible to students. Thompson develops the 

exponential function by defining a relationship between two quantities where the rate of 

change of one quantity with respect to the second quantity is proportional to the value of 

the first quantity and creates a function to track the first quantity’s accumulation by 

applying homogeneous rates of change over small intervals. When the size of the 

intervals tends to zero, the accumulation function converges to an exponential function. 

In cases where a growth factor is given (such as knowing a half-life or doubling time for 

some quantity), Thompson doesn’t want students to imagine coordinating discrete 

ordered pairs for the function as one might when examining a table of values. Instead, he 

wants students to imagine that a growth factor or percent change comparison refers to 

what remains invariant as two quantities smoothly vary in tandem. That is, constant 

percent change refers to a constraint on how two quantities covary. 

 Table 3.2 summarizes the key aspects of the two conceptual analyses for 

exponential growth. 

 

Ellis and Colleagues: An Empirically Supported Hypothetical Learning Trajectory 

Ellis and her colleagues studied Confrey and Smith’s and Thompson’s conceptual 

analyses and generated a hypothetical learning trajectory and accompanying set of 

activities designed to support students in developing personal meanings for the following 

ideas. 
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Table 3.2 

Comparing Confrey and Smith’s Conceptual Analysis with Thompson’s Conceptual 
Analysis 
 

 Confrey and Smith Thompson 
Covariational 
reasoning 
involves… 

…coordinating values of two discrete 
sequences containing the values of 
varying quantities. 

…conceptualizing a multiplicative object 
uniting two varying quantities as they change 
in tandem in a smooth, continuous way. 

A function 
represents… 

…a patterns that emerges from 
coordinating two independent 
sequences. 

…a relationship derived from 
conceptualizing constrained covariation of 
two quantities.  

A unit is… …whatever remains constant in a 
repeated action. 

…part of the quantification process. When a 
person wants to measure some attribute of an 
object (a quantity) he chooses a fixed size of 
that attribute for comparison (a unit of 
measure). A quantity’s measurement 
represents a relative size comparison of the 
quantity’s and unit’s magnitudes. 

A rate of 
change is… 

…a unit-per-unit comparison deriving 
from coordinating successive values in 
two independent sequences. 

…the proportional relationship between the 
changes in two quantities’ values as they 
covary. 

Multiplicative 
reasoning… 

…emerges from performing splits 
(either making an equal number of 
copies of an original amount or 
breaking an original amount into equal-
sized parts). Multiplication involves 
conceptualizing the number of pieces 
after the split compared to the original 
number of pieces. 

…describes conceptualizing a coupling of 
two already-conceptualized quantities so that 
the new object is understood in relation to 
the original quantities. Applied to 
“multiplication” contexts, one conceptualizes 
a product ab as a copies of b, where ab is a 
times as large as b and b times as large as a 
while understanding that a is 1/b times as 
large as ab and b is 1/a times as large as ab. 

What is the 
initial 
assumption 
for 
developing an 
exponential 
function? 

An exponential function develops from 
first coordinating geometric and 
arithmetic sequences and then 
considering interpolations (what 
numbers must be placed in between the 
values of each sequence to preserve the 
structure of each sequence) to create or 
imagine coordinated sequences with the 
same density as the rational numbers. 

The function’s rate of change over some tiny 
interval is proportional to the function’s 
value at the beginning of the interval. 

What is the 
motivation 
for choosing 
this initial 
assumption? 

Studying students’ primitive actions led 
them to develop novel meanings for 
function and rate of change that build 
from common student conceptions. 
Applying the meanings of function and 
rate of change to exponential growth 
creates a natural starting point for 
defining exponential functions in terms 
of coordinating splitting and counting 
worlds by juxtaposing a geometric 
sequence with an arithmetic sequence. 

Conceptualizing the FTC in such a way that 
its results are intuitively obvious involves 
imagining homogeneous rates of change 
applied over tiny intervals so that change and 
accumulation occur simultaneously. 
Applying this imagery to exponential 
functions involves first conceptualizing a 
function whose rate of change over tiny 
intervals is proportional to the function value 
at the beginning of each interval, allowing 
accumulation to occur, and deriving the 
function relationship that results by letting 
the interval lengths decrease towards 0.  
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1. The period of time x for the y-value to double (or increase by the growth 
factor b) is constant, regardless of the value of a or b. 

2. There is a constant ratio change in y-values for each constant additive change 
in corresponding x-values. 

3. The percentage growth in y is always the same for any same ∆x… 
4. The value of f (x + ∆x)/f (x) is dependent on ∆x. 
5. The constant ratio change in y-values is dependent on both the growth factor b 

and on ∆x in the following manner: y2/y1 = bx2–x1. This relationship will hold 
even when ∆x < 1. (Ellis et al., 2015, p. 140) 
 

In designing their teaching experiment, Ellis et al. anticipated, and later confirmed, that 

students’ initial models for exponentiation involved an informal image of repeated 

multiplication. Ellis et al. wanted students to leverage covariational reasoning to build a 

more robust image of exponential growth. Their image of covariational reasoning might 

be described as “Confrey and Smith covariation with continuity”. Ellis et al. wanted 

students to focus on coordinating multiplicative changes in one quantity with additive 

changes in another quantity so that students could appreciate that the ratio f (x + ∆x)/f (x) 

was constant whenever ∆x was a given constant value and that more generally the value 

of f (x + ∆x)/f (x) depended on the value of ∆x. Leveraging Carlson et al. (2002), Castillo-

Garsow (2012), Saldanha and Thompson (1998), and Thompson and Carlson (2017), 

Ellis et al. expressed their desire for students to think about the coordination of two 

quantities happening continuously and smoothly. They wanted students to experience a 

situation where it was more natural to see a relationship where one quantity had values 

for all possible values of a second quantity and they recognized that many situations 

leveraging splitting imagery involved more static thinking. Therefore, the context at the 

core of their teaching experiment involved a plant (called a Jactus) growing continuously 

over time. 
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Ellis et al. built a Geogebra applet of the Jactus with a height that varied 

exponentially with elapsed time. A user can smoothly move a point along the horizontal 

axis of a plane (representing a varying time elapsed measured in weeks) and the Jactus 

will “grow” so that its height matches a particular exponential growth pattern. The user 

can also change the initial plant height and the weekly growth factor. See Figure 3.7. 

Note that the applet displays the time elapsed and the plant’s height as the user slides the 

plant horizontally.  

 

Figure 3.7. An approximation of the display for Ellis et al.’s (2012, 2015, 2016) Jactus 
applet. 
 
Students initially interacted with the applet and recorded measurements in order to 

discuss how the height changed. Then Ellis et al. asked students to draw pictures of the 

plant at various points in time in order to help the students conceptualize and distinguish 

the quantities plant height and time elapsed. Eventually students were asked to make 

drawings and anticipate measurements when only partial information was present (for 

example, when some number of weeks’ data was omitted) and to reason in general terms 

about what would happen to the plant height over time if they knew the growth factor but 

no actual measurements. All of the activities shared the broader goals, inspired by 
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Carlson et al.’s (2002) covariation framework, of supporting students in flexibly 

coordinating the ratios of plant heights for different changes in time elapsed. 

 Ellis et al. were quite successful in a number of ways. Students working through 

the activities exhibited three key shifts in their thinking (with some variation from student 

to student). First, students shifted from thinking only about repeated multiplication of the 

y-values without worrying about how the corresponding x values changed to coordinating 

variation in both values. This was a key shift that allowed students to develop algebraic 

representations for the plant’s height at different moments. Second, students were able to 

move from just coordinating ratios of y values for ∆x = 1 to ratios of y-values for larger 

changes in x, including reunitizing so that they could imagine such changes in x as a 

single change instead of a sequence of unit changes. Third, students shifted to being able 

to represent ratios of y values for values of ∆x less than 1. “[These] results…offer a proof 

of concept that even with their relative lack of algebraic sophistication, middle school 

students can engage in an impressive degree of coordination of co-varying quantities 

when exploring exponential growth” (Ellis et al., 2012, p. 110). 

My understanding of how they imagined this learning trajectory eventually paying 

off for students was that students could come to understand bx as both the possible height 

of a plant at some moment in time and as representation of a (multiplicative) change in 

height from an initial height to the height after x weeks.20 With this understanding, the 

“initial” function value is a scalar for a certain class of behavior. This may support 

students in constructing meaning for the algebraic representation f (x) = abx. Rather than 

                                                      
20 To fully achieve this goal might require what Weber (2002) described as a process view of exponential 
expressions in order for a student to have confidence that bx has a value and a meaning even for irrational x. 
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imagining repeated multiplication used to evaluate f (x) at some input x (with all of the 

issues inherent in that reasoning), students can conceptualize a meaning consistent with 

the order of operations used when evaluating the function. First, evaluate bx (the ratio of  

f (x) to f (0)). Second, scale f (0) by a factor of bx to determine f (x). This view allows for 

a more general model f (x) = f (h) ∙ bx–h where (h, f (h)) is any ordered pair for the 

function and f (x) = abx is simply a special case of this representation. O’Bryan and 

Carlson (2016) demonstrated that this kind of orientation towards developing meaningful 

formulas through linking the meaning of expressions to informal reasoning and attention 

to how the order of operations mirrors the steps in a reasoned solution was powerful for 

both teachers and students. 

 While students showed impressive gains, Ellis et al. observed noteworthy hurdles 

students had to overcome to make progress towards their key learning goals. Students’ 

initial models were so strongly tied to repeated multiplication to produce different plant 

heights that it was difficult to make students explicitly attend to changes in time as a 

quantity to which they must attend and to focus on coordinating changes in the plant’s 

height with changes in elapsed time. Furthermore, while students were able to utilize the 

notation bm to represent m factors of b, “repeated multiplication as iteration remained a 

strong focus for their actions and inscriptions…[and thus] they had difficulty generalizing 

their thinking to a gap that was arbitrarily large or small” (Ellis et al., 2015, p. 146).21 

 Ellis et al.’s conceptual analysis is very much in line with Confrey and Smith’s 

and Ström’s conceptual analyses and recommendations with the exception that they 

recognize from Thompson’s and Castillo-Garsow’s work the importance of having 

                                                      
21 Note that this was a key finding for Ström (2008) as well. 
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students conceptualize situations with an image of continuous, dynamic covariation 

instead of static values of some number sequence. That being said, viewing their teaching 

experiment through the lens of Thompson’s and Castillo-Garsow’s work might explain 

some of the observed student behaviors. 

 In Thompson’s theory of quantitative reasoning, quantities must first be 

conceptualized before they are quantified, and developing a quantification process 

capable of producing reliable measures with specific interpretations is a key step in 

building productive meanings. In their applet design, Ellis et al. provided the plant height 

measurements relative to fixed linear units, and their students could thus immediately 

create tables of values and begin to perform calculations that reinforced initial images of 

repeated multiplication. Since the first growth factors used were simple numbers, 

students easily recognized that they could, for example, multiply a height by two to 

produce the height one week later. Thus, multiplication by two was a calculation to 

produce heights in a sequence. Students did not need to conceptualize an intensive 

measurement of relative size and consider how to produce the measurement. Their focus 

was not on the quantitative operation at all, only on calculations to produce the numbers 

observed on the applet. Ellis et al. seemed to acknowledge this issue. When they didn’t 

specify a growth factor they observed students were more successful in “describ[ing] 

plants as growing in such a way that depicted a sense of continuous scaling or stretching” 

(Ellis et al., 2015, p. 150). When students were given the growth factor (or, presumably, 

when the growth factor was obvious), the students described the behavior in terms of 

repeated multiplication. 
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This might explain why some students developed relatively strong 

correspondence views early in the teaching experiment that allowed them to develop 

algebraic formulas for the relationship between height and time elapsed but that 

constrained their thinking when it came to using more basic covariational reasoning to 

answer straightforward tasks. These students were so grounded in the relationship being 

defined by calculations on given measurements that they did not have a strong mental 

image of the relevant relationships from which to draw. At one point during their efforts 

to help students conceptualize time as a quantity in its own right to which they must 

attend, Ellis et al. asked students to make drawings of the situation and gave them 

incomplete information (one week’s data was skipped). They shared a student’s drawing 

that resembled the diagram in Figure 3.8.  

 

Figure 3.8. Approximating a student’s drawing (Ellis et al., 2012, p. 102). 

Ellis et al. did note that the student did not accurately draw the relative heights but they 

did not find it overly problematic since the student annotated the drawing using the 

correct measurements. However, the drawing may indicate that the student did not have a 

meaning for the growth factor beyond a number by which to multiply to produce another 

number. That is, this student does not appear to have been attending to relative height as a 
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measurement of two instances of the quantity’s magnitude. Thus, from Thompson’s point 

of view, we might question initial activities that reinforce calculational meanings for a 

growth factor while ignoring other potentially useful meanings, such as the measure of a 

conceptualized intensive quantity.  

 Ellis et al. acknowledge that Thompson’s conceptual analysis differs from their 

own and wrote that they consciously chose not to use his approach with their subjects. 

However, they stated 

We were interested in developing a situation in which the notion of proportional 
rate of change would arise naturally. We have found that adopting a rate of 
change perspective can be accessible even for beginning algebra students in 
middle school, particularly if they have opportunities to explore situations that 
encourage students to construct meaningful relationships between quantities 
(Ellis, 2007, 2011a, 2011b). (Ellis et al., 2012, p. 96) 
 

Within their work I could not find an exact definition of rate of change that would justify 

this statement nor an example of how their work built to this conclusion. They appeared 

to use the notion of a constant multiplicative rate of change from Confrey and Smith’s 

conceptual analyses but it was implicit. 

As Ellis et al. also point out, just having a context with a continuous relationship 

does not guarantee that students will conceptualize the situation in that way, nor does it 

guarantee that they will engage in smooth continuous variation reasoning. Castillo-

Garsow (2012) was very clear that chunky thinking does not naturally lead into smooth 

thinking, so instructional trajectories designed to eventually support smooth variation 

reasoning but that begin by explicitly supporting chunky thinking put the cart before the 

horse. Ellis et al. wrote that “Returning to visual models of growing plants via Geogebra 

was merely a backdrop to encourage students to create descriptions of growth that did not 
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rely on discrete repeated multiplication actions” (Ellis et al., 2015, p. 150). So their use of 

the applet helped orient students to the problem, but reasoning with continuous variation 

was not at the heart of the activities in which students engaged. Students leveraged 

chunky covariational thinking almost exclusively throughout the various activities and 

the activities seemed designed to promote and make use of this reasoning.22 Thompson 

(2012) recognized that students in Ellis et al.’s study seemed not to reason about smooth 

variation while thinking about growth factors, and only one student appeared to try to 

build an interpolation model consistent with smooth variation reasoning but only when 

the student explicitly stopped talking about growth factors. 

I want to make clear that I do not mean the above comments to express a negative 

opinion of Ellis et al.’s work. Quite the contrary. Teaching and learning ideas related to 

exponential growth is extremely challenging. Their study supported students in making 

many impressive shifts in their understanding of exponential growth and helped students 

successfully complete tasks that other researchers highlight as challenging. Furthermore, 

their work provides empirical support for the argument that attending to how two 

quantities change together, regardless of the specific definition of covariation being 

leveraged, does eventually support more productive understandings of correspondence 

rules. Ellis et al. are engaged in design-based research whereby researchers try to impact 

student learning in the messy and chaotic realities of real classroom environments and 

then try to learn from the intervention’s implementation and results to improve future 

                                                      
22 Ellis et al. wrote that “Smooth continuous variation entails imagining the variation of a quantity’s value 
as its magnitude increases in bits while anticipating that within each bit the value varies smoothly 
(Thompson & Carlson, in press). We consider this way of thinking to be a challenging goal for middle 
school participants – in particular for exponential growth – due to how growth is defined geometrically” 
(2015, p. 152). 
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interventions. Looking at their work critically using Thompson’s conceptual analysis as a 

lens is an attempt to consider alternative explanations for observed student behavior to 

help inform my own hypothetical learning trajectory. A learning trajectory, I must 

emphasize, that will owe much to Ellis et al.’s work. 

Before closing this chapter, I will briefly summarize the literature related to 

learning mathematics in an online environment. I will use the collective 

recommendations from this body of literature, if possible, to inform my intervention’s 

structure and substance. 

 

Students Learning Mathematics in an Online Environment 

Research related to learning in online mathematics courses, or meta-analyses that 

include studies involving mathematics courses, can generally be grouped into three broad 

categories (with some overlap): 1) studies examining the impact of online learning on 

student engagement and emotions, 2) comparative analyses of student performance in 

online vs. face-to-face courses, and 3) attempts to discover and prescribe best practices 

for creating online courses. I will briefly summarize the conclusions in each of these 

categories before detailing important considerations not yet explored. 

 Researchers looking at students’ emotional states while engaged in online 

coursework justify their studies with the premise that emotional states impact cognition, 

memory, creativity, motivation, and attention as well as how flexible students are in 

applying cognitive strategies (Isen, 2000; Kim, Park, & Cozart, 2014; Levine & Pizarro, 

2004; O’Regan, 2003). Brinkman, Rae, & Dwivedi (2007) and O’Regan (2003) attribute 

negative student emotional reactions (such as frustration, anxiety, and embarrassment) 
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mostly to unreliable technology, challenges in navigating poorly designed web pages, 

stress related to falling behind or missing deadlines, inconsistent response times from 

instructors, not being confident with technology, or feeling ashamed when their work is 

publicly compared to classmates’ work. On the other hand, positive emotional responses 

(such as enthusiasm, excitement, and pride) derived from autonomy, overcoming fears of 

technology, being impressed by new technology, or excitement at having access to a 

course from a remote location. Glass and Sue (2008) showed that active participation led 

to better and more persistent understanding, and several studies found that students were 

more actively engaged in an online course (Chen, Lambert, & Guidry, 2010; Glass & 

Sue, 2008; Hu & Kuh, 2001; Kuh & Hu, 2001; Laird & Kuh, 2005). They typically 

measured this using student surveys and/or monitoring the time students spent working 

on homework.  

Some studies reported that student achievement was higher in online 

environments compared to traditional face-to-face classrooms. Students in Chen et al.’s 

(2010) study self-reported that online learning environments provided them with a better 

overall learning experience and improved their understanding of how to apply their 

learning in practical contexts. Hughes, Mcleod, Brown, Maeda, and Choi (2007) showed 

that students in online secondary math courses performed better than students in 

traditional settings on the Assessment of Algebraic Understanding, a test intended to 

align with the National Council of Teachers of Mathematics (2000) algebra standards. 

Nguyen and Kulm (2005) and Nguyen, Hsieh, and Allen (2006) demonstrated that 

students will spend more time on homework and complete more practice problems in 

online environments and that this correlated with improved achievement. They credited 
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the increase in students’ willingness to practice, including repeating assignments to attain 

higher scores, to the immediate feedback computers provide. However, in many studies 

online courses did not produce a strong, statistically significant improvement in overall 

student learning (Barbour, Brown, Waters, Hoey, Hunt, Kennedy, & Trimm, 2011; 

Brinkman et al., 2007; Kim et al., 2014; Taylor, 2002). Some researchers argued that this 

is because both online and face-to-face instruction have strengths and weaknesses, and 

the benefits of online learning (those characteristics that might improve student 

performance) are balanced against the characteristics that might negatively impact 

performance and that educators have yet to embrace best pedagogical practices in online 

environments (Hughes & Mcleod, 2007). But it is still a fact that several meta-analyses 

demonstrated no significant positive impact for students taking online courses compared 

to those taking traditional courses (Hannafin, Orrill, Kim, & Kim, 2005; Means, et al., 

2009; Swan, 2003; Twigg, 2003).  

The final category of studies focused on developing best practices for online 

course design (Coomey & Stephenson, 2001, Engelbrecht & Harding, 2004; Glass & Sue, 

2008; Hopper & Harmon, 2000; Kramarski & Gutman, 2006; McDuffie & Slavit, 2003; 

Myers, 1999; O’Regan, 2003; Rimmershaw, 1999, Stiles, 2000; Swan, 2003; Taylor, 

2002; Wadsworth, Husman, Duggan, & Pennington, 2007). Synthesizing all of their 

advice produced the following general recommendations.  

 Courses should be easy to navigate with a low bar of technical know-how needed 

to interact with the site and with careful routine checking to fix issues with 

courses such as broken links.  
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 Directions to students must be clear, including course requirements, deadlines, 

and grading rubrics, and the instructor must be easy to contact.  

 The course should contain the ability for students to access practice with 

prerequisite skills and to self-assess their progress at any time. In addition, 

students should receive immediate feedback on their work whenever possible. 

 Assignments should be clearly useful and be well-integrated into the flow of the 

course.  

 The course content should include multiple formats and representations with 

flexible means for students to achieve course objectives.  

 Activities should require a mixture of high and low cognitive levels.  

 Features of the course should be designed to take advantage of the strengths of 

technology and autonomous learning. They should be more than just a replication 

of an in-person lecture course accessed via a website. 

 The course must somehow engage the learner socially. The learner must feel like 

he is part of a community of learners and not isolated. 

 The course should include questions or tasks that prompt metacognitive reflection 

and promote self-monitoring strategies. 

While these are sound recommendations and many of them may apply to designing 

courses for in-person instruction, there is no focus on the ways in which the researchers 

intended students to think about the mathematical ideas contained within each course. 

All of the studies I reviewed were based on classical experimental design testing 

variables such as “classroom setting” but never considering the mathematical content as 

potentially problematic.  Therefore, this line of research offers no insight into students’ 
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scheme development or accommodation in an online course relative to specific 

mathematical ideas or features of the online environment that support or inhibit these 

accommodations.  



 

64 

CHAPTER 4 

CONCEPTUAL ANALYSIS 

Our observation is that how students understand a concept has important 
implications for what they can do and learn subsequently. While this observation 
is neither new nor breathtaking, it is rarely taken seriously. To take it seriously 
means to ground the design of curricula and teaching on careful analyses of what 
we expect students to learn and what students do learn from instruction. 

Careful analyses of what students learn means more than creating a 
catalog of their behaviors or strategies you hope they employ. They also entail 
tracing the implications that various understandings have for related or future 
learning. (Thompson & Saldanha, 2003, p. 95) 
 

 Thompson (2008) defined conceptual analysis as a description of “what students 

must understand when they know a particular idea in various ways” (p. 42) and outlined 

various uses for conceptual analysis. In In this chapter I begin by describing my 

conceptual analysis for percent comparisons, measuring and representing percent change, 

growth factors, and understanding exponential functions with a focus on 1) outlining 

ways of knowing that could be beneficial for students’ mathematical development and 2) 

analyzing the coherence in meanings among some set of ways of knowing. Note that I 

consider this conceptual analysis as a body of ideas that I conjecture, but do not know for 

certain, will benefit students in having a powerful and coherent understanding of ideas I 

view as related to exponential growth. Part of my final analysis will involve assessing the 

degree to which students developed meanings in line with my goals and, if they did, the 

degree to which these meanings were useful. The second half of this chapter includes a 

hypothetical learning trajectory, including key tasks, which I conjecture will provide 

opportunities for students to construct productive meanings for the ideas described in my 

conceptual analysis. My main goal in this chapter is to follow Thompson’s (1985) advice 

for designing curricula by clearly articulating the meanings I intend students to construct 
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and to propose a particular activity sequence has the potential to support these 

constructions. 

 

Exponential Growth and Related Ideas from a Quantitative Perspective 

 A growth factor is a measurement relating two instances of the same quantity 

separated by some additive change in a second quantity. As such, understanding growth 

factor relies on having a meaning for measurement in general as a multiplicative 

comparison and to understand that 1) a quantity’s magnitude is independent of the 

magnitude of units used to measure it, 2) measurements indicate a reciprocal relationship 

between the quantity’s magnitude and the unit’s magnitude, and 3) changing the unit of 

measure changes the measurement value in an inversely proportional manner (Thompson 

et al., 2014). These understandings are also key to understanding percent comparisons 

and for connecting growth factor to percent comparison and percent change. 

 

Flexibility in Choosing a Unit 

 In the previous section I discussed the relationship between a quantity’s 

measurement and the magnitudes of the quantity and the unit. In my descriptions the unit 

was always chosen arbitrarily. This is common in measurement systems. For example, 

the lengths called “1 foot” or “1 meter”, the volume called “1 cup”, or the mass called “1 

kilogram” are all chosen arbitrarily. However, another method for choosing measurement 

units is to rely on convenient magnitudes deriving from the context under consideration. 

For example, Tallman (2015) carefully lays out the reasoning involved in using a circle’s 

radius as the measurement unit for arc lengths on that circle. While we are free to choose 
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a different unit (so the choice of unit can still be considered arbitrary), the size of the 

radius itself is not arbitrary in the same manner because its length is an inherent property 

of the related circle. Thus, something about the situation and measurement process 

dictates the unit’s magnitude.  

Suppose I measured a tree’s height at two different moments in time and that each 

time I cut a piece of string with a length equal to the tree’s height at the moment I 

measured it (call these lengths 1l  and 2l ). When I lay out the pieces of string next to each 

other I can think of each string’s length as a measurement unit for describing the other 

string’s length. See Figure 4.1. 

 

Figure 4.1: Measuring relative sizes. (top) The two string lengths representing the tree’s 
height at two moments. (middle) Using the first height as the measurement unit, the 
second height has a measure of 1.4 (the second height is 1.4 times as large as the first 
height). (bottom) Using the second height as the measurement unit, the first height has a 
measure of about 0.7 (the first height is about 0.7 times as large as the second height).23 
 

                                                      
23 This is what Lamon (1994) describes as norming within a quantification scheme and is the key way of 
thinking that allows someone to see a number such as 2/3 as representing different amounts of a quantity 
depending on conceptualizing the meaning of “1” in the context. 
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These two ways of generating measurements for each string length use units that are not 

arbitrary because they rely on magnitudes of the quantity that exist in the context at hand, 

although choosing either magnitude as the measurement unit (over the other magnitude or 

over any other choice of unit) is arbitrary. Note that the resulting measurements involve 

two instances of the same quantity and do not require measuring either instance in some 

standard unit and comparing these measurements. 

 I chose to represent the tree’s height at the two moments in time using the lengths 

of two pieces of string for two interrelated reasons. First, doing so simplifies the process 

of holding in mind the magnitude of a quantity at two distinct moments in time. This is 

something lacking in Ellis et al.’s (2012, 2013, 2015, 2016) activities involving the Jactus 

plant. Even though students in their study could vary the height of the plant by varying 

the time elapsed since first measuring the plant, they could not visualize two heights of 

the plant at two different moments in time simultaneously. Instead, students focused on 

comparing measurements of the Jactus’s height in some standard unit recorded in a table. 

This leads to my second reason for using two lengths of string. When only one instance 

of the quantity’s magnitude is visible at a given time, it may be less natural to use a 

different instance of the same quantity as the measurement unit and more natural to use a 

standard unit (such as feet) for measuring the magnitude. Numerical representations for 

the quantity’s measurement at multiple instances (such as a representation of multiple 

values in a table) provides an opportunity for students to generalize the relationship 

between instances as the product of performing a calculation rather than conceptualizing 

a relative size. It might also be easier for someone to overlook coordinating these 

measurements with changes in a second quantity. For example, the tree measurements 



 

68 

took place one year apart. Therefore, saying that the second height is 1.4 times as large as 

the first height is relatively meaningless in the context without recognizing when the two 

measurements were taken and therefore the interval of time over which the tree was 

growing between the measurements. Heights chosen from different moments or with a 

different amount of elapsed time between them would affect the measurement and its 

interpretation. 

 

“Elastic” Units and the Meaning of a Growth Factor 

 A person with the understandings already described is positioned to consider the 

question, “What are the characteristics of a unit such that, as the quantity’s magnitude 

changes, the quantity’s measure in that unit never changes?” For the measurement of a 

varying quantity to remain constant, the unit must change so that its magnitude and the 

quantity’s magnitude always have the same relative size. In Figure 4.2 we see three 

instances of a varying quantity’s magnitude and a measurement unit that changes in 

tandem so that the quantity’s measure is always 2.5.  

 
Figure 4.2. An “elastic” ruler that changes with a varying quantity so that the 
measurement remains constant. Contrast this with a rigid ruler where the length of the 
unit remains constant and the measurement changes as the quantity varies. 
 
This is how Tallman (2015) conceptualizes radian measure for an angle with a fixed size. 

As the size of the circle centered at the angle’s vertex varies, the subtended arc length 

varies. If we want the measurement of that subtended arc to be fixed (and thus the angle’s 

measure to be constant), then our measurement unit must be proportional to the circle’s 
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circumference. The circle’s radius is a natural choice for such a unit, although it is not the 

only choice. 

  Returning to the tree height example, imagine that the tree grows such that its 

height at any given time is always the same measurement when using the height one year 

prior as the unit. What can we conclude about how the tree grows? Assuming the relative 

size measurement in my running example, at any moment in time the tree’s height is 

always 1.4 times as large as the tree’s height exactly one year prior. Equivalently, at any 

moment in time the tree’s height one year in the future will always be 1.4 times as large 

as its current height. If we allow time to pass such that the tree’s height changes, then the 

tree’s height one year earlier/later must also change so that the two magnitudes have a 

constant relative size of 1.4 (using the earlier height to measure the later height). Note 

that there are two measurements held constant here: the relative size of the tree heights at 

two different moments in time and the interval of time between the moments when the 

tree has the two corresponding heights. 

Combining all of the ideas discussed so far allows for the following potentially 

powerful meaning for growth factor of a quantity (over some interval of change for a 

second quantity). Coordinating two covarying quantities (call them A and B, with 

magnitudes represented as A  and B  respectively24) united as a multiplicative object 

over some interval of conceptual time sees their magnitudes vary from  1 1,A B  to 

 2 2,A B . The growth factor of B over the interval of conceptual time where A varies 

                                                      
24 Here I use the notation and meaning from Thompson (2011), Thompson et al. (2014), and Wildi (1991) 
where A , the magnitude of quantity A, “is the size of an object having the attribute that is being measured 

and that is taken to have one unit of that attribute” (Thompson et al., 2014, p. 5). 
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from 1A  to 2A  is the multiplicative comparison of 2B  to 1B , or 2B  measured in 

units of 1B , or the value of k such that 2 1B k B  . The value of k is a constant across 

all choices of unit for measuring B provided that the unit is consistent for both 

measurements. Therefore, if a represents the possible values for the varying quantity A 

(measured in some appropriate unit) and b represents the possible values for the varying 

quantity B (measured in some appropriate unit), then the growth factor of B over the 

interval from 1a a  to 2a a  (an interval of size 2 1a a ) is 2

1

b

b
. 

 

Percent Comparisons  

One percent of a quantity’s magnitude (at some moment) is a magnitude having 

the same attribute as the quantity such that 100 one percent of A A  . In other 

words, the original quantity’s magnitude measures 100 in units of one percent of the 

quantity’s magnitude. Note that I wrote “one percent of a quantity’s magnitude (at some 

moment)” and not just “one percent” because conceptualizing the meaning of “one 

percent” is again a norming process and has no fixed size across all contexts or even 

within the same context. For example, consider the following statement where “one 

percent” is used to reference two different volumes of water: “The current volume of 

water in the reservoir is 40% of its maximum capacity and is down 15% from the volume 

at the beginning of the year.” 

One percent of a quantity’s magnitude at some moment is a suitable unit for 

measuring other quantities of the same quality or even additional instances of the same 

quantity as it varies. The resulting measurement is a percentage value. For two quantities 



 

71 

A and B representing the same quality of objects, measuring B  as a percentage of A  is 

to think of the value k such that one percent of B k A  . Similarly, for two 

instances of quantity A, measuring 2A  as a percentage of 1A  is to find the value k such 

that 2 1one percent of A k A  . 

In order to demonstrate the reasoning I described I return to the example of 

measuring a tree at two different moments in time.  Suppose that the measurements were 

taken on January 1 of last year and January 1 of this year. The growth factor over this 

one-year period is the magnitude of the height on January 1 of this year using the height 

on January 1 of last year as the measurement unit. See Figure 4.3. 

 

Figure 4.3. Measuring the height’s magnitude on January 1 of this year using the height’s 
magnitude on January 1 of last year as the measurement unit. 
 
The new height is 1.4 times as large as the reference height. Measuring the new height as 

a percentage of the reference height is to measure it in a unit that is 1
100  times as large, 

and thus the measurement value is 100 times as large. The new height is 140% of the 

reference height. See Figure 4.4. 
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Percent Change 

Determining a percent change in one quantity’s value across two instances 

requires conceptualizing a more complicated quantitative structure. First, the individual 

must conceptualize a varying quantity within a situation. Second, she must conceptualize 

two instances of the quantity with some implied or explicit order, the magnitude of the 

 

Figure 4.4. Measuring the magnitude of the height on January 1 of this year using one 
percent of the height on January 1 of last year as the measurement unit. The measurement 
unit is 1

100  times as large as the unit in Figure 3, so the new measurement is 100 times as 

large as the previous measurement. 
 
quantity for each instance, and an additive comparison of these magnitudes. This additive 

comparison, however, must be like a vector quantity with both a magnitude and a 

direction in order to capture whether the change is an increase or a decrease. Third, she 

imagines measuring the additive comparison as a percentage of one of the two 

magnitudes. So the percent change from 1A  to 2A  can be thought of as the value of k 

such that 2 1 1one percent of A A k A   . 

In most instances the percent change in one quantity is described with reference to 

an interval of change for another quantity in order to provide clarity within the given 

context. For example, reporting a population change of 4.8% is not very informative 

without describing the time period over which the change occurred. This coordination 
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involves covariational reasoning including an awareness of the interval of change for the 

second quantity and perhaps the size of this interval as an additive comparison.  

The change in the tree’s height from the reference height to the new height 

(occurring over a one-year period) is an additive comparison that captures both a 

magnitude and a direction of change. The percent change in the tree’s height is the 

measurement of this change using one percent of the reference height as the measurement 

unit. See Figure 4.5. 

 

Figure 4.5. Measuring the change in height using one percent of the height on January 1 
of last year as the measurement unit. 
 
 

Exponential Functions 

Many students enrolled in the Precalculus course under construction are either 

taking their final math class or will go on to enroll in a course using the Precalculus: 

Pathways to Calculus (Carlson, Moore, & Oehrtman, 2016) curriculum. Based on this 

assumption, the image of “exponential function” I intend students to construct is as 
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follows. An exponential function f of y with respect to x can be defined as a relationship 

where the relative size of f (x2) and f (x1) is constant whenever ∆x = x2 – x1 is constant 

throughout the function’s domain. The relative size measurement is the value of the ∆x-

unit growth factor. See Figure 4.6 for a diagram of the quantitative structure for 

understanding an exponential relationship based on my conceptual analysis. The 

framework in Table 4.1 describes the key ways of understanding exponential growth 

 
Figure 4.6. My quantitative structure for understanding an exponential model. Note that 
single-headed arrows imply a hierarchy of meanings such that conceptualizing the 
quantity at the tail of the arrow likely is a prerequisite for conceptualizing the quantity at 
the head of the arrow. Dashed boxes indicate a change in a quantity while dotted boxes 
indicate relative size comparisons between two instances of a quantity. Dashed, double-
headed arrows indicate the same quantities measured in different units.  
 
and its related ideas. Note that this framework was influenced by Ström’s (2008) final 

framework for understanding exponential growth, Ellis et al’s (2016) description of their 

learning goals for students, and my conceptual analysis outlined in this chapter. 

 

The mass of bacteria in an experiment doubles every seven hours from an initial mass 
of three micrograms. 

 



 

75 

Table 4.1 
 
A Framework for Understanding Exponential Growth and Related Ideas 

 

MCM: Multiplicative comparisons as measurement systems, which refers to comparing the value of two 
quantities multiplicatively (using the value of one quantity as a “measurement stick” with which to report the 
measurement of the other quantity). The measurement reported is a quotient. This can include comparing two 
values of the same quantity at two different moments when the quantity was measured. 

 MCM-1:  Assuming comparisons between the same types of quantities, a multiplicative comparison of 
two quantities reports the value of one quantity using the magnitude of the other quantity as the 
measurement unit. 

 MCM-2:  If the unit of measure is scaled, the measure of a quantity changes in a specific way. If the new 
unit of measure is k times as large as the previous unit of measure, then the quantity’s measurement in the 
new unit is 1/k times as large as its measurement reported in the previous unit. 

 MCM-3:  Two instances of the same quantity can be compared multiplicatively using one instance of the 
quantity as the measurement unit for the second instance. 

 MCM-4:  If the two quantities are proportional, or if the two instances of the same quantity maintain a 
relative size as they quantity changes, then the measurement of one in units of the other is constant even 
as the quantities change. 

MCP: Multiplicative comparisons reported in terms of percentages. This is a slight modification to the MCM 
in that we are not using 1/100 of the value of one quantity as the “measurement stick” instead of the full value of 
that quantity. 

 MCP-1:  A percentage is measurement that uses 1/100 of the value of some quantity as the measurement 
unit.  

 MCP-2:  Building on MCM-3, if a quantity’s value is used as a measurement unit, then using this 
quantity as the reference for a percentage measurement will yield a value 100 times as large. 

 MCP-3:  A percentage comparison between two instances using one instance as the measurement unit 
will always be 100% larger than the measurement of the change in the quantity using the same unit. 

MCPC: Leveraging MCP thinking to reason about the change in a quantity’s value (so the change in a 
quantity’s value is measured using 1/100 of the quantity’s starting value as the “measuring stick”). 

 MCPC-1:  Measuring a percent change involves 1) additively comparing two measurements of the same 
quantity in some order and 2) multiplicatively comparing the additive change to 1/100 of the value of the 
reference quantity’s value. 

 MCPC-2:  The percent change is 100 times as large as the multiplicative comparison between the change 
in value and the value of the same reference quantity. 

 MCPC-3:  When applying repeated constant percent changes, the reference value for determining the 
change in value updates at the end of each interval. 

 MCPC-4: Equal percent changes over different intervals produces non-constant absolute changes over 
those intervals. 

MCEF: Thinking about an “exponential function” as an invariant relationship between two continuously co-
varying quantities x and y = f (x). 

 MCEF-1: Within the domain of a function relationship, we can hold in mind two instances of the same 
quantity over a constant interval of the second quantity. 

 MCEF-2: The one-unit growth factor is a measurement determined by using one instance of a quantity as 
the unit ruler for measuring a second instance of the same quantity occurring when a second quantity 
varies by one unit. This measurement is constant even as the quantities vary. 

 MCEF-3:  For every choice of c there exists a constant d such that 
௙(௫ା௖)

௙(௫)
= 𝑑 as x varies continuously 

throughout the domain. [When c = 1, then the constant is the one-unit growth factor typically given as 
“b” in the formula y = abx].  

 MCEF-4:  If b is the one-unit growth factor, then bc is the c-unit growth factor (i.e., the ratio 
௙(௫ା௖)

௙(௫)
 for all 

x). 

 MCEF-5:  If b is the one-unit growth factor, then bx is the ratio 
௙(௫)

௙(଴)
 and f (x) = abx is one representation 

of the formula for the relationship where f (0) = a. 
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Comments on the Conceptual Analysis 

Throughout this conceptual analysis and examples I maintained a consistent focus 

on three questions at the heart of quantitative reasoning: 1) What am I measuring? and 2) 

What is my measurement unit? 3) What does the value of my measurement represent? 

This attention ensured that the values I produced had clear referents within a quantitative 

structure because my measurement schemes derived from the ways in which I 

conceptualized the quantities and relationships between quantities. Such a focus is 

different from common instructional goals I have observed with in-service teachers. For 

example, teachers typically describe a growth factor as the number you multiply by some 

number of times to evaluate a formula, the percent comparison is the result of taking the 

growth factor’s value and moving the decimal point two places (such as changing 1.05 to 

105), and the percent change is this value minus 100. Such a treatment encourages the 

tendency for students to “employ numerical operations that have no quantitative 

significance” (Thompson, 2011, p. 38). Notions of measurement are absent from this 

treatment as are any conceptual foundations for the operations. This may explain why, for 

example, only about 35% of college precalculus students who took Carlson et al.’s 

multiple choice Precalculus Concept Assessment at the end of their courses could identify 

the difference between the growth rates for the functions p(t) = 7(2)t and p(t) = 7(3)t 

(Research and Innovation in Mathematics and Science Education, 2007). Reasoning 

quantitatively in the manner that I described may support students’ ability to reason about 

percent comparisons and percent change regardless of the context or the way in which a 

task is presented and provides a conceptual foundation for reasoning about exponential 

growth. 
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Settling on Some Design Principles for the Online Intervention 

Before outlining the specific tasks within a hypothetical learning trajectory based 

on my conceptual analysis, I will discuss the general principles I followed in designing 

the online unit. 

 
Repeated Reasoning [Revisited] 
 

In Chapter 1 I described Harel’s meaning for repeated reasoning (or repetitive 

experience) and noted that “what we want repeated is the constitution of situations in 

ways that are propitious for generalizing assimilations, accommodation, and reflection 

(Thompson, 1994c, p. 227). Thompson (1991) explained one aspect of why this is so 

critical. In the course of a single year, students are often expected to learn (or memorize) 

numerous algorithms, definitions, and terms. Seen by students as disconnected facts 

dictated by a mathematical authority figure, the expectation is ludicrous. However, if 

students are engaged in repeated experiences where they are expected to develop 

algorithms in the course of developing stable meanings, then they build schemes that 

contain within them these algorithms along with powerful mental imagery supporting the 

algorithms connected to related schemes. This helps make problem solving routine, 

supports students seeing mathematics as a structured discipline, and increases students’ 

retention of mathematical knowledge. Steffe (1996) noted that the constructs of genetic 

epistemology and radical constructivism suggest that only knowledge useful to the 

individual develops and persists. If an instructor can design activities that require specific 

meanings useful to students’ mathematical development and can support students’ 

successful engagement in those activities, then students stand the greatest chance of 
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developing meanings in line with the instructor’s goals and the knowledge is more likely 

to persist. Furthermore, Thompson et al. (2014) describe how functional accommodations 

to a scheme often occur when someone is first learning a new idea. The accommodations 

are fragile and often do not persist. To achieve stable ways of thinking means the “person 

has developed a pattern for utilizing specific meanings or ways of thinking in reasoning 

about particular ideas” (p. 14), and this only occurs through repeated reasoning about 

those ideas. 

 It is also worth mentioning that repeated quantitative reasoning is likely to 

contribute to students transferring their knowledge across settings and applied contexts. 

Transfer is a notoriously slippery notion in education research, made more challenging 

because of how differently transfer is described by researchers working within different 

background theories. Lobato and her colleagues (Lobato, 2006; Lobato & Siebert, 2002; 

Lobato & Thanheiser, 2002) defined transfer from the individual’s perspective instead of 

focusing on transfer relative to the types of problems students can solve. They described 

transfer occurring when the student recognizes that a way of thinking can resolve 

problems they conceptualize in different settings. In contrast, traditional work on transfer 

relies on the researcher’s determination about what aspects of tasks are invariant. As I 

outlined previously, for a way of thinking to develop and become incorporated within a 

students’ scheme(s), the student must engage in repeated reasoning. Once students have 

stable meanings then tasks assimilated to that scheme (including what might be 

considered different tasks from an outsider’s perspective) tap into the same “space of 

implications” (Thompson et al., 2014, p. 13) including the same patterns of reasoning. In 
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other words, students exhibit transfer when they assimilate what (to the observer) are 

different problems to the same scheme and thus conceive of them as the same problem. 

The notion of transfer also helps explain the potential source of students’ success 

(or failure) in mathematical modeling in applied contexts. Thompson (2011) defines a 

mathematical model as “a generalization of one’s understanding of a situation’s inner 

mechanics—of ‘how it works’” (p. 51). Students practicing repeated quantitative 

reasoning develop schemes relative to quantitative relationships within problem contexts. 

Students predisposed to engage in quantitative reasoning in applied contexts 

conceptualize situations to form quantitative structures. Recognizing potential similarities 

in the structures they form compared to other contexts or to general mathematical ideas 

(such as piecewise functions, area of a geometric figure, etc.) facilitates assimilation of 

problems to the same scheme. Thus, the space of implications within the scheme support 

modeling situations using mathematical tools and facilitates connections across 

applications. 

 

Design Principles for Online Courses 

 Since the research literature provides little guidance on online course design from 

a cognitive learning standpoint,25 it seems logical to begin with the assumption that 

theoretical perspectives that do work in understanding student learning in traditional 

classroom environments are applicable in an online environment. Thus, I used genetic 

epistemology and radical constructivism as background theories and Harel’s DNR 

                                                      
25 Thompson (1985) being a notable exception even though his work was not framed within an online 
learning environment. 
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framework and Thompson’s theory of quantitative reasoning as domain-specific theories 

to inform my instructional design choices including the following. 

 Students construct their own meanings. Therefore, a designer cannot expect 

that students will learn what they intend if lessons are designed using a 

“telling” model of direct instruction. Lessons must engage students in 

interactions that encourage accommodating their schemes in productive ways 

through reflecting abstracting. 

 Lessons must devote time to helping students develop an intellectual need for 

learning certain ideas by helping them conceptualize a problem the new 

meanings might solve. In addition, the designer should make sure that 

students can explore contexts and conceptualize quantities and relationships 

between quantities prior to expecting students to solve a variety of problems 

related to the context. 

 Lesson tasks and homework should focus on repeated reasoning (repetitive 

experience) over rote practice and designers should explore ways to help 

students recognize invariance in their reasoning across contexts and problems 

related to specific ways of knowing. 

 Course design should take seriously the duality principle and not just focus on 

supporting disconnected ways of knowing. It is important to promote coherent 

ways of thinking, such as quantitative and covariational reasoning throughout 

the course. Furthermore, the designer should make an effort to help students 

recognize and reflect on the invariance in their ways of thinking across 

different topics and problem contexts. 
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 The research literature does provide a nice checklist for designing features of the 

course to minimize distractions that could interfere with student learning. For example, 

designers should work to make the course easy to navigate and check it carefully to 

ensure that there are no broken links and that the course runs on various computer 

platforms using a variety of web browsers. Designers should also use a variety of formats 

within lessons such as videos, text, applets, and questions rather than just posting hour-

long lectures into a web page and asking students to watch them. However, there are still 

unresolved issues worthy of study and to which I must be sensitive within the scope of a 

study looking at students’ mathematical development. What length is appropriate for an 

online lesson (both in terms of number of questions, videos, applets, etc. as well as the 

expected time commitment for completing a lesson)? What level of detail and 

differentiation should I include when programming feedback for student responses? What 

is the appropriate balance between length and repeated reasoning that will maintain 

student engagement and promote productive accommodations? What is the appropriate 

length for text and videos within a lesson? Any study focusing on students’ development 

and modification of schemes related to some set of mathematical ideas must use their best 

judgement in answering these questions during the design process. Researchers (and 

course designers) must also devote some time to monitoring the efficacy of their 

decisions and modify their materials accordingly if they feel that general design decisions 

are undermining their primary goal of improving student learning of important 

mathematical ideas. 

 As a final comment, I will elaborate on two issues: student engagement and 

repeated reasoning. What does it mean for a student to be “engaged” in a lesson? There 
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are two ways to think about this issue. A common synonym for student engagement is 

participation. Some educators may tacitly assume that if students participate in a lesson 

(pay attention to lectures, complete assigned problems, avoid off-task behavior like 

talking or texting, etc.) that they will learn. Even if true, this assumption is insensitive to 

what students might be learning. Thompson (1991) argued that what a teacher intends 

students to be practicing (and thus learning) is not isomorphic to what students actually 

practice (and thus learn). Without being sensitive to instructional objectives in terms of 

desired ways of thinking and knowing, examining student engagement considers nothing 

more than “time on task”. There are many ways to increase students’ time on task that do 

not necessarily improve learning. For example, a course designer can infuse course 

videos with humor to increase the time students spend watching videos without any 

guarantee that this leads to improved learning.  

Defining student engagement in terms of students’ activity in conceptualizing 

problem contexts, differentiating their actions from the results of those actions, and 

modifying cognitive schemes through various types of abstraction is more productive. 

Designing for this kind of engagement means taking seriously interiorization, 

internalization, repeated reasoning’s role in developing and modifying schemes, in 

particular remaining aware that students’ personal contributions to the lessons are the 

driving force in their learning. For example, if I want students to have a quantitative 

meaning for a growth factor of 1.4, I need to design the lesson so that students have 

repeated opportunities to conceptualize using the magnitude of a quantity in one instance 

to measure the magnitude of that quantity in another instance. This can involve videos 

and texts demonstrating this idea, but it must also involve interactive applets where the 
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students use applet states to demonstrate their understandings, estimate growth factors 

from visual displays of two magnitudes, and derive methods for calculating growth 

factors based on their own emerging imagery. Thus, designing for student engagement in 

cognitive terms involves clearly describing the kinds of imagery the designer wants 

students to develop, creating an applet, task, or question that encourages students to 

develop this imagery through their own activity, and designing assessments that test 

students’ meanings and not just calculational proficiency. 

If repeated reasoning is important for student learning, how do we integrate it as a 

key design principle? What are the most important considerations? A starting point is to 

be clear about the meanings we hope students construct prior to designing any aspect of a 

lesson, unit, or course (Thompson, 1991). This is best accomplished through a detailed 

conceptual analysis so that a designer knows the kinds of meanings and imagery that are 

likely to support students in modifying their schemes in productive ways. Next, the 

designer needs to identify or create tasks that promote recognition of invariant reasoning 

while also providing enough variety of contexts, given information, and complexity so 

that developed schemes are reasonably robust (Harel, 2008c). As much as possible, 

student activity should drive the development of algorithms and formulas, and practicing 

procedures should build from and consistently reference and reinforce corresponding 

conceptual foundations. In short, the practice we provide students should focus on 

engaging them in recognizing invariant reasoning across problem contexts rather than 

rote answer-getting where what “they practice [is] ignoring such things as context, 

structure, and situation” (Thompson, 1991, p. 269). 
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Select Tasks within a Hypothetical Learning Trajectory 

 I wrote the conceptual analysis in this chapter to unfold in a manner consistent 

with how activities and investigations would unfold to support the productive meanings 

for exponential growth and related ideas outlined in Table 5. A very brief overview of the 

hypothetical learning trajectory for the unit is given below with the acknowledgement 

that “[b]uilding sophisticated quantitative reasoning skills for the majority of students is 

not a one or two year program; it requires development throughout the elementary and 

middle school years” (Smith & Thompson, 2007, p. 43). Knowing that many students 

likely have not experienced rich explorations of quantities and have not engaged in 

sophisticated quantitative reasoning tempers my expectations for the learning goals in the 

course. However, I remain optimistic that many of these goals are within reach of most 

students in some form if the course as a whole is coherent and designed to build towards 

these goals. 

1.   Students develop basic fluency in quantitative and covariational reasoning beginning 

with a recognition of quantities in situations, differentiating between varying and 

constant quantities, and loosely coordinating covarying quantities (for example, 

recognizing that as one quantity increases another quantity decreases). These are key 

ways of thinking to develop and support throughout the course to provide coherence 

among topics and to build a meaningful image of function relationships. 

2.   Students understand a measurement as a “times as large as” comparison between the 

magnitude of a quantity and a measurement unit having the same quality. An explicit 

focus on quantification schemes helps students refine their images of quantities. In 

addition, this is an important prerequisite image for thinking about a norming process 
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and for giving meaning to the value of a growth factor as a multiplicative comparison 

between a quantity’s magnitude at two different moments. 

3.   Students differentiate the value of a quantity from a change in the value of the 

quantity and thus conceptualize them as separate but related quantities. This is an 

introduction to quantitative operations and to conceptualizing measurement schemes 

for intensive quantities. It will also be important for students to distinguish between 

and relate quantities, changes in quantities, and multiplicative comparisons within a 

quantitative structure in order to conceptualize a percent change. 

4.   Students understand norming processes as the foundations for multiplicative 

comparisons. Students must be able to flexibly choose reference magnitudes for a 

quantity as a measurement unit for describing the size of other quantities or the size 

of other instances of the same quantity in order to make sense of growth factors and 

percentages. In addition, encouraging flexibility in how students think about choosing 

a unit is likely to improve their understanding of measurement in general (see (2)) and 

the sophistication of their quantification schemes. Note that this is the point at which 

Thompson’s didactic object can be used productively to promote useful imagery of 

growth factors as multiplicative comparisons in continuous exponential functions. 

5.   Students apply norming processes to understand the meaning of one percent and 

percentage measurements relative to specific quantities. This is an extension of (4) 

that also emphasizes the inverse proportional relationship between a quantity’s 

measure and its unit (smaller units yield larger measures and larger units yield smaller 

measures). 
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6.   Students measure the change in a quantity as a percentage relative to the value of the 

quantity at the beginning of an interval, thus building a quantitative meaning for 

percent change. Again, Thompson’s didactic object can be used productively at this 

stage by drawing a horizontal line at the height of the left line segment and using this 

as a reference to “see” the difference between the magnitudes in order to focus 

attention on how to measure this change. 

7.   Students compare and relate growth factors over different intervals. For example, if a 

radioactive substance has a half-life of 600 years, then every change of 1,200 years 

yields a mass that is one-fourth of its previous mass. Students also experience the 

usefulness of determining a growth factor of one quantity that corresponds with a 

change of “1” in the other quantity (measured in whatever unit they choose). I 

envision using Thompson’s didactic object here with some modifications. Instead of 

one interval of a given length there are multiple consecutive intervals of the same 

length and the corresponding magnitudes of the quantity at the ends of each interval 

are displayed as segments that all move in tandem as the slider changes. Tasks 

prompt students to measure the lengths of all of the line segments relative to the 

length of a single line segment and to justify the relationships between measurements. 

8.   Students build a process conception for the expression xb  as representing the growth 

factor for any interval of size x  (where b is the growth factor for an interval of size 

1). This generalization of the work in (7) can support the eventual process conception 

of the formula ( ) xf x ab  as relating all values of two quantities in an exponential 

function that goes beyond thinking about repeated multiplication of a 1-unit growth 

factor. 
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9.  Students build a process conception for xb  as the growth factor relating any function 

value ( )f x  to (0)f  (i.e., over an interval of size x), and thus understand (0) xf b  as 

the value of ( )f x  for all x. 

 The following nine tasks are sample key exercises within a trajectory designed to 

support student in constructing the meanings outlined in my conceptual analysis. The unit 

as a whole is much longer, with opportunities for repeated reasoning, for examining 

similar ideas in different ways, and includes instructional videos, text, and student 

feedback that are not included here. But these select tasks capture the essence of the 

activities in which students will engage while taking the course.26 

 

Task 1: “Elastic Ruler” 

 In modules prior to the one dedicated to exponential functions we designed 

activities to promote students’ conceptualizations of intensive quantities’ values as 

representing the relative size of two quantities’ magnitudes and the value of the intensive 

quantity in terms of using one magnitude as a “unit ruler” for measuring the other 

magnitude. For example, in a linear function the constant rate of change can be 

productively thought of as the size of ∆y measured with ∆x as the “unit ruler”. Likewise, 

the scale factor relating corresponding sides in similar triangles can be thought of as the 

lengths of the sides in one triangle using the corresponding sides in the other triangle as 

the “unit rulers”. I do not claim that this is the most sophisticated way of conceptualizing 

                                                      
26 Note that I purposely only chose tasks where the 1-unit growth factor is larger than 1. Relationships with 
a 1-unit growth factor between 0 and 1 are included in the module but I chose not to address them here to 
maintain a tighter focus. 
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the values of intensive quantities27, however this way of thinking can do work for 

students throughout the course while representing a reasonable learning goal for students 

within a single course. 

 In addition, it is possible for the value of the intensive quantity to be constant as 

the compared quantities vary. Again, constant rate of change is an excellent example 

since the relative size of ∆y and ∆x is constant as the values of the quantities vary. 

Understanding the meaning of a ∆x-unit growth factor requires building on the reasoning 

students used when learning about constant rate of change with some subtle but important 

differences. The value of the growth factor is a measurement of the relative size of two 

instance of the same quantity even as that quantity varies, but that these two instances 

must be measured at some specific interval of change in the second quantity. To support 

this understanding, I start with exercises similar to the task in Figure  6 (adapted from 

Tallman’s (2015) activity on necessary properties of units for measuring angles). 

 
Figure 4.7. Task 1 of Instructional Sequence for Exponential Growth and Related Ideas. 

                                                      
27 See Thompson et al. (2014) for more information on various schemes for thinking with magnitudes of 
quantities. 

Each of the following diagrams shows a magnitude for a varying quantity along with a 
ruler for measuring the quantity. For each, determine if the given ruler will produce a 
constant measurement value for the varying quantity. 

a.   Will the given ruler (shown below) produce a constant measurement for the 

varying quantity?  

 
In the online investigation there are multiple iterations of this task. The length of the 
top segment varies as does the length of the “elastic ruler”. In some cases there is a 
proportional relationship and in other cases there is a different kind of relationship. 
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We used similar diagrams earlier in the course to facilitate students in constructing the 

meaning of a measurement as a relative size comparison between the magnitude of a 

quantity and the magnitude of a unit. In addition, similar diagrams with varying 

components were also used in earlier lessons to support students in reflecting on the 

impact on the measurement of a quantity when 1) the quantity varies but the unit is fixed, 

2) the unit varies but the quantity is fixed, and 3) both the quantity and the unit vary. 

These exercises are additional opportunities for students to reflect on (3). The task is 

primarily designed to support students in pseudo-empirically abstracting the property that 

the measurement of a varying quantity is constant when the measurement changes to 

always be the same proportion of the quantity’s magnitude. In these activities students 

can determine if specific examples display this property by looking at the measurements 

produced by specific pairs of a co-varying quantity and unit of measure.  

 

Task 2: Comparing Vine Lengths 

 Task 1 encouraged students to determine measurements for quantities as a relative 

size comparison to a unit and to coordinate this measurement as the quantity and unit co-

vary relative to experiential time. Eventually the goal is for students to explicitly control 

this coordination in terms of conceptual time, which I conjecture is necessary for holding 

in mind two instances of the same quantity separated by some interval of a second 

quantity (that is not experiential time) and imagining their relative sizes as constant. Task 

2 shown in Figure 4.8 (and similar tasks) reverses the process and provides students with 

a measurement of relative size for two instances of the same quantity and asks students to 

modify an applet state that would produce the given measurement.  
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Figure 4.8. Task 2 of Instructional Sequence for Exponential Growth and Related Ideas. 
 

I conjecture that repeated reasoning with this reverse process will help students construct 

the actions involved in maintaining (and measuring) a constant relative size of two 

instances of a quantity as mental operations. These tasks also include the potential for 

students to attend to intervals of a second quantity over which we compare instances of 

the first quantity. Note also that both Task 1 and Task 2 require students to reason about 

quantities’ magnitudes without having those magnitudes each explicitly measured in a 

common unit (such as feet). 

 

Task 3: Identifying Growth Factors 

 Task 3 (see Figure 4.9) represents a transition to making more explicit a 

coordination of two instances of one quantity over an interval of a second quantity and 

requiring students to extend the action of measuring the relative size of two instances of a 

quantity to a graphical representation of the relationship. In addition, students need to 

express their meaning for the resulting measurement. I designed part (b) to encourage 

students to reflect on their activity and the meaning of the measurement produced in part  

Over any 1-day period, the magical vine grows so that it is always 1.8 times as large 
as its length at the beginning of the period. 
 
The following diagram represents the vine’s length 2.3 days since it started growing. 
Using the purple X, set the vine’s length 3.3 days since it started growing. 
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Figure 4.9. Task 3 of Instructional Sequence for Exponential Growth and Related Ideas. 

(a). I conjecture that repeated reasoning with similar tasks will support students in 

refining their coordination of the mental actions involved in measuring relative sizes of 

two instances of a quantity and holding this relative size constant as the quantity varies. 

 

  

Let’s imagine a new vine with a different growth factor. Let l = f (t) represent the 
length of the vine (in feet) t days after it started growing. 

 
a.   The 1-day growth factor is approximately b = ___________. 
b.   If b represents the 1-day growth factor, which of the following is true? Select 

all that apply. 
o The vine’s length doubles every b days. 
o No matter what the change in time elapsed since the vine began 

growing, the vine’s new length is b times as large as its previous 
length. 

o When the number of days the vine has been growing changes by 1 
day, the vine’s new length is b times as large as its previous length. 

o When the number of days the vine has been growing changes by 1 
day, the vine’s new length changes by b feet. 

o The vine’s length changes at a constant rate of b feet per day. 
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Tasks 4 and 5: Percent Comparisons and Making Connections 

 Task 4, along with the accompanying videos and similar tasks, is designed to 

support students in abstracting the relationship that measuring the same magnitude with a 

ruler that is 1/100 times as large results in a measurement that is 100 times as large. See 

Figure 4.10. 

 
Figure 4.10. Task 4 of Instructional Sequence for Exponential Growth and Related Ideas. 

Prior to this point in the module the tasks encouraged students to leverage the imagery of 

measuring a quantity’s magnitude with a “unit ruler” by comparing their relative sizes but 

without having these two magnitudes measured in a separate standard unit. In this task 

students could estimate the relative size of the town’s population at two different 

moments, but to improve their accuracy (and thus to get the answer correct) they must 

divide the population measurements (each expressed in a number of people) to determine 

their relative size. It is possible that students can complete these tasks by making a 

In 1995 Harristown’s population was 72,125 people. By 2010 its population had 
increased to 77,895 people. Let’s visualize the relative size measurement. 

 

 
a.   Harristown’s population in 2010 was ____________ times as large as its 

population in 1995. 
b.   Harristown’s population in 2010 was ____________ percent of its population 

in 1995. 
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pseudo-empirical abstraction based on the pattern of results from calculating a growth 

factor and converting between a growth factor and percent comparison. This abstraction 

would involve noticing that moving the decimal point two places converts between the 

two numerical values. To reflectively abstract the relationship between a multiplicative 

comparison and a percent comparison involves coordinating the mental actions of 

producing measurements using two different units, comparing the relative size of the 

units, predicting the relationship between the measurements based on the relative size of 

the units, and knowing that the relative size of the measurements holds regardless of the 

size of the reference quantity. In an online environment with no direct interaction with 

the students it can be difficult to look at student responses to exercises such as Task 4 and 

build an accurate model of students’ schemes. See Chapter 5 for a discussion of how I 

will use clinical interviews to improve my ability to model specific students’ schemes at 

the end of the instructional sequence. 

 Task 5 (see Figure 4.11) and similar tasks are designed to address the potential 

issue just raised. By not asking students to provide the products of calculations, but rather 

to interpret the quantity being measured and the unit of comparison, tasks such as these 

encourage students to reflect on measurements as the result of processes. Similar to the 

relationship between Task 1 and Task 2, Task 5 is a reversal of Task 4. I conjecture that 

this task could support important reflection through which students differentiate between 

the results of converting a growth factor to a percent comparison (or a change to a percent 

change) and the process of changing the measurement scheme for quantities to produce 

different measurements for the same quantity. 
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Figure 4.11. Task 5 of Instructional Sequence for Exponential Growth and Related Ideas. 

 

Task 6: Two Consecutive Intervals 

 Consistent with the targeted meaning for exponential growth described earlier, I 

conjecture that students need to develop a process image of b∆x as the value of the ratio 

The city of Trenton received 60 inches of rain in 2014. In 2015, the city received 
69 inches of rain.  

year Trenton annual 
rainfall (in inches) 

2014 60 
2015 69 

For each of the following statements, determine which quantity is being 
described and what “unit ruler” is used for making the measurement. 
 
The annual rainfall in 2015 was 1.15 times as large as the annual rainfall in 
2014. 
 
“1.15” measures [Select Answer] and the “unit ruler” is [Select Answer]. 
 
The annual rainfall in 2015 was 115% of the annual rainfall in 2014. 
 
“115” measures [Select Answer] and the “unit ruler” is [Select Answer]. 
 
The annual rainfall increased by 9 inches from 2014 to 2015. 
 
“9” measures [Select Answer] and the “unit ruler” is [Select Answer]. 
 
The increase in the annual rainfall was 0.15 times as large as the annual 
rainfall in 2014. 
 
“0.15” measures [Select Answer] and the “unit ruler” is [Select Answer]. 
 
The annual rainfall increased by 15% from 2014 to 2015. 
 
“15” measures [Select Answer] and the “unit ruler” is [Select Answer]. 
 



 

95 

( )

( )

f x x

f x

 
 for all x (with b as the 1-unit growth factor) in order to have a productive 

understanding of the expression abx as representing all of the possible output values of 

the function as x varies. I designed Task 6 (see Figure 4.12), and related parts of the 

lesson and tasks, to encourage students to reflect on the relationship between 1-unit 

growth factors and 2-unit growth factors as well as how to represent the values of the 

growth factors using mathematical notation. Repeating this reasoning for arbitrary 

interval sizes may help students generalize the value of b∆x as the ratio of 
( )

( )

f x x

f x

 
 for 

all x (even if the generalization is based on a pseudo-empirical abstraction).  

 

Tasks 7 and 8: Writing a Formula to Represent an Exponential Relationship 

 Task 7 (see Figure 4.13) and related tasks requires students to coordinate the 

various meanings and imagery constructed in previous tasks to collect the required 

information necessary to represent an exponential relationship using a mathematical 

formula. I hypothesize that students who are not successful with this task have not 

constructed the meanings outlined in my conceptual analysis. It is possible for students to 

follow procedures to accurately complete this task without having constructed the 

meanings I intend. The degree to which this occurs, and the degree to which it is possible 

to complete this task within the lesson trajectory without having constructed the intended 

meanings, will hopefully be revealed through clinical interviews (see Chapter 5). 
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Figure 4.12. Task 6 of Instructional Sequence for Exponential Growth and Related Ideas. 

 

The following graph and table represent a function f where y varies exponentially with respect to 
x. The 1-unit growth factor is 1.6.  
 

x y = f (x) 
–1 3.125 
0 5 
1 8 
2 12.8 
3 20.48 

 
 
 
 
 
Complete the following statements. 

a.   The value of the ratio 
( 1)

( )

f x

f x


 is always ___________ for all values of x. 

b.   The value of the ratio 
( 2)

( 1)

f x

f x




 is always ___________ for all values of x. 

c.   The 1-unit percent change is ___________%. 
d.   The 2-unit growth factor is ___________. 
e.   Which of the following is a true statement about this exponential function? Select all that 

apply. 
o The 2-unit growth factor is the product of the 1-unit growth factor times itself. That 

is, the 2-unit growth factor is (1.6)(1.6) or (1.6)2. 
o The 2-unit growth factor is two times as large as the 1-unit growth factor. In other 

words, the 2-unit growth factor is 2(1.6). 
o Knowing the 1-unit growth factor does not give us enough information to determine 

the 2-unit growth factor. We would need more points. 
o The 2-unit growth factor is the same as the 1-unit growth factor because all growth 

factors are constant for an exponential function. 
f.   Which of the following represents the value of the 2-unit growth factor using 

mathematical notation? Select all that apply.  
o For all x,  2 ( )f x  represents the value of the 2-unit growth factor. 

o For all x, 
2

x

x 
 represents the value of the 2-unit growth factor. 

o For all x, 
( 2)

( )

f x

f x


 represents the value of the 2-unit growth factor. 

o For all x, 
2x

x


 represents the value of the 2-unit growth factor. 

o For all x, 
( )

( 2)

f x

f x 
 represents the value of the 2-unit growth factor. 
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Figure 4.13. Task 7 of Instructional Sequence for Exponential Growth and Related Ideas. 
 

Task 8 (see Figure 4.14) involves repeated reasoning with the goals in Task 7 

with the addition of asking students to compare the behavior of two exponential functions 

with the same initial conditions and different growth factors. As mentioned earlier in this 

chapter, many students struggle to compare the behavior of functions with different 

growth factors, so I designed this task to determine the degree to which the learning 

trajectory I designed supports students in constructing meanings for growth factor and for  

The population of a town increased exponentially over a period of 10 years. The 
given table shows the town’s population at various moments.  

number of years since the 
beginning of 2005 

population of the town 
ptown 1 = f (t) 

0 4,520 
1 4,701 
2 4,889 
3 5,084 

5.25 5,553 
6.25 5,776 

a.   What was the 1-year growth factor for the town’s population? _________ 
b.   What was the 1-year percent change in the town’s population? _________ 
c.   What is the formula for function f that represents the population of the town in 

terms of the number of years since the beginning of 2005? _________ 
d.   The population of a different town also increases exponentially over the same 

period of time. Use the given table to write the formula for function g that 
models this town’s population in terms of the number of years since the 
beginning of 2005? 

number of years since the 
beginning of 2005 

population of the second town 
ptown 2 = f (t) 

0 6,884 
1 7,022 
2 7,162 

4.6 7,541 
5.6 7,691 

Function formula:  ______________ 
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Figure 4.14. Task 8 of Instructional Sequence for Exponential Growth and Related Ideas. 

the symbolic representation of an exponential function relationship that addresses this 

challenge. 

 

  

The following graph represents the mass of bacteria (in micrograms) in a petri dish in a 
laboratory experiment in terms of the number of hours since the experiment began. 

 
a.   What was the 1-hour growth factor for the bacteria’s mass? _________ 
b.   What was the 1-hour percent change in the bacteria’s mass? _________ 
c.   What is the formula for function f that represents the bacteria’s mass (in micrograms) 

in terms of the number of hours since the experiment began? _________ 
d.   The experiment was run a second time with a different set of nutrients for the 

bacteria. In the second experiment, the bacteria’s mass (in micrograms) in terms of 
the number of hours since the experiment began could be modeled by g(t) = 
10(1.11)t. Which of the following describes how the results of the second experiment 
compared to the results of the first experiment? Select all that apply. 

o The initial mass of the bacteria was smaller in the second experiment than in 
the first experiment. 

o The initial mass of the bacteria was larger in the second experiment than in 
the first experiment. 

o The mass of bacteria increased by more each hour in the second experiment 
compared to the first experiment. 

o In both experiments the mass of the bacteria became 10 times as large for 
each hour that passed. 

o The 1-hour percent change was 2% larger in the second experiment 
compared to the first experiment. 
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Task 9: Using Two Values to Determine the Formula for the Exponential 

Relationship 

 Task 9 (see Figure 4.15) continues repeated reasoning relative to the goals of 

Tasks 7 and 8 without giving students the value of f (0). I conjecture that students who do 

not have operational understandings of growth factor and exponential functions similar to 

the meanings in my conceptual analysis will perform poorly on this task. Students need to 

have schemes for these ideas that include the ability to identify information they are 

missing in order to represent the relationship as well as the ability to develop and carry 

out a plan for determining this missing information. Alternatively, students with a robust 

understanding of how mathematical notation can be used to represent the relationship, as 

well as a productive meaning for exponential growth, might define the function as  

f (x) = 11(24.2/11)x – 1 or f (x) = 24.2(24.2/11)x – 2. I see either of these solutions as strong 

evidence that students have reflectively abstracted a meaning for exponential growth that 

includes meanings for growth factor and mathematical representations discussed in my 

conceptual analysis. They are not solution methods the students are likely to find online if 

they are using outside resources to help them complete assignments and require a clear 

meaning for what quantities are represented by various parts of the expressions. 

 

Closing Comments and Summary 

In this chapter I outlined a conceptual analysis for exponential functions and 

related ideas that includes meanings I conjecture to be productive for students in an 

online Precalculus course and a hypothetical learning trajectory intended to support  
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Figure 4.15. Task 9 of Instructional Sequence for Exponential Growth and Related Ideas. 

students in constructing these meanings. In the next chapter I will outline a research study 

intended to examine what students learn from the online course that includes this 

hypothetical learning trajectory and how features of the course contributed to this 

learning. 

 
  

For a certain exponential function f we know that f (1) = 11 and f (2) = 24.2. Use this 
information to answer the following questions. 

a.   What is the 1-unit growth factor? __________________ 
b.   What is the 1-unit percent change? ___________________ 
c.   What is the value of f (0)? _______________ 
d.   Write the formula for function f. ________________ 
e.   Evaluate f (6.31). _________________ 
f.   Function g is represented by the following graph. Write a formula for g. 

_______________ 
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CHAPTER 5 

METHODOLOGY 

The need for innovation in education is ongoing, as theories of learning and 
teaching lead to usable knowledge about and reform of instructional practice. 
(The Design-Based Research Collective, 2003, p. 8) 
 
Q: How do you eat an elephant? 
A: One bite at a time! (Author Unknown)  

 

Overview of the Proposed Study 

 This dissertation study is a design-based research investigation to test a particular 

intervention conjectured to support students in constructing the meanings for exponential 

growth and related ideas described in Chapter 4 in an online Precalculus course. As a 

design-based study I will analyze the proposed intervention’s impact holistically relative 

to a particular group of students working through the activities in a specific setting. Data 

collection will involve multiple sources and the analysis will attempt to paint a broad 

picture of the intervention’s impact and how particular features of the setting or 

intervention contributed to the results. I outline the steps in a design-based research study 

below and will focus on stages one through six in this study. 

1. Consult research literature to hypothesize learning goals, activities, and 

features of the environment that are likely to be productive (see Chapters 2 

and 3). 

2. Perform a specific conceptual analysis relative to the targeted mathematical 

ideas and use this conceptual analysis to inform a hypothetical learning 

trajectory (see Chapter 4). 
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3. Design the intervention’s specific details (see Chapter 4). 

4. Collect data from multiple sources during the intervention’s implementation. 

5. Analyze the data with the goals of  

understand[ing] the real-world demands placed on designs…[,] 
develop[ing] better theories of the elements of context that matter for the 
nature of learning…[, contributing to] an understanding of relevant design 
knowledge and practices as they apply to naturalistic settings…[, and 
gaining] insights about what occurs when we orchestrate complex 
interventions in messy settings. (The Design-Based Research Collective, 
2003, p. 8) 
 

6. Broadly share the findings to contribute to the collective knowledge across all 

fields regarding how to reform mathematics instruction specifically and how 

to reform instruction in all disciplines more generally. 

7. Use analysis of the results to refine the intervention for future iterations. 

Before describing my proposed methodology in more detail, I will repeat my 

primary research questions here for reference. 

RQ1:  What meanings do students have for exponential growth and related 

ideas after completing an online Precalculus course design to develop 

and leverage quantitative and covariational reasoning?28 

RQ2:  What features of the online course, specific lesson activities, and/or 

components in the hypothetical learning trajectory appear to support or 

hinder students in developing productive meanings for exponential 

growth and related ideas?  

  

                                                      
28 See Chapter 2 for a detailed description of quantitative and covariation reasoning. 



 

103 

Design-Based Research: Integrating Theory and Practice 

As I mentioned in Chapter 1, Cobb (2007) argued that mathematics education 

“can be productively viewed as a design science, the collective mission of which involves 

developing, testing, and revising conjectured designs for supporting envisioned learning 

processes” (p. 7). When Cobb wrote that statement, design-based studies were a 

relatively new emerging line of inquiry in education research. Researchers using design-

based research see themselves as enacting a balance between empirical research and 

theory-informed instructional design. Their  

innovations embody specific theoretical claims about teaching and learning, and 
help us understand the relationships among educational theory, designed artifact, 
and practice. Design is central in efforts to foster learning, create usable 
knowledge, and advance theories of learning and teaching in complex settings. 
(The Design-Based Research Collective, 2003, p. 5) 
 

Starting with theories of how students learn, design-based researchers generate 

interventions to enact in specific learning environments. They do not assume that the 

interventions are necessarily independent from the particular features of the setting in 

which they are tested, nor is it their goal to design studies that limit variables that arise in 

the natural course of instruction. “Indeed, such phenomena are precisely what educational 

research most needs to account for in order to have application to educational practice” 

(The Design-Based Research Collective, 2003, p. 5). Design-based research often focuses 

on addressing large-scale problems in education that can be complicated, messy, and 

challenging but that represent issues at the core of reforming students’ learning 

experiences – issues such as learning transfer or the impact of technology (Reeves, 

Herrington, & Oliver, 2005). Thus, design-based research takes a holistic view on 
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interventions and their outcomes to encompass and embrace the intricacies of improving 

students’ learning experiences. 

Design-based researchers’ immediate goals focus on impacting student learning in 

a very practical way. However, they always assume that the intervention will uncover 

important data with implications for modifying learning theories, supporting 

practitioners, and designing future interventions, and they intend to share their results 

broadly. They begin by reviewing and/or developing theories on student learning and 

then designing and testing interventions that theoretical analysis suggests could 

productively influence student learning. Figure 16 shows a general overview of the 

design and analysis process. 

 
 
Figure 16. Design-based research’s continuous development cycle. Learning theories 
inform the intervention design, data is collected on the intervention and then analyzed, 
and this analysis shapes the researcher’s understanding of the original theoretical 
foundations of the study and impacts the design of the intervention in the next iteration 
(The Design-Based Research Collective, 2003). 
 
Even though learning theories influence an intervention’s design, researching its 

enactment can clarify exactly how features of the intervention impacted learning and how 

specific features of the learning environment affected the intervention’s contributed to the 

final result. “Models of successful innovation can be generated through such work—
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models, rather than particular artifacts or programs, are the goal (cf. Brown & Campione, 

1996)” (The Design-Based Research Collective, 2003, p. 7). The following quote best 

summarizes design-based research. 

[D]esign-based research methods can compose a coherent methodology that 
bridges theoretical research and educational practice. Viewing both the design of 
an intervention and its specific enactments as objects of research can produce 
robust explanations of innovative practice and provide principles that can be 
localized for others to apply to new settings. Design-based research, by grounding 
itself in the needs, constraints, and interactions of local practice, can provide a 
lens for understanding how theoretical claims about teaching and learning can be 
transformed into effective learning in educational settings. (The Design-Based 
Research Collective, 2003, p. 8) 
 
Although the term “design-based research” was not in use at the time, Thompson 

(1985) provided an example of a first iteration of a high-quality design-based research.29 

Using general theories about how students learn and develop operative thought, 

Thompson generated specific theories about how students might come to understand 

integers and geometric transformations in particular ways that his conceptual analysis 

suggested could be powerful for students. He then designed classroom interventions 

based on these theories to structure students’ learning experiences, including specific 

activities within a learning trajectory and a classroom environment with particular norms. 

He did not assume that the intervention he created could have been implemented 

identically with other students, in other settings, or with a different instructor. When 

reflecting on the intervention’s impact, Thompson considered all factors influencing the 

intervention’s success in a holistic way, and his conclusions helped him refine his theory 

about how students “who do develop mental operations in regard to algebra” achieve this 

feat while other students do not (Thompson, 1985, p. 222). But his analysis was not 

                                                      
29 I discussed this study in greater detail in Chapter 2. 
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removed from the intricate ways in which teacher knowledge and practices, features of 

activities, the structure of the learning environment, or students’ prior experiences all 

influenced student learning in his intervention. 

All scientific enterprises, whether they be in the hard sciences or social sciences, 

should seek valid, reliable outcomes free from personal bias. In design-based research 

and similar traditions the researcher is positioned as both the intervention’s designer and 

its evaluator. There is no way to completely remove the potential for personal bias 

inherent in this situation, but there are ways to help mitigate the potential for biased 

results (The Design-Based Research Collective, 2003). One method is to collect multiple 

data sources in order to provide a better overall image of the intervention’s impact and to 

minimize the chance that the final analysis overlooks potentially critical collateral 

impacts or contributing factors. A second method is to use as large of a sample size as is 

reasonable in the context and to collect multiple data points for each subject. Third, 

researchers should take detailed notes on complications and responses to these 

complications arising during the course of an intervention to strengthen claims about the 

reasons for specific outcomes. Fourth, since a basic assumption of design-based research 

is that it involves an iterative process, the researcher should attempt to collect similar data 

over the course of multiple iterations. A conclusion’s validity strengthens when initial 

observations and hypotheses are integrated and tested “result[ing] in increasing alignment 

of theory, design, practice, and measurement over time” (The Design-Based Research 

Collective, 2003, p. 7). 
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Online Learning of Exponential Growth: A Design-Based Research Study 

This dissertation study is based on the principles of design-based research. 

Informed by constructivist learning theories and a thorough conceptual analysis for 

learning ideas related to exponential growth, I will 1) design and implement an 

intervention to support students in learning these ideas in an online environment, 2) 

collect information about the implementation from multiple data sources, and 3) analyze 

the data in order to refine my foundational theories related to student learning about 

exponential functions in an online course and to form conclusions about features of the 

intervention and/or student or setting characteristics that impacted the results. I will not 

initially be concerned about constraining the variables involved in the study, instead 

embracing the notion that attempting to impact student learning in authentic learning 

environments is inherently messy and complex, but it is within these very environments 

that we must act to impact students’ mathematical experiences. Therefore, this study 

considers the intervention 

holistically…as enacted through the interactions between materials…and learners. 
Because the intervention as enacted is a product of the context in which it is 
implemented, the intervention is the outcome (or at least an outcome) in an 
important sense. (The Design-Based Research Collective, 2003, p. 5) 
 

I outline the phases and components of my study in the following sections. 

 

Developing the Intervention 

 My intervention involves a module (or unit) on percent comparisons and 

exponential functions situated within a fully online Precalculus course. The course is 

designed to engage students in developing and applying quantitative and covariational 
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reasoning as they progress through common topics traditionally included in a Precalculus 

course.30 I have completed a conceptual analysis of particular ways of understanding 

percent comparisons and exponential growth that I conjecture will be powerful for 

students while also being practical given the students’ expected background knowledge 

and experiences. The module includes approximately 10 investigations, each designed to 

require 30-60 minutes to complete (although I will focus this research on the first seven 

investigations that explicitly cover exponential growth, percentage measurements, and 

percent change). The investigations include homework tasks designed to reinforce and 

practice the ideas in each investigation with a goal of taking most students 20 minutes or 

less to complete. Therefore, I designed the module as a whole to take about 10 days (two 

weeks of the course) with students expected to complete one investigation per day 

(roughly one hour of work). See Chapter 4 for more information about designing the 

intervention, including my conceptual analysis and a discussion of key tasks within my 

hypothetical learning trajectory. 

 

Implementation and Subjects 

 In Spring 2018 I recruited approximately N = 70 students from a Precalculus 

section at a large university in the Southwestern United States using Precalculus Online 

(O’Bryan et al., 2018).31 I did not require subjects to meet any particular criteria except 

(1) the students enrolled in the course and (2) the student consented to the collection and 

                                                      
30 These topics include, but are not limited to, solving equations, linear functions, systems of linear 
equations, exponential functions, and quadratic functions. 
31 Note that if multiple universities choose to pilot the course, then I will consider increasing the N-size for 
this initial implementation as well as recruit students from multiple universities. In addition, future 
iterations of the intervention are very likely to feature much larger N-sizes. 
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use of his or her demographic and performance data. All of these students took part in all 

phases of data collection as outlined later in this section. I also selected a subset of these 

students (N = 5) for clinical interviews. These five students represented a range of scores 

on the pre-test. All five students participated in two clinical interviews (Clement, 2000) 

focused on select items from the pre-test. The pre-interviews occurred during the first two 

weeks of the course and post-interviews on the same questions occurred during the last 

month of the course.  

 I also recruited to recruit approximately N = 70 students from face-to-face 

Precalculus using Pathways Precalculus (Carlson, Oehrtman, Moore, 2018), a research-

based curriculum designed to promote similar learning goals as the online course we 

created. I will assess these students’ performance on the same concept instrument, the 

demographics/beliefs instrument, and end of course survey used with the first group of 

subjects. This data is not designed to provide a statistical comparison because the 

students are a convenience sample with no guarantee that such comparisons would be 

valid. Rather, since Pathways Precalculus has been proven to significantly improve 

students’ scores on the PCA exam (Carlson, Oehrtman, & Engelke, 2010), a validated 

instrument assessing students’ preparation for Calculus, I wanted a rough comparison of 

how students using each curriculum responded to tasks related to modeling, linear 

functions, and exponential functions. Large deviations in scores might suggest areas 

where our online intervention needs improvement. 
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Data Collection from Multiple Sources 

 The data collection will involve three phases and will include mathematics 

assessments, beliefs surveys, monitoring student progress, and conducting clinical 

interviews. 

 Phase I: Test Data 

 Phase II: Monitoring Student Interaction Data 

 Phase III: Clinical Interviews 

Phase I: Test data. In Phase I subjects completed two tasks within the first week 

of their courses. The first task was a pretest that included key mathematical ideas and 

important skills that students will learn during the course (see Appendix A). The 

assessment included general modeling tasks, tasks covering linear functions and related 

ideas, and tasks covering exponential functions and related ideas.  

The second task was an online form requesting demographic information that also 

surveyed students’ beliefs and attitudes about mathematics. See Appendix B.32 Students 

completed the beliefs survey again at the end of the course. Recall that Harel (2008b) 

argued that we must help students see an intellectual need in learning mathematical ideas 

but we must also address psychological needs, or the motivation and confidence that 

drive persistence in engaging with problems and seeing them through to the solutions. 

Students who do not engage with mathematical situations, whether because they lack 

interest, they do not believe in the importance of what they are learning, or they lack 

confidence, are unlikely to modify their schemes through repeated reasoning that 

                                                      
32 Note that the three papers resulting from this study did not report data from the beliefs survey, but this 
data is likely to be included in future reports. 
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supports reflective abstraction. In addition, student confidence, attitude, and beliefs 

impact retention rates and student persistence in STEM courses and majors (Byars-

Winston, Estrada, Howard, Davis, & Zalapa, 2010; Graham, Frederick, Byars-Winston, 

Hunter, & Handelsman, 2013; Hutchison, Follman, Sumpter, & Bodner, 2006). I believe 

it is accurate to say that addressing students’ psychological needs is a necessary but not 

sufficient part of providing higher quality mathematical learning experiences. Therefore, 

it is important to monitor how the intervention impacts students’ beliefs about 

mathematics and self-confidence. As Spangler (1992) noted, “Students’ learning 

experiences are likely to contribute to their beliefs about what it means to learn 

mathematics. In turn, students’ beliefs about mathematics are likely to influence how they 

approach new mathematical experiences” (p. 19). 

Phase II: Monitoring student interaction data. Phase II involved monitoring 

students’ interactions with the intervention lessons in a very unobtrusive manner. The 

course is coded in iMathAS (Lippman), and this platform provides instructors and course 

designers with aggregate feedback on student progress including the average score for 

students who attempt each problem, the average number of attempts, and the average 

time spent on each question per attempt. See Table 5.1. Data on average scores and 

average number of attempts can reveal the difficulty level of various tasks within the 

learning trajectory. This data pointed to tasks that students found more difficult, and 

analysis of these tasks can reveal key transitions in reasoning or key constructions in 

understanding targeted meanings. Alternatively, poor performance on tasks may reveal 

errors in instructional design that can be corrected for later iterations. Using multiple 
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Table 5.1 
iMathAS Instructor Feedback 

 

data sources to analyze the intervention provided a context for making a distinction 

between the potential reasons for students struggling with certain tasks. 

Phase III: Clinical interviews. A clinical interview (Clement, 2000) involves 

asking a subject to answer a number of open-ended questions intended to generate 

observable behavior a researcher can use to generate models of his or her reasoning.33 

Clement describes two broad categories of clinical interviews called generative and 

convergent approaches. In a generative approach, the researcher creates a detailed 

interview protocol including tasks and various lines of follow-up questions based on the 

possible types of responses students might give. His goal is to create a hypothesis about 

mental processes and reasoning that, if a student had them, would reasonably explain the 

                                                      
33 Clement’s methods require that the tasks be well-structured before the interview, which includes thinking 
about branching paths that the interviewer can follow based on student responses. The same protocol is 
used with each student interviewed with minimum deviation except to push students to make their 
responses clearer. The purpose of a clinical interview is not to teach a subject or to get her to answer 
questions in a particular way. The main goal is to create a model for the subject’s schemes and reasoning at 
one particular moment in time. 
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subject’s observable behaviors. In a generative process it is important that the researcher 

makes multiple passes through the data to refine and improve his model based on two 

criteria. First, that the model explains the observable behaviors better than alternative 

models and, second, that the model is general enough to be useful in a wider range of 

situations beyond the task at hand. A generative approach is most useful when little is 

known about student reasoning in the area of interest since it is well-suited to creating 

initial frameworks for a given idea based on in-depth analysis of a relatively small 

number of case studies.  

A researcher using a convergent approach focuses on frameworks developed out 

of generative studies and typically code interviews using these frameworks. His goal is to 

support the viability of the models generated previously and perhaps categorize 

participants within a framework with the assumption that their coded observable behavior 

suggests the underlying mental processes described in the framework. Such a study might 

generate patterns or connections not observed in the previous generative studies, and 

these patterns could serve as research questions for a new round of interviews beginning 

with more generative studies.  

 The clinical interviews in my dissertation served a purpose more in line with a 

convergent approach. The pre-interviews used select tasks from the pre-test (three general 

modeling tasks and many of the tasks covering exponential functions and related ideas). 

The post-interviews used the same tasks plus some follow-up tasks. I used the pre-

interviews to model students’ mathematical meanings for ideas such as exponential 

functions, percentage measurements and percent change, and algebraic formulas. I used 

the post-interviews to assess the degree to which students’ meanings shifted during the 
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course and to determine how students’ interpreted key applets and visualizations used 

throughout the unit. Altogether, data from these interviews led to refinements in my 

images of how students reason about exponential growth and related ideas coming into  a 

Precalculus course and hypotheses about features of the course or tasks that contributed 

to students’ ways of understanding these ideas. 

 

Comments on Methodology 

 I based my conclusions primarily on retrospective analysis (Simon, Saldanha, 

McClintock, Akar, Watanabe, & Zembat, 2010) to characterize how students’ 

conceptions of key mathematical ideas changed as a result of the intervention. My 

conceptual analysis and hypothetical learning trajectory provided an initial framework for 

analyzing the data, but where the data suggested alternative meanings and reasoning I 

broadened my framework to capture the nuances of how students appear to be reasoning 

in the course and on specific tasks and will explore the potential implications. In my final 

analysis I sought to provide insights regarding productive and unproductive student 

meanings, changes in students’ understanding or beliefs during the intervention, and 

features of the intervention that may have supported or failed to support my learning 

goals suggested by the data. 

  



 

115 

CHAPTER 6 

INTRODUCTION TO THREE PAPERS 

While there are many open questions related to the teaching and learning of 

mathematics, one productive research area seeks to describe overarching ways of 

thinking to guide student learning, teacher decision-making, and curriculum 

development. As one example, Thompson (2008b) suggested that mathematics from 

arithmetic through calculus can be organized into three general themes: the mathematics 

of quantity, the mathematics of variation, and the mathematics of representational 

equivalence. These themes can inform productive ways of understanding individual 

topics and guide instructional approaches while emphasizing deep connections across 

topics that reinforce a meaningful understanding of the larger themes, such as 

quantitative reasoning or seeing factoring, simplifying, and combining like terms as 

generating equivalent representations. 

Standards writers, curriculum designers, researchers, and individual teachers 

typically set student learning goals that are only tacitly connected via general 

mathematical ideas (Smith & Thompson, 2007; Thompson, 2008a, 2008b, 2013). 

Supporting students in constructing productive mathematical meanings and an image of 

mathematics as a coherent, interconnected body of important ideas takes sustained effort 

over long periods of time, yet “mathematicians and mathematics teachers are too eager to 

condense rich reasoning into translucent symbolism. They are too eager to get on to the 

‘meat’ of the topic, namely methods for answering particular types of questions” 

(Thompson, 2008a, p. 31-32). Sadly, supporting coherent mathematical experiences for 

students is a casualty of this tendency despite the fact that targeting a coherent system of 



 

116 

meanings and organizing teacher training and instructional design to support this goal 

characterizes the most successful education systems in the world (Tucker, 2011). 

Coherence and a focus on students’ mathematical meanings are the common 

themes uniting the three papers in this dissertation study. In Paper 1 (“Uses and Advances 

in Conceptual Analysis and Learning Trajectories for Studying and Supporting Student 

Learning: The Case of Exponential Functions”) I discuss conceptual analysis 

(Glasersfeld, 1995; Thompson, 2008a) and its role in learning trajectory research. 

Conceptual analysis is a tool that, among other things, is used to analyze and describe 

potentially productive and unproductive ways of understanding important mathematical 

ideas as well as the degree of “fit” between ways of understanding different ideas. 

Comparing the uses of and conclusions derived from conceptual analysis in three 

different approaches to teaching exponential functions highlights different ways that 

conceptual analysis can contribute productively to developing and testing hypothetical 

learning trajectories. Critical to both interpreting and participating in this work should be 

a focus on coherence. I argue that those conducting learning trajectory research should be 

clear about their expectations for how the learning goals in their work connect to other 

ideas within a course and, potentially, in future courses. Similarly, a review of learning 

trajectory research suggests a need for researchers to explain how their learning goals are 

situated within a coherent long-term set of learning progressions. This allows the field to 

situate and better understand the rationale for recommendations deriving from different 

studies. This perspective then shifts us away from viewing alternative recommendations 

as competing. The conversation can instead focus not on whether researchers agree or 
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disagree but about the usefulness of particular learning goals within specific visions for 

students’ mathematical progressions. 

In Paper 2 (“Inattention to Students’ Mathematical Meanings in Online Learning 

Research: Initial Steps Toward a New Research Focus and Methodology”) I discuss the 

current focus of online learning research and note that, thus far, few (if any) studies have 

looked at the meanings students construct as a result of online mathematics instruction. 

This is an important untapped research area considering that nearly 30% of post-

secondary students in the Fall 2016 semester enrolled in at least one distance-learning 

course (typically delivered online) and that most academic leaders view increasing 

enrollment in online learning as a key component in their long-term growth strategies 

(Allen & Seaman, 2015; U.S. Department of Education, National Center for Education 

Statistics, 2017). Therefore, Paper 2 argues for a new research focus centered around 

studying the meanings students construct within online courses and presents initial 

thoughts about research methodologies that might allow researchers to gather evidence of 

(a) students’ mathematical meanings and (b) how features of online courses either 

support or fail to support students in constructing targeted mathematical meanings. 

 In Paper 3 (“Exponential Growth and Related Ideas: Examining Students’ 

Meanings and Learning in an Online Precalculus Course”) I provide a conceptual 

analysis describing potentially productive ways of understanding exponential functions 

and related ideas grounded in images of measurement and discuss how these meanings 

could fit into a coherent Precalculus course. Student interviews and assessments are used 

to characterize students’ meanings for key ideas at the beginning and near the end of an 

online course designed to support students in developing the meanings outlined in my 
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conceptual analysis. I also discuss initial evidence suggesting (a) aspects of the lessons 

that successfully supported students in developing at least some of the intended 

meanings, (b) areas for improvement in the online lessons, and (c) challenges inherent to 

supporting students in constructing the intended meanings within the online environment. 

I hope that the three included papers contribute to mathematics education in several 

productive ways. I want to increase attention on the need for high-quality research 

focusing on the meanings students possess and the meanings they construct as a result of 

instruction. This includes characterizing students’ systems of meanings and the 

implications of those meanings and not just characterizing whether those meanings align 

with expected or canonical understandings (Thompson, Carlson, Byerley, & Hatfield, 

2014). Such work is absent from research on online courses and online learning 

environments. It is also important in learning trajectory research, which could include 

analyses of students’ meanings, the implications of those meanings, and how targeted 

meanings fit into a broader coherent set of mathematical progressions, not just describing 

targeted learning objectives and assessing students’ performance relative to those 

objectives. Finally, I want to provide an example of using conceptual analysis to suggest 

potentially productive ways of understanding a particular set of mathematical ideas and 

how those ways of understanding may connect to other ideas in a course to create the 

potential for students to acquire essential reasoning abilities and cross cutting conceptions 

(e.g., a function graph as emerging from an image of covarying quantities) and thus see 

the course as coherent. In particular, my analysis attempts to begin unpacking what it 

might look like to emphasize thinking with magnitudes (Thompson et al., 2014) as a 
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learning goal and empirically explore the challenges, implications, and productivity 

inherent in targeting this overarching theme in a Precalculus course. 
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CHAPTER 7 

PAPER 1 [LEARNING TRAJECTORIES] 

Uses and Advances in Conceptual Analysis and Learning Trajectories for Studying 

and Supporting Student Learning: The Case of Exponential Functions 

Alan E. O’Bryan 

Arizona State University 

Abstract: In this theoretical paper I discuss conceptual analysis of mathematical ideas 

relative to its place within cognitive learning theories and research studies. In particular, 

I highlight specific ways mathematics education research uses conceptual analysis and 

discuss the implications of these uses for interpreting and leveraging results to produce 

empirically tested learning trajectories. From my summary and analysis I develop two 

recommendations for the cognitive researchers developing empirically supported 

learning trajectories. 1) A researcher should frame his/her work, and analyze others’ 

work, within the researcher’s image of a broadly coherent trajectory for student learning 

and 2) that the field should work towards a common understanding for the meaning of a 

hypothetical learning trajectory, which might include developing new terminology 

related to different stages of the process.34 

Keywords: Conceptual Analysis, Cognitive Research, Learning Trajectories, Exponential 

Functions 

                                                      
34 Thank you to Michael Tallman for several long discussions that helped me clarify my thinking for this 
paper. 
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Cobb (2007) argued that mathematics education “can be productively viewed as a 

design science, the collective mission of which involves developing, testing, and revising 

conjectured designs for supporting envisioned learning processes” (p. 7). This requires 

researchers to leverage scientific methods to inform design (at the instructional, 

curricular, or institutional level) with a focus on positively impacting student learning. 

Thus, a useful way to characterize cognitively-oriented research goals is the 

production of empirically tested learning trajectories that provide opportunities for 

students to construct productive ways of reasoning about mathematical ideas within a 

coherent trajectory spanning their entire mathematical careers. Conceptual analysis 

(Thompson, 2008a) plays an important role in this work, yet researchers are not always 

explicit about how they use conceptual analysis, nor are they clear about how conceptual 

analysis of mathematical ideas contributes to both the design and refinement of 

interventions contributing to the broader goal of advancing knowledge in the field. 

In this paper I discuss conceptual analysis of mathematical ideas relative to its 

place within cognitive learning theories, highlight different ways that conceptual analysis 

is used in specific cognitively-oriented research studies (all focused on the idea of 

geometric or exponential growth), and explore how these uses of conceptual analysis 

contribute to learning theory research. I conclude the paper by leveraging my analysis to 

suggest two important focal points for future work in producing and testing hypothetical 

learning trajectories, including an increased emphasis on researchers’ images of the 

broader trajectory of students’ mathematical experiences and the importance of a 

common understanding for constructs such as hypothetical learning trajectory. 
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Students’ Mathematical Experiences 

Stigler & Hiebert (2009) describe most U.S. mathematics lessons as incoherent 

and focused on low-level mathematical skills and ideas. Students progressing through 

such a system are likely to develop an image of mathematics as a series of disconnected 

algorithms and formulas to memorize framed within disconnected courses. See Figure 

7.1.  

 
Figure 7.1. For many students, topics (represented as dots) within courses (represented as 
squares containing topics) are isolated as opposed to being connected by strong themes 
both within a course and across courses. 
 
Thompson (2008a) commented that "coherence of a curriculum (intended, implemented, 

or experienced) depends upon the fit of meanings developed in it … [and] [t]he lack of 

attention to meaning, I believe, is at the root of many problems that become visible only 

later in students’ learning" (p. 32). For students to experience a coherent curriculum 

means that they conceptualize connections between ideas and topics within a course in 

addition to conceptualizing larger themes that connect topics and ideas across multiple 

courses. See Figure 7.2. 

 
Figure 7.2. We want students to conceptualize strong connections between topics and 
ideas within a course as well as powerful themes and ways of thinking that connect ideas 
across many courses. 
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Supporting students in seeing the coherence within and across mathematics 

courses demands that curriculum designers and instructors first clearly articulate for 

themselves the general ways of reasoning mathematics instruction should support and 

how potential meanings for particular mathematical ideas fit within these goals. This is 

the starting point for learning trajectory research, or research that seeks to develop, 

analyze, and refine lessons and task sequences that effectively support students in 

constructing productive meanings for mathematical ideas. Such work is most impactful 

when it: i) begins by establishing clear intended learning goals relative to essential 

meanings and ways of thinking entailed in learning an idea, ii) describes how essential 

meanings and ways of thinking fit in the broader scope of students’ mathematical 

experiences, and iii) includes an analysis of the meanings students do construct within an 

enacted learning trajectory. Results from this work has the capacity to positively impact 

student learning by fostering improvements in instruction, curriculum, and the coherence 

of state and national standards (Clements & Samara, 2004; Ellis, Ozgur, Kulow, Dogan, 

& Amidon, 2016; Sztajn, Confrey, Wilson, & Eddington, 2012). 

 

Conceptual Analysis, Hypothetical Learning Trajectories, and Teaching 

Experiments: The Importance of Theory 

Conceptual analysis focuses on defining mental activity characterizing both real 

and epistemic individuals’ meanings, and as such derives from general constructivist 

principles. diSessa and Cobb (2004) and Thompson (2002) both describe theoretical 

perspective hierarchies starting from broader background theories like Piaget’s (1971) 

genetic epistemology to more narrow domain-specific theories that “entail the conceptual 
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analysis of a significant disciplinary idea…with the specification of both successive 

patterns of reasoning and the means of supporting their emergence” (diSessa & Cobb, 

2004, p. 83). Background theories serve “to constrain the types of explanations we give, 

to frame our conceptions of what needs explaining, and to filter what may be taken as a 

legitimate problem” (Thompson, 2002, p. 192). Domain-specific theories address “ways 

of thinking, believing, imagining, and interacting that might be propitious for students’ 

and teachers’ mathematical development” (p. 194). 

That conceptual analysis originated from radical constructivism has implications 

for its character and purpose. A description of what it means to understand a 

mathematical idea should be phrased in terms that reflect a researcher’s epistemology, 

and not in a faint or elusive way. This explains why conceptual analysis, as defined by 

Glasersfeld (1995), Steffe & Thompson (2000), and Thompson (2008a), is a description 

of cognitive states and processes. Grounding conceptual analysis in descriptions of 

mental actions and schemes35 attunes researchers to important ways of understanding 

foundational ideas that influence students’ abilities to construct and leverage productive 

images of sophisticated ideas articulated by a researcher’s learning goals and hypothetical 

learning trajectory (Simon, 1995). 

 

Conceptual Analysis 

Thompson (2008a) defined conceptual analysis as a description of “what students 

must understand when they know a particular idea in various ways” (p. 42) and outlined 

                                                      
35 My meaning for scheme is best described by Thompson, Carlson, Byerley, and Hatfield (2014). They 
wrote that “[s]chemes are organizations of mental activity that express themselves in behavior, from which 
we, as observers, discern meanings and ways of thinking. Scheme is a theoretical construct that we impute 
to individuals to explain their behavior” (p. 10). 
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four uses: 1) to build models of students’ thinking by analyzing observable behaviors, 2) 

to outline ways of knowing potentially beneficial for students’ mathematical 

development, 3) to outline potentially problematic ways of knowing particular ideas, and 

4) to analyze coherence in meanings among some set of ways of knowing. From a 

Piagetian-constructivist perspective, understandings are organizations of mental actions, 

images, and conceptual operations. Describing an understanding—either actual or 

intended—therefore involves specifying its constituent mental actions, images, and 

operations. Conceptual analysis provides clarity on the mental actions that characterize 

particular understandings, their potential origins, and their implications for subsequent 

mathematical learning. Conceptual analysis does not produce a list of mathematical facts 

or specific performance objectives. Conceptual analysis is about articulating the cognitive 

processes that characterize particular understandings and is thus a basis for task design 

and shapes researchers’ identification of students’ mathematical thinking and learning. 

Thus, conceptual analysis is a form of theory itself—an operationalization of what 

diSessa and Cobb (2004) call an orienting framework in the context of mathematics 

education research. 

 

Hypothetical Learning Trajectories 

There is currently no consensus definition for hypothetical learning trajectory. 

Most descriptions are built from Simon’s (1995) original definition as “[t]he 

consideration of the learning goal, the learning activities, and the thinking and learning in 

which students might engage” (p. 133). Ellis et al. (2016) provide a thorough literature 

review regarding researchers’ differing meanings when they discuss learning trajectories. 
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I will not repeat their analysis here. However, Simon’s (1995) original intention was to 

emphasize “hypothetical” in the term hypothetical learning trajectory because, as the 

name indicates, they should be framed as hypotheses to be tested in empirical studies. 

Steffe and Thompson’s (2000) teaching experiment methodology was designed to 

support creating, assessing, and refining hypothetical learning trajectories informed by a 

conceptual analysis. Teaching experiments have three parts, and different uses of 

conceptual analysis contribute uniquely to each part (see Figure 7.3).  

 
Figure 7.3. Parts of a teaching experiment. Note that articulating the three parts of the 
teaching experiment align well with Simon’s (1995) original description of the 
components of a hypothetical learning trajectory.  
 
Testing hypothetical learning trajectories requires that each of the three components of a 

hypothetical learning trajectory (the goal, the activities, and the student reasoning) should 

be clearly articulated in enough detail so that during a teaching experiment, and in 

retrospect, it is possible for the researcher to provide empirical support for accepting or 

rejecting any part of the hypothesis. Thinking in these terms, we can clarify how the 

results from different research studies contribute to the goal of creating empirically tested 

mathematical learning trajectories. 

Examples of Different Uses of Conceptual Analyses 

Since researchers’ contributions to learning trajectory research depend on how 

they apply the methods of conceptual analysis, their conceptual analyses constitute and 

should be viewed as an interpretive lens to make sense of their data. Further, it provides 
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others a window into the authors’ perspectives and ways of conceptualizing particular 

mathematical ideas, thus allowing others to better leverage and interpret their work. The 

following three examples will help to illustrate this point. Each are drawn from 

compelling, influential research related to the teaching and learning of exponential 

growth. 

 

Confrey and Smith’s Retrospective Conceptual Analysis: Modeling Student 

Reasoning 

Confrey (1994) and Confrey and Smith (1994, 1995) developed robust 

descriptions for students’ images of multiplication, ratio, covariation, function, and rate 

based on retrospective conceptual analysis of teaching interviews. By studying student 

thinking as they worked through tasks like paper folding and predicting future values for 

an item retaining 90% of its value each year, Confrey and Smith identified productive 

student meanings for multiplication, rate of change, and function that often differed from 

conventional meanings (such as conceptualizing multiplication as repeated addition or 

functions as injective mappings). By carefully modeling students’ schemes, Confrey and 

her colleagues described productive images they conjectured could be a powerful 

foundation for understanding exponential growth. 

Images of multiplication, covariation, function, rate of change, and 

exponential growth. Confrey (1994) described thinking about multiplication via 

splitting. A split is the action of creating equal copies of an original amount or breaking 

apart an original amount into equal-sized pieces, and multiplication is the result of some 
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n-split on an original whole while division involves examining one of the equal parts of 

the split relative to the whole. See Figure 7.4. 

 
Figure 7.4. Two different conceptualizations of an eight-split (Confrey, 1994). On the left 
the split is conceptualized as making eight identical copies of an original amount and on 
the right the split is conceptualized as breaking apart an original amount into eight equal-
sized pieces. 
 
In this way students have the potential to conceptualize multiplication and division and 

their inverse relationships simultaneously. Ratios rather than differences are then the 

natural means of comparison when conceptualizing a split and equivalent ratios 

correspond to comparisons of values separated by an equal number of splits. See Figure 

7.5. 

 
Figure 7.5. Ratios such as 512/8 and 4096/64 are equal if an equal number of splits 
separate the values. 
 

Confrey and Smith (1994, 1995) described students engaging in covariational 

reasoning when coordinating splits and defined covariation discretely as a process of 

synchronizing successive values of two variables. A function relationship is then “the 

juxtaposition of two sequences, each of which is generated independently through a 

pattern of data values” (1995, p. 67) with specific function characteristics emerging from 
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repeated actions during this coordination. Table 7.1 shows an arithmetic sequence for x 

values coordinated with a geometric sequence for y values. 

Table 7.1  

Coordinating an Arithmetic Sequence with a Geometric Sequence 

 x y  
+3 x2 

2 15 
+3 x2 

5 30 
+3 x2 

8 60 
+3 x2 

11 120 
+3 x2 

14 240 
  

 
Confrey and Smith argued that students reasoning covariationally developed 

notions of rate that differed from conventional definitions. Some students coordinating 

arithmetic and geometric sequences to reason about exponential growth described the 

relationship as having a constant rate of change, meaning that thinking about rates as a 

ratio of additive differences is not an inevitable choice for students. They proposed 

defining rate in a way that respects students’ intuitions. A rate is a unit per unit 

comparison where unit refers to what remains constant in a repeated action (Confrey, 

1994). Thus, changes (and rates) can be conceived of additively or multiplicatively. 

Confrey and Smith argued that coordinating repeated addition to move through an 

arithmetic sequence with repeated multiplication to move through a geometric sequence 

is a productive foundation for understanding exponential growth. In other words, 

exponential functions are functions with a constant multiplicative rate of change (such as 

“times two per plus three” for the relationship shown in Table 7.1). A more complete 

image of the relationship emerges by interpolating values within each sequence through 
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coordination of arithmetic and geometric means thus producing a domain and range with 

the density of the rational numbers. 

Confrey and Smith’s work modeled students’ constructed schemes from empirical 

data and theorized about the utility of specific meanings for multiplication, covariation, 

function, and rate of change for understanding exponential growth. This kind of 

retrospective conceptual analysis is very useful for characterizing spontaneous and 

productive student reasoning about specific tasks, including novel ways of thinking 

potentially not emphasized in curricula. Confrey and Smith were not focused on 

generating detailed learning trajectories (that is, they did not outline specific task 

sequences for specific student populations as testable hypotheses for a teaching 

experiment, at least not in their reports),36 nor did they describe the implications for their 

specific meanings on understanding a wide array of more advanced mathematical ideas 

students will encounter in the future (e.g., derivatives or the Fundamental Theorem of 

Calculus (FTC)). Their work was limited to modeling students’ meanings for 

mathematical ideas within a narrow scope of mathematical tasks and considering 

implications of these meanings for what they conceived as related ideas. These 

statements are not criticisms; rather, the intent is that they clarify how Confrey and Smith 

used conceptual analysis in their work and highlight their study’s goals and scope, thus 

helping others understand their data and conclusions with respect to how they contribute 

to learning trajectory research. 

                                                      
36 Weber (2002a, 2002b) and Ström (2008) both studied the implications of Confrey and Smith’s 
conceptual analysis, as did Amy Ellis and her colleagues. I will say much more about Ellis et al.’s work 
later in this paper. 
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Based on this analysis, I classify their use of conceptual analysis in relation to 

learning trajectory research as "projecting forwards". They described how some students 

spontaneously reasoned about specific tasks and conjectured how that reasoning could 

build a coherent trajectory forward to develop useful ways of thinking and 

understandings for learning related topics (from Confrey and Smith's point of view). I 

visualize this in Figure 7.6. 

 
Figure 7.6. Confrey and Smith’s recommendations can be thought of in terms of 
"projecting forwards". Starting with models of how students reasoned about particular 
tasks they conjectured how that reasoning might be leveraged in learning about ideas they 
see as related. I visualize the arrow emerging from left to right and the path it traces runs 
through ideas Confrey and Smith describe as connected to splitting and multiplicative 
rate of change. 
 
 

Thompson’s Conceptual Analysis: Coherence of Mathematical Ideas Leading to 

Calculus 

Thompson’s (1994a) unpacking of the key ideas in calculus, particularly the FTC, 

motivated and informed his conceptual analysis for exponential growth (Thompson, 

2008a). Thompson imagined a broadly coherent trajectory for students’ mathematical 

experiences focused on quantitative reasoning, covariational reasoning, and 

representational equivalence that could unite most topics from grade school mathematics 

through calculus (Thompson, 2008b). Thus, his conceptual analysis considers exponential 

functions as just one of many opportunities for students to develop and apply particular 

ways of thinking including coordinating the variation in two quantities, conceptualizing a 
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rate of change as measurement of how quantities change together, viewing function 

relationships as emerging through coordination of covarying quantities (including 

function values as emerging through continuous accumulation according to specific rates 

of change), and classifying functions by noticing what remains invariant as the quantities 

vary (Thompson, 1994a; Thompson & Carlson, 2017). 

 

Quantitative and covariational reasoning, rate of change, accumulation, and the 

FTC.  

Thompson’s meanings for covariation, function, and rate of change are different 

from Confrey and Smith’s meanings because his goals are different. His work is 

grounded in quantitative reasoning, which describes conceptualizing a situation to form a 

quantitative structure that organizes relevant quantities (measurable attributes) and 

quantitative operations (new quantities representing a relationship between other 

quantities) (Thompson, 1988, 1990, 1993, 1994b, 2011, 2012). If someone sees a 

situation as composed of quantities that change together and attempts to coordinate their 

variation, then she is engaging in covariational reasoning (Carlson, Jacobs, Coe, Larsen, 

& Hsu, 2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017). Sophisticated 

covariational reasoning involves linking two continuously varying quantities to create a 

multiplicative object. A multiplicative object is a conceptualization formed in the 

anticipation of keeping track of both quantities as they vary and maintaining that unity in 

the face of perceiving their individual variation (Saldanha & Thompson, 1998; 

Thompson, 2011; Thompson & Carlson, 2017). 
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Thompson (1994a, 1994b) and Thompson and Thompson (1992) outline an image 

of constant rate as a proportional correspondence of two smoothly covarying quantities. 

When one quantity’s magnitude changes by any amount, the other quantity’s magnitude 

changes proportionally. Thompson often refers to a constant rate of change as a 

homogeneous rate of change, intentionally invoking imagery associated with 

homogeneous mixture problems (Kaput &West, 1994; Harel, Behr, Lesh, & Post, 1994). 

For example, if a liquid is made up of two parts (say, water and orange juice concentrate), 

then as the mixture is poured into a container the volumes of water and concentrate 

change together such that they are always the same relative size and the same relative 

proportion of the mixture's volume. See Figure 7.7. 

 
Figure 7.7. As the total mixture volume changes, the volumes of water and concentrate 
change so that they are always the same relative size and the same relative proportion of 
the mixture’s volume. To capture this idea, imagine the mixture being poured into the 
container so that the volume changes smoothly and continuously. 
 

Thinking about “homogeneous rates of change” allows change and accumulation 

to occur simultaneously for all real numbers and focuses attention not just on the values 

before and after variation but at all moments during the variation (Castillo-Garsow, 

2012; Castillo-Garsow, Johnson, and Moore, 2013; Saldanha & Thompson, 1998; 

Thompson & Carlson, 2017). Thompson claims that this is akin to Newton’s image of 

rate that allowed him to conceptualize the relationship between accumulation and rate of 

change expressed formally in the FTC (Thompson, 1994a, 2008a). Over small intervals, 
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Newton imagined that any two covarying quantities change together in a proportional 

correspondence. This can be modeled by a piecewise constant rate of change function and 

its corresponding piecewise linear accumulation function. The FTC describes how these 

two functions are related as the interval sizes tend to zero (see Figure 7.8). 

 
Figure 7.8. Piecewise linear accumulation functions and the corresponding piecewise 
constant rate of change functions. 
 

Exponential functions. Building from his images of constant rate of change and 

the FTC, Thompson’s (2008a) conceptual analysis involved thinking about classifying 

functions based on similarities in their rate of change functions and imagining functions 

as emerging through accumulation. Specific to exponential functions, he conceptualized a 

relationship with a rate of change on some interval that is always the same proportion of 

the function’s value at the beginning of the interval. As the interval size decreases, the 

piecewise linear accumulation function converges to a function modeled by f (x) = Perx 

where r is the constant of proportionality relating the function’s rate of change and its 

value. See Figure 7.9. 
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Figure 7.9. Another piecewise linear accumulation function and piecewise constant rate 
of change function. In this case there is a proportional relationship between the function’s 
rate of change within any interval and the function’s value at the beginning of the 
interval. When the interval size tends to zero, the accumulation function converges to the 
familiar exponential function. 
 

In this development, the defining characteristic of an exponential function is not 

related to the geometric structure in its pattern of outputs. An exponential function is a 

relationship where the rate of change is proportional to the function’s value at any point 

in the domain. Again, Thompson (1994a, 2008a) argued that this way of understanding 

allows a person to conceptualize both change and accumulation as happening 

simultaneously. This makes it natural to imagine the function value growing continuously 

and producing outputs for all real number inputs. Thompson argues that this is a 

potentially consistent and coherent way of reasoning about all function relationships that 

eventually supports a productive operational understanding of the FTC. 

Much like Confrey and Smith, Thompson’s work is not a detailed hypothetical 

learning trajectory for learning specific ideas according to Simon’s (1995) description.37 

Thompson’s conceptual analysis is part of a broader, idealized web of ideas stretching 

from students’ first mathematical experiences through calculus. In Thompson’s 

conceptual analysis, exponential growth is related to repeated multiplication almost by 

                                                      
37 Castillo-Garsow (2010) did produce a learning trajectory and empirical study based on this conceptual 
analysis. 
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coincidence and is not the foundational meaning. That is, characteristics such as a 

constant doubling time (or half-life) or a constant Δx-unit growth factor emerge through 

reflecting on emergent relationships. This differs from Confrey and Smith’s work where 

these properties are an integral part of the definition of exponential functions. 

If Confrey and Smith’s work can be described as “projecting forwards”, I think 

about Thompson’s recommendations as “projecting backwards”.38 The ways of 

understanding key ideas in calculus inform his recommendations for ways of thinking 

about most ideas prior to calculus (including exponential functions). See Figure 7.10.  

 
Figure 7.10. Thompson’s recommendations can be thought of in terms of "projecting 
backwards". Starting with a conceptual analysis for potentially productive meanings for 
the FTC, Thompson discusses ways students might conceptualize ideas of function, rate 
of change, magnitude, exponential growth, etc. that are potentially coherent and that lay 
the foundation for eventually understanding the FTC in productive ways. I imagine the 
arrow as being drawn sweeping from right to left. The arrow is also drawn “fuzzy” to 
convey his attention more on broader ways of thinking over specific ways of 
understanding at the level of individual lessons and units. 
 
Thus, Thompson’s conceptual analysis relative to exponential growth is situated within a 

broader, idealized web of ideas and meanings that he conjectures provides an opportunity 

for students to conceptualize their mathematical experiences as largely coherent 

(Thompson, 2008b). This is a useful lens for understanding his body of work relative to 

quantitative and covariational reasoning in general and exponential growth in particular. 

 

                                                      
38 Please see Appendix C before referencing or citing my characterization of Thompson’s conceptual 
analysis for an important commentary. 
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Ellis and Colleagues: From Exploratory to Hypothetical Learning Trajectory 

Ellis and her colleagues (Ellis, Ozgur, Kulow, Williams, & Amidon, 2012, 2015; 

Ellis et al., 2016) mostly leveraged Confrey and Smith’s images of covariation, rate, and 

exponential growth to construct a rough exploratory learning trajectory surrounding a 

single context. Ellis et al. extended and clarified how Confrey and Smith’s ideas might 

productively support students’ understanding of exponential relationships and chose a 

situation where they conjectured students could easily justify that the function’s domain 

and range were not restricted to a set of discrete values.39 

They built a Geogebra applet showing the image of a plant (the Jactus) with a 

height that varied exponentially with elapsed time. The applet’s user can vary the elapsed 

time by sliding the plant along the horizontal axis and its height updates in real time. The 

applet also displays the time elapsed and the plant’s height as an ordered pair as the user 

slides the plant horizontally. See Figure 7.11. 

 
Figure 7.11. An approximation of Ellis et al.’s Jactus applet.40 

 

                                                      
39 Through their choice of task, Ellis and her colleagues attempted to bridge the meanings developed in 
Confrey and Smith with recommendations from Thompson’s work in continuous covariation. Their 
expectation was that situating explorations of exponential growth in a context where students could explore 
continuous growth would address what their conceptual analysis revealed as potential pitfalls in focusing 
on discrete variation. 
40 Note that Kuper (2018) built on Ellis et al.’s work and explored how a similar applet might support 
students in developing productive meanings for logarithmic functions. O’Bryan (2018) also used a 
modified version of this applet to support students in seeing growth factors as a measurement of one 
instance of a quantity in units of a second instance of the same quantity. 
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In designing their study, Ellis et al. anticipated, and later confirmed, that students’ 

initial models for exponentiation involved an informal image of repeated multiplication. 

Ellis et al. wanted students to leverage covariational reasoning to build a more robust 

image of exponential growth focused on coordinating multiplicative changes in one 

quantity with additive changes in another quantity. With this understanding, students 

could conceptualize bx as both the possible height of a plant at some moment in time and 

as representing a (multiplicative) change in height. Their eventual goal was for students 

to develop a meaning for b∆x as the ratio of any two outputs f (x1+∆x) and f (x1) where b is 

the 1-unit growth factor. Students working through their activities exhibited key shifts in 

their thinking that included increased attention to how the two quantities changed 

together over intervals of varying size and “[these] results…offer a proof of concept that 

even with their relative lack of algebraic sophistication, middle school students can 

engage in an impressive degree of coordination of co-varying quantities when exploring 

exponential growth” (Ellis et al., 2012, p. 110). 

Ellis et al. used conceptual analysis in three ways. First, they further unpacked 

Confrey and Smith’s conceptual analysis of exponential growth as students might 

construct it from images of coordinating additive and multiplicative changes. Second, 

they modified and updated their exploratory learning trajectory and tasks throughout the 

study based on emerging models of students’ schemes. These analyses, coupled with 

retrospective analysis on the empirical data, allowed them to craft highly detailed 

descriptions of students’ meanings at various points in time and how those meanings 

developed through interactions with tasks and teaching interventions (Ellis et al., 2016). 

The result is the foundation for a powerful hypothetical learning trajectory. Ellis et al. 
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now have empirical grounding for theories on how students might come to construct 

specific meanings related to exponential growth and related ideas. The refinements from 

the exploratory research and their model for how students construct specific meanings in 

specific contexts can now be a clearly articulated scientific hypothesis for systematic 

testing. 

Ellis et al.’s study is an example of critical work in developing empirically tested 

learning trajectories and demonstrates how initial exploratory work in understanding 

students’ scheme construction can be refined and expanded to contribute to learning 

trajectory research. However, as they note, “Our learning trajectory is an attempt to 

characterize the nature of the evolution of students’ thinking in a particular instructional 

setting” (2016, p. 153) and is thus only one of many possible learning trajectories. One 

key underdefined component of Ellis et al.’s publications is a clear description of how 

their learning goals for students fit into a broader image of students’ mathematical 

experiences. This includes addressing how intended meanings may support students in 

reasoning about other ideas within the same course and how the intended meanings 

establish a foundation for students to understand important mathematical ideas in future 

courses. They likely thought of this as beyond the scope of their research study. 

However, this leaves the reader to conjecture about most aspects of the broader trajectory 

Ellis et al. might have in mind, and this might make it difficult for other researchers or 

curriculum designers to know how to leverage Ellis et al.’s activity and learning 

trajectory in their own work. 

Ellis et al.’s use of conceptual analysis supported their development of a teaching 

experiment with particular learning goals, initial tasks to support those learning goals, 
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refinements of the goals and tasks in the process of instruction, and retrospective analysis 

on the meanings students developed during their intervention. They grounded their work 

in particular characterizations for students’ background knowledge of exponents and 

repeated multiplication and sought to impact a certain population or age level of students 

with the goal of supporting specific meanings for exponential relationships and growth 

factors. See Figure 7.12.  

 
Figure 12. Ellis et al.’s recommendations focus on a particular topic (a small set of ideas) 
within a specific course built on a particular set of assumptions for students’ background 
knowledge. Their work is loosely situated within a trajectory with general meanings for 
concepts like function, rate of change, etc., but Ellis et al. do not elaborate on specific 
ways that their learning goals prepare students to better understand other mathematical 
ideas. 
 
 

Summary and Theoretical Implications 

“Performing a conceptual analysis” meant something different in each of the 

examples I discussed (although it is important to emphasize that it was never simply a list 

of topics for students to learn). Reflecting on how conceptual analysis is used and how 

the results and recommendations of three researchers/research teams might contribute to 

developing and testing hypothetical learning trajectories suggests two salient issues for 

cognitive researchers to consider in this area. 
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A Need for Articulating Images of Long-Term Implications and Coherence 

It is tempting to consider recommendations from Confrey and Smith, Thompson, 

and Ellis et al. as representing competing sets of meanings such that other researchers or 

curriculum designer must decide which approach is “best” (or decide upon an amalgam 

of two or more approaches). However, viewing the recommendations in this light 

overlooks an important truth. Each recommendation is situated within the researchers’ 

images of students existing within a larger trajectory of mathematical experiences (even 

if this image is not articulated in their publications), and as such the recommendations 

and results should not be considered outside of this context. For example, Thompson 

situates his meanings for exponential growth and related ideas in what he conceptualizes 

as a broadly coherent web of ideas that eventually support students in constructing 

intuitive understandings of the FTC and other more advanced ideas. Considering whether 

or not to build lessons to support students in developing his intended meanings for 

exponential functions within a trajectory of learning experiences with different ultimate 

goals is to miss the point of his conceptual analysis. The merits of seemingly competing 

learning goals cannot be compared in a vacuum and must be considered within the larger 

context of creating coherent mathematical experiences for students across topics and 

courses.  

When designing or analyzing learning trajectory research, it will be useful to 

others if researchers articulate how students might leverage the specific ways of 

understanding in future learning, how these ways of understanding can be supported in 

earlier learning, and how the ways of understanding we want to promote connect to other 

ideas within the same course. If researchers would focus on communicating this vision, 
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and demand others do the same, this may lead to more productive collaborations and 

conversations grounded in our collective effort to improve student learning. I suspect that 

over time, as we gain increasing clarity both on how students develop productive 

meanings for ideas in elementary mathematics and we better understand meanings that 

are fundamental to students’ success in higher levels of mathematics and other STEM 

fields, that these discussions will be the impetus for convergence in our images of 

productive learning trajectories spanning students’ entire mathematical careers. 

 

A Need for New Terminology and Articulating How Research Results are to be 

Interpreted  

A teaching experiment is a method of testing a research hypothesis (a carefully 

detailed hypothetical learning trajectory) informed by conceptual analysis that considers 

the degree to which (and aspects of) tasks and interactions that promote specific learning 

goals. Most of the research described in this paper does not satisfy the criteria of a formal 

teaching experiment because the empirical work, when present, tended to be exploratory 

in nature. However, each of the examples contribute to the goals of cognitively-oriented 

mathematics education research in powerful ways. Confrey and Smith described 

students’ schemes related to repeated multiplication based on spontaneous reasoning 

about particular mathematical tasks. Ellis et al. further unpacked these schemes and, 

based on retrospective analysis of empirical data, produced a well-defined hypothetical 

learning trajectory for specific meanings using specific tasks that now has the clarity and 

specificity necessary to be a scientific hypothesis. Thompson’s work takes a broader view 
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and suggests ways of understanding exponential growth situated within a coherent body 

of mathematical ideas extending well beyond a single topic. 

Currently there is no consensus on the exact meaning of a hypothetical learning 

trajectory. This might be due to how applying conceptual analysis in different ways 

contributes uniquely to learning trajectory research as discussed in this paper. In addition, 

reflecting on the research I described suggests that the field may benefit from greater 

clarity in defining different types of learning trajectories with the definitions influenced 

by the role of conceptual analysis. A potential starting point follows. 

 Guiding Framework – Descriptions of the overarching ways of thinking that 

connect topics and ways of understanding within a broad, coherent trajectory of 

students’ mathematical experiences. For example, ways of thinking about 

covariation, relative size, rate of change, proportional reasoning, etc. would be 

included in a guiding framework. A guiding framework informs details of 

learning trajectories for specific mathematical ideas at specific grade levels or 

courses by situating that work within the larger imagined path that student 

learning may follow. Conceptual analysis is critical in analyzing the coherence in 

meanings within the framework. 

 Exploratory learning trajectory – Conceptual analysis (either based on a 

researcher’s analysis of mathematical ideas or based on empirical data) can 

suggest potentially useful ways of understanding particular ideas. A researcher 

then creates tasks and a rough exploratory trajectory for gathering empirical data 

on how students reason about learning tasks in specific settings. Since the enacted 



 

144 

learning trajectory is continually modified based on modeling students’ emerging 

meanings, the stated learning is not yet a fully articulated scientific hypothesis. 

 Enacted learning trajectory – An actual learning trajectory unfolds informed by 

the exploratory learning trajectory but modified through interactions between a 

researcher/teacher and students. Conceptual analysis is used retrospectively to 

describe how students’ schemes changed as a result of their mathematical activity 

and how specific features of the learning tasks supported (or failed to support) 

students in developing the intended meanings. 

 Hypothetical learning trajectory – This describes a specifically stated research 

hypothesis outlining targeted mental actions and schemes, specific tasks and a 

task sequence, and descriptions of how those tasks will contribute to students 

developing the intended meanings. The teaching experiment that tests this 

hypothetical learning trajectory seeks to accept or reject particular aspects of the 

hypothesis and will ultimately result in refinement. Conceptual analysis is critical 

to the design of the learning trajectory and retrospectively in analyzing outcomes 

in the more formal teaching experiment. Note that I intend a narrower use of this 

term than is currently in practice. Initial iterations of learning trajectories that are 

still subject to significant modification are not yet at the level of a stable scientific 

hypothesis. I suggest reserving the term hypothetical learning trajectory for more 

stable descriptions of learning trajectories that have already been through multiple 

refinement iterations in particular settings and are ready for more systematic 

testing of the relatively stable sequence of tasks and lessons. For example, I 

suggest that Ellis et al.’s work culminated in articulating a hypothetical learning 
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trajectory. Their papers described exploratory learning trajectories and analysis on 

enacted learning trajectories. 

 Empirically supported learning trajectory – After potentially several rounds of 

refinement and testing with exploratory and hypothetical learning trajectories, a 

researcher can articulate an empirically supported learning trajectory. This is the 

stage at which it may be appropriate to compare the implications or results of 

different learning trajectories for particular mathematical ideas. 

Any of these categories could describe work that is narrow in scope (focused on a 

particular mathematical lesson or set of lessons) or grander in scope (focused on students’ 

learning across units, an entire course, or a set of courses). Researchers’ questions of 

interest and how they use conceptual analysis dictate the type of learning trajectory they 

are developing and studying, and the scope of their work dictates their contribution to the 

field from models of students’ schemes relative to particular ideas to coherent 

mathematical experiences across many topics and grade levels. 

 

Final Comments 

As researchers, we are obligated to not only produce scientifically-valid findings 

but also to communicate our work in ways that allow others to leverage our results to 

advance the collective mission of our design science. Being more explicit about the role 

of conceptual analysis in our work and having greater clarity on how our learning 

trajectory research contributes to design research can help us make our findings more 

useful and relevant. It is also vital that we not lose sight of the role that conceptual 

analysis can play in the systematic advancement of knowledge of productive learning 
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trajectories within courses and across grades. Research that provides clarity about 

productive learning trajectories has the potential to become a powerful model for 

advancing curriculum and instruction to be more effective in supporting student learning 

of key mathematical ideas, both within a course and across courses spanning multiple 

years.  

I hope that my articulation of how different uses of conceptual analysis are 

relevant to developing different categories of learning trajectories facilitates relevant and 

productive communication among cognitively-oriented, qualitative mathematics 

education researchers working to develop and test learning trajectories.  
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CHAPTER 8 

PAPER 2 [ONLINE LEARNING] 

Inattention to Students’ Mathematical Meanings in Online Learning Research: 

Initial Steps Toward a New Research Focus and Methodology  

Alan O’Bryan 

Arizona State University 

Abstract: Post-secondary student enrollment in online courses is increasing, yet little is 

known about the mathematical meanings students construct while engaged in online 

coursework. Prior research tested the impact of online courses on measures such as 

student retention rates, satisfaction scores, and GPA. But this data does not provide a 

complete picture of student learning in this context. In particular it does not assess the 

meanings students are constructing for mathematical ideas researchers have identified as 

critical to their success in future math courses and other STEM fields. This paper 

discusses the need for a new focus in studying online mathematics learning and calls for 

cognitive researchers to begin developing a productive methodology for examining the 

meanings students construct while engaged in online lessons. 

Keywords: Online Learning, Cognitive Research, Research Methodology 

“[S]tudents’ mathematical learning is the reason our profession exists. 
Everything we do as mathematics educators is, directly or indirectly, to 
improve the learning attained by anyone who studies mathematics. Our 
efforts to improve curricula and instruction, our efforts to improve teacher 
education, our efforts to improve in-service professional development are 
all done with the aim that students learn a mathematics worth knowing, 
learn it well, and experience value in what they learn. So, in the final 
analysis, the value of our contributions derives from how they feed into a 
system for improving and sustaining students’ high quality mathematical 
learning.” (Thompson, 2008a, pg. 31) 
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Studying online learning is increasingly important considering the growing 

prevalence of online courses in post-secondary education. Prior research has focused on 

the impact of the online environment on student satisfaction, retention rates, and GPA. 

Little attention has been paid to the meanings students construct as a result of online 

lessons or the features of online lessons that support students’ construction of meanings 

researchers know to be critical in STEM courses and careers. As Thompson (2013) points 

out, “if we intend that students develop mathematical understandings that will serve them 

as creative and spontaneous thinkers outside of school, then issues of meaning are 

paramount” (p. 61). Thus, studying students’ construction of meaning in online courses is 

a potentially rich area of cognitive research that could provide critical feedback for future 

iterations of and validation for these interventions. 

In Part I of this paper I summarize the current body of research regarding online 

learning and the opportunities and importance of studying the meanings students 

construct while engaged in online courses. In Part II I summarize current research 

methodologies designed to model students’ mathematical meanings and discuss 

implications in applying these methodologies to study student learning in online 

environments. I conclude with a discussion of possible data researchers might collect for 

modeling students’ meanings and briefly highlight the importance of triangulating from 

multiple data sources and the unique challenges in studying online learning. 

 

Theoretical Perspective 

As Cobb (2007) pointed out, researchers choose theoretical perspectives best-

suited to address their research questions. Research on student learning in the online 



 

152 

environment has thus far focused on the concerns of school administrators using classical 

experiment methodologies. They compare student GPAs, retention rates, satisfaction, and 

exam scores for students in online courses and students in comparable face-to-face 

courses. Thus, these studies focus on a student as “a statistical aggregate that is 

constructed by combining measures of psychological attributes of the participating 

students” (Cobb, 2007, p. 16). Cobb calls this a collective individual and it is to this 

abstract individual that a researcher attributes an intervention’s impact. This work is 

important for ensuring that students’ academic progress is not negatively impacted by 

substituting online courses for comparable face-to-face courses. However, it is also 

critical that we understand if students are constructing mathematical meanings that we 

know are important for success in future math courses and STEM fields. This kind of 

work requires a different theoretical perspective and a different kind of study, one that 

“account[s] for specific students’ and teachers’ mathematical reasoning and learning” 

(Cobb, 2007, p. 19).  

I leverage radical constructivism (Glasersfeld, 1995) as the foundation for my 

image of students’ mathematical meanings, what it means to study them, and why this 

focus is important. A student’s mathematical meanings (a) are entirely internal to the 

student and (b) refer to the complex web of understandings, imagery, connections, etc. 

that make up the scheme to which a student assimilates a given stimulus (such as a 

particular math problem, graph, or animation). A researcher interested in a student’s 

mathematical meanings must attempt to model them by reflecting on the student’s 

observable behaviors and theorizing a set of meanings that, if the student possessed them, 

would best explain those behaviors (Thompson, 2013). Radical constructivism is an 
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extension of Piaget’s (1977) genetic epistemology. For Piaget, an individual organizes 

her experiences within schemes that include triggers (stimuli that assimilate to the 

scheme), actions associated with the stimuli, and some expectation of what outcome the 

action(s) will produce as a progression towards a goal or need not currently met 

(Thompson, Carlson, Byerley, & Hatfield, 2013; Glasersfeld, 1995; Piaget, 1971; Piaget 

& Inhelder, 1969). Actions include “all movement, all thought, or all emotions that 

respond to a need” (Piaget, 1967, p. 6). An individual that experiences a stimulus 

assimilates that stimulus to a scheme that provides meaning, with the scheme’s entire 

contents, implications, inferences, connections, and actions encompassing that meaning 

(Johnckheere, Mandelbrot, & Piaget, 1958). All experiences involve attempts to 

assimilate stimuli to a scheme and thus provide those experiences with meaning. 

Thus, meaning refers the components of an individual’s scheme (Thompson, 

2013). This creates two primary challenges in trying to describe what a student 

understands or the meanings she constructs. First, without direct access to anyone else’s 

thoughts, any claims about a person’s understanding derive from models of that person’s 

schemes constructed based on her observable actions (Glasersfeld, 1995; Steffe & 

Thompson, 2000; Thompson, 2013). Second, choosing a set of ideas to research (like 

exponential functions) betrays a researcher-centered orientation because there is no 

guarantee that students will assimilate any of the activities to a scheme the researcher 

would recognize as encompassing exponential growth as he understands it. Therefore, a 

researcher must be attentive to how students appear to have understood a given task or 

activity, the possible structure of that person’s triggered scheme, and “the space of 
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implications” (Thompson et al., 2014, p. 13) for a person assimilating a stimulus to the 

hypothesized scheme. 

 

Part I: A Call to Action 

Online Instruction and Online Mathematics Courses 

Over 26% of U.S. students enrolled in post-secondary courses in the Fall 2012 

semester registered for at least one distance-learning course (predominantly delivered 

online), and post-secondary enrollment in distance-learning courses during the fall 

semester have since increased even while the overall post-secondary enrollment 

decreased (U.S. Department of Education, National Center for Education Statistics, 2013, 

2014, 2015, 2016, 2017, 2018). See Table 8.1.  

Table 8.1 

U.S. Post-Secondary Enrollment in Distance Learning Courses in the Fall Semester, 

2012-2018 

semester 
students enrolled 
in post-secondary 

courses 

students enrolled in any 
post-secondary distance-

learning course 

post-secondary students 
enrolled exclusively in 

distance-learning courses 
Fall 2012 20,642,819 5,444,701 (26.38%) 2,638,653 (12.78%) 
Fall 2013 20,375,789 5,522,194 (27.10%) 2,659,203 (13.05%) 
Fall 2014 20,207,369 5,750,417 (28.46%) 2,824,334 (13.98%) 
Fall 2015 19,977,270 5,954,121 (29.80%) 2,871,788 (14.38%) 
Fall 2016 19,988,204 5,965,813 (29.85%) 2,874,870 (14.38%) 
 

Growth in online enrollment is spurred by both student demand and academic leaders’ 

views of these courses (Allen & Seaman, 2011; Xu & Jaggars, 2013). The majority of 

academic leaders believe that the quality of online courses is at least as good as in-person 

courses and also believe that students are at least as satisfied with their online courses 
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compared to in-person courses (Allen & Seaman, 2011). In addition, about 71% of these 

leaders say that online learning represents a key part of their long-term growth strategies 

(Allen & Seaman, 2015). There is also a common assumption that online courses provide 

a reduction in long-term costs associated with teaching post-secondary courses which 

increases their attractiveness (Xu & Jaggars, 2013). 

There is little doubt that online courses provide students with options for 

completing coursework regardless of where they live or if circumstances preclude regular 

attendance in face-to-face classes. These courses can also help colleges recruit more 

students and provide additional pathways for students to complete degree requirements. 

However, online learning is a relatively new phenomenon in education and little is known 

about the meanings students construct while interacting with online lessons or how best 

to leverage technology to promote specific learning goals. This is critical information if 

online courses continue to be a large part of students’ post-secondary educational 

experiences. 

Scope of current research in online learning. Research related to online 

learning (including online math courses) or meta-analyses that include studies involving 

mathematics courses can generally be grouped into four broad categories (with some 

overlap): 1) studies examining the impact of online learning on students’ emotional 

states, 2) attempts to describe key characteristics of students who are successful in online 

courses, 3) comparative analyses of student performance in online vs. face-to-face 

courses, and 4) attempts to discover and prescribe best practices for creating online 

courses. 
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Researchers studying students’ emotional states while engaged in online 

coursework claim that emotional states impact cognition, memory, creativity, motivation, 

and attention as well as how flexibly students apply cognitive strategies (Isen, 2000; Kim, 

Park, & Cozart, 2014; Levine & Pizarro, 2004; O’Regan, 2003). Brinkman, Rae, and 

Dwivedi (2007) and O’Regan (2003) attribute negative student emotional reactions (such 

as frustration, anxiety, and embarrassment) mostly to unreliable technology, challenges in 

navigating poorly designed web pages, stress related to falling behind or missing 

deadlines, inconsistent response times from instructors, not being confident with 

technology, or feeling ashamed when their work is publicly compared to classmates’ 

work. On the other hand, positive emotional responses (such as enthusiasm, excitement, 

and pride) derived from autonomy, overcoming fears of technology, being impressed by 

new technology, or excitement at having access to a course from a remote location. 

 Students successful in online courses tend to be self-motivated with above-

average technology and communication skills (Dabbagh, 2007). Berenson, Boyles, and 

Weaver (2008) used emotional-intelligence measurement surveys to score students on 

their ability to regulate their feelings and needs and found that emotional intelligence 

made up 11% of the variance among students’ GPAs in online courses. Other studies 

linked low success rates with poor time management, low self-discipline, and low self-

motivation (Lim and Kim 2002; Muilenburg & Berge, 2005; Park and Choi 2009; 

Waschull 2005; Yukselturk and Bulut 2007). 

Researchers making a comparative analysis of student performance in online 

courses vs. in-person courses arrive at a wide variety of conclusions. Some studies 

reported that student achievement was higher in online environments compared to 
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traditional face-to-face classrooms. Students in Chen et al.’s (2010) study self-reported 

that online learning environments provided them with a better overall learning experience 

and improved their understanding of how to apply their learning in practical contexts. 

Hughes, Mcleod, Brown, Maeda, and Choi (2007) showed that students in online 

secondary math courses performed better than students in traditional settings on the 

Assessment of Algebraic Understanding, a test intended to align with the National 

Council of Teachers of Mathematics (2000) algebra standards. Nguyen and Kulm (2005) 

and Nguyen, Hsieh, and Allen (2006) demonstrated that students will spend more time on 

homework and complete more practice problems in online environments and that this 

correlated with improved achievement. They credited the increase in students’ 

willingness to practice, including repeating assignments to attain higher scores, to the 

immediate feedback computers provide.  

However, in many studies online courses did not produce a statistically significant 

improvement in student performance compared to in-person versions of the same course 

(Barbour, Brown, Waters, Hoey, Hunt, Kennedy, & Trimm, 2011; Brinkman et al., 2007; 

Kim et al., 2014; Taylor, 2002). Some researchers argued that this is because both online 

and face-to-face instruction have strengths and weaknesses, and the characteristics of 

online courses that might improve student performance are balanced against 

characteristics that might negatively impact performance and that educators have yet to 

embrace best pedagogical practices in online environments (Hughes & Mcleod, 2007). 

Several meta-analyses demonstrated no significant positive impact for students taking 

online courses compared to those taking traditional courses (Hannafin, Orrill, Kim, & 

Kim, 2005; Means, et al., 2009; Swan, 2003; Twigg, 2003). In some cases, researchers 
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found that enrolling in an online course had a negative impact on student success 

compared to enrolling in a traditional in-person course. Xu and Jaggars (2011, 2013) 

completed two large-scale studies on students enrolled in online courses and showed that, 

all other factors being equal, the average post-secondary student’s likelihood of 

completing an online course is seven percent less than his likelihood of completing a 

comparable face-to-face course and that, even if the student completes the course, the 

average grade is 0.3 grade points lower. Among students from disadvantaged populations 

the numbers are further skewed. Moreover, students enrolled in online courses were, on 

average, better prepared for the courses than students taking in-person options and 

reported higher levels of self-motivation. Thus, “descriptive comparisons are likely to 

underestimate rather than overestimate the gap between online and face-to-face 

performance outcomes” (Xu & Jaggars, 2013, p. 55). Cao and Sakchutchawan (2011) 

found that MBA students in online courses had similar success rates compared to 

students taking in-person courses but that their course satisfaction ratings were 

significantly lower while other studies found that attrition rates can be 10% to 50% 

higher in online courses compared to similar in-person courses (Moody 2004; Park 2007; 

Park and Choi 2009; Tirrell and Quick 2012). 

The final category of studies focuses on developing best practices for online 

course design (Coomey & Stephenson, 2001, Engelbrecht & Harding, 2004; Glass & Sue, 

2008; Hopper & Harmon, 2000; Kramarski & Gutman, 2006; McDuffie & Slavit, 2003; 

Myers, 1999; O’Regan, 2003; Rimmershaw, 1999, Stiles, 2000; Ruey, 2010; Swan, 2003; 

Taylor, 2002; Wadsworth, Husman, Duggan, & Pennington, 2007). A synthesis of their 

findings produces a list of general recommendations including that courses should be 
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easy to navigate with a low bar of technical know-how needed to interact with the site, 

course requirements and deadlines should be clear, the instructor should be easy to 

contact, the course should somehow encourage social interactions among learners, and 

that the course should include opportunities for students to reflect on their learning. The 

advice they provide is intended to increase the likelihood that students can successfully 

complete an online course, maximize their performance, and minimize sources of 

emotional discomfort. 

 Taken as a whole, the body of research related to online learning in general (and 

math courses specifically) addresses administrator-level concerns such as maintaining or 

improving passing rates, GPA, and retention as institutions shift traditionally in-person 

courses to an online format. But there is a key focus yet to be explored. 

Limitations in current research on online learning. Xu and Jaggars’ (2013) 

review of qualitative studies that compared online courses with their in-person 

equivalents revealed that the authors of online courses typically converted the 

comparable face-to-face course with little or no change to the approach or content. The 

activities and homework remained the same with in-class lectures converted to video 

lectures or text. These findings suggest that most online courses are not intentionally 

leveraging potential advantages of an online environment to support students’ 

construction of desirable meanings while also not considering likely disadvantages. For 

example, asking students to view pre-recorded lectures removes the opportunity for 

students to participate in class discussions during the lesson and ask questions in the 

moment. On the other hand, students completing work in an online math course often 

receive immediate feedback on their submitted work. Substituting pre-recorded lectures 
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with interactive lessons that ask students to answer carefully scaffolded questions with 

immediate feedback interspersed with text, animations, applets, and brief summary 

videos positions the student as a more active participant in the learning process. 

Furthermore, novel lesson and homework tasks such as those that require students to 

submit applet states as their response can potentially support the development of and 

assess productive understandings of mathematical ideas.41 

I am unaware of any online learning study where the quality of mathematical 

meanings students develop is of primary interest. This leaves critical research questions 

unaddressed. (a) Are students learning mathematics worth knowing (are the meanings 

they develop consistent with meanings that researchers know to be productive in future 

math courses, STEM fields, and real-life applications)? (b) Are they constructing deep, 

flexible, and coherent meanings for the targeted ideas (and what counts as evidence for 

this)? (c) What aspects of the online lesson(s) support students’ construction of important 

targeted meanings? Student GPA and retention rates shed little insight into these 

questions and self-reporting by students is not reliable when it comes to their depth of 

learning (Ke & Xie, 2009). Cases where data on course assignments and tests are used to 

make comparisons follow a classical research design where only the course environment 

is varied. This typically leaves the mathematical meanings at the heart of instruction 

                                                      
41 To illustrate this idea, consider Tallman’s (2015) description of productive meanings for the sine 
function. The function accepts as its argument an angle measure in radians (which is a measurement of the 
subtended arc on a circle centered at the angle’s vertex measured in units of the circle’s radius) and 
produces a vertical displacement describing the directed distance above the circle’s horizontal diameter 
where the angle’s terminal ray intersects the circle also measured in units of the circle’s radius. In an online 
lesson or assignment, students could be given an applet with a circle centered at an angle’s vertex. Students 
must rotate the terminal ray until it demonstrates an angle measuring θ radians such that sin(θ) = 0.6. 
Submitting the question determines whether the chosen applet state meets the required conditions up to an 
acceptable level of error. 
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unexamined. A focus on students’ meanings is a critical missing piece that should inform 

the initial design and iterations of online math courses. 

 

Studying Student Learning in an Online Course as Design Science 

The importance of attending to meaning. Thompson (2013) demonstrated that a 

weak or incoherent system of meanings (held by an instructor or present in lesson design) 

creates more space for students to construct incorrect or unhelpful meanings and for the 

teacher (or designer) to remain unaware of students’ constructions. For example, most 

College Algebra and Precalculus textbooks define exponential functions relative to an 

algebraic representation, and this representation is simply given to students on the first 

page of the unit on exponential functions with only shallow or no development. See 

Figure 8.1. 

 
Figure 8.1. Two examples of common textbook definitions for exponential function, 
synthesized from reviewing ten College Algebra and Precalculus textbooks published 
between 2000 and 2012.  
 
If this is the common way of presenting what it means for a function to be exponential 

then students working in these classes are likely to be grounded in a relatively weak set of 

meanings for the nuances of exponential growth and imagery of what remains invariant 

in an exponential situation as two quantities change in tandem. This provides space for 

students to develop unhelpful or incorrect meanings for exponential growth and related 

ideas. Consider that in a recent study I interviewed five university Precalculus students 

An exponential function is denoted by f (x) = ax where the base a is positive 
real number and a ≠ 1. 
 

An exponential function f is a function of the form f (x) = abx where a is a 
positive real number and the base b is a positive real number with b ≠ 1.  
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who had previously taken (and passed) Precalculus in high school and I asked them what 

it means for a function to be exponential. I received a variety of responses including any 

function that increases (as long as the values get large), any function with a graph that 

curves up, and a function with an algebraic representation that either has “something to 

the x, or x to the something.” It is not clear to me how any of these meanings for an 

exponential relationship would help students recognize situations that could be 

appropriately modeled by an exponential function or attend to features of graphical or 

tabular representations that would allow them to distinguish exponential functions from 

many other types of relationships. In fact, there is little “mathematical” about their 

definitions and little to suggest productive meanings for broader mathematical ideas like 

covariational reasoning or interpreting graphical representations. 

Thus, an important research area involves describing a coherent set of powerful 

general meanings and reasoning [what Harel (2008a, 2008b) calls ways of thinking] and 

to describe powerful ways of understanding (Harel, 2008a, 2008b) particular ideas that fit 

productively into the larger coherent network of themes. Thompson (2013) points out that 

students’ meanings shape their interactions with the mathematical tasks in which they 

engage, and it is their individual meanings we hope to affect through instructional 

interventions. We have a greater chance of supporting students in constructing important 

meanings if we are explicit in the meanings we want to encourage and if we are aware 

that those meanings cannot be transmitted but must be constructed by students. However, 

Thompson (2013) laments that this focus is uncommon in mathematics education 

research. 
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What I find more troubling is the rarity of research in mathematics education that 
takes the issue of mathematical meaning seriously. Research that is ostensibly on 
knowing or understanding, whether the context is teaching or learning, too often 
examines performance instead of clarifying the meanings students or teachers 
have when they perform correctly or the meanings they are working from when 
they fail to perform correctly. Neither correct performance nor incorrect 
performance says anything about the nature of a person’s system of meanings that 
expresses itself therein. This is not to say that no research considers students’ or 
teachers’ meanings. Rather, it is too rare. (p. 78) 
 
Thompson did not direct his observations toward research on student learning in 

online courses, but his comments are quite appropriate in this context. If researchers are 

interested in exploring the meanings students construct, they must first carefully consider 

their learning goals for the course, consider the coherence among ideas and learning goals 

across the course, develop research-informed learning trajectories to inform the design of 

individual lessons and units, and develop a plan for gathering evidence on the meanings 

that students do develop while engaging with these lessons. I will return to this in Part II, 

but for now I repeat that this focus is currently absent from research in online learning 

despite calls for an increased focus on design research in mathematics education (for 

example, Cai, Morris, Hohensee, Hwang, Robison, & Hiebert, 2017). 

Design-based research/design science. Cobb (2007) argued that mathematics 

education “can be productively viewed as a design science, the collective mission of 

which involves developing, testing, and revising conjectured designs for supporting 

envisioned learning processes” (p. 7). His perspective was not entirely new, however. For 

example, Thompson (1985) described the importance of considering learners as situated 

within a trajectory through a curriculum and wrote that the primary “aim of mathematics 

education is to promote mathematical thinking” (p. 189). A curriculum creates 

opportunities for students to construct a particular type of mathematical knowledge under 
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the teacher’s guidance and with the assumption that the knowledge students construct is 

never an exact copy of the knowledge the teacher intended they construct (or possesses 

herself). Revision and redesign are a natural part of crafting learning opportunities for 

students based on feedback collected during the act of teaching. Researchers engaged in 

design studies see themselves as enacting a balance between empirical research and 

theory-informed instructional design. Their  

innovations embody specific theoretical claims about teaching and learning, and 
help us understand the relationships among educational theory, designed artifact, 
and practice. Design is central in efforts to foster learning, create usable 
knowledge, and advance theories of learning and teaching in complex settings. 
(The Design-Based Research Collective, 2003, p. 5) 
 
Starting with theories of how students learn, design-based researchers generate 

interventions to enact in specific learning environments to impact student learning in a 

practical way. However, they always assume that the intervention will uncover important 

implications for modifying learning theories, supporting practitioners, and designing 

future interventions. They begin by reviewing and/or developing theories on student 

learning and then designing and testing interventions that theoretical analysis suggests 

could productively influence student learning. Figure 8.2 summarizes design-based 

research’s continuous development cycle. Even when learning theories influence an 

intervention’s design, researching its enactment is needed to clarify exactly how features 

of the intervention impacted learning and how specific features of the learning 

environment contributed to the final result. “Models of successful innovation can be 

generated through such work—models, rather than particular artifacts or programs, are 

the goal (cf. Brown & Campione, 1996)” (The Design-Based Research Collective, 2003, 

p. 7). “Models of successful innovation can be generated through such work—models, 



 

165 

 

 
Figure 8.2. Design-based research’s continuous development cycle. Learning theories 
inform the intervention’s design, implementation data is collected and analyzed, and this 
analysis shapes the understanding of the original theoretical foundations of the study and 
impacts future iterations (The Design-Based Research Collective, 2003). 
 
rather than particular artifacts or programs, are the goal (cf. Brown & Campione, 1996)” 

(The Design-Based Research Collective, 2003, p. 7). The following quote best 

summarizes design-based research. 

[D]esign-based research methods can compose a coherent methodology that 
bridges theoretical research and educational practice. Viewing both the design of 
an intervention and its specific enactments as objects of research can produce 
robust explanations of innovative practice and provide principles that can be 
localized for others to apply to new settings. Design-based research, by grounding 
itself in the needs, constraints, and interactions of local practice, can provide a 
lens for understanding how theoretical claims about teaching and learning can be 
transformed into effective learning in educational settings. (The Design-Based 
Research Collective, 2003, p. 8) 

 
In design research, the investigator is positioned as both the intervention’s designer and 

its evaluator with the expectation of enacting multiple iterations of implementation, 

study, and refinement where the “implementation itself becomes the source of 

information that guides refinements in learning opportunities” (Cai et al., 2017, p. 345). 

Design research and online learning. Researching the development of student 

meanings in an online course is a perfect environment for applying design research 
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principles. Online courses are generally designed as a single entity that will make up the 

entirety of students’ learning opportunities. Thus, researchers have near total control over 

the design and implementation of these courses. This lessens sources of variability such 

as differences in instructor experience or knowledge and can enable researchers to have a 

greater focus on how specific features of the course impact student learning. The key 

focus for conducting design research in online environments then is to identify student 

learning goals and to develop a reasonable plan for collecting evidence about the 

meanings that students construct in a way that productively informs future iterations. 

 

A Call to Action – Closing Comments 

Researchers in mathematics education have identified important mathematical 

meanings that teachers and curriculum designers should target as well as complexities 

that arise in supporting students’ construction of these meanings (for example, Carlson, 

Jacobs, Coe, Larsen, & Hsu, 2002; Carlson, Oehrtman, & Engelke, 2010; Castillo-

Garsow, 2010; Ellis, Ozgur, Kulow, Dogan, & Amidon, 2016; Ellis, Ozgur, Kulow, 

Williams, & Amidon, 2012, 2015; Moore, 2010, 2012, 2014; Moore, Paoletti, & 

Musgrave, 2014; Tallman, 2015; Thompson, 1990, 1993, 1994, 2008a, 2008b; Thompson 

& Carlson, 2017). Researchers are beginning to apply this work to design targeted 

interventions at the course level, such as Carlson, Oehrtman, and Moore’s (2018) Project 

Pathways Precalculus curriculum, Thompson’s (2016) Project DIRACC calculus 

curriculum, or Realistic Mathematics Education curricula grounded in work by Treffers 

(1978, 1987) and Freudenthal (1973, 1983, 1991) and refined and expanded by 

researchers around the world. It is important for this work to extend into online courses 
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since they represent an increasingly large part of students’ post-secondary experiences. In 

particular, (a) online courses should be designed to support important meanings we know 

are vital for STEM courses and careers, (b) researchers must carefully attend to the 

meanings students construct while working through the online lessons, and (c) 

researchers need to gather data on how lesson features either support or fail to support the 

construction of productive meanings. This focus is currently missing from research on 

online learning yet is critical for the design and improvement of high-quality online 

learning experiences. 

 

Part II: Designing for and Researching Mathematical Meanings in Online Courses 

Stigler and Hiebert (2009) argued that throughout the 20th century a gap formed 

between teaching and research practices in the U.S. They, along with Steffe and 

Thompson (2000), described key repercussions from this evolution. First, classroom 

teachers did not use instruction to build models of student thinking and act on these 

models to make key instructional decisions while planning or implementing lessons. 

Second, researchers, being removed from the classroom, based their work on classical 

experimental design where they attempted to identify possible variables in learning, 

control for some variables while changing others, and compare the results of different 

treatments. Thus far I have argued for viewing online learning through the lens of design 

research. I further claim that the current body of literature related to online learning 

predominantly emphasizes the classroom environment as a variable to be tested while 

overlooking the mathematical meanings students construct while engaged in online 

lessons. This produces results that are useful for academic leaders making decisions 
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about course offerings at the institution level but does not contribute to a design-based 

iterative improvement cycle for these courses (Cobb, 2007). 

In the second half of the paper I review established methodologies for studying 

student meanings, consider implications of applying those methodologies to online 

learning, and discuss triangulating various data to help researchers model the meanings 

students construct as a result of online instruction. 

 

Clinical Interviews and Teaching Experiments 

Within constructivism there are well-articulated research methodologies for 

studying student meanings, including meanings at some moment [clinical interviews 

(Clement, 2000)] and meanings as they evolve through interactions with an instructor 

[teaching experiments (Steffe & Thompson, 2000)]. Both methodologies are grounded in 

Piaget’s genetic epistemology (1971) and rely on modeling students’ mathematical 

meanings based on observable behaviors. Their theoretical perspective assumes that a 

student’s activity is driven by the way he conceptualizes a task (not the way a teacher or 

researcher conceptualizes the task). Clinical interviews and teaching experiments produce 

evidence of how a student conceptualizes a task at hand so that a researcher can model an 

individual’s scheme of meanings relative to that conceptualization. Therefore, trying to 

model students’ mathematical meanings requires more care and planning than simply 

judging if students can successfully obtain answers to given mathematical tasks. 

Clinical interviews. Clinical interviews (Clement, 2000) involve open-ended 

questions intended to generate observable behavior relative to problem solving and 

reasoning, including student explanations and justifications for their work, with the goal 
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of modeling her current thinking relative to particular mathematical ideas. Clement 

describes two broad categories of clinical interviews called generative and convergent 

approaches. In a generative approach, the researcher creates a detailed interview protocol 

including tasks and various lines of follow-up questions based on the possible types of 

responses students might give. The goal in a generative approach is to get evidence of 

student thinking on the table and then generate hypotheses about mental processes and 

reasoning that, if a student had these, would represent a viable explanation for the 

observable behaviors. A researcher often goes through multiple passes and revisions until 

the most viable hypothesis survives (the one that best explains the observable behaviors 

while still being general enough to be useful in a wider range of situations). Convergent 

approaches focus on frameworks developed out of generative studies and typically code 

interviews using these frameworks. The researcher’s goal is to support the viability of the 

models previously generated and perhaps categorize participants’ meanings within a 

framework with the assumption that their coded observable behavior suggests their 

underlying mental processes. These studies might generate patterns or connections not 

observed in previous generative studies, and these patterns could serve as research 

questions for a new round of interviews beginning with more generative studies.  

Clinical interviews are vital to cognitively oriented research because they 

include the ability to collect and analyze data on mental processes at the level of a 
subject's authentic ideas and meanings, and to expose hidden structures and 
processes in the subject's thinking that could not be detected by less open-ended 
techniques. These abilities are especially important because of Piaget's discovery 
that people have many interesting knowledge structures and reasoning processes 
that are not the same as academic ones—they have alternative conceptions and 
use nonformal reasoning and learning processes. Mapping this “hidden world” of 
indigenous thinking is crucial for the success of instructional design. Students 
cannot help but use their own prior conceptions and reasoning processes during 
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instruction, and these have strong effects on the course of instruction. (Clement, 
2000, p. 547) 
 

Students bring their own unique meanings to any learning experience, and the makeup of 

these meanings is outside the instructor’s control. Effective instructional design and 

enactment requires attending to the meanings students bring to the lesson, including 

drawing out and recognizing common meanings (both productive and unproductive) 

students might possess based on observable behaviors and planning instruction to support 

productive shifts in those meanings. 

Teaching Experiments. Teaching experiments (Steffe & Thomson, 2000) build 

on the same foundation as clinical interviews by acknowledging that students have 

different mathematical conceptions from the teacher/researcher and that these meanings 

are not directly accessible to an observer – they can only be modeled via a conceptual 

analysis of observable behaviors. However, teaching experiments carry the expectation 

(or hope) that students learn something through interactions with the teacher/researcher. 

Results of teaching experiments help researchers develop and test domain-specific 

theories of learning mathematical ideas and thus help to inform future teaching and 

curriculum design. 

Steffe and Thompson describe two categories of teaching experiments – 

exploratory teaching and teaching that tests a specific research hypothesis. Exploratory 

teaching involves sustained interaction with students where the researcher seeks to 

“become thoroughly acquainted, at an experiential level, with students’ ways and means 

of operating in whatever domain of mathematical concepts and operations are of interest” 

(Steffe & Thompson, 2000, p. 274). That is, the researcher attempts to build models for 
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how students think about certain mathematical ideas including, but not limited to, the 

potential origins of their thinking, sources of barriers to learning ideas, and key 

distinctions between students in how they reason about what, from the researcher’s point 

of view, are similar tasks. 

 After engaging in exploratory teaching or building from the results of previous 

exploratory teaching, the researcher may recognize a significant issue worthy of further 

study. At this point the researcher develops a hypothesis to test and performs a 

conceptual analysis to plan interventions and test the hypothesis. The initial plan is a 

rough working outline that he can scrap or adapt on the fly based on interactions with 

students. As students assimilate given tasks to their personal schemes they produce 

products of their reasoning. The researcher analyzes these products to build a model of 

schemes that best account for the students’ behaviors, comments, and persistent errors (or 

essential mistakes). The researcher then tests the validity of his emerging model with 

follow-up questions and tasks. 

Once a researcher believes that he can think like the students, he can create “an 

itinerary of what they might learn and how they might learn it” (Steffe & Thompson, 

2000, p. 280). The goals he formulates inform future teaching experiment sessions and 

task design to support students in modifying their existing schemes independently. This 

involves presenting tasks that the researcher hypothesizes will be assimilated to existing 

schemes, but that cannot be addressed within those schemes as they currently stand, and 

designing ways of interacting with these tasks that may promote accommodations to the 

triggered schemes. Throughout this process, the researcher maintains a focus on student’s 

reasoning rather than the researcher’s learning goals for the student. This focus enables 
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the researcher to regularly develop and test hypotheses about the student’s current 

thinking, what tasks are within reach given his model of the student’s schemes, and what 

tasks are beyond the student’s current understandings assuming his model is valid. The 

teaching agent will develop, alter, and discard several hypotheses and potential models of 

students’ mathematics during the course of any given teaching episode.  

Shared assumptions and theoretical perspectives. Central to both clinical 

interview and teaching experiment methodologies is the researcher’s goal of 

understanding students on their terms and modeling students’ meanings to better 

understand their structure and the implications and boundaries of those meanings. A 

researcher’s models emerge from extensive direct interactions with students as the 

researcher develops and tests several hypotheses about the meanings they possess. Steffe 

& Thompson (2000) describe a student’s essential mistakes as key data in modeling their 

thinking. Students bring their own unique meanings to any task they encounter, and the 

way they conceptualize the task and the meanings that students apply to address the task 

constrain their responses. Since a student’s mathematical meanings are relatively stable 

over the short-run, exploring the occurrence and boundaries of a student’s incorrect 

reasoning helps the researcher model the student’s meanings at that point in time. Within 

a teaching experiment, the gradual reduction of essential mistakes is key evidence that 

students are modifying and reorganizing their schemes (and thus learning).42  

Thompson (2013) described a theoretical model for how individuals attempt to 

engage in a meaningful conversation as part of his description for a researcher’s mindset 

                                                      
42 Clement (2000) did not use the term essential mistakes in his framework, but examining students’ 
essential mistakes is a useful goal when conducting clinical interviews as well. 
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when engaging with students while attempting to model their thinking. In a conversation 

where individuals try to convey meaning, they each understand that they are speaking to 

a person with potentially different meanings and thus try to frame their utterances and 

process what they hear based on models of the other person. In effect, each person is 

communicating with their model of the other individual. The intention of a meaningful 

conversation is to engage in communication until there is no evidence to suggest that 

either participant has been misunderstood. See Figure 8.3. 

 
Figure 8.3. Thompson’s (2013) model of meaningful conversations (p.64). 
 
Thus, when a researcher engages with a student in a clinical interview or teaching 

experiment, the goal is to continually generate hypotheses about the student’s reasoning 

and to focus the interaction to test these hypotheses. For example, the researcher might 

pose questions that would generate a specific type of response if the student does indeed 

reason in the way the researcher hypothesizes. In this way the researcher is addressing the 

interaction to a conceptual model of the student and revising the model based on the 

actual responses the student provides. This perspective is also useful for conceptualizing 

the design and research of online courses. 
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Theoretical Considerations in Online Learning 

Teaching in an online learning environment, from a constructivist standpoint, 

shares the same foundational assumptions as teaching in a traditional learning 

environment. First, that students are individual, active constructors of their own 

knowledge and develop meanings that may not match either the teacher’s intended 

learning goals or her perceptions of what students learned. Second, despite this 

awareness, the teacher is responsible for establishing learning goals relative to ways of 

thinking and knowing that she believes will be advantageous for her students and for 

developing lessons that “create a particular dynamical space, one that will be propitious 

for individual growth in some intended direction, but will also allow a variety of 

understandings that will fit with where individual students are at that moment in time” 

(Thompson, 2002, p. 194). Third, that these learning goals and lessons are designed and 

adapted from her (or others’) experiences with students reasoning about the same 

mathematical ideas and her conceptual analysis of those ideas. In designing lessons 

intended to convey particular meanings, the researcher creates activities with an image of 

an epistemic student in mind – a generalized student “that encapsulates aspects of 

individual students’ understandings that appear, from the [researcher’s] perspective, 

prevalent among a population of students” (Tallman, 2015, p. 37). But each student in the 

class possesses his own individual meanings, and the researcher gains insights, and may 

adapt her epistemic model, by analyzing data produced by students when interacting with 

the text, questions, tools, etc. in the online environment. Each student is individually 

interpreting the tasks and features of the lesson and responding based on these 
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conceptions as well as his model of what the course program expects from him. See 

Figure 8.4. 

 
Figure 8.4. A model of communication between the designer and students in online 
courses. Here B represents an epistemic student. 
 

This perspective is important because it highlights how issues of design impact 

research on students’ meanings as well as the importance of studying how students 

conceptualize features of the online lesson and the meanings they actually construct. This 

data produces more accurate epistemic models, informs improvements in lesson design, 

and is the basis for future iterations of the course. As we shift to be more attentive to the 

meanings students construct while engaged in online lessons we are left to determine the 

combination of data that best supports our goals. 

 

Collecting Data to Inform Models on Student Meanings 

Best practices in design research suggest collecting multiple sources of data about 

individual students (and the class as a whole) to inform conclusions on an intervention’s 

impact (The Design-Based Research Collective, 2003). This advice is important for 

modeling student meanings in online courses (either as they exist at some point in a 

course or as they evolve across lessons) precisely because there is an inherent tension 

between the methods that yield the best data and those that respect the reality of the 
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learning environment. Table 8.2 shows a list of data collection methods a researcher 

could use to study learning in an online environment. This list is extensive but not 

necessarily exhaustive. 

Table 8.2  

Data Collection Methods for Modeling Student Meanings 

 

The collection methods are organized very roughly from those that provide less useful 

information for modeling the meanings that students construct to those that provide the 

most useful information. Note that data generation methods that make it easier to model 

students’ meanings also tend to most alter how the student is experiencing the 

intervention so that what is being studied is no longer a typical experience of a student in 

the course. This may introduce potential issues in generalizing results. For this report two 

points are worth emphasizing. First, triangulation of multiple data sources improves the 

quality of models and the generalizability of research results as many researchers have 
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noted (i.e., Schoenfeld, 2000). This seems especially true given the complications in 

gathering data on students’ meanings in a course where there is less inherent personal 

interaction between instructors and students. Second, it is an open question what 

combination of data is best for balancing these concerns. In the sections that follow I 

highlight some salient points to consider about data collected from each category. 

Students self-reporting via course surveys. Surveys are often used to efficiently 

collect measures of students’ self-confidence, persistence, and satisfaction. These surveys 

can suggest sources of negative emotional reactions which is important because these 

reactions are likely to interfere with students successfully meeting mathematical learning 

goals. Negative reactions (whatever their source) might also correlate with higher 

withdrawal rates that can make the course less likely to be continued by academic 

leaders. However, Kauffman (2015) noted that student surveys are often poorly validated, 

so researchers should always seek to support survey results with other data they collect. 

In addition, surveys are not accurate in capturing the quality of student learning. Ke and 

Xie (2009) showed that students in their study self-reported deep learning on course 

objectives but that analysis of students’ contributions to course discussions did not 

support that claim.  

Looking at course grades and retention rates. Student grades may provide 

feedback on whether a course is appropriately challenging while retention rates often 

correspond with the kinds of affective data captured in surveys. If students are 

dissatisfied with a course for any reason (challenge level, lack of interaction with the 

instructor or other students, difficulties with technology, or poor website design) it will 

likely manifest with higher withdrawal rates. But both measurements can vary based on a 
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number of factors that have little to do with the meanings students construct as a result of 

learning opportunities in an online course. Course grades and retention rates, like 

students’ self-reports on course surveys, produce no data on the meanings students 

constructed during the course. In instances when a large portion of the course grade is 

based on assignments that explicitly require demonstration of particular conceptual 

meanings for mathematical ideas it is possible to use this data to make inferences about 

students’ meanings. Even in this case, however, the data is unlikely to suggest how 

particular features of the course contributed to supporting students in constructing these 

meanings and thus provides little guidance to inform future iterations of the course. 

Tracking student success in subsequent courses. Collecting information on 

student success in future courses may indicate whether students are constructing 

meanings that serve them well in future courses. This data is also useful for 

demonstrating to administrators that the course is generally successful and that ongoing 

study and refinement is a worthwhile investment of time and resources. However, a 

researcher must be cautious in reading too much into the data in terms of the meanings 

students construct. For example, suppose a researcher follows Thompson and Carlson 

(2017) and believes that it will be useful for students heading into Calculus to understand 

a function’s graph as traced out in an emergent way through a systematic coordination of 

how the magnitudes of two varying quantities change in tandem and designs his 

Precalculus course to support students in constructing this meaning. The fact that students 

are later successful in Calculus does not confirm either that students developed this 

intended meaning or that constructing that meaning contributed to their success. Student 

success in later courses may depend on future instructors’ experience and expectations, 
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changes in delivery method (for example, switching from an online to in-person course or 

vice versa), and even self-selection bias (which students choose to enroll in future courses 

or what courses they select). Thus, tracking student success in future courses may give a 

general sense of an intervention’s success without providing specific feedback to inform 

improvements in the course relative to the meanings students constructed. 

Course assessments. Course exams assess objectives instructors expect students 

to master and their content informs the focus of daily lessons. But Reeves (2006) reported 

that course assessments are often poorly aligned with stated course objectives no matter 

the subject area. Tallman et al. (2016) conducted a study to characterize assessments in 

calculus courses across the U.S. and that the vast majority of Calculus I final exams 

assessed mostly students’ recall of facts and their procedural proficiency as opposed to 

students’ meanings for fundamental ideas or their ability to apply these meanings. While 

their study focused only on Calculus I final exams, it is not a stretch to assume that 

analysis of the midterms in these courses would yield similar results or that examining 

assessments in College Algebra and Precalculus courses might arrive at the same 

conclusion. Clement (2000) refined and published his clinical interview methodology in 

part because he found that course tests were not well-suited for gathering information on 

student thinking. He wrote that “[b]ecause tests are almost always written from the point 

of view of the teacher and are designed to detect standard forms of academic knowledge, 

they can fail to detect key elements in students' thinking” (p. 54).  

Without specific attention to the goal and question composition of course exams 

the quality of data they produce relative to modeling students’ meanings will be low. 

Complicating the issue is the fact that students may answer differently depending on the 
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question format (such as open-ended vs. multiple choice) or the context or representation 

used to present the question (such as a word problem vs. a graph vs. a table). From the 

researcher’s point of view, a set of questions might all test the same or similar ideas, but a 

student’s answer to one question within that set often does not predict how they will 

answer other questions from that set. Carlson, Oehrtman, and Engelke (2010) noted this 

phenomenon while validating their Precalculus Concept Assessment (PCA) instrument 

and Thompson (2016) and Byerley and Thompson (2017) also described the same trend 

while validating the Aspire instrument to measure teachers’ mathematical meanings. I 

also noticed this tendency in a recent study. I asked 65 Precalculus students to complete a 

25-question multiple-choice assessment and interviewed five students about their 

responses to eight select tasks afterwards (for a total of 40 pairs of responses to compare) 

without providing the multiple-choice selections. Twenty-two of the 40 responses the 

students provided differed between the multiple-choice and open-ended versions of these 

tasks, sometimes dramatically so. Figure 8.5 shows one such task and Table 8.3 shows 

the answers students provided on the multiple-choice assessment (marked MC) and 

during the interview (I). Four of five students (pseudonyms used) answered differently 

when given possible answer choices.  

 
Figure 5. A task given to university Precalculus students taken from Madison, Carlson, 
Oehrtman, and Tallman (2015). 

The cost of replacing the exhaust muffler on your car is currently $195. The 
previous time that you had the same replacement done, the cost was $131. What 
is the percent increase in your repair bill (rounded to the nearest percent)? 

a.  33% 
b.  49%  [correct response] 
c.  64%    
d.  67%   
e.  149%    
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Table 8.3 

Student Responses to the Muffler Task 

answer 
choice 

Class 
Totals 

Gina  Marcus Shelby John Lisa 

a.  33% 32% MC  I   
b.  49%  [correct] 45%    MC, I I 
c.  64% 12% I  MC   
d.  67% 6%     MC 
e.  149% 5%  MC    
164%   I    

 
Furthermore, during interviews it was clear that even students who answered the question 

correctly held only algorithmic meanings for percent change and percentage 

comparisons. At one point during their solution justifications all five students stated that 

they needed to take the result of a calculation and move the decimal point two positions 

to the right. However, none of the students could provide a mathematical justification for 

this process.  

Thus, common course assessments are unlikely to provide an accurate 

characterization of students’ meanings and may encourage researchers to mistake 

performance for indications of particular reasoning. This is especially true if researchers 

are crafting an intervention yet leaving course exam creation up to instructors (or course 

coordinators). In this case the chances are high that the results of those assessments will 

not yield reliable evidence of students’ meanings. If researchers design the assessments it 

might be easy to fall into the same trap given traditional images for the kinds of 

assessment items used to measure course objectives. Course assessments can still serve a 

useful purpose such as verifying that students have mastered certain expected procedural 
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skills or even as initial steps in beginning to identify and hone items for a future validated 

assessment instrument, but researchers should always be wary of drawing too many 

conclusions about students’ meanings based on performance tasks.  

Aggregating student interaction data. Online course environments often 

produce aggregated data on specific lessons or items within lessons. For example, I 

helped to design an online course using iMathAS (Lippman), and this platform provides 

instructors and course designers with data on average item scores, average number of 

attempts, and the average time spent per attempt. See Table 8.4. 

Table 8.4 

 iMathAS Instructor Feedback 

 

Data on average scores and average number of attempts may reveal the difficulty level of 

various tasks within a learning trajectory. Analyzing these tasks could support hypotheses 

of key meanings students must construct within a learning trajectory or may help to 

identify common gaps in students’ background knowledge or common unproductive 

meanings students possess. However, once again caution is necessary. In the course we 
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created we noticed many sources of variability in this type of data. For example, we had 

instances where one or more students walked away from the computer mid-question for 

as much as 24 hours which severely skewed the average time per attempt for that item. 

We have also observed that many students exhibit the following behavior while working 

on an exercise containing multiple parts. The student attempted only the first part of a 

question prior to submitting the entire question for grading. She repeated this until she 

was notified that her answer to the first part was correct. She then attempted the second 

part of the question and submitted the entire question for grading. She repeated this until 

she was notified that her answer to the second part was correct. This pattern continued 

until all parts were answered correctly. We are not necessarily interested in limiting this 

behavior, but its common occurrence drastically impacted our data.  

Validated assessment instruments. There are many sources of assessment 

validation. For example, assessments might be validated as predictive of future student 

success or validated to avoid bias relative to demographic differences. Carlson et al. 

(2010) developed the PCA instrument to assess students’ understanding of the conceptual 

foundations for calculus including rate of change, function, function composition, and 

proportionality. Literature on students’ struggles in calculus informed their choice of 

ideas, and they followed a multi-step validation process to finally arrive at a stable 25-

question multiple choice assessment such that students’ selection of particular answer 

choices are highly correlated with the meanings revealed during over 300 clinical 

interviews and thousands of student exam responses. They demonstrated that the PCA’s 

stable version is a reasonable assessment for students’ readiness for calculus since “77% 

of the students scoring 13 or higher on the 25-item test passed the first-semester calculus 
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course with a grade of C or better while 60% of the students scoring 12 or lower failed 

with a D or F or withdrew from the course” (Carlson et al., 2010, p. 140). Thompson 

(2015) provides another example of a validation process in creating and refining the 

Aspire instrument for modeling teachers’ mathematical meanings. Carefully validated 

assessments can be a more reliable indication of students’ meanings at some moment and 

can thus provide evidence of shifting meanings over time. Such assessments might not 

provide information on how specific features of lessons supported students in 

constructing those meanings, but they can be administered repeatedly to detect shifts in 

learning among the population of students completing the course. 

None of the data collection methods up to this point are likely to alter students’ 

experiences within a course. Filling out course surveys and taking exams are a normal 

part of students’ participation in post-secondary classes. Furthermore, tracking students 

into future math courses or monitoring course grades and retention rates require no active 

participation from the student. The remaining methods, however, can potentially alter the 

very thing a researcher wants to study despite providing data that is better at capturing 

individual students’ meanings. 

Using screen capture and other video to monitor students’ work as they 

complete lessons. It can be very difficult to integrate data collection methods that capture 

student meanings into the flow of an online lesson. Methods such as screen capturing, 

which can track every keystroke a student makes, might provide useful insights into the 

meanings students are constructing as they interact with specific tasks while progressing 

through the course. By analyzing each calculation and attempt, a researcher can 

hypothesize how students are conceptualizing tasks and the meanings they try to leverage 
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to complete them. Looking for essential mistakes (Steffe & Thompson, 2000), or 

mistakes that tend to persist, can produce powerful insights. Noticing when essential 

mistakes decrease in frequency can inform hypotheses about when key shifts in meaning 

occurred for specific students. Eye-tracking technology might add an additional layer of 

information by indicating where students direct their attention when observing an 

animation or reading text in between moments of entering information into the system. 

If the researcher refrains from talking with students during the sessions or 

answering questions during the recording, this is the least intrusive way to gather detailed 

information on how individual students interact with online lessons. However, the fact 

that students would feel obliged to complete entire lessons in one sitting (a requirement 

they might not have to meet when completing lessons at home) and the fact that they 

know they are being observed might change their behavior or their attentiveness to 

aspects of the online lessons. 

Post-lesson interviews and stimulated recall. After a student completes a 

lesson, a researcher can interview that student about his experiences and meanings using 

the clinical interview methodology. The researcher may ask the student to summarize 

their understanding of the lesson’s goals, describe what he learned, solve novel tasks 

related to the ideas in the lesson, or revisit parts of the lesson and describe how he 

interpreted a text excerpt, applet, animation, or exercise. This is likely to produce rich 

data about how a student interpreted features of the lesson, how the student’s meanings 

may have changed as a result of instruction, and the role of specific lesson components in 

supporting this change. This data collection method alone may not drastically change the 

student’s experience with the particular lesson on which he is interviewed, although the 
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additional interactions with an instructor, additional prompts to reflect on his learning, 

and the fact that his attention will be pointed to what the researcher views as key 

moments in a lesson may change how that student interacts with future lessons relative to 

the general population of students that enroll in the course.  

Interviewing students as they work through online lessons. Instead of 

interviewing a student after completing a lesson, a researcher can interview a student as 

he works through a lesson. The researcher can ask the student to explain his interpretation 

of lesson tasks, videos, applets, and text, to explain the reasoning behind his solution 

processes, and to reflect on why certain answers were correct or incorrect. Superficially 

this may seem like the closest parallel to a teaching experiment within an online course. 

But unlike in a teaching experiment, here the researcher would not have the ability to 

adapt the flow of the lesson, the questions, or the tasks in response to hypothetical models 

of the student’s mathematical meanings, at least not within the flow of the online lesson 

(this would need to be done by interjecting additional tasks for the interviewee). These 

interactions are likely to produce rich data that can help a researcher model a student’s 

meanings and perhaps capture moments where his meanings changed or evolved.  

However, the requirement that a student continuously reflects on and monitors his 

thinking throughout the lesson will result in the student interacting with a lesson in ways 

that are different from how other students interact with the same lesson while alone. An 

important example of this occurred when we piloted our online precalculus course. We 

designed lessons with careful scaffolding to support students in developing meanings we 

believe are important. We conceptualized all aspects of our lessons as being integral to 

this process, including students reading the given text, interacting with the given applets, 
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answering the questions in the indicated order, and watching short conceptually-oriented 

summary videos placed at key points in each lesson. At the end of the course we noticed 

that the overall watch count for the videos was very low, and in an end-of-course survey 

we asked students if they watched the videos while completing lessons. Most students 

said that they never watched the videos or only watched the videos if they could not 

complete certain exercises. If we asked a student to watch all videos while working 

through the lessons as part of this interview process that alone would have ensured that 

the student’s experience in that lesson differed from the experience of typical students in 

the course and may have complicated our understanding of how students constructed 

meanings while interacting with the lessons. With this in mind, if a researcher wants to 

interview students working through a lesson it might be useful to either refrain from 

requiring students to complete parts of the lessons they choose to skip or to conduct 

comparative studies for students who do or do not use particular features of a lesson. 

Clinical interviews and teaching experiments outside of the online 

environment. Researchers might want to assess student interpretations of certain 

contexts, learning trajectories, interactive applets, videos, and so on outside of the context 

of the online course. Conducting clinical interviews and teaching experiments outside of 

the online environment can help shape hypothetical learning trajectories and lesson 

design prior to the pilot following the methodologies described by Clement (2000) and 

Steffe and Thompson (2000). Clinical interviews prior to and at the end of the course can 

also provide important triangulation supporting conclusions about what meanings 

students constructed. Beyond the specific intervention at hand, comparing student 

learning on lessons designed to support specific meanings in and out of the online 
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environment would benefit the field by helping shape our understanding of the effect size 

of the instructor and face-to-face student interactions compared to the online environment 

in leveraging the same set of activities to support students in constructing a particular set 

of meanings. Note that it can be helpful to conduct clinical interviews with students 

before and/or after they participate in other activities such as completing lessons while 

screen capture technology monitors their inputs. This may assist a researcher in 

hypothesizing about the source of essential mistakes and/or recognizing key shifts in 

meaning when those essential mistakes begin to disappear. 

Commentary. The list of data and data collection methods I described highlights 

a wide variety of information that could be useful for researchers as they try to model the 

meanings students construct while interacting with online lessons. Ideally researchers 

would identify multiple categories of data to assist in triangulation (supporting 

conclusions derived from analyzing one data source with conclusions derived from 

analyzing other data sources).  

My analysis of these categories and data collection methods raises a few questions 

that researchers will need to consider as we work to refine methodologies for studying 

student learning in online courses. First, I have been careful to highlight data collection 

methods that create learning environments different from the experience of typical 

students in the course. By doing so I do not want to imply that such methods yield “bad 

data”. They do, however, introduce the potential that a researcher’s presence has an 

impact on student learning separate from the online lesson and its features. How large is 

that impact? And how can we separate the researcher’s impact from the lesson’s impact? 

Steffe & Thompson (2000) talk about a student’s essential mistakes as persistent errors 
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that derive from the schemes triggered when a student conceptualizes a task. It takes a 

long time and many opportunities to engage in repeated reasoning for students to modify 

their schemes such that those essential mistakes decrease or disappear. Thus, on the one 

hand we might find that essential mistakes persist regardless of the researcher’s presence. 

On the other hand, the researcher’s presence may prompt more frequent and deeper 

reflection and thus support students in reducing essential mistakes more quickly than for 

the general population of students enrolled in the course. Clarity on these issues will 

likely only emerge from repeated attempts to model students’ meanings in online courses 

across various studies. 

Different categories of data and data collection methods may contribute more or 

less useful information depending on the current state of the design research process. In 

designing an online course, the researcher will start off by making assumptions about the 

meanings students might have as they start the course, the meanings the researcher will 

target during instruction, how to design lessons to support students in constructing these 

meanings, and how to assess the intervention’s effectiveness. This leads to a first draft of 

the intervention and a pilot run to test the initial design. Analyzing aspects of the pilot 

pushes the study along the design research cycle that can (and should) be repeated 

multiple times to improve the intervention. When is each category of data most useful to 

a researcher? Table 8.5 includes one possible answer with solid dots indicating the 

periods where the data is most useful and open dots indicating periods where the data 

might still be collected for triangulation but could warrant less attention. 

 

  



 

190 

Table 8.5 

A Possible Timeline for Data Usefulness 

 
pre-

intervention 
pilot 

early 
revision 

iterations 

iterations 
moving towards 
course stability 

student surveys  ● ○ ○ 
final course 

grades/retention rates 
 ● ● ○ 

tracking future success   ● ● 
course assessments  ● ● ○ 

student interaction data  ● ○  
validated assessments ● ● ● ● 

screen capture  ● ○ ○ 
post-lesson interviews  ● ● ○ 
mid-lesson interviews  ● ●  

clinical 
interviews/teaching 

experiments set outside of 
the online environment 

●   ● 

 
Clinical interviews and teaching experiments outside of the online environment can help 

to shape hypothetical learning trajectories and lesson design for the initial pilot 

intervention. Clinical interviews might also be useful in later interventions to support the 

results of validated instruments as a measure of students’ meanings at the end of the 

course. Gathering survey data on student satisfaction, monitoring course grades and 

withdrawal rates, and monitoring student performance on non-validated assessments may 

be part of all iterations but are far more important during the first iterations of the course. 

This is because researchers must respect the constraints under which academic leaders 

operate and what they value. These leaders will not approve additional iterations if 

students cannot pass the course or students are highly dissatisfied with their experience. 

Close monitoring of students working through lessons and attempts to model the 

meanings they construct produces data that is extremely useful during early iterations of 
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the course. This data may demonstrate a need to drastically overhaul lessons, units, or 

general course design and contributes to refining hypothesis about how to support 

students in constructing particular meanings. However, the course is likely to become 

increasingly stable in later iterations (with survey results, course grades, etc. also 

becoming relatively stable), and validated assessment instruments might become the key 

piece of data for recognizing shifts in learning and comparing student learning across 

various similar courses. Table 4 is not meant to be a definitive set of recommendations, 

but rather represents an acknowledgement that, when faced with such a wide variety of 

data options, researchers should think carefully about the most useful sources of data at 

various stages of their study in order to prioritize their time and resources. 

 

Discussion 

 We face unique challenges in modeling students’ mathematical reasoning in 

online courses in that current research methodologies require interactions between the 

researcher and students that do not match the typical experiences for students in these 

courses. This calls for careful reflection on the kinds of data we are collecting on student 

performance and reasoning and how the various data sources can generate evidence that 

together provide an accurate characterization of how students conceptualize the tasks, 

features, and ideas in the online lessons and what meanings they actually construct. Such 

information can inform future iterations of the course to better introduce perturbations 

that challenge common unproductive meaning students may have or might develop and to 

scaffold lessons to support opportunities for students to construct more productive 

meanings we know to be important for future mathematics and STEM courses. 
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 I did not address adaptive learning in this paper – a key buzzword in the field of 

online learning today. The U.S. Department of Education (2013) defined an adaptive 

learning system as one that 

can dynamically change to better suit the learning in response to information 
collected during the course of learning rather than on the basis of preexisting 
information such as the learner’s gender, age, or achievement test score. Adaptive 
learning systems use information gained as the learner works with them to vary 
such features as the way a concept is represented, its difficulty, the sequencing of 
tasks, and the nature of hints and feedback provided. (p. 27) 

 
I do not have room in this paper to fully unpack this definition as it pertains to 

mathematics courses or to describe a full analysis of current online courses that claim to 

be adaptive. My experiences with most products on the market that promote adaptive 

features is that they adapt relative to students’ procedural skills and proficiency. For 

example, if a student fails to solve an equation accurately within a given problem the 

student is given more practice with solving an equation. If the student only fails to solve 

equations when constant values within expressions are fractions, students are assigned 

additional practice performing arithmetic with fractions. Moreover, marketing materials 

for these products primarily tout their impacts on passing and persistence rates, course 

grades, and exam grades. None of these measurements capture detailed information on 

the actual meanings students develop as a result of instruction or the depth of their 

understanding relative to those meanings. 

If the designers of these courses are not researching the meanings students 

develop as a result of instruction (which requires more than testing procedural skills and 

proficiency), then these cannot be factors in their adaptation process. I return once again 

to Thompson’s (2013) salient comments.  
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Research that is ostensibly on knowing or understanding, whether the context is 
teaching or learning, too often examines performance instead of clarifying the 
meanings students or teachers have when they perform correctly or the meanings 
they are working from when they fail to perform correctly. Neither correct 
performance nor incorrect performance says anything about the nature of a 
person’s system of meanings that expresses itself therein. (p. 78) 
 

 Studies of student learning in both in-class and online settings can benefit by 

placing more emphasis on the meanings students are constructing. The findings that 

emerge from this focus will enable course designers to adapt their lessons to produce 

greater learning and more robust meanings of a course’s key ideas in students. We must 

take care that we do not fall into the trap of taking measurements such as course grades, 

retention rates, or exam scores as sufficient evidence that students are developing deep 

understandings of important ideas. 

 

Conclusion 

Thus far, research on student learning in online courses has been limited to what 

Cobb (2007) classifies as experimental psychology with the goal of “assess[ing] the 

relative effectiveness of alternative curricular and instructional approaches” (p. 15). 

Results of these studies are useful to academic leaders in charge of making institution-

level decisions. However, they provide little feedback about the meanings students 

construct while engaging with online mathematics courses or features of those activities 

that best support construction of useful meanings. As post-secondary online course 

enrollment increases, it is vital that (a) these courses are designed to support students in 

constructing essential meanings, (b) researchers characterize the meanings students do 

construct while working through the online lessons, and (c) researchers gather data on 
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how lesson features support the construction of productive meanings. Such information 

supports the iterative cycle of generating high-quality courses that better support students 

in both overcoming unproductive meanings and constructing more productive meanings 

of important mathematical ideas. 
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CHAPTER 9 

PAPER 3 [RESULTS] 

Exponential Growth and Related Ideas: Examining Students’ Meanings and 
Learning in an Online Precalculus Course 

 
Alan E. O’Bryan 

Arizona State University 
 

Online courses play an increasingly prominent role in post-secondary students’ academic 

experiences, yet past research on student learning in the online environment has not 

focused on the meanings students develop while enrolled in online mathematics courses. 

In addition, an important research area involves identifying coherent systems of 

meanings that might be productive for supporting student success in STEM courses and 

careers and creating and studying learning trajectories and interventions designed to 

support students in constructing those meanings. This paper reports results from an 

online university Precalculus course designed around measurement imagery and 

quantitative reasoning as themes that unite topics across units. In particular, I focus on 

the unit for exponential functions and related ideas (such as percent change and growth 

factors). I provide a conceptual analysis guiding its design and discuss pre-test and pre-

interview results, post-test and post-interview results, and observations from student 

behaviors while interacting with lessons. I demonstrate that the targeted meanings can be 

productive for students, show common unproductive meanings students possess as they 

enter Precalculus, highlight challenges and opportunities in teaching and learning in the 

online environment, and discuss needed adaptations to the intervention and future 

research opportunities informed by my results. 
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The truth is that in many areas of the subject, mathematics 
has as much to do with computation as writing has to do 
with typing. Algorithms, rules, and drill are certainly not 
unimportant…, but our mathematical problems result more 
from insufficient exposure to mathematics as a way of 
thinking and a set of intricately connected higher-level 
skills than from an inability to compute. (Paulos, 2001, p. 
xiii) 

Online learning is a relatively new phenomenon in education, but statistics 

indicate that it plays a large role in students’ post-secondary experiences. In Fall 2016 

almost 30% of students enrolled in post-secondary courses were enrolled in at least one 

distance-learning course (usually delivered online) and over 14% were enrolled 

exclusively in distance-learning courses (U.S. Department of Education, 2018). Most 

academic leaders view online course quality as equal to or better than the quality of face-

to-face courses and see increasing online enrollment as a key part of their long-term 

growth plans (Allen & Seaman, 2011, 2015). In O’Bryan (2018b, in preparation) I 

summarize current research on how the online learning environment impacts student 

success and demonstrate a need for careful analysis of the mathematical meanings 

students develop while enrolled in an online course, particularly their meanings for ideas 

proven critical for success in future mathematics and other STEM courses. As one 

example, Oehrtman, Carlson, and Thompson (2008) describe challenges inherent in 

students’ developing a productive meaning for function and the consequences when 

students fail to develop these meanings. They observe that “[s]tudents who think about 

functions only in terms of symbolic manipulations and procedural techniques are unable 

to comprehend a more general mapping of a set of input values to a set of output values” 
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(p. 151). On the other hand, imagining functions as a self-evaluating process is a 

necessary foundation for thinking about functions as modeling dynamic relationships 

between pairs of co-varying quantities. This more dynamic image of function 

relationships is at the heart of understanding the key ideas of Calculus (Carlson, 1998; 

Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Thompson, 1994a; Thompson & Carlson, 

2017). Studies that focus on retention rates, student GPA, and students’ affective 

responses to the online environment provide little insight on how students conceptualize 

important ideas like the meaning of function at the end of their course. This data also 

provides few insights into how specific aspects of online lessons may support students in 

constructing productive meanings for key ideas. 

In this report I describe results from the most recent iteration of an online 

Precalculus course (O’Bryan, Carlson, & Sander, 2018) designed to support students in 

developing quantitative and covariational reasoning and that leveraged images of 

measurement and relative size as common themes connecting topics across units. In 

particular, I focus my attention on ideas related to exponential functions. I chose this 

focus for two reasons. First, exponential functions play an important role in calculus, 

differential equations, complex analysis, modeling, and interpreting common 

measurements such as pH, decibel levels, and the Richter scale, yet developing 

productive understandings for exponential growth seems exceptionally challenging 

(Castillo-Garsow, 2010; Confrey, 1994; Davis, 2009; Ellis, Ozgur, Kulow, Dogan, & 

Amidon, 2016; Ellis, Ozgur, Kulow, Williams, and Amidon, 2012, 2015; Ström, 2008; 

Weber 2002, 2002a). Second, ideas related to exponential growth are an excellent 

backdrop for discussing the learning goals we established for our online course and ways 
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of reasoning that I hypothesize provide a coherent foundation for understanding ideas 

throughout Precalculus.  

I organized this paper into three main parts. The first part includes my theoretical 

perspective, literature review, and conceptual analysis of reasoning abilities and 

meanings for understanding exponential functions and related ideas. Included in this 

section is a discussion of two general mathematical ideas we targeted throughout the 

course (emergent symbol meaning and measurement imagery) that could help students 

develop productive meanings for the calculations, algorithms, and formulas central to 

topics across a Precalculus course. The second part analyzes student pre-test and pre-

interview data to characterize the reasoning and meanings students possess entering a 

college Precalculus course. The third part discusses observations from analyzing student 

behaviors when interacting with lessons and reports results from analyzing post-test and 

post-interview data. This analysis informed my characterization of the meanings students 

possessed at the end of the course. Based on this analysis I discuss modifications to my 

learning trajectory and implications for these results on future iterations of the course. I 

also discuss potential areas for future research my results suggest. 

 

Theoretical Perspective 

Background theories provide guidance on what aspects of the learning process 

must be explained, inform the characteristics of those explanations, and perhaps give 

insights into features of experiences that might effectively guide students in developing 

powerful mathematical meanings. I leverage radical constructivism (Glasersfeld, 1995), 

building from Piaget’s (1977) genetic epistemology, as the foundation for my image of a 
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student’s mathematical meanings, for shaping my hypotheses relative to students’ 

meanings and learning, and for informing the focus and features of lessons in the 

intervention. Thus, constructivism serves as both (a) a theoretical lens and (b) a guiding 

principle for task and lesson design along with domain-specific theories related to 

learning about functions and exponential growth.  

Piaget’s genetic epistemology was an attempt in part to explain the origins and 

substance of knowledge within biological entities who cannot directly access any kind of 

external reality (Piaget, 1977). Individuals organize their experiences within schemes, 

and they make sense of new stimuli by assimilating those experiences to existing 

schemes that include associated actions and expectations for the results of those actions 

in making progress towards a perceived goal (Glasersfeld, 1995; Piaget, 1971; Piaget & 

Inhelder, 1969). Piaget broadly interpreted actions to include “all movement, all thought, 

or all emotions that respond to a need” (Piaget, 1967, p. 6). Assimilation to a scheme 

provides meaning to the stimulus based on the scheme’s contents (which includes 

connections to other schemes) (Johnckheere, Mandelbrot, & Piaget, 1958). Learning 

occurs when “the original scheme is accommodated [emphasis added] by differentiating 

between conditions and subsequent implications of assimilation” (Thompson, 1994c, p. 

183). 

Thompson et al. (2014) argued that it is productive to think about a student’s 

understanding relative to some mathematical idea (such as proportional reasoning) as a 

“cloud”, or a sort of Venn diagram, that emphasizes how “at every moment in the child’s 

development of proportional reasoning, any two aspects of proportional reasoning entails 

some common ways of thinking while at the same time involving ways of thinking that 
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are unique to themselves” (p. 14). This perspective is useful for both thinking about 

designing learning opportunities and studying student learning. A given mathematical 

idea (such as proportional reasoning) might involve coordinating meanings for other 

ideas (such as measurement, variation, scaling, and fractions). Supporting students in 

constructing useful meanings for each of the related ideas might require slightly different 

approaches because there are unique elements to each, but similarities may also be 

leveraged in ways that reinforce connections and common ways of thinking to support 

growth in related understandings. In addition, modeling an individual student’s reasoning 

means theorizing about how he might understand related ideas that explains his 

observable behaviors. Evidence informing these theories include differences in how the 

student responds to tasks that a researcher sees as leveraging similar ideas but the student 

does not.  

Knowing that students construct their own meanings and knowing some of the 

mechanisms by which this construction occurs via individual activity suggests the kinds 

of tasks and activities that may support students in constructing productive mathematical 

meanings. Thompson (1985) provides a list of key design principles for curricula that 

includes a focus on relationships and a mechanism for students to test their reasoning and 

generate feedback. Thompson argued that a key goal of mathematics instruction should 

include a focus on the conservation of relationships within a system, a notion that he and 

others expanded upon within theories of quantitative and covariational reasoning (i.e., 

Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson, 1990, 2011, 2012; 

Thompson & Carlson, 2017). As quantities in a system vary together, certain elements 

remain consistent, and reflection about these consistencies yields important insights about 
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function behavior and function families. Thompson argued that technology’s greatest 

contribution to lessons is its potential to create opportunities for students to make 

predictions based on their current thinking and for software to generate feedback about 

these predictions. These experiences may help encourage students to reflect on their 

thinking and can generate opportunities for students to modify their schemes in 

productive ways. I will return to this idea later in the report. 

  

Exponential Functions Literature Review 

 In this section I briefly review the body of literature related to student learning 

about exponential functions. For a more complete review and analysis, see O’Bryan 

(2018a, 2018c, in preparation). 

Confrey and Smith (1994, 1995) argued that it is productive for students to think 

about a function relationship as a process that synchronizes the values of two variables 

that change together (covariational reasoning). Then any given function is formed by 

“the juxtaposition of two sequences, each of which is generated independently through a 

pattern of data values” (1995, p. 67). Specific characteristics of a function (or function 

family) emerge through coordinating repeated actions. For example, an exponential 

growth function results from coordinating values in an arithmetic sequence with values in 

a geometric sequence as shown in Table 9.1. From this image of functions, they define 

rate as a comparison between what remains constant in each varying quantity (Confrey, 

1994). Thus, exponential functions have a constant multiplicative rate of change (such as 

“times three per plus two” in Table 9.1). Weber (2002a, 2002b) provided empirical  
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Table 9.1 
 
Coordinating an Arithmetic Sequence with a Geometric Sequence 
 

 x y  
4 5 

+5 x3 
9 15 

+5 x3 
14 45 

+5 x3 
19 135 

  
 
support that this meaning for function and exponential growth can be productive for 

students, as did Ström (2008), who fleshed out key understandings related to interpolating 

values within the coordinated sequences. 

 Thompson (2008a) also suggested that covariational reasoning is a critical 

component of students understanding function relationships in general and exponential 

functions specifically, although his image of covariational reasoning is different from 

Confrey’s and Smith’s (Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson & 

Carlson, 2017). When students conceptualize a situation they can identify quantities 

(attributes of an object the student imagines as measurable) (Thompson, 1988, 1990, 

1993, 1994b, 2011, 2012). When two such quantities are conceptualized such that the 

student imagines that these quantities change in tandem, then he can link them together to 

form a multiplicative object, or a mental unification whereby the individual is aware of 

how both quantities change in tandem and anticipates tracking this relationship (Saldanha 

& Thompson, 1998; Thompson, 2011; Thompson & Carlson, 2017). In Thompson’s 

conceptual analysis, all rates of change (ratios of additive changes in two quantities’ 

values) are constant, at least over small intervals, and function values can emerge as the 

result of smooth, continuous accumulation for piecewise linear functions. Functions can 

then be classified by similarities in their rate of change functions, such as defining 
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exponential functions as the class of functions where the rate of change over some 

interval is proportional to the function value at the beginning of the interval. See Figure 

9.1.  

 

 
Figure 9.1. A piecewise constant rate of change function and the corresponding 
piecewise linear accumulation function where the rate of change over each interval is 
proportional to the function’s value at the beginning of the interval. 
 
Decreasing the interval size produces an accumulation function that converges to a 

continuous exponential function. Castillo-Garsow (2010, 2012) developed a teaching 

experiment based on Thompson’s conceptual analysis of exponential growth. His results 

helped demonstrate the utility in imagining functions as emerging through coordinating 

two quantities that vary together in a smooth, continuous manner (as opposed to other 

imagery, such as variation occurring in “chunks” where the student does not attend to 

variation within specific intervals, only the values at the end of intervals over which 

variation occurred).  

Ellis et al. (2012, 2015, 2016) built on Confrey and Smith’s definitions of 

covariation, rate, and exponential growth to create a teaching experiment with middle 

school students intended to support students in conceptualizing bx as the height of a plant 

at some point in time as well as its multiplicative change in height over x units of time. 

Their lessons made extensive use of a GeoGebra applet showing a plant (the Jactus) that 
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grew according to a chosen 1-unit growth factor as the user slid the plant along the 

horizontal axis (representing elapsed time). They chose this visualization in light of 

Thompson’s and Castillo-Garsow’s arguments for the importance of students reasoning 

with smooth continuous covariation and the potential pitfalls of focusing on discrete 

variation. Their work has thus far produced insights into how students without 

sophisticated meanings for function relationships might advance their reasoning relative 

to exponential growth, including conceptualizing a meaning for the value of exponential 

functions at non-natural values in the domain. Kuper (2018) adapted their applet to 

support students in developing quantitative structures that give meaning to the inputs and 

outputs of logarithmic functions as emerging from linked covariation of quantities. 

Both Confrey and Smith and Ellis and her colleagues grounded their work in 

images of repeated multiplication while Thompson’s conceptual analysis relied on 

exponential growth emerging through coordination of a quantity that accumulates in a 

piecewise linear fashion as a second quantity increases with rates of change over specific 

intervals proportional to the function value at the beginning of the interval. My own 

conceptual analysis for exponential functions, and the resulting learning trajectory and 

lessons we designed, owes much to the work of Confrey and Smith, Thompson, and Ellis 

et al. However, the details differ in important ways due to differences in setting, students, 

and specific learning goals we selected for the course as described in the subsequent 

sections. Analysis of pre-test and pre-interview data also raises questions about whether 

or not university Precalculus students tend to conceptualize repeated multiplication as the 

foundation for exponential growth situations, especially when those situations are 

presented in terms of constant percent change. 
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Conceptual Analysis of Ideas Related to Understanding Exponential Growth 

 In the sections below I summarize the key meanings I intended to support within 

lessons on percentages, percent change, and exponential growth. My student learning 

goals differed somewhat from the goals in the research previously described primarily 

because of my attempt to design for coherence across an online university Precalculus 

course. As I discuss at the end of this section, our goals of promoting emergent symbol 

meaning and a meaning for relative size comparisons made up a guiding framework 

(O’Bryan, 2018c, in preparation) informing the conceptual analysis and initial drafts for 

the unit learning trajectories. It is worth emphasizing that I therefore assume that 

students’ meanings for these ideas developed (to the extent they did change) within 

learning opportunities throughout the course and not necessarily solely as a result of 

activity within any single unit.  

Conceptual analysis is a description of “what students must understand when they 

know a particular idea in various ways” (Thompson, 2008a, p. 42), two uses of which 

include (a) outlining meanings that might benefit students’ mathematical development 

and (b) analyzing the coherence across potentially related meanings. My conceptual 

analysis of exponential growth and related ideas constitutes a body of ideas that I 

conjecture will benefit students’ mathematical development. My main goal within for 

conceptual analysis is to follow Thompson’s (1985) advice for designing curricula by 

first clearly articulating the meanings I intend students to construct and using this to 

inform an activity sequence with the potential to support students in constructing these 

targeted meanings. 
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Potential Issues with Standard Definitions for Exponential Functions 

 In Calculus and beyond, an exponential relationships is defined as a function with 

an instantaneous rate of change proportional to the function value at all points in the 

domain, but it is uncommon to expect this definition within Algebra and Precalculus 

courses. Figure 9.2 synthesizes definitions in ten algebra and precalculus textbooks 

published between 2000 and 2012. 

 
Figure 9.2. Two examples of common textbook definitions for exponential 
function. 
 
The definition boxes containing these statements all appeared on the first page of the first 

section for the unit with little development. Several of the textbooks additionally 

emphasized that exponential functions are transcendental functions (as if that should 

mean something important to students). The examples within these sections did not 

discuss the relationship between an exponential function’s value and its rate of change. 

Instead, the common approach was to highlight repeated multiplication of a growth factor 

as the foundation for exponential functions and the algebraic formula as a generalization 

of the repeated multiplication process. 

 The definitions above are problematic for several reasons. First, the definitions 

are entirely symbolic, which provides no guidance for recognizing an exponential 

function represented in other forms. Second, despite the presence of variables in the 

definitions, there is no explicit mention of varying quantities, and thus no discussion of 

what feature in the relationship remains invariant as related quantities co-vary. Third, 

An exponential function is denoted by f (x) = ax where the base a is a 
positive real number and a ≠ 1. 
 

An exponential function f is a function of the form f (x) = abx where a is a 
positive real number and the base b is a positive real number with b ≠ 1.  
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Thompson (2013) argued that a weak system of meanings (held by an instructor or 

present in lesson design) opens up enormous space within which students can construct 

incorrect or unhelpful meanings. He also emphasized that a lack of clarity in the 

meanings students should construct during a lesson decreases the chance that instructors 

(or designers) will recognize the meanings students do construct (including unintended 

meanings). I am unclear what meanings students should take away from one of the 

definitions in Figure 2 or how either definition helps students recognize when exponential 

functions are appropriate models for a given graph, data set, or verbal description or helps 

them understand what remains invariant in a relationship as two quantities change 

together. From a student’s point of view, the emphasis seems to be about memorizing 

what an exponential function “looks like” in algebraic form. 

The following two interview excerpts from this study show student responses to 

the question, “What makes a function exponential?” Both students said they had learned 

about exponential growth in previous classes and Lisa had taken and passed Calculus AB 

as a senior in high school.  

 
1 Lisa: I believe it’s just a function that, like, the answers are gonna increase. Like  
2  if you graph it, is the best way I visualize it, is they’re gonna increase  
3  exponentially, so they’re gonna start out gradually and really quickly [she  
4  draws Figure 9.3]… 

 

 
Figure 9.3. Lisa’s example of an exponential function. 
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5 AO: Okay. 
6 Lisa: …move up. So the answers are gonna be like closer and closer together  
7  for, like, amounts. I guess would be the best way to describe that. 
8 AO:  Okay. So any kind of graph that, any kind of function that does that  
9  behavior [points to the graph Lisa drew]… 
10 Lisa:  Yeah. 
11 AO: …is going to be exponential? 
12 Lisa: Yeah. 
13 
14 
15 Marcus: Yeah. Um. I would say uh. I wanna, I wanna say it, it definitely has  
16  something to do with um greater numbers. I’m not too sure. Something  
17  along those lines. 
18 AO: Okay. 
19 Marcus: Something like that. I know because if you put it in exponential form.  
20  Well, I think I’m on to something [laughs]. 
 
 If instruction on and definitions for exponential functions are based on a relatively 

weak system of meanings, then as Thompson (2013) argued it is more likely that students 

construct unhelpful or weak meanings for important mathematical ideas and for 

instructors to fail to recognize the meanings that students did construct. The student 

responses recorded above (which were representative of responses by the five interview 

subjects in this study) suggest that students often construct meanings for exponential 

growth based on some combination of an image of a graph (Lisa), a function with 

increasing values (Lisa and Marcus), or a vague recollection of an algebraic 

representation (Marcus). Potential implications for students with one of these meanings 

include categorizing any increasing function with positive concavity or any function with 

an exponent in its algebraic representation as exponential. It is doubtful that using these 

meanings to classify exponential functions provides much mathematical substance with 

which a student can then draw additional conclusions.  
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Exponential Growth and Related Ideas from a Quantitative Perspective 

 My primary learning goal for students is that they conceptualize an exponential 

function as a function with a constant growth factor or constant percent change over all 

equal-sized intervals of the domain. I intend that growth factor be understood as a 

measurement relating any two instances of the same quantity separated by some fixed 

additive change in a second quantity and not be restricted to a factor in repeated 

multiplication that produces specific output values. As such, understanding growth factor 

relies on having a meaning for measurement in general as a multiplicative comparison 

and to understand that (a) a quantity’s magnitude is independent of the magnitude of units 

used to measure it, (b) measurements indicate a reciprocal relationship between the 

quantity’s magnitude and the unit’s magnitude, and (c) changing the unit of measure 

changes the measurement value in an inversely proportional manner (Thompson et al., 

2014). Then conceptualizing a meaning for bx with respect to constant percent change 

involves imagining repeatedly growing by a constant percent change on an interval and 

seeing that this constant percent change can also be expressed relative to powers of the 

one-unit growth factor. In the sections that follow I will fully unpack my meanings for 

these ideas and how they form a basis for defining and recognizing exponential 

relationships regardless of the form in which they are expressed. 

Flexibility in choosing a unit and units of convenience. Thompson et al. (2014) 

discuss images of measurement students might possess and the implications of each 

scheme. Extensive quantification is the most elementary example of “the process of 

conceptualizing an object and an attribute of it so that the attribute has a unit of measure, 

and the attribute’s measure entails a proportional relationship…with its unit” (Thompson, 
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2011, p. 37) and describes quantification schemes for directly measurable quantities 

(such as length) using any unit that has “the same nature as the quantity being measured” 

(Wildi, 1991, p. 58). The measurement scheme’s sophistication can range from a 

straightforward process of reproducing the quantity’s magnitude by iterating the unit 

(size as a Measure magnitude) to an appreciation of the reciprocal relationship between 

the quantity’s measurement in some unit and the size of the unit (size as a Steffe 

magnitude) to an understanding that the quantity’s magnitude is independent of the 

choice of unit along with an anticipation for how changes to the measurement unit affect 

the measurement value (size as a Wildi magnitude) (Thompson et al., 2014). I will 

discuss the implications for these schemes as I unpack my intended meaning for the 

growth factor of an exponential function. 

 Arbitrary conventions dictate the size of many common units we use such as feet 

or gallons. However, conceptualizing non-standardized units based on convenient 

magnitudes within a context can be very productive. As one example, Tallman (2015) 

carefully lays out the reasoning involved in using a circle’s radius as the measurement 

unit for arc lengths on that circle. Radius length is a convenient “unit ruler” for measuring 

arc length primarily because its length is an inherent property of the circle and its size 

varies proportionally with the circle’s circumference. There are other instances where we 

might use rulers of convenience (rather than standardized measurement units). Suppose I 

measured a tree’s height at two different moments in time and that each time I cut a piece 

of string with a length equal to the tree’s height (call these lengths  and ). When I lay 

out the pieces of string next to each other I can think of each string’s length as a potential 

1l 2l
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measurement unit without needing to measure these lengths in any standard unit, and the 

resulting measurement can provide useful information about the situation. See Figure 9.4. 

 
Figure 9.4: Measuring relative sizes. (top) The two string lengths representing the tree’s 
height at two moments. (middle) Using the first height as the measurement unit, the 
second height has a measure of 1.4 (the second height is 1.4 times as large as the first 
height). (bottom) Using the second height as the measurement unit, the first height has a 
measure of 10/14, or about 0.7 (the first height is 10/14 times as large as the second 
height).43 
 

Thompson et al. (2014) discuss different ways that students might conceptualize 

the goal and meaning of measurements. If I think of the length measurement for one 

string produced by counting iterations of the other string, I am thinking about size as a 

Measure magnitude (an additive meaning for measurement). Potential implications of this 

measurement scheme include confusion when comparing the measurement of a quantity’s 

size in different units, such as thinking a distance measured as 3,218 meters might be 

longer than a distance of 12 miles because the measurement value is larger. Thinking of 

size as a Steffe magnitude assumes that the measurement value communicates a relative 

                                                      
43 This is what Lamon (1994) describes as norming within a quantification scheme and is the key way of 
thinking that allows someone to see a number such as 2/3 as representing different amounts of a quantity 
depending on conceptualizing the meaning of “1” in the context. 
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size comparison between the magnitude being measured and the unit’s magnitude. If a 

piece of string is 17 feet long, then its length is 17 times as long as a length we call “1 

foot”, which in turn is 1/17 times as long as the string length (so “1 foot” measures 1/17 

when the string length is used as the measurement unit). This measurement scheme is 

necessary to see the relationship between measurements for the string lengths represented 

in Figure 4. If l2 is 1.4 times as long as l1 (its measurement is 1.4 in units of l1’s 

magnitude) then l1 is 1/1.4, or 10/14, times as long as l2 (its measurement is 10/14 in units 

of l2’s magnitude).  

 I will continue to build on this example, but for now I want to highlight some 

important points. This notion of a “ruler of convenience” may be a helpful 

conceptualization within many topics in Precalculus (including angle measure as I noted 

earlier). I also hypothesize that children’s early introduction to the idea of measuring 

magnitudes with convenient rulers could be key to supporting images of the relationship 

between the size of the unit and the measurement value, the meaning of equivalent 

measurements in different units, and the important role of standard units in both science 

and everyday life. This would be an interesting research question to explore. I also want 

to emphasize that I chose to represent the tree’s height at the two moments in time using 

the lengths of two pieces of string because doing so simplifies the process of holding in 

mind the magnitude of a quantity at two distinct moments in time, which is critical for 

thinking of an exponential function’s growth factor as a measurement. This is something 

lacking in Ellis et al.’s (2012, 2015, 2016) activities involving the Jactus plant. Even 

though students in their study could vary the height of the plant by varying the time 

elapsed since first measuring the plant, the applet did not allow them to simultaneously 
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represent two heights of the plant at two different moments in time. When only one 

instance of the quantity’s magnitude is visible at a given time, it may be less natural to 

use a different instance of the same quantity as the measurement unit and more natural to 

use a standard unit (such as feet) for measuring the magnitude. Numerical representations 

for the quantity’s measurement at multiple instances (such as a representation of multiple 

values in a table) may encourage students to generalize the relationship between instances 

as the product of performing a calculation rather than conceptualizing a relative size. It 

might also be easier for someone to overlook coordinating these measurements with 

changes in a second quantity. For example, the tree measurements took place one year 

apart. Therefore, saying that the second height is 1.4 times as large as the first height 

without attending to the interval of time over which the tree was growing between the 

measurements reduces the measurement’s usefulness.  

“Elastic” units and the meaning of a growth factor. A person with the 

understandings already described is positioned to consider the question, “What are the 

characteristics of a unit such that, as the quantity’s magnitude changes, the quantity’s 

measure in that unit never changes?” For the measurement of a varying quantity to 

remain constant, the unit must change so that its magnitude and the quantity’s magnitude 

always have the same relative size. In Figure 9.5 we see three instances of a varying 

quantity’s magnitude and a measurement unit changing in tandem so that the quantity’s 

measure is always 2.5. 

Returning to the tree height example, imagine that the tree grows such that its 

height at any given time is always the same measurement when using the height one year 

prior as the unit. What can we conclude about how the tree grows? Assuming the relative 
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Figure 9.5. An “elastic” unit ruler that changes with the size of a varying quantity so that 
the measurement remains constant. Contrast this with a rigid ruler where the unit size 
remains constant and the measurement changes as the quantity’s size varies. 
 
size measurement in my running example, at any moment the tree’s height is always 1.4 

times as large as the tree’s height exactly one year prior. Equivalently, at any moment in 

time the tree’s height one year in the future is 1.4 times as large as its current height (and 

we can also say that the tree’s height at any moment is 10/14 times as large as its height 

one year in the future). If we allow time to pass such that the tree’s height changes, then 

the tree’s height one year earlier/later must also change so that the two magnitudes under 

comparison have a constant relative size. Note that there are two measurements held 

constant here while the actual tree height changes: (1) the relative size of the tree heights 

at two different moments in time and (2) the change in time under consideration. 

Combining all of the ideas discussed so far allows for the following potentially 

powerful meaning for growth factor of a quantity (over some interval of change in a 

second quantity). Coordinating two covarying quantities (call them A and B, with 

magnitudes represented as  and  respectively44) over some interval of conceptual 

time sees their magnitudes vary from  to . The growth factor of B 

over the interval of conceptual time where A varies from  to  is the 

                                                      
44 Here I use the notation and meaning from Thompson (2011), Thompson et al. (2014), and Wildi (1991) 

where , the magnitude of quantity A, “is the size of an object having the attribute that is being 

measured and that is taken to have one unit of that attribute” (Thompson et al., 2014, p. 5). 

A B

 1 1,A B  2 2,A B

1A 2A

A
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multiplicative comparison of  to , or  measured in units of , or the 

value of k such that . The value of k is a constant across all choices of unit 

for measuring B. Therefore, if a represents values for the varying quantity A (measured in 

some appropriate unit) and b represents values for the varying quantity B (measured in 

some appropriate unit), then the growth factor of B over the interval from  to 

 (an interval of size ) is . Visualizing this in the tree height example 

involves imaging holding the time interval size between measurements constant and the 

strings changing in length such that l2 is always 1.4 times as long as l1. Graphing the 

relationship between the tree’s height and time elapsed, any two heights measured one 

year apart will have a constant relative size. We can imagine this dynamically with a 

sliding 1-year interval and comparing the magnitude of the heights at the beginning and 

end of the interval (Patrick W. Thompson, personal communication, April 9, 2015). 

Figure 9.6 shows three screen captures of a computer applet demonstrating this idea. 

 
Figure 9.6. A dynamic comparison of the tree’s height at two moments one year apart. 
The tree’s height always measures 1.4 when using its height one year earlier as the 
measurement unit. This visualization is based on an applet designed by Patrick W. 
Thompson (personal communication, April 9, 2015) and is a modification of Ellis et al.’s 
(2012, 2015, 2016) Jactus animation. The reader is encouraged to imagine the beginning 
of the interval sliding smoothly to the right and visualize what remains invariant and what 
changes based on this action. Thompson also emphasizes attending to how the segment 
on the left changes and “becomes” the segment on the right as the interval slides. 
 

2B 1B 2B 1B

2 1B k B 

1a a

2a a 2 1a a 2 1/b b
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If students conceptualize the ideas represented in Figure 9.6 it may support them 

in thinking of the growth factor over some interval as a relative size comparison of two 

instances of one quantity while still holding in mind continuous covariation as they 

imagine running through a continuum of values in the domain. The growth factor is the 

measure of the function value’s magnitude at the end of the interval in units of the 

function value’s magnitude at the beginning of the interval. Note that we can discuss the 

growth factor without attending to specific function values. Doing so could support 

students’ development of a quantitative meaning for growth factor as a measurement and 

deemphasize calculational meanings while still providing a context for deriving 

reasonable calculations to evaluate function values or growth factors if the function 

values are known (or can be calculated). Working with the visualization involving an 

elastic ruler (or the same concept represented graphically as in Figure 6) also provides 

context for discussing how the absolute difference between the two instances of the tree’s 

height separated by one year (1) becomes larger as the tree grows in height, (2) is always 

the same relative size compared to the tree’s height at the beginning of the interval (0.4 in 

this case), and (3) why the measurement of the change in tree height over one year is 

always one less than the measurement of the tree’s height at the end of the interval when 

each are measured in units of the tree’s height at the beginning of the interval. 

Percent comparisons and percent change. The choice to model a real-world 

relationship with an exponential function is often based on recognizing constant percent 

changes in one quantity for equal additive changes in a second quantity. For example, 

coordinating the growth of a savings account based on a constant APY or exploring the 

long-term implications of a population growing by 3% per year are common scenarios 
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modeled with exponential functions. Most students, however, do not conceptualize 

percentage comparisons and percent change as measurements as I demonstrate later in 

this report. 45 Thinking about percentages as measurements involves careful attention to 

what is being measured and the measurement unit. Consider the statement, “The median 

sales price for a home in Springfield is up 4% over the median sales price from a year ago 

and up 18% from the median sales price at this time ten years ago. This is the highest 

median sales price in the state, 5% higher than any other city.” The meaning of “one 

percent” is (1) different in every instance both in absolute size measured in some 

currency and (2) references a different quantity in each case. Students who lack clarity in 

the reference quantity (those who cannot regularly answer the question “Percent of 

what?” when reading such statements) will likely struggle to interpret and differentiate 

between various percentage and percent change measurements. 

 One percent of a quantity’s magnitude (at some moment) is a magnitude having 

the same attribute as the quantity such that . In other 

words, the original quantity’s magnitude measures 100 in units of one percent (or 1/100) 

of the quantity’s magnitude. Note that I wrote “one percent of a quantity’s magnitude (at 

some moment)” and not just “one percent” because conceptualizing the meaning of “one 

percent” involves a re-norming process and has no fixed size across all contexts or even 

in the same context if quantities are varying. Using percent measurements helps 

communicate relative sizes to provide context for interpreting important features of a 

                                                      
45 Lack of awareness of percentages as measurements is not restricted to undergraduate students. In a recent 
seminar I asked graduate student TAs in mathematics and mathematics education PhD programs what the 
word “percent” means. Only one of eight knew that it meant something similar to “by the hundred”. The 
other seven expressed that they did not realize the word had a meaning indicating it was a kind of 
measurement unit. 

100 one percent of A A 
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situation. As one example, it is common for home sellers to do a price reduction if their 

house has not sold after some amount of time. A $10,000 reduction in price means 

something quite different for a home currently listed for $2.7 million compared to a home 

currently listed for $65,000. Describing the price reductions as changes of  

–0.37% and –15.38% respectively communicates useful information in this context. 

One percent of a quantity’s magnitude at some moment is a suitable unit for 

measuring other quantities of the same quality or even additional instances of the same 

quantity as it varies. The resulting measurement is a percentage value. For two quantities 

A and B representing the same quality of objects, measuring  as a percentage of  

is to think of the value k such that . Similarly, for two 

instances of quantity A, measuring  as a percentage of  is to find the value k 

such that . 

Returning to the tree height example, suppose that measurements were taken on 

January 1 of last year and January 1 of this year. The growth factor over this one-year 

period is the magnitude of the height on January 1 of this year using the height on 

January 1 of last year as the measurement unit. See Figure 9.7. 

 
Figure 9.7. Measuring the height’s magnitude on January 1 of this year using the height’s 
magnitude on January 1 of last year as the measurement unit. 

B A

one percent of B k A 

2A 1A

2 1one percent of A k A 
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The new height is 1.4 times as large as the reference height. Measuring the new height as 

a percentage of the reference height is to measure it in a unit that is  times as large, 

and thus the measurement value is 100 times as large. The new height is 140% (140 times 

as large as 1/100 of the length of l1) of the reference height. See Figure 9.8. 

 
Figure 9.8. Measuring the magnitude of the height on January 1 of this year using one 
percent of the height on January 1 of last year as the measurement unit. The measurement 
unit is  times as large as the unit in Figure 3, so the new measurement is 100 times as 

large as the previous measurement. 
 

A robust understanding of the ideas just described entail an image of size as a 

Wildi magnitude (Thompson et al., 2014). The magnitude of what we are measuring does 

not change when the measurement unit changes in size but the measurement value 

updates in a way that is inversely proportional to the relative size of the new unit 

compared to the old unit. If a quantity’s magnitude is measured to be 10 in unit A, and if 

unit B is 3/5 times as large as unit A, then the quantity’s magnitude will be 5/3(10) 

measured in unit B (and a person who understands this relationship can anticipate this 

result without needing to perform a second measurement in the new unit). Changing the 

measurement unit from the tree’s height on January 1 of last year to one percent of the 

tree’s height on January 1 of last year involves measuring the same quantity’s magnitude 

(the tree’s height on January 1 of this year) using a unit that 1/100 times as large as the 

original unit. Thus, we can anticipate that the measurement value is 100 times as large. 

1
100

1
100
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This is the conceptual underpinning for the algorithm of moving the decimal point two 

places when converting back and forth between relative size measurements and 

percentage measurements. 

Determining a percent change in one quantity’s value across two instances 

requires conceptualizing a more complicated quantitative structure. First, the individual 

must conceptualize a varying quantity within a situation. Second, she must conceptualize 

two instances of the quantity with some implied or explicit order, the magnitude of the 

quantity for each instance, and an additive comparison of these magnitudes. This additive 

comparison, however, must be like a vector quantity with both a magnitude and a 

direction to capture whether the change is an increase or a decrease. See Figure 9.9. 

 
Figure 9.9. Visualizing the magnitude and direction of a change in height. 
 
Third, she imagines measuring the additive comparison as a percentage of one of the two 

magnitudes (typically the magnitude representing the baseline from which the change 

occurred). So the percent change from  to  can be thought of as the value of k 

such that . 

In most instances the percent change in one quantity is described with reference to 

an interval of change for another quantity to provide clarity within the given context. For 

1A 2A

2 1 1one percent of A A k A  
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example, reporting a population change of 4.8% is not very informative without 

describing the time period over which the change occurred. The change in the tree’s 

height from the reference height to the new height (occurring over a one-year period) is 

an additive comparison that captures both a magnitude and a direction of change. The 

percent change in the tree’s height is the measurement of this change using one percent of 

the reference height as the measurement unit. See Figure 9.10. 

 
Figure 9.10. Measuring the change in height using one percent of the height on January 1 
of last year as the measurement unit. 
 
 We can visualize these relationships as they appear in the graph of the tree’s 

height compared to elapsed time (in years) since some chosen reference time. The 

magnitude of the tree’s height at t1 can be used to measure the tree’s height at t2 and the 

change in height over the time period from t1 to t2. See Figure 9.11. A percentage 

comparison or percent change measures the tree’s height at t2 and the change in height  

 
Figure 9.11. The measurement process can be visualized in a graphical representation of 
the relationship between the tree’s height and elapsed time (in years) since some chosen 
reference time. 
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respectively using 1/100 of the magnitude of the tree’s height at t1 as the measurement 

unit.  

Exponential functions. Pulling together the meanings just described, an 

exponential function f can be defined as a relationship where the relative size of f (x2) and 

f (x1) is constant whenever ∆x = x2 – x1 is constant throughout the function’s domain. This 

relative size measurement is the value of the ∆x-unit growth factor. In addition, 

exponential functions are relationships with a constant percent change in the dependent 

quantity over all equally-sized intervals of the domain. These relatively compact 

statements contain within them the intricate imagery described in the previous sections. 

 
Figure 9.12. My quantitative structure for understanding an exponential model. Note that 
single-headed arrows imply a hierarchy of meanings such that conceptualizing the 
quantity at the tail of the arrow likely is a prerequisite for conceptualizing the quantity at 
the head of the arrow. Dashed boxes indicate a change in a quantity while dotted boxes 
indicate relative size comparisons between two instances of a quantity. Dashed, double-
headed arrows indicate the same quantities measured in different units. 
 

The mass of bacteria in an experiment doubles every seven hours from an initial mass of 
three micrograms. 
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To get a sense for the complexity of these ideas I have included a diagram of the 

quantitative structure I imagine when generating a mental model for a task involving 

modeling with an exponential function. See Figure 9.12. 

A person who has conceptualized the relationships described may be positioned to 

construct the meaning for the algebraic representation of an exponential function f 

recommended by Ellis et al. (2016). If b is the 1-unit growth factor, then b∆x is the ∆x-unit 

growth factor for any value of ∆x. If we imagine x = 0 as our reference point, then for any 

value of x (say x = n), the change in x away from x = 0 is ∆x = n – 0 = n and the growth 

factor from x = 0 to x = n is bn and f (n) = abn where f (0) = a.  

The framework in Table 9.2 describes the key ways of understanding exponential 

growth and related ideas as described in my conceptual analysis. Note that this 

framework was partially influenced by Ström’s (2008) final framework for understanding 

exponential growth and Ellis et al’s (2016) description of their learning goals for 

students. It is also worth mentioning that the various elements of the framework are not to   

be understood as separate ideas that exist independently. Students’ meanings for the ideas 

within the framework are interconnected in ways that would be difficult, if not 

impossible, to isolate. The main benefit of a framework such as this is to clarify my 

learning goals for lesson and unit design, identify the meanings I intend to assess or 

promote with certain tasks, and focus my attention during data analysis to inform 

interpretations of student behaviors. 
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Table 9.2 
 
A Framework for Understanding Exponential Growth and Related Ideas 
 

 
 

MCM: Multiplicative comparisons as measurement systems, which refers to comparing the value of two 
quantities multiplicatively (using the value of one quantity as a “measurement stick” with which to report the 
measurement of the other quantity). The measurement reported is a quotient. This can include comparing two 
values of the same quantity at two different moments when the quantity was measured. 

 MCM-1:  Assuming comparisons between the same types of quantities, a multiplicative comparison of 
two quantities reports the value of one quantity using the magnitude of the other quantity as the 
measurement unit. 

 MCM-2:  If the unit of measure is scaled, the measure of a quantity changes in a specific way. If the 
new unit of measure is k times as large as the previous unit of measure, then the quantity’s 
measurement in the new unit is 1/k times as large as its measurement reported in the previous unit. 

 MCM-3:  Two instances of the same quantity can be compared multiplicatively using one instance of 
the quantity as the measurement unit for the second instance. 

 MCM-4:  If the two quantities are proportional, or if the two instances of the same quantity maintain a 
relative size as they quantity changes, then the measurement of one in units of the other is constant 
even as the quantities change. 

MCP: Multiplicative comparisons reported in terms of percentages. This is a slight modification to the 
MCM in that we are not using 1/100 of the value of one quantity as the “measurement stick” instead of the full 
value of that quantity. 

 MCP-1:  A percentage is measurement that uses 1/100 of the value of some quantity as the 
measurement unit.  

 MCP-2:  Building on MCM-3, if a quantity’s value is used as a measurement unit, then using this 
quantity as the reference for a percentage measurement will yield a value 100 times as large. 

 MCP-3:  A percentage comparison between two instances using one instance as the measurement unit 
will always be 100% larger than the measurement of the change in the quantity using the same unit. 

MCPC: Leveraging MCP thinking to reason about the change in a quantity’s value (so the change in a 
quantity’s value is measured using 1/100 of the quantity’s starting value as the “measuring stick”). 

 MCPC-1:  Measuring a percent change involves 1) additively comparing two measurements of the 
same quantity in some order and 2) multiplicatively comparing the additive change to 1/100 of the 
value of the reference quantity’s value. 

 MCPC-2:  The percent change is 100 times as large as the multiplicative comparison between the 
change in value and the value of the same reference quantity. 

 MCPC-3:  When applying repeated constant percent changes, the reference value for determining the 
change in value updates at the end of each interval. 

 MCPC-4: Equal percent changes over different intervals produces non-constant absolute changes over 
those intervals. 

MCEF: Thinking about an “exponential function” as an invariant relationship between two continuously 
co-varying quantities x and y = f (x). 

 MCEF-1: Within the domain of a function relationship, we can hold in mind two instances of the same 
quantity over a constant interval of the second quantity. 

 MCEF-2: The one-unit growth factor is a measurement determined by using one instance of a quantity 
as the unit ruler for measuring a second instance of the same quantity occurring when a second quantity 
varies by one unit. This measurement is constant even as the quantities vary. 

 MCEF-3:  For every choice of c there exists a constant d such that 
௙(௫ା௖)

௙(௫)
= 𝑑 as x varies continuously 

throughout the domain. [When c = 1, then the constant is the one-unit growth factor typically given as 
“b” in the formula y = abx].  

 MCEF-4:  If b is the one-unit growth factor, then bc is the c-unit growth factor (i.e., the ratio 
௙(௫ା௖)

௙(௫)
 for 

all x). 

 MCEF-5:  If b is the one-unit growth factor, then bx is the ratio 
௙(௫)

௙(଴)
 and f (x) = abx is one representation 

of the formula for the relationship where f (0) = a. 
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Measurement and Emergent Symbol Meaning 

Throughout my conceptual analysis and examples I maintained a consistent focus 

on three questions at the heart of quantitative reasoning: (1) What am I measuring? (2) 

What is my measurement unit? (3) What does the value of my measurement represent? 

This attention ensured that the values I discussed had clear referents within a quantitative 

structure because my measurement schemes derived from the ways in which I 

conceptualized the quantities and relationships between quantities. Such a focus is 

different from common instructional goals I have observed in Precalculus courses. For 

example, instructors typically describe a growth factor as the value by which you 

multiply some number of times to evaluate a formula, the percent comparison is the result 

of taking the growth factor’s value and moving the decimal point two places (such as 

changing 1.05 to 105), and the percent change is this value minus 100. Such a treatment 

encourages the tendency for students to “employ numerical operations that have no 

quantitative significance” (Thompson, 2011, p. 38). Notions of measurement are absent 

from this treatment as are any conceptual foundations for the operations. This may 

explain why, for example, only about 35% of college Precalculus students who took 

Carlson et al.’s multiple choice Precalculus Concept Assessment at the end of their 

courses could identify the impact of updating a function definition from p(t) = 7(2)t to 

p(t) = 7(3)t (Carlson, Oehrtman, & Engelke, 2010). 

Reasoning about measurement in the manner I described may support students’ 

understanding and application of percent comparisons, percent change, growth factors, 

and exponential growth regardless of the context or the way in which a task is presented. 

But beyond that, a focus on relative size and measurement were key learning goals that 
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informed many lessons and units in the course. Quantification is the process that 

generates measurements and working with these measurements and relationships between 

measurements then allows an individual to engage in mathematical reasoning such as 

exploring and predicting how changes to a situation impact those measurements or 

reasoning about aspects of situations that remain invariant even as quantities’ values 

change (Thompson, 2011). Yet Thompson et al. (2014) show the complexity inherent in 

measurement schemes based on different levels of reasoning with magnitudes suggesting 

that productive images of both extensive and intensive measurements are likely to emerge 

only from concerted attention over long periods of time and in a variety of contexts.46 

Ideally early mathematics courses would have initiated this process, but Thompson et al. 

do not find this to be the case, and pre-interviews in this study support that conclusion. 

Many other researchers have documented students’ challenges in constructing productive 

meanings for quotient, intensive quantities, ratios, and related ideas (i.e., Johnson, 2014; 

Moore, 2010; Piaget, 1968; Schwartz, 1988; Simon & Placa, 2012). Yet Thompson et al. 

(2014) hypothesize that “children’s development of algebraic reasoning and calculus 

reasoning is strongly dependent upon their abilities to think with magnitudes” (p. 9). 

Thus, we attempted, to the best of our ability within the boundaries of our programming 

environment, to design units on proportionality, linear functions, rational functions, 

exponential functions, and trigonometry to center around thinking with and about 

magnitudes and relative magnitudes. Our hope was that such a focus might support 

students in seeing coherence across ideas in the course as well as provide enough 

                                                      
46 An extensive quantity is one that can be directly measured (like a length) while an intensive quantity is a 
quantity conceptualized via a mental operation of comparison between and/or coordination of previously 
conceptualized quantities (like a rate of change). 
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sustained focus and repeated reasoning for students to progress to higher levels of 

thinking with magnitudes and gain clarity on how measurement processes are central to 

making sense of mathematical contexts.  

Thompson (2011) describes four dispositions that would allow a student to use 

algebra representatively to reflect her quantitative reasoning in a context. First, the 

student has a disposition to represent solutions without simplifying the calculations into a 

single value. Second, the student has a disposition to conceptualize new quantities within 

a situation and integrate those quantities into the situation to draw additional conclusions. 

Third, the student has a disposition to reason with abstract units. Recognizing a consistent 

relative size measurement of one tree height in terms of another tree height measured one 

year earlier even as those heights change and regardless of the unit used to measure the 

heights is an example of this idea. Finally, the student has a disposition to reason about 

magnitudes as described in Thompson et al. (2014). They key idea Thompson intends to 

communicate is that these dispositions all reflect a student’s expectation that mathematics 

is representational. This might include expectations such as the following. 

 The student expects that operations he performs will have “quantitative 

significance” (Thompson, 2011, p. 38). That is, the operations he performs are 

motivated by an intention to determine the value of a specific quantity that he 

believes is important to advance towards a conceptualized goal.  

 The student expects that expressions and formulas reflect an underlying 

quantitative structure. The student also expects that he can unpack expressions 

and formulas to reveal the quantitative structure that motivated its original 

creation.  
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 The student expects that the order of operations used in evaluating an 

expression or solving an equation reflects the hierarchy of quantities within a 

conceptualized quantitative structure. 

To condense this, I will say that a student operating with these expectations as he 

develops expressions and algebraic representations within a mathematical task is 

engaging in emergent symbol meaning.47 In O’Bryan and Carlson (2016) we provided 

examples of this and demonstrated that a professional development intervention 

supporting a middle school teacher in developing emergent symbol meaning (although 

we did not use that term at the time) positively impacted the quality of discourse in her 

classroom while using a conceptually-oriented algebra curriculum. As I will demonstrate 

in my results section, students without these expectations struggle to produce accurate 

mathematical models and interpret the implications of the mathematical structures in 

models they do generate. For example, the majority of students in this study wrote h = 7 

+ 0.13t to model a seven-inch plant growing by 13% per week. Despite acknowledging 

that 13% was communicating something about height (and being able to accurately 

calculate a plant’s height two weeks in the future given a weekly percent change in an 

earlier task), students expressed no hesitation in writing and using this model. Only one 

of five students recognized this reasoning was flawed after initially employing it. 

                                                      
47 This name intentionally parallels the term emergent shape thinking (Moore & Thompson, 2015) 
describing an image of a relationship’s graph emerging as a “trace in progress…with the trace being a 
record of the relationship between covarying quantities” (p. 785). Students that reason with emergent shape 
thinking are not only able to imagine graphs as generated by emergent traces but are also able to imagine 
already-created graphs as having been originally generated emergently and can work to think about 
relationships between co-varying quantities that would have produced such a trace. By using the term 
“emergent symbol meaning” I intend to suggest a similar way of thinking about symbolic expressions and 
conceptualizations of quantities and quantitative relationships. 
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On the other hand, O’Bryan and Carlson (2016) showed that, at least in one study, 

it was possible to promote the development of these expectations through activities like 

comparing how different orders of operations for evaluating the same quantity reflect 

different underlying ways of understanding the situation. In other words, drawing 

attention to the meanings and motivations for every step in evaluation and solution 

processes within several specific activities successfully shifted the teacher to expecting 

that this would be the case in other situations. I suspect that this could be true for students 

as well, thus we designed the course to support students in developing these expectations 

and engaging in emergent symbol meaning. In addition to directly asking students to 

justify the meaning of parts of expressions and the results of intermediate calculations in 

solution processes, we leveraged the ability of iMathAS to recognize equivalent solutions 

in any form to encourage students to represent their answers using unevaluated 

expressions. As one example, students could represent a price of $43.99 as a percentage 

of a price $38.99 using 100(43.99/38.99) instead of calculating the value and entering the 

approximate answer 112.8238. The course instructor encouraged this explicitly by trying 

to coach this behavior and implicitly by maintaining a precision level for accepted correct 

answers that was easier to meet with exact expressions than rounded calculations. 

 

Study Methodology 

This iteration of the intervention included a 70-student section of Precalculus at a 

large public university in the Southwest United States. The online materials (lessons, 

homework, quizzes, and online forums and instructor messaging) served as the primary 

source of content for the course with course exams proctored in person every two weeks. 



 

236 

The course instructor set office hours during the regularly scheduled weekly class times 

in the scheduled class location and we gave students the option to switch sections on the 

first day of class if they preferred a face-to-face Precalculus class. Students were then 

asked to complete a 25-question pre-test during the first class meeting that focused on 

assessing aspects of quantitative reasoning, linear functions and related ideas, and 

exponential functions and related ideas. Several of the assessment questions were tasks 

from the APCR and CCR exams (Madison, Carlson, Oehrtman, & Tallman, 2015). I 

chose these tasks because mathematicians have determined that they are aligned with 

College Algebra and Precalculus course goals and because I intend to contribute to 

ongoing validation and refinement attempts relative to these assessments. Students 

completed the same assessment near the end of the course as well. In addition, we 

designed the course using the iMathAS platform (Lippman) which saves all student 

attempts to each lesson task, homework question, and assessment item and provides 

aggregate data on these items including average number of attempts and average time 

spent on each item. Of the 70 students who initially enrolled in the course, 68 students 

started course assignments, 65 students completed the pre-test, 60 completed the course, 

58 completed the post-assessment, and 54 earned a C or better in the course. 

We invited a subset of students enrolled in the course to participate in additional 

clinical interviews. My study involved five such students: Gina, Marcus, Shelby, John, 

and Lisa (all pseudonyms). I selected the students based on their responses to the pre-test. 

I wanted students with a range of scores, both overall and on the items assessing 

exponential functions and related ideas. See Table 9.3. 
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Table 9.3 
 
Students Interviewed for this Study 
 

 Gina Marcus Shelby John Lisa 
Overall pre-test 
score (out of 25) 

9 8 16 21 15 

Score on general 
modeling questions 

(out of 6) 
3 4 4 6 5 

Score on linear 
relationship 

questions (out of 9) 
4 1 7 7 7 

Score on exponential 
relationship 

questions (out of 10) 
2 3 5 8 3 

Year in school Sophomore Sophomore Freshman Freshman Junior 

Most recent math 
class and grade 

College 
Precalculus 

(D) 

College 
Algebra 

(B)48 

High School 
Calculus (A) 

High School 
Precalculus 

(A) 

Geometry 
for Artists 

(A)48 

Major 
Medical 
Studies 

Interior 
Design 

Microbiology Fine Arts 
Interior 
Design 

 
I interviewed each student using a subset of the pre-test items during the first two weeks 

of the course and then again using the same items (and some additional tasks and 

questions) during the last month of the course. Each interview lasted 60-90 minutes, and I 

opted to conduct the interviews without providing the multiple-choice options for each 

task. Two of these students (John and Marcus) also agreed to work a subset of unit 

lessons while having their screens recorded and then participated in a brief post-

interview. These sessions lasted approximately 60 minutes. Students were paid $20 for 

each interview and each lesson they completed. 

                                                      
48 Lisa informed me that as a high school senior she completed Calculus AB. Marcus said that he 
completed Precalculus as a high school senior. 
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Students enrolled in two other 35-student Precalculus sections at the same 

university also completed both the pre- and post-test. Students in these sections used the 

Pathways Precalculus (Carlson, Oehrtman, & Moore, 2018) student workbook, a 

research-based curriculum that routinely supports higher scores and larger gains on the 

PCA than other Precalculus course materials (McNicholl, Frank, Hogenson, Roat, & 

Carlson, under review). This was a sample of convenience and was not intended as a 

statistical comparison. Rather, the online intervention was based on the same research as 

the Pathways materials and targets similar mathematical meanings. We used the data 

from these small in-class sections to determine if our course was achieving roughly 

similar outcomes on specific learning goals. As the intervention enters later iterations we 

will conduct statistically valid comparisons with students in a variety of Precalculus 

courses. 

 

Unit Design 

Our unit on exponential functions and related ideas contains approximately 170 

tasks across seven lessons and the corresponding homework assignments. Due to space 

limitations, I briefly discuss key features of the unit using a few sample tasks and 

highlight critical reasoning abilities and understandings these tasks were intended to 

develop. Students had multiple opportunities to reason through similar tasks and 

variations on these tasks.  
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Sample Tasks 

I wrote the unit based on my hypothesis of how to support student learning, as 

described in my conceptual analysis. An early task (Figure 9.13) focused on developing 

students’ ability to measure one varying quantity (the length of a line) using a varying 

magnitude as the unit of measure [MCM-1, MCM-3].  

 
Figure 9.13. A task designed to support students in conceptualizing necessary properties 
of a varying length and varying ruler size such that the measurement is constant (O’Bryan 
et al., 2018). 

 
In the online version the image is dynamic such that the line length to be 

measured and the elastic ruler length vary in a looping animation. Students respond to a 

variety of prompts, including cases where the relationship is proportional and cases 

where the relationship is not proportional. The purpose of this task is to support students 

in visualizing multiplicative comparisons in terms of measurement [MCM-1] and 

generalizing the proportional relationship between a varying quantity to be measured and 

a measurement unit such that the measurement value remains constant [MC-4]. This task 

is similar to tasks Tallman (2015) designed to explore meanings for measuring angles 

using subtended arc lengths and appropriate units for performing these measurements. 

Each of the following diagrams shows a magnitude for a varying quantity along with 
a ruler for measuring the quantity. For each, determine if the given ruler will produce 
a constant measurement value for the varying quantity. 

a.   Will the given ruler (shown below) produce a constant measurement for the 

varying quantity?  
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I later asked students to think about situations where one instance of a quantity is 

used to measure a second instance of the same quantity [MCM-3], such as in the tree 

height example I described, and the implications of maintaining this relative size between 

instances even as the quantity varies [MCM-4]. If the two measurements are always taken 

at the beginning and end of some fixed change in time then we can visualize the 

relationship graphically as shown in the task in Figure 9.14. Students can slide the 

interval in the applet and visualize the measurement process throughout the visible part of 

the function’s domain by holding in mind the two dependent quantity magnitudes 

[MCEF-1] and imagining one as the unit of measure for the second [MCEF-2]. A variety 

of tasks used this applet including tasks asking students to estimate or calculate growth 

factors and determine if a constant growth factor existed for given functions. Later in the 

module students explored the implications for growth factors between 0 and 1. 

Since many real-world scenarios modeled by exponential growth are presented 

and discussed in terms of percent change, understanding concepts of percentages and 

percent change were integral to the unit. Figure 9.15 presents a task designed to support 

students in visualizing the meaning of relative size comparisons as measurements [MCM-

1] and the impact on the measurement value when the measurement unit becomes 1/100 

times as large [MCM-2, MCP-2], which produces a percentage comparison [MCP-1]. We 

leveraged diagrams like Figure 9.15 to motivate the calculations involved in converting 

between relative size comparisons and percentage comparisons. 
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Figure 9.14. Students use a sliding interval to visualize the implications of a constant 
relative size measurement between two instances of a quantity and to estimate the growth 
factor’s value (O’Bryan et al., 2018). As mentioned previously this applet is based on a 
suggestion from Patrick W. Thompson (personal communication, April 9, 2015) and is a 
modification of Ellis et al.’s (2012, 2015, 2016) Jactus animation. 
 
 

 

Let’s imagine a new vine with a different growth factor. Let l = f (t) represent the 
length of the vine (in feet) t days after it started growing. 

 
a.   The 1-day growth factor is approximately b = ___________. 
b.   If b represents the 1-day growth factor, which of the following is true? Select 

all that apply. 
o The vine’s length doubles every b days. 
o No matter what the change in time elapsed since the vine began 

growing, the vine’s new length is b times as large as its previous 
length. 

o When the number of days the vine has been growing changes by 1 
day, the vine’s new length is b times as large as its previous length. 

o When the number of days the vine has been growing changes by 1 
day, the vine’s new length changes by b feet. 

o The vine’s length changes at a constant rate of b feet per day. 
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Figure 9.15. A task designed to help students reason about relative size measurements 
and percentage measurements between two instances of a quantity and to motivate 
calculations for evaluating these measurements when the quantity is itself measured in 
some fixed unit (O’Bryan et al., 2018). 
 

Figure 9.16 is an example of a task that extends the reasoning promoted in the 

task in Figure 9.15 to reasoning about percent changes in a quantity’s value. Tasks like 

the one in Figure 9.16 were designed to support students in conceptualizing a difference 

as an additive comparison between quantities and this difference expressed as a percent 

change by attending to the measurement unit, 1/100 of the magnitude of the quantity 

before the change occurred [MCPC-1]. They were also intended to build the meaning for 

and motivate calculations for converting between the change measured relative to the 

quantity’s value prior to the change occurring and this same quantity measured as a 

percent change [MCPC-2]. 

 
 

In 1995 Harristown’s population was 72,125 people. By 2010 its population had 
increased to 77,895 people. Let’s visualize the relative size measurement. 

 

 
a.   Harristown’s population in 2010 was ____________ times as large as its 

population in 1995. 
b.   Harristown’s population in 2010 was ____________ percent of its population 

in 1995. 
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Figure 9.16. A task designed to help students understand the meaning of relative size 
measurements and percentages, to motivate calculations for evaluating these 
measurements, and to promote imagery that helps students reflect on the reasonable of 
the measurements they determine (O’Bryan et al., 2018). 
 

Figures 9.17 and 9.18 show tasks intended to help students develop a meaningful 

understanding of the effects of exponential growth over different-sized intervals. First, I 

wanted students to focus on thinking about function values across multiple consecutive 

intervals as reasoning about the growth factor and percent change as measurements where 

the “unit ruler” always updates to reference the function value at the beginning of the 

interval [MCPC-3]. I also wanted students to realize that they could discuss a growth 

factor for any interval size [MCEF-3] and to consider the effect on the relationship 

between growth factors over different intervals [MCEF-4]. Eventually I intended for  
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Figure 9.17. An interactive applet for students to reflect on the relationship between one-
unit and two-unit growth factors and to think about these as measurements with particular 
attention paid to what is being measured and what is the “unit ruler” (O’Bryan et al., 
2018). 

 

 
Figure 9.18. A visualization to help support the meaning of growth factors for larger 
intervals as measurements and to motivate processes for calculating the values of 
exponential functions at various values of the independent quantity (O’Bryan et al., 
2018). 
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students to see the value of b∆x as the ∆x-unit growth factor if b is the one-unit growth 

factor [MCEF-4] so that they conceptualize the algebraic formula f (x) = abx, as evaluated 

according to the order of operations, as scaling the value of f (0) by the x-unit growth 

factor to determine the value of f (x) [MCEF-5]. The task in Figure 17 was an interactive 

applet and follow-up questions encouraged students to slide the intervals and consider 

relationships between function values for changes in one unit and two units in the 

independent quantity. The task in Figure 18 was intended to support the equivalence of 

imagining the growth over four one-unit changes in x and one four-unit change in x using 

the corresponding growth factors and for interpreting the different growth factors in terms 

of measurements. 

 
 

Comments about Designing Tasks in iMathAS 

 There are a variety of positive aspects to lesson and task design in the iMathAS 

(Lippman) environment. The system allows for a wide variety of question types (such as 

algebraic statements, strings, numerical values, multiple-choice and multiple-answer, 

matching, and many more) and it is possible to program applets within questions such 

that applet states can be submitted as solutions. The program is also designed to 

recognize equivalent representations for solutions when desired. We encouraged students 

to enter their answers as expressions that would calculate the value they intended, such as 

entering “100((46.2-38.1)/38.1)” as the percent change from a value of 38.1 to a value of 

46.2. As Thompson (2011) argued, this practice may help students eventually develop a 

more productive meaning for algebraic representations. The immediate feedback the 

program provides to students, including hints and comments a designer can program into 
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a question that are triggered by correct responses, general incorrect responses, or specific 

incorrect responses, allows a designer to create lessons that are responsive to student 

answers. Finally, the system records all iterations of students’ responses to lesson and 

homework tasks which provides designers and researchers information about sources of 

student difficulties and how students are interpreting specific tasks. 

 However, designing online lessons, particularly using iMathAs, introduces a 

number of challenges. iMathAS was originally designed to be an assessment platform as 

opposed to a platform for programming lessons and courses. Thus, each lesson must be 

programmed as an assessment introducing some limitations in lesson and task design. 

Each assessment allows text, images, and gifs to appear outside of assessed questions but 

features like interactive applets must be programmed within assessed questions. One 

drawback to this is that a designer can never include interactive applets as diagrams 

within the flow of a lesson that students can modify and explore without separating those 

diagrams into their own question box and requiring some input from students that must 

be assessed. This becomes a more significant issue when coupled with precision 

considerations. During early introductions to specific ideas a designer might want to shift 

students’ attention away from specific values and calculations and get them to think more 

generally about certain relationships. But to allow interactive exploration, to hold 

students accountable for interacting, or to provide students feedback on their work 

requires the designer to program a graded question. Since the computer must assess the 

answers relative to some precision level, we often found it challenging to design tasks we 

were confident would shift students’ attention away from focusing on calculations since 

the computer (1) needed some input to grade and (2) graded students on their answers’ 
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precision. These limitations may increase the likelihood that students can complete 

lessons with a calculational image of lesson goals. 

When we did create tasks that allowed for approximately accurate responses we 

ran into two problems. For example, I created a series of tasks that asked students to set 

both a length to be measured and a unit ruler length using interactive sliders to 

demonstrate a given measurement value. This required that I decide on a reasonable 

margin of error. If the margin of error was too large it was possible for students to easily 

guess correct answers without developing intended meanings. If the margin of error was 

too narrow, then students who did understand the point of the task often complained that 

they could not get the answer correct because of slight errors in their estimated relative 

sizes. In early stages of our course design we tested a variety of innovative task types 

with students. As one example, we gave students a diagram of a situation and asked them 

to drag written quantity descriptions or variable expressions onto the diagram to indicate 

what those quantities or values represented. We found that these tasks successfully 

improved students’ ability to conceptualize quantities in a situation and develop 

meaningful algebraic expressions. But we then encountered programming barriers in 

attempting to replicate these tasks in the iMathAS environment. 

 Another challenge of lesson and task design in the online environment is the lack 

of interaction between a teacher and students during the learning process. A skilled 

instructor can build and test models of a student’s meanings in the moment and react in 

ways she predicts will effectively support that student in shifting to more productive 

meanings for given mathematical ideas. We had to pre-program all lessons and task 

sequences based on our image of an epistemic Precalculus students progressing through 
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the course. All students worked through the same lessons with little ability for the 

program to recognize the meanings students possessed and adapt to address them in the 

way that a skilled instructor could adapt learning experiences in face-to-face settings. If 

significant misalignments exist between the imagined epistemic students and the actual 

students in the class then lesson effectiveness can suffer. Reprogramming tasks and 

lessons in a timely manner was impossible within this study, and thus leveraging 

emerging insights we gained had to be delayed until future course iterations. 

 

Results 

 I present my results in two parts. In the first section I detail key observations from 

pre-interviews with five students including summarizing common reasoning I observed 

for students entering the course. In the second section I discuss some initial evidence 

from students’ lesson interactions and post-test and post-interview data to characterize 

students’ meanings for the ideas outlined in my conceptual analysis at the end of the 

course. 

 

Pre-Test and Pre-Interview Results 

 The pre-interviews revealed several common student conceptions regardless of 

their pre-test scores. When students were asked to generate formulas to model the 

relationship between the values of two quantities there was no evidence that students 

engaged in emergent symbol meaning (that is, they did not describe the quantities and 

relationships they intended to represent prior to performing calculations or writing 

expressions and formulas and they rarely justified their calculations and representations 
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in terms of quantities). Instead, interviewees tended to write down or circle all numbers 

and variables listed in a problem statement and then either connect them using operations 

suggested by key words they identified in the problem statement or test various possible 

combinations of calculations using these numbers and variables until they produced an 

answer they deemed acceptable. This echoes observations by other researchers such as 

Smith and Thompson (2007) and Sowder (1988) and appeared across all tasks I used in 

the interviews. Some students also displayed a consistent lack of attention to variables’ 

meanings by using the same variable to represent the values of multiple quantities within 

a situation. These tendencies demonstrate students’ lack of expectation that they are 

generating symbolic representations that reflect relationships between quantities’ values 

in a quantitative structure. Furthermore, students entering the course demonstrated little 

awareness of the importance of reference quantities for thinking about, predicting, or 

interpreting the results of relative size and percentage comparisons. For example, 

students tended not to conceptualize the need to clearly answer the question, “Percent of 

what?” when reasoning about percent change or percentage comparisons. Because of this 

they often performed calculations or generated representations using incorrect reference 

quantities. Furthermore, students held vacuous meanings for “percent” resulting in their 

inability to mathematically justify actions such as moving the decimal point two places 

when given a percentage value prior to using it in calculations. Finally, students’ meaning 

for “more” or “increase” were strongly connected to the operation of addition, and this 

consistently made it challenging for students to represent exponential relationships. In the 

following sections I provide evidence for these observations across various tasks and 

discuss their implications for student reasoning.  
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Percent comparison and percent change tasks. Figure 9.19 shows the Muffler 

task (Madison et al., 2015). I chose this task, along with the Sale Price task that follows 

it, primarily to assess students’ attention to the reference quantity implied in making 

percent comparisons [MCP-2] or determining percent change [MCPC-1]. While these 

questions are answerable without the full detailed meaning for a percentage measurement 

described in my conceptual analysis, I hypothesized that students’ answers would provide 

insight into their level of attention to reference quantities for percentage and percent 

change measurements. 

 
Figure 9.19. The Muffler task (Madison et al., 2015). 
 
Table 9.4 shows pre-test and pre-interview results for this question. Since I did not 

provide students with the multiple-choice options during the pre-interview, I use solid 

dots to represent student responses on the pre-test and “I” to represent pre-interview 

responses. For interview responses I indicate the final answer students provided without 

my interference. If students changed their answer as a result of follow-up discussion and 

activity I prompted I did not note their new solutions in the results. 

Note that only John provided the same response on the pre-test as he did in the 

pre-interview. The following excerpt from my interview with Gina demonstrates her lack 

of clarity in what is being measured and the meaning of the measurement when 
  

The cost of replacing the exhaust muffler on your car is currently $195. The previous 
time that you had the same replacement done, the cost was $131. What is the percent 
increase in your repair bill (rounded to the nearest percent)? 

a.  33% 
b.  49%  [correct response] 
c.  64%    
d.  67%   
e.  149%    



 

251 

Table 9.4 
 
Student Responses to the Muffler Task 
 

answer 
choice 

Intervention 
Class (Pre) 

Pathways 
In-Person 

Class 
(Pre) 

Gina 
(Pre-
test) 

Marcus 
(Pre-
test) 

Shelby 
(Pre-
test) 

John 
(Pre-
test) 

Lisa 
(Pre-
test) 

a.  33% 32% 44% ●  I   
b.  49%  ** 45% 29%    ●, I I 
c.  64% 12% 12% I  ●   
d.  67% 6% 6%     ● 
e.  149% 5% 7%  ●    
no final answer 0% 3%      
164%    I    

 
discussing percentage and percent change measurements. Her written work is shown in 

Figure 9.20. 

 

 
Figure 9.20. Gina’s work on the Muffler task. 
 
1 Gina Um, so, when you first got, got it done, it was 131 dollars [she writes “1st  
2  = $131”]. And then you just got it done and it charged you 195 [she  
3  writes “– = $195]. So I would subtract 195 minus 131 [she writes “195 –  
4  131 /”] and this is four, six [she writes “64”]. And then I’d say if it’s, uh,  
5  out of a hundred [she writes “/ 100”] it’d be 64 percent [she uses a  
6  calculator to compute “64/100” and gets 0.64]. Yeah, point six four  
7  percent [she writes “.65”, then changes it to “.64%”] 
8 AO: Okay. 
9 Gina: increase. 
10 AO: So, sa-, suppose somebody says they’re not quite sure why, when you  
11  subtract, why you would divide 64 by a hundred for this. Um. What would  
12  you tell them? 
13 Gina: So, since it’s, this is your current [she underlines “$195”], what you’re  
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14  currently charged, and this was the first time you did it [she makes a mark  
15  next to “$131”], I’m trying to find the difference between these two [she  
16  writes “>” next to “64”] and then since it’s divided by a hundred, that’s  
17  how the percent in- 
18 AO: So if you have any number and you want to turn it into a percent, you just  
19  divide it by a hundred? 
20 Gina: Mm-hmm [yes]. 
21 AO: Okay. 
 
 Gina correctly identified that the difference in prices was an important value for 

describing the price increase (lines 1-4), but she did conceptualize either $131 or 1/100 of 

$131 as units of comparison for subsequently measuring this change. Instead, Gina 

incorrectly converted the difference to a percentage measurement by dividing the 

difference by 100 (lines 5-6). Gina is conflating two processes here, namely making a 

relative size comparison and converting a percentage measurement to a relative size 

comparison. Her final answer (0.64) is a relative size measurement between 64 and 100, 

although Gina labeled this value as a percent. Gina does not conceptualize answering the 

implicit question, “Percent of what?” while formulating her solution process. Instead, her 

meanings for percentage and percent change measurements involve calculational 

processes (such as dividing a given value by 100) that do not involve clearly identifying 

reference quantities for performing relative size comparisons. Marcus demonstrated 

similar deficiencies in clearly justifying his calculations and solutions relative to what 

was being measured and its unit of measure. He initially determined the difference 

between the prices and then interpreted that difference ($64) as a percentage 

measurement instead (64%), although he then claimed that the percent increase was 

164% because “100 percent’s 131” and “164 percent of 131 is 195”. 
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Figure 9.21 shows the Sale Price task (Madison et al., 2015). The important 

difference between the Muffler task and the Sale Price task is that the reference quantity 

for the percentage measurement (the computer’s retail price) has an unknown value. 

Therefore, students need to conceptualize that 20% (or 80%) is in reference to an 

unknown price and then decide how to use the given information to determine that 

unknown amount. Students’ responses are recorded in Table 9.5. 

 
Figure 9.21. The Sale Price task (Madison et al., 2015).  
 
Table 9.5 
 
Student Responses to the Sale Price Task 
 

answer 
choice 

Intervention 
Class (Pre) 

Pathways 
In-Person 

Class (Pre) 

Gina 
(Pre-
test) 

Marcus 
(Pre-
test) 

Shelby 
(Pre-
test) 

John 
(Pre-
test) 

Lisa 
(Pre-
test) 

a.  $352.00 9% 15%      
b.  $366.67 3% 10%      
c.  $528.00 49% 42% ●, I ●, I ●  ●, I 
d.  $550.00  ** 38% 26%    ●, I  
e.  $2200.00 0% 0%   I   
no final 
answer 

0% 8%      

 
Four out of five students I interviewed, and about half of students tested, chose the 

answer consistent with using the sale price as the reference quantity for the 20% 

measurement. Two observations are worth mentioning. First, the students in the interview 

did not hesitate in their responses. That is, the four students who provided an incorrect 

Jim bought a computer on sale at a 20% discount off of the original price. If Jim’s sale 
price was $440.00, what was the original price of the computer? 

a.  $352.00 
b.  $366.67 
c.  $528.00     
d.  $550.00   [correct response] 
e.  $2200.00 
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answer did not express reluctance to link 20% with the sale price even though “20” was a 

measurement using 1/100 of the retail price as the unit. Some of the students checked 

their answer and verified that $528.00 could not be the correct sale price but resolved the 

issue by stating that they did something wrong in the verification process or ignoring the 

discrepancy and choosing to keep their answer regardless. Second, reasoning about this 

situation involves conceptualizing a quantity whose value is not presented in the problem 

statement and then imagining a process acting on this quantity. The most common 

student response in the interviews was to rewrite 20% as 0.20, multiply this by 440, then 

add the result to 440. See Figure 9.22.  

 
Figure 9.22. Lisa’s response to the Sale Price task. 
 

In the interviews it seemed clear that this was driven by students’ expectations 

that tasks can be solved by performing operations using the given values in the problem 

statement. Since only 20% and $440.00 were given in the problem, students expected that 

the solution would involve performing an operation involving 20% (or 0.20) and 

$440.00, and multiplication seemed like the best candidate based on their experience 

working with percentages. Correctly completing this task (with understanding) requires 

conceptualizing a quantity’s value and a relative size measurement that are both implicit 
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in the problem statement – an original retail price and a measurement of the sale price or 

discount in units of the retail price – and not just performing an operation with a 

combination of given values.  

Tomato plant tasks. Figure 9.23 shows the Tomato Plant A task (Madison et al., 

2015). I chose this task to assess students’ ability to recognize the need to update the 

reference quantity from one week to the next when applying a constant percent change 

over multiple intervals [MCPC-3] and noticing that the absolute increase per week is not 

constant [MCPC-4]. That is, the growth in the first week depended on the plant’s initial 

height while its growth in the second week depended on the plant’s height at the end of 

the first week. Table 9.6 shows pre-test results for this task. 

 
Figure 9.23. The Tomato Plant A task (Madison et al., 2015). 
 
Table 9.6 
 
Student Responses to the Tomato Plant A Task 
 

answer 
choice 

Intervention 
Class (Pre) 

Pathways 
In-Person 

Class 
(Pre) 

Gina 
(Pre-
test) 

Marcus 
(Pre-
test) 

Shelby 
(Pre-
test) 

John 
(Pre-
test) 

Lisa 
(Pre-
test) 

a.  5 inches 2% 3% I     
b.  6 inches 3% 1%      
c.  8 inches 40% 37%  ●, I    
d.  9 inches  ** 54% 51%   ●, I ●, I ●, I 
e.  12 inches 2% 7% ●     

A tomato plant that is 4 inches tall when first planted in a garden grows by 50% each 
week during the first few weeks after it is planted. How tall is the tomato plant 2 weeks 
after it was planted?  

a.  5 inches    
b.  6 inches   
c.  8 inches   
d.  9 inches   [correct response] 
e.  12 inches  



 

256 

Marcus’s solution to this task is particularly interesting (see Figure 9.24). 
 

 
Figure 9.24. Marcus’s work for the Tomato Plant A task. 
 
1 Marcus: I know that, I know my answer is eight, but I don’t think this, this’ll all  
2  work, this is not gonna work out [laughs]. Um cuz I mean 
3 AO: So tell me why it’s gotta be eight. 
4 Marcus: Um cuz 50 percent of four is two. 
5 AO: Okay. 
6 Marcus: So you got two. Um. And then, he’s, it’s two weeks gone by so times that  
7  by two. That’s four. And four plus four is eight. 
 

It is possible that students who conceptualize a constant change in height each 

week are unaware of the conventional meaning for a constant percent change. When 

Marcus drew the diagram in Figure 9.24 he seemed to intentionally indicate a constant 

change in height each week. However, writing “4 + 2·(1/2) = 8” (see Figure 9.24) is 

telling relative to tendencies I noticed across students and tasks. Marcus knew this 

statement was false, but as I will demonstrate later it is highly representative of how all 

five students attempted to algebraically model exponential relationships, including those 

students who clearly did understand the need to update the reference value each week in 

the Tomato Plant A task. In other words, Marcus knew that he wanted the height after 

two weeks to be eight inches, but this task also triggered an expectation that the answer 

would be of the form a + bt where a is the initial height (in inches), b is the growth per 

week (generated by converting the given percentage value to decimal or fraction) and t is 

the time elapsed in weeks. Even after seeing that this approach failed to produce the 
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“correct” value here, this expectation would appear repeatedly for Marcus and other 

students. 

Lisa’s response to the Tomato Plant A task represented the most common 

reasoning among interviewees. She recognized the need to update the reference value 

each week and focused on determining the increase in height she needed to add for that 

week. However, her meaning for percentages is entirely calculational. See Figure 9.25 for 

her written work. 

 
Figure 9.25. Lisa’s work for the Tomato Plant A task. 
 
1 Lisa: [As she reads the problem, she writes “4 inches” and “50%”.] Okay. So I  
2  always draw for these, so if it started um [she draws a horizontal line  
3  segment and writes “planted” at the bottom left] planted and you starting  
4  ugh four inches [she draws a vertical line segment and labels its length “4  
5  in.”]. Um. And it grows by 50 percent so 50 percent of four would be two.  
6  Um, so you would add two to it [she writes “+2”]. So after week one [adds  
7  the label “week 1”] it would be six inches [she draws a vertical segment  
8  and labels its length “6 in.”] and then 50 percent of that would be three so  
9  I add three to that [she writes “+3”] and then after week two [adds the  
10  label “week 2”] it would be the nine inches [draws a vertical segment and  
11  labels its length “9 in.”]. So I would say nine inches [writes “9 in” and  
12  draws a box around it]. 
13 AO: So the fifty percent was kind of a nice number. Like you just immediately  
14  saw 
15 Lisa: Yeah. [laughs] 
16 AO: that was half. Um, what if, what if the problem said it grew by 49 percent  
17  each week? How 
18 Lisa: Um. 
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19 AO: does that change what you’re… 
20 Lisa: I would just, I would still just do like four times the point four nine [writes  
21  “4·.49”] to figure out how much you would be adding and then same with  
22   whatever that is times the point four nine [writes “x·.49”] to figure out  
23  how much would be adding to the third week. 
24 AO: So how, why is 49 percent, why did you use point four nine for 49  
25  percent? 
26 Lisa: Oh. 
27 AO: Like if you had to explain to somebody why that would make sense. 
28 Lisa: Um it's just easiest for multiplication to convert it to a decimal where you  
29  move it over two spots [she scribbles to indicate moving a decimal place  
30  two positions where she had written “50%”] 
31  […] 
32 AO: Um, but why, why does moving the decimal makes sense? Why does that  
33  work to talk between percents and decimals? 
34 Lisa: I hon-, I probably couldn't accurately explain that. That’s just something I  
35  guess you always were taught and so it’s just something I immediately do  
36  without thinking about it. I honestly probably couldn't figure out,  
37   remember the exact reason why [laughs]. 
 
Lisa’s justification for moving the decimal was that “it’s just easiest for multiplication” 

(line 28). There was no indication in her answer that she viewed 49% and 0.49 as related 

measurements using different units (the height at the end of the first week being 49 times 

as long as 1/100ths of four inches compared to 0.49 times as long as four inches) and why 

one of them is more appropriate as a factor within a product involving the plant’s height 

at some moment. The conversion process was not linked to a conceptualization of a 

measurement process (lines 34-37). Rather, it was just a necessary step for performing 

calculations in contexts involving percentages. 

 I chose the Tomato Plant B task (Madison et al., 2015), shown in Figure 9.26 to 

assess students’ ability to algebraically represent exponential growth (such as the 

relationship in the Tomato Plant A task) as a generalized process [MCEF-5]. However, 

this task can assess many ideas in the framework since its completion requires 
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understanding many other ideas such as the need to determine a monthly growth factor 

[MCEF-2], converting percent change into a growth factor [MCP-2 and MCP-3], and 

understanding the impact of constant percent change over many consecutive intervals 

[MCPC-3 and MCPC-4]. Table 9.7 shows pre-test results for this question in all classes 

and among the interviewees. 

 

 
Figure 9.26. The Tomato Plant B task (Madison et al., 2015). 
 
Table 9.7  
 
Student Responses to the Tomato Plant B Task 
 

answer 
choice 

Intervention 
Class (Pre) 

Pathways 
In-Person 

Class 
(Pre) 

Gina 
(Pre-
test) 

Marcus 
(Pre-
test) 

Shelby 
(Pre-
test) 

John 
(Pre-
test) 

Lisa 
(Pre-
test) 

a.  h = 7(0.13)t 28% 37%      
b.  h = 7 + 1.13t 14% 13%    ●  
c.  h = 7(1.13t) 5% 4%   ●   
d.  h = 7(1.13)t  
** 

20% 24%      

e.  h = 7 + 0.13t 34% 20% ●, I ●, I I  ●, I 
No final answer  2%    I  

 
 In the interview, four of five students claimed that h = 7 + 0.13t was the 

appropriate model for this relationship. The fifth student (John) did not complete the task, 

but he initially wrote “7 + 0.13” before recognizing that he did not know how to express 

his answer. It is interesting to note that all three of the students who correctly answered 

José plants a 7-inch tomato plant in his garden. The plant grows by about 13% per 
week for several months. Which formula represents the height h of the tomato plant (in 
inches) as a function of the time t in weeks since it was planted? 

a.  h = 7(0.13)t 
b.  h = 7 + 1.13t 
c.  h = 7(1.13t) 
d.  h = 7(1.13)t   [correct response] 
e.  h = 7 + 0.13t 
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the Tomato Plant A task failed to answer this task correctly either on the pre-test or in the 

pre-interview, and that two of those students (Lisa and Shelby), along with Marcus and 

Gina, failed to recognize that the answer they did provide could not be correct. The 

following excerpt is from my interview with Shelby and Figure 9.27 shows her written 

work. 

 
Figure 9.27. Shelby’s work for the Tomato Plant B task. 
 
1 Shelby: Okay so we're trying to find the height [she underlines “height h” in the  
2  problem statement] and then t is gonna be a variable [she underlines “t in”  
3  in the problem statement]. So height [she writes “h=”] and then we start  
4  with seven [she writes “7”]. So we start at seven, so that’s just gonna keep  
5  increasing [she writes “+” after h = 7] so and then put a plus. Um [she  
6  writes “(0.13)t” after h=7+]. Yeah, I'm gonna go with that. 
7 AO: Okay, so like after two weeks how tall is the tomato plant and does that  
8  seem to make sense with your… 
9 Shelby: Let’s find out [she writes “h=7+(.13)(2)”].  
10   […] 
11 Shelby: [She writes out and computes the product “13·2=26” and then enters  
12  “.13x2” into her calculator and gets 0.26]. Yeah, point [she writes “.26”].  
13  [long pause] I mean we could move that over and that might make sense  
14  [she indicates the decimal point in 0.26, then she writes “7+” plus in front  
15  of .26] cuz that would not make sense. So would you, I’m, I'm pretty  
16  positive that this is right [she indicates the statement h=7+(0.13)t]. 
17 AO: Okay. 
18 Shelby: I’m pretty positive [laughs]. Um. So would this just be [she writes  
19  “7+26”] three three [she writes “h=33”]. I don't know [laughs]. 
20 AO: So you're not thinking that seven point two six, if you add the seven and  
21  the point two six, that that doesn't make sense? 
22 Shelby: I don't know. I don't think so. So wait, okay, if it was two weeks after it’s  
23  been planted. Me, it, you now that probably might make sense because in  
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24  two weeks if it only grows 13 percent, this would be, like more than 50  
25  percent [indicates the statement h=33] so I don’t think that's right [she  
26  scratches out the last two lines of work]. 
27 AO: Okay. 
28 Shelby: I think that’s right [she underlines the statement h=7+.16]. 
 
In lines 11-16 Shelby produced a value that she did not think was correct, so she 

considered moving the decimal point two places to get an answer “that might make 

sense”. Ultimately, her decision for selecting her final answer was because the alternative 

solution possibility she generated did not make sense (lines 22-26, 28). Students’ 

responses to this task and the Bacteria doubling task (discussed in the next section) 

perturbed me the most during analysis because, at first, these responses seemed to be at 

odds with the reasoning the same students exhibited in the Tomato Plant A task. The 

students who correctly recognized the need to update the reference value in the earlier 

task produced representations that did not preserve this property in the new task. 

However, further analysis yields a possible explanation. 

 In completing the Tomato Plant A task, all students focused intently on how much 

height to add each week (see the excerpts from Marcus’s and Lisa’s interviews). 

Regardless of whether the student conceptualized the need to update the reference value 

each week, the notion of beginning with a height of four inches and adding changes in 

height to produce new values was key to their solution methods. That is, addition was the 

operation associated with the process of finding new heights. In this case, all five students 

produced (or started to produce) responses in the interview of the form a + bt with a 

representing the initial height (in inches), b representing the growth per week (generated 

by converting the percentage value given to a decimal value), and t representing the 

number of weeks elapsed. Only one of the five students (John) recognized that the 
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solution h = 7 + 0.13t does not reflect a valid quantitative structure in the interview, 

although he did select a similar answer on the pre-test.49 Here 0.13t must represent a 

number of weeks (13/100 of the elapsed time in weeks), but this value is added to a 

height (in inches). This suggests that at least four of the five students did not expect that 

the expressions they wrote as they constructed their model should reflect the values of 

quantities they conceptualized and wanted to relate. In justifying their solution, students 

routinely interpreted 0.13t as a height (or change in height) in inches. Not only does this 

solution reflect the belief that addition is the required operation to increase a quantity’s 

value, but it also reflects students’ inattention to reference values when discussing 

percentages (i.e., clearly answering the question, “Percent of what?”) as well as their 

expectation that solutions are formed by combining the values, variables, and operations 

explicitly given in a problem statement without identifying values or operations that 

might be more implicit. The value 1.13 appears in the correct formula, yet this number is 

not explicitly given in the problem statement. Furthermore, there are no key words that 

students might more readily associate with exponentiation if we understand that students 

associate “growth” with addition. 

 It is possible that producing the response “h = 7 + 0.13t” is a result of performing 

a literal translation of a goal statement similar to “show that the height starts at 7 inches 

and increases by 13% per week” without having an expectation that the formula and its 

order of operations needs to be constructed to respect a valid quantitative structure. If the 

students have a procedural meaning for percentages (“when I see a percentage, I am 

                                                      
49 John wrote “h = 7 + (.13)” but then stopped. After pausing for a moment, he said that this was not correct 
but that he was not sure how to write an acceptable model. 
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supposed to move the decimal two places”) as opposed to thinking of a percentage as the 

result of a measurement process, if they believe that formulas are just instructions for 

calculations as opposed to representations of one quantity’s value in terms of another 

quantity’s value within a quantitative structure, and if they have been trained to circle or 

underline numbers, variables, and key words as a solution strategy to answering “word 

problems”, then the solution shown in Figure 9.28 seems quite reasonable. 

 
Figure 9.28. Students may produce the formula h = 7 + 0.13t as a literal translation of 
what they think they are being asked to represent. 
 

I considered the possibility that students’ lack of familiarity with exponential 

functions led to an increased tendency to use linear functions to represent exponential 

relationships. In other words, the tendencies described reflect the topics to which they 

had been exposed in earlier classes rather than fundamental issues with their 

conceptualizations of exponential relationships. This explanation could be valid, but there 

are reasons to suspect additional causes. First, every student I interviewed had taken 

Precalculus or Calculus in the past and thus must have received exposure to exponential 

function relationships, not to mention exposure to percentages and percent change over 

many years of schooling. Second, the ways of reasoning were so consistent that they 

suggest a fundamental way of understanding integral to most students’ schemes relative 

to tasks an observer would classify as examples of exponential growth. Third, these 

questions (or versions identical to them with the values changed) were included in 
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preliminary iterations of the APCR and CCR exams given to students at the end of their 

College Algebra, Precalculus, and Calculus I courses (Madison et al., 2015). The results, 

shown in Table 9.8, suggest that students struggle to see the algebraic form of an 

exponential function as an accurate model for relationships where one quantity changes 

by a constant percent for equal changes in a second quantity. Future research should 

examine if the tendencies I observed in the pre-interviews help explain these results for 

each of these populations. 

Table 9.8 
 
Student Performance at the End of Their Course on the Tomato Plant B Task (or an 
Isomorphic Task) (Madison et al., 2015) 
 

 Number of students Percent correct 
College Algebra 677 15% 

Precalculus 122 14% 
Calculus I 1021 33% 

 
Bacteria doubling task. Figure 9.29 shows the Bacteria Doubling task (Madison 

et al., 2015). I selected this question to compare student responses with the Tomato Plant 

B task since, in this case, the growth was described in terms of doubling instead of 

percent change. I was curious how this would impact the form of the answers students 

selected or provided. Table 9.9 shows pre-test results for this question in all classes and 

among the interviewees.  

 
Figure 9.29. The Bacteria Doubling task (Madison et al., 2015). 

A culture containing 14 bacteria doubles every day. Which of the following 
formulas represents the number of bacteria, p, in the culture after t days? 

a.  p = 14 + 2t 
b.  p = 28t 
c.  p = 14(1.2)t 

d.  p = 142t   
e.  p = 14(2)t   [correct response] 
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Table 9.9 
 
Student Responses to the Bacteria Doubling Task 
 

answer 
choice 

Intervention 
Class (Pre) 

Pathways 
In-Person 

Class 
(Pre) 

Gina Marcus Shelby John Lisa 

a.  p = 14 + 2t 11% 22% I     
b.  p = 28t 3% 1%      
c.  p = 14(1.2)t 3% 4%      
d.  p = 142t   23% 27%  ●   ● 
e.  p = 14(2)t   
** 

60% 42% ●  ● ●  

No final answer  4%    I I 
p = 14(2)(t)    I I   

 
It is worth noting that none of the students I interviewed provided the same 

response in their pre-interview as they did on the pre-test. Also, I chose not to group  

p = 28t and p = 14(2)(t) as the same response for several reasons. No student who 

provided p = 14(2)(t) as their answer simplified this to the equivalent form p = 28t, and  

p = 14(2)(t) was the most common response provided in the interview yet p = 28t was 

selected least often on the multiple choice pre-test.50 Students’ expectation that solutions 

should result from combining numbers and variables explicitly listed in the problem 

might contribute to this result. Fourteen and two (in the form of the word “doubling”) are 

both given in the problem statement in some form while 28 is not, and p = 28t and  

p = 14(1.2)t are the only answer choices that do not solely use combinations of p, t, 14, 

and two, and those are the least-selected options on the pre-test. 

                                                      
50 This strongly suggests that if this question is used in the future it might be more productive to replace the 
option p = 28t with p = 14(2)(t). 
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 In the interview students often initially expected that the formula should involve 

addition similar to their solutions to the Tomato Plant B task. I provide an example from 

Gina’s interview. 

 
Figure 9.30. Gina’s initial work for the Bacteria Doubling task prior to erasing her 
formula. 
 
1 Gina: Okay so they already contains 14 [she writes “14”] and then it's doubling  
2  every day. So, um [she writes “2(t)”]. So just like the other one it’d be,  
3  um, the number of bacteria [she writes “p=”] equals 14 [she writes “14”]  
4  because it already has 14… 
5 AO: Alright. 
6 Gina: at the beginning and then you add, um the [she writes “+”] total [she  
7  writes “2t” after the plus sign] of what it doubled. This is the days [she  
8  underlines “t” in the statement p = 14 + 2(t)]. Um. Yeah this is the days  
9  and then [trails off] 

 
At this point I asked Gina to consider how many bacteria would be present after two days 

and she realized that her formula “p = 14 + 2(t)” produced a value that was too small 

because the result was less than 28. This is evidence that Gina could at least 

conceptualize that she needed to double the value 14 after one week, but also that she was 

not initially conceptualizing how this might be communicated accurately with a 

mathematical expression. She erased “p = 14 + 2(t)” and started again. See Figure 9.31. 
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Figure 9.31. Gina’s final work for the Bacteria Doubling task. 

 
10 Gina: Okay, so um what I’m think, cuz it wouldn’t make sense to add 14. So if it  
11  were already, for like the first day it doubled it’d be 14 times two [she  
12  writes “14x2”]. 
13 AO: Okay. 
14 Gina: Not add two. Um [she writes an equal sign to the left of 14x2]. So say it’s,  
15  yeah. So [she writes “(t)” after =14x2].  
16 AO: So 14 times two t? 
17 Gina: Mm-hmm [“yes”]. 
18 AO: So then after two days… 
19 Gina: Oh wait no [laughs]. 
20 AO: No? How do you, how do you know… 
21 Gina: Cuz that’d be too much. Cuz that, it would be, um, yeah. It would be like,  
22  it’d be like um. It’d be saying like there's 14 times, actually [long pause].  
23  Hmm. [long pause] Okay. Yeah, never mind. I think this is, because if you  
24  do the adding one [she writes “+2(t)”] 
25 AO: Hm-hmm [“yes”]. 
26 Gina: You're gonna be adding 14 to each consecutive, and then this is, since it is  
27  doubling, um, you just, yeah. In my mind I'm just saying that to go with  
28  this one [indicates the statement =14x2(t)] cuz with this one [indicates the  
29  statement 14+2(t)] for each day you’d be adding 14.51 
30 AO: Okay. 
31 Gina: It doesn't really make sense because they already started at 14 and if you’d  
32  go, mmm, say it was like two days, this is four, 14 plus four is 20, 20, 18.  
33  And then, yeah this would be 18 [writes “=18” after 14+2(t)] and this 14  
34  [writes “14” below the last line]. It didn't really double. It just, you just  
35  added four. 

 

                                                      
51 I am not clear on what Gina meant by “each day you’d be adding 14” since that is not what her formula 
represents, nor does it match her description of evaluating the formula. 
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Again, Gina’s solution seemed not to be driven by an attention to the relationship 

between quantities but was “a matter of ungrounded debate about choosing numbers and 

operations” (Smith & Thompson, 2007, p. 108). Gina finally settled on the representation 

“= 14 x 2(t)” instead of “p = 14 + 2(t)” only because the latter produced values that were 

too small, not because the former seemed to accurately capture her conceptualization of 

the situation (lines 26-35). Note that in those same lines Gina twice refers to “adding 14” 

using language that indicates she might be conceptualizing repeated addition by 14 linked 

with the representation “14 + 2(t)”. However, I think that these are misstatements since 

her description of that possible solution in lines 31-35 do not show her reasoning about 

repeated addition by 14. 

Lisa’s initial response to this task is also worth sharing because it reflects the 

tendency for students to not incorporate values in their formulas that are not explicitly 

listed in the problem statement.  

 
Figure 9.32. Lisa’s work for the Bacteria Doubling task. 
 
1 Lisa: [She writes 14, then p, and then t as she reads the problem statement.]  
2  Okay so it doubles every day, 14, so after one day it’s gonna double to  
3  twenty eight. So p that’s what I’m searching for [she writes “P=”] after t  
4  days. I wanna say it's just like [she writes “14t”].  
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Lisa’s first attempt only included p, 14, and t, the three variables and values given in the 

problem statement. Lisa’s second attempt (“P = 14 + 2t”) was based on the realization 

that she had not accounted for “doubling” in her formula. Again, an increase was 

interpreted as a need to perform addition even though she conceptualized at least one 

doubling of the initial 14 bacteria (line 3 and lines 22-23). I hypothesize that the presence 

of an exponent in these answers resulted from a comment she made at the end of the 

Tomato Plant B task. She stated that she thought that she remembered she had to use an 

exponent in these situations but was not certain why. 

5 Lisa: At t it's gonna double every, yeah, see, no, that’s not right. That’s  
6  definitely not right. [She crosses out what she wrote.] Um. It doubles.  
7  That’s the important part [she draws a box around the word “doubles” in  
8  the problem statement]. After t days. [long pause] This is gonna be the  
9  initial that it has, so after, when it starts it has 14 [she writes “P=14”]  
10  kinda like the last problem [laughs] and then it's gonna double after every  
11  day and then [she writes “+2”]. See if, I’m about to try the same exact  
12  answer. So it’ll be times two [she adds “t” as an exponent] but I don't  
13  think that's right. But I wanna plug something in just to see [laughs]. 
14 AO: Okay. 
15 Lisa: Um so if it was three days [she writes “t = 3”] then it's gonna be two to  
16  the third so it’ll be p equals 14, two to the third [she writes “P=14+23”].  
17  Going to be p equal 14 plus 12. [she writes “P=14+12”]. It’s going to be  
18  p equals 26 [she writes “P=26”]. And then if I do it my favorite way  
19  [laughs] 
20 AO: [laughs] 
21 Lisa: drawing it out [she draws a horizontal segment, then a short vertical  
22  segment and labels it 14”]. So it’s gonna start with 14. And then it's gonna  
23  double, yeah so it’s immediately gonna be 28 the next day. So, that can't  
24  be right either [she crosses out her work]. So p equals [she writes “P=”]  
25  [long pause] that would be [she writes “(2·14)t”]. A lot of solving in math  
26  tends to be me doing something wrong and then checking it with numbers  
27  and then [laughs and then she trails off]. 
 
In her final comments (lines 25-27) Lisa essentially admits what I had suspected 

throughout her interview, namely that her efforts to generate solution processes and 
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algebraic representations is based more on a “guess and check” method of trying different 

combinations of numbers, variables, and operations stated or suggested by the problem 

statement. It is also likely that Lisa (and most of the other students I interviewed) did not 

have a productive meaning for exponential expressions like 2t and thus these expressions 

were not available to them while reasoning about the tasks as they conceptualized them. 

Even if this is true, however, students’ solution behaviors still indicate that they do not 

necessarily expect their algebraic representations to build through conceptualizing 

intermediate relationships between quantities within a quantitative structure. Students 

with this expectation would describe what they intended to communicate with their 

representation and then acknowledge that they did not have a way to represent the 

quantities or relationships they conceptualized. Instead, students in the pre-interview 

tended to generate the algebraic representation first and only later (and sometimes only 

after being prompted) would they check that their model might make sense. Typically 

their criterion for this judgment was whether the model produced reasonable values (from 

the student’s point of view) and not whether its structure reflected their image of the 

situation. 

 Summary of students’ meanings at the beginning of the course. Responses to 

the pre-test and pre-interview tasks suggest that students entering a college Precalculus 

share many common ways of reasoning about modeling tasks, percent change and 

percentage comparisons, and exponential functions. Students entering Precalculus tend to 

view the creation of algebraic models as a process of using combinations of operations 

with given variables and explicitly stated values. Students particularly struggled to 

produce accurate solutions and models when they needed to conceptualize quantities, 
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operations, or measurements not expressed explicitly in the problem statement (such as 

needing to represent a 13% per week increase in some quantity with the factor 1.13 in the 

algebraic model). The students were not usually inclined to test the reasonableness of 

their solutions, but when I prompted them to do so they sometimes recognized that their 

models were incorrect. When this happened, the common justification was that the 

models were incorrect because they did not produce expected values and not because 

they somehow failed to accurately represent relationships within a quantitative structure 

that they had conceptualized (although students sometimes insisted that a solution was 

correct even when they acknowledged that it did not produce correct values). Students 

also tended to not see quantities’ values as resulting from an explicitly conceptualized 

measurement process, so when working with percentages they often did not clearly 

identify the reference quantity (the answer to the question, “Percent of what?”) and their 

meaning of percentages was entirely procedural (“when I see a percentage, I move the 

decimal point two places”). Taken together, these descriptions of meanings typically held 

by students entering Precalculus suggest steep challenges in supporting Precalculus 

students in constructing the meanings described in the framework in Table 9.2. None of 

the meanings described in Table 9.2 appear to describe the reasoning an instructor might 

expect from a typical Precalculus student at the beginning of the course. 

 Much of the current research on students’ meanings for exponential growth is 

grounded in building on images of repeated multiplication, which is reasonable 

considering common meanings for exponents and the presence of an exponent in the 

algebraic representation for exponential functions. However, I did not see evidence that 

students were inclined to conceptualize repeated multiplication as part of a solution 
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process for evaluating and representing situations typically modeled by exponential 

functions, especially when those situations were framed in terms of constant percent 

change. In future iterations I will need to reflect on whether lessons and tasks throughout 

the course must be revised to better address these common unproductive meanings. Other 

researchers working in this area might also benefit from considering the implications of 

these findings for their own learning trajectories relative to supporting students in 

conceptualizing connections between percent change and growth factors for exponential 

functions. 

 

Results from Lessons, the Post-Test, and Post-Interviews 

 We administered the post-test to all students within the final month of the course 

and each post-interview occurred within approximately one week of the post-test. Student 

performance on the post-test was significantly higher than on the pre-test, both overall 

and on tasks covering exponential functions and related ideas. See Table 9.10, which 

includes post-test scores as well as the increases relative to the pre-test scores for the 

same groups/students. However, post-interviews suggest more modest gains relative to 

my learning goals for many students. To some degree this was expected considering this 

research was conducted on an intervention that is early in the refinement phase, the 

complexity involved in fully unpacking ideas related to exponential growth (see Figure 

9.12), and the fact that students generally did not enter the course with any of the targeted 

meanings outlined in my framework in Table 9.2. We know that students’ schemes tend 

to persist and that it takes sustained effort over long periods of time to support shifts in 

meanings. Additionally, as Thompson et al. (2014) argued by using a cloud metaphor to  
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Table 9.10 
 
Overall Post-Test Performance 
 

 

Intervention 
Class Average 

(Post) 
58 students 

Pathways Class 
Average (Post) 

68 students 
Gina Marcus Shelby John Lisa 

Overall post-test 
score (out of 25) 

17.74 (+5.77) 
(71%) 

15.35 (+5.28) 
(61%) 

16 
(+7) 

21 
(+13) 

21 (+5) 
24 

(+3) 
23 

(+8) 
Score on general 

modeling questions 
(out of 6) 

4.58 (+1.15) 
(76%) 

3.80 (+0.84) 
(63%) 

4 (+1) 5 (+1) 5 (+1) 
5  

(–1) 
6 

(+1) 

Score on linear 
relationship 

questions (out of 9) 

6.16 (+1.69) 
(68%) 

5.77 (+1.95) 
(64%) 

5 (+1) 6 (+5) 8 (+1) 
9 

(+2) 
7 

(+0) 

Score on 
exponential 
relationship 

questions (out of 
10) 

7 (+2.94) 
(70%) 

5.74 (+2.44) 
(57%) 

7 (+5) 10 (+7) 8 (+3) 
10 

(+2) 
10 

(+7) 

 
describe students’ schemes for mathematical ideas, learning may occur unevenly 

throughout constituent parts of a student’s scheme and related schemes. Furthermore, 

behaviors indicating shifts in students’ meanings may be revealed when responding to 

some tasks and not revealed when responding to others.  

 In this section I report results of shifts in student learning based on pre- and post-

test scores and provide evidence that less productive meanings persisted for some 

students. I report results from analyzing data that suggest how students conceptualized 

critical visualizations and applets designed to support my learning goals and how students 

interacted with lesson tasks that may help explain some differences in learning outcomes. 

How do students respond to incorrect attempts? Thompson (1985) discussed 

the important role technology can play in students’ learning by providing feedback that 

allows students to reflect on their thinking. I looked for evidence that this occurred for 

students working through lessons in this study. iMathAS saves all student submissions so 
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I was able to examine each lesson to view all submitted attempts in order, the total 

number of attempts, and the average time between attempt submissions. While examining 

this data I considered three things. (1) I looked for “spikes” in the number of attempts on 

tasks throughout the module. That is, I looked for tasks with high attempt counts and 

examined the answers record to hypothesize whether the student appeared to be guessing 

or making concerted progress towards targeted reasoning. (2) I looked to see if the 

average number of attempts tended to decrease over the course of the lessons. While new 

aspects of ideas were continually introduced throughout the unit, I had designed the 

lessons to support and build from the same foundational meanings, and thus a decrease in 

the average number of attempts could suggest that earlier lessons and tasks had prompted 

students to reflect on and modify their meanings in productive ways. (3) I looked for 

evidence that the imagery I intended for students to internalize and use as tools in their 

reasoning process for these ideas appeared in their post-interviews or, alternatively, if 

students engaged in guess-and-check style behavior in those interviews. 

Table 9.11 shows how many tasks within the seven lessons required the indicated 

number of attempts for each student to solve. Note that the seven lessons included 103 

total tasks, but two tasks were removed from this analysis because the required level of 

precision for the answers was unclear, leading to abnormally high attempt counts for all 

students. Table 9.12 shows the percentage of tasks initially answered incorrectly 

requiring certain numbers of attempts to successfully complete. 

This data alone is not conclusive in showing that incorrect responses either did or 

did not prompt students to reflect on their thinking. In these five cases, however, post-

interviews confirmed that students with higher attempt counts on lesson tasks shared 
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Table 9.11 
 
How Many Lesson Tasks Required the Given Number of Attempts to Complete (out of 
101) 
 

number of 
attempts 

1 2 3 4-6 7-10 11-15 16-20 21+ 

Shelby 31 13 10 24 14 5 4 0 
Gina52 35 18 12 14 7 4 1 0 
Lisa 70 18 5 7 1 0 0 0 

Marcus52 34 10 9 23 13 2 1 2 
John 54 18 11 14 4 0 0 0 

 
Table 9.12 
 
Percentage of Initially Incorrect Responses Requiring the Given Number of Attempts to 
Complete 
 

 2-3 4-6 7+ 
attempted but 

did not finish52 

Shelby 33% 34% 33% 0% 
Gina 45% 21% 19% 15% 
Lisa 74% 23% 3% 0% 

Marcus 28% 34% 27% 10% 
John 61% 30% 9% 0% 

 
certain characteristics, including a general inattentiveness to quantitative meanings for 

calculations, expressions, and formulas and clear indications of guessing on many tasks. 

This data does not definitively show that high attempt counts are either a cause or a 

symptom of characteristics like weak quantitative meanings, but it is clear they are 

related. I discuss this connection more in the rest of my results. 

My findings from analyzing five interviewees are organized into two groups 

based on similarities in four areas: (1) student meanings for the key applets and 

                                                      
52 Gina did not complete ten of the tasks, averaging 7.8 attempts prior to moving on. Marcus did not 
complete seven of the tasks, averaging 5.3 attempts prior to moving on. 



 

276 

visualizations employed in unit lessons, (2) student attempt counts on lesson tasks, (3) the 

degree to which students  referenced quantities in discussing and working with 

percentages, percent change, and growth factors, and (4) the degree to which students 

connected calculations, expressions, and formulas to quantities in the situation. 

Organizing the students into two groups provides important insights that inform key 

conclusions in this study and suggest some initial modifications that may improve the 

intervention’s impact in subsequent iterations. 

 

The case of Gina, Marcus, and Shelby. If we take post-test results and final 

exam scores53 as measures of learning, then Gina, Marcus, and Shelby all successfully 

met unit and course objectives. The three students averaged 8.3 out of 10 on post-test 

items covering exponential growth and related ideas and scored an average of 19.3/25 on 

the entire post-test. Marcus and Shelby also earned an A on the final exam and Gina 

earned a B. My analysis of post-interview data, however, demonstrated that these 

assessment scores did not reveal student learning relative to some of the meanings 

targeted in instruction. My analysis of the post-interview data further revealed common 

behaviors and meanings held by these three subjects (Gina, Marcus, and Shelby). (1) 

They struggled to describe ideas conveyed by visualizations and applets used throughout 

the module and how different applets might be used to convey similar mathematical 

ideas; (2) they tended to have higher attempt counts on lesson tasks and displayed clear 

indications of using “persistent guessing” to complete certain tasks; (3) they tended not to 

identify clear referents while working with percentages and percent change and had 

                                                      
53 The final exam was a multiple-choice assessment covering content from the entire course. 
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unproductive meanings for growth factor and exponential function; and (4) they typically 

did not describe their calculations, expressions, and formulas in terms of quantities and 

quantitative relationships. In the next few sections I show evidence for these claims and 

discuss the implications. 

How did students conceptualize key visualizations and applets? As part of this 

initial reflection on aspects of the lessons that seemed to support (or fail to support) 

students in constructing the meanings I intended, I focused my analysis on how students 

used and made sense of the applets that appear in various lessons. One set of applets 

included variations on the Unit Ruler applet shown in Figure 9.33. 

 
Figure 9.33. The version of the Unit Ruler applet used in the post-interviews (GeoGebra). 
 
Within lessons I asked students to modify either the “unit ruler” length or the length to be 

measured to demonstrate a given relative size measurement. I placed such tasks 

throughout the course, including in units on proportionality, constant rate of change, and 

exponential growth, with the intention that students conceptualize a relative size of two 

magnitudes that is invariant across changes in those quantities. I then designed lessons to 

leverage this idea to motivate algebraic and graphical representations of relationships 

between quantities and calculations for evaluating relative size measurements. I also 



 

278 

included animations showing the two segments’ lengths changing in tandem and asked if 

the measurement of the length of one segment remained constant if the length of the other 

segment was the unit ruler. I described these as “elastic ruler” explorations because the 

absolute size of the unit was not constant. Note that the version in Figure 34 has more 

functionality than students could usually control within a single task. A user can move 

the “length to be measured” slider to vary the bottom segment length only or move the 

“co-vary the quantities” slider to change both segment lengths while maintaining a 

constant relative size. 

 The second category of interactive applets and animations were variations on the 

Sliding Interval applet shown in Figure 9.34.  

 
Figure 9.34. The version of the Sliding Interval applet used in the post-interviews 
(GeoGebra). 
 
Again, this version has more functionality than students could usually control within a 

single task because we never allowed students to vary the one-unit growth factor with a 

slider. In this version a user can move the “1-unit growth factor” slider and the one-unit 

growth factor (where “one-unit” refers to the magnitude of the horizontal vector) varies 

between zero and four. Note that the applet does not display the exact value for the one-
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unit growth factor or the function values at any point. A user can also move the “slide 

interval” slider and the horizontal vector shifts back and forth along the horizontal axis. 

 During the post-interviews I asked four of the five students to experiment with the 

applets and then to explain the key ideas they believe the applets were designed to help 

communicate as well as the connection between the two applets.54 Both Shelby and 

Marcus expressed confusion or surprise when they moved the “1-unit growth factor” 

slider on the Sliding Interval applet. Marcus said, “Oh, sh*t […] Okay, I’ve never seen 

one like that [emphasis his]” after first moving the slider. Shelby said, “Whoa. Huh,” and 

then later said, “this one is throwing me off” when referring to moving the “1-unit 

growth” slider. Marcus in particular became fixated on this slider and focused on actions 

such as finding positions for the “1-unit growth factor” slider that made two graphs 

appear to be horizontal reflections across the vertical axis. I eventually had to ask him not 

to move that slider and just focus on one single exponential function with a one-unit 

growth factor of approximately 1.5. Only when working with a specific example could 

Marcus describe estimating the one-unit growth factor value by comparing the lengths of 

the two vertical segments [part of MCM-3], although he did so without sliding the 

interval or discussing it as a general property that always holds [MCEF-2]. When I 

moved the interval, he was able to explain why a constant growth factor does not produce 

a constant difference between two values [MCPC-4]. Although he could estimate the unit 

growth factor from the graph by talking about relative size, when he discussed the 

meaning of the growth factor he routinely described what he would add as he moved 

                                                      
54 I did not ask Gina to describe her understanding of the applets because we ran out of time during her 
interview. I did not ask Marcus about the Unit Ruler applet for the same reason. 
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from the function value at the beginning of the interval to the function value at the end of 

the interval. For example, in his descriptions he talked about the length on the left being 

“100%” and then showed that he would need to add 50% to get to the second value. He 

tended not to use measurements like 1.5 or 150% in describing how he thought about the 

relationship between two function values at the beginning and end of the sliding interval 

[MCP-3 and MCM-3], although this was true to some degree for all five students 

depending on the task. 

 I presented the Unit Ruler applet to Shelby and asked her to describe what ideas it 

could help demonstrate. After some time spent exploring the applet’s features and 

struggling to explain the general idea she wanted to convey, she eventually varied the 

length to be measured until it was half as long as the unit ruler length and said,  

1 Shelby: X is point five times as big as the unit ruler. And so even as you vary the  
2  quantities [she moves the slider “co-vary the quantities”] this one [she  
3  points to the bottom segment] is still gonna be point five times as tall, I  
4  mean as big [she moves the slider “co-vary the quantities” again] as the  
5  unit ruler no matter how big they are. 
 
Much like Marcus, Shelby appeared to need specific examples to convey her ideas. Once 

she had that example, she was able to explain how the relative size of the two lengths 

could remain constant even as the lengths changed in this context [MCM-4]. 

I next presented the Sliding Interval applet and asked Shelby to describe the ideas 

it was meant to convey. After sliding the interval back and forth along the horizontal axis, 

she said that one idea it demonstrates is that the one-unit growth factor can change 

because the steepness of the graph between the endpoints of the interval changed as she 

slid the interval. I emphasized parts of her reasoning because it represents a significant 

departure from the meanings I intended students to construct. Namely, it demonstrates a 
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lack of awareness of the growth factor as a constant measurement of relative size for two 

varying quantities or two instances of the same varying quantity [MCEF-2]. It is possible 

that she misspoke when she said “one-unit growth factor” and intended to say something 

like “the difference between the output values”. But the rest of her response suggests that 

Shelby did not make clear distinctions between various quantities and their 

measurements. 

I next asked Shelby if the two applets demonstrate similar ideas.  

6 Shelby: Um, I mean th-, they’re linked, they’re both, they’re showing different  
7  ways of like demonstrating proportionality I guess. Um. The other one  
8  was more linear, this one is more graphical, I. Um [pause]. I, I am very  
9  bad at explaining things.  
10 AO: So are they demonstrating the same idea or are they demonstrating  
11  different ideas? 
12 Shelby: Can I look on the other one? 
13 AO: Yeah, yeah. 
14 Shelby: [She brings up the unit ruler applet, then returns to the sliding interval  
15  applet, then there is a long pause]. I, um, I think, you know, I think you’re  
16  right that they’re demonstrating the same idea. Uh, I think it’s just this one  
17  is throwing me off [she points to the slider labeled “1-unit growth factor”  
18  and then moves it back and forth]. So this would be like, this one, the unit  
19  ruler [she brings back up the unit ruler applet] here [she returns to the  
20  sliding interval applet, points at the slider “1-unit growth factor” and then  
21  at the vertical segment on the right] I believe, and so, I remember you  
22  guys saying that like if the unit ruler got smaller, then, it would get, like  
23  this would get bigger [she points her pen back and forth between the tops  
24  of the two vertical segments].  
25 AO: So which, what’s the unit ruler in this diagram? Like does the unit ruler  
26  appear someplace? 
27 Shelby: Um. I don’t know. I fe-, I wanna say that the unit ruler’s this [she points to  
28  the vertical segment on the right], but that doesn’t seem right. It might be  
29  [she points to the horizontal vector], it might be this because we aren’t  
30  able to vary the unit ruler [she returns to the unit ruler applet] 
31 AO: Mm-hmm [yes]. 
32 Shelby: we’re only able to vary the, the length to be measured. So this is probably  
33  the unit ruler [she points to the horizontal vector] cuz it gives us the one- 
34  unit growth factor, and then this [she moves the slider “1-unit growth  
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35  factor”] is what can be changed, uh, this is what we’re measuring, this  
36  [she moves her pen back and forth between the tops of the two vertical  
37  segments] is what we’re measuring. 
 
 When I asked Shelby if the two applets demonstrated similar ideas, she reacted as 

if she had not considered this possibility (lines 6-16). This response is plausible 

considering that she wasn’t aware that the length of the horizontal vector could be varied 

independently using the applet controls (lines 28-33), and then concluded that the 

horizontal vector represented the unit ruler since its length didn’t vary. Shelby also said, 

“I remember you guys saying that like if the unit ruler got smaller, then, it would get, like 

this would get bigger [she points her pen back and forth between the tops of the two 

vertical segments]” (lines 21-24). I suspect she is referring to efforts to support the idea 

that when the measurement unit size varies the measurement value varies in an inversely 

proportional manner [MCM-2]. However, it is not clear how she sees that idea as helpful 

in this context, and I regret that I did not follow up with her. Shelby’s descriptions of her 

conceptualization of the ideas I intended to convey with the Sliding Interval applet reflect 

her consistent lack of attention to reference quantities and the meanings for the 

calculations she performed throughout the post-interview. 

Persistent guessing. When Gina, Marcus, and Shelby incorrectly responded to 

lesson tasks they tended to engage in persistent guessing. When Shelby and Marcus 

initially answered a task incorrectly they required seven or more attempts to provide an 

acceptable answer about 30% of the time. For Gina the figure was about 20%, with 

another 15% of such questions never correctly completed after an average of 7.8 

attempts. Several observations suggest that many of these high attempt counts resulted 

from repeated guessing. Two examples follow. 
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I used screen-capture to record Marcus’s attempt to respond to the task in Figure 

9.35. This task is used in a lesson comparing linear and exponential behavior with the 

expectation that comparing and contrasting these relationships could bring each idea into 

sharper focus. There are several reasonable ways to complete this task, but part (b) is 

intended to assess whether students recognized that a one-unit growth factor b is the ratio 

of two instances of the same quantity [MCEF-1 and MCEF-3] and whether they see g(0) 

as the value such that g(0) · b = 1.5 so that they can generate an algebraic representation 

using this information [MCEF-5]. 

 
Figure 9.35. A task asking students to define two functions with the given ordered pair 
solutions. Note that in this task the student can see the graphs of the functions they 
define, thus they are able to predict a correct answer before submitting. This resulted in 
attempt counts that did not necessarily reflect students’ actual number of attempts. 
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Marcus defined 13 different linear functions before producing a correct response, and his 

final answer was “f (x) = 2.25x + 1.5 – 2.25”, which he arrived at by noticing that the line 

shifted when he added or subtracted a value to the end of his formula. He went through 

several iterations of testing different numbers until he found one that produced a graph 

passing through the two points. He then defined almost 20 different exponential functions 

using various combinations of the values in the ordered pairs, operations, and the variable 

x (including adding and subtracting constants to the end of the formula as he did in part 

(a)) before giving up and moving on to the next task. Moreover, each attempt occurred in 

relatively rapid succession, suggesting that Marcus was not taking the time to reflect on 

his reasoning and was instead essentially guessing and hoping to land on an acceptable 

formula. Prior to attempting this task Marcus watched one of the short videos in the 

lesson. During his numerous attempts to complete the task, however, he did not do any 

scratch work, nor did he leave the page and review past lessons or homework 

assignments. 

 Figure 9.36 shows a summary of Shelby’s work on a task at the beginning of 

lesson five of seven. This task was intended as a review of students’ work in previous 

lessons in preparation for building on the main unit ideas to develop a general algebraic 

formula to model exponential functions (that is, this was not developing or assessing new 

content in that lesson). Shelby correctly answered five of the six parts on her first attempt 

(as seen in the “Previous Attempts” section at the bottom of Figure 9.36). Her only 

mistake was to enter “140” instead of “40” as the one-unit percent change. Shelby then 

produced 19 additional attempts changing only this answer before finally arriving at the 

correct response (40%). Her attempts, in order, were 140, 240, 1.40, 139, 239, 299, 399,  
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Figure 9.36. Shelby’s answers to a review task at the beginning of lesson five. 
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499, 199, 240, 1.4, 39.9, 29.9, 49.9, 2, 200, 100, 140, 14 and finally 40. Examining her 

response patterns reveals an apparent tactic: if she gets the percentage value incorrect 

then the answer is likely to be wrong because she forgot to adjust the answer by 100 or 

needed to move the decimal place.  

These two examples suggest that these students interpreted correct responses as 

the goal of lessons as opposed to developing certain meanings. When the students 

produced incorrect answers, persistent guessing was an acceptable technique to 

eventually earn credit for the task. Students could respond to incorrect answers by 

reviewing the lesson, reviewing past lessons, drawing diagrams to work out their 

reasoning, or engage in other behaviors. That these students did not choose these 

alternative behaviors means that the automatic feedback provided in the online 

environment did not appear to prompt them to reflect on their reasoning (at least not in 

many circumstances) but instead allowed, perhaps even encouraged, repeated guessing. 

After all, it is quite possible that it took Shelby less time to produce 20 solution attempts 

through guessing than by taking the time to review prior lessons or rework prior tasks. 

Attention to reference quantities and a meaning for growth factor, percentages, 

and percent change. Gina, Marcus, and Shelby all continued to display some of the same 

challenges seen in their pre-interviews relative to reasoning about percentages and 

percent change. They routinely struggled to recognize what quantity was being 

referenced and how it was being measured and, in many cases, persisted in their behavior 

of trying various combinations of calculations involving given numbers to produce 

possible answers as opposed to first articulating what they intended to calculate or 
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represent. Gina’s work on the Muffler and Sale Price tasks in the post-interview 

demonstrate implications of a lack of attention to quantitative meanings for operations 

and expressions.  

 Gina began the Muffler task by writing and evaluating the difference  

“195 – 131 = 64” (she later added “$” in front of 64 when I asked her what she had 

calculated). She then stated, “I kinda remember how to do this” and used a calculator to 

perform the following calculations in order.55 

 64/195 = 0.328 

 ans * 100 = 32.8 

 195/64 = 3.047 

 ans * 100 = 304.7 

 195/131 = 1.489 

Note that all of these calculations are either quotients using pairs of values from the 

difference statement she wrote or a product of one of these quotients and 100. After 

performing the entire set of calculations and reviewing them, she declared that the price 

increase was 32.8%. I asked her what that value she was measuring and to what it was 

being compared. This question prompted her to calculate 131/195 = 0.672, at which point 

she changed her answer to an increase of 67%. I asked her, “67 percent of what?” to 

which she responded “131”. For reference, Table 9.13 shows post-test results for all 

students. Recall that interview responses shown in these results represent students’ final 

                                                      
55 Gina used an on-screen calculator that displayed a history of her previous calculations and thus did not 
write down any of these statements. The rounding here is mine. 
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answers prior to any intervention by the interviewer that may have caused them to change 

their solution. 

Table 9.13 
 
Student Responses to the Muffler Task (Post) 
 

answer 
choice 

Intervention 
Class (Post) 

Pathways In-
Person Class 

(Post) 

Gina 
(Post-
test) 

Marcus 
(Post-
test) 

Shelby 
(Post-
test) 

John 
(Post-
test) 

Lisa 
(Post-
test) 

a.  33% 16% 16% I     

b.  49%  ** 
62% 

(+17%) 
47% (+18%)  ●, I  ●, I ●, I 

c.  64% 2% 5%      
d.  67% 7% 14%      
e.  149% 14% 19% ●  ●, I   

 
 Gina’s work on the sale price task was very similar. She began by writing 20% 

and $440.00 then said that she needed to convert 20% to 80% “since you subtracted 20 

percent of the like initial price to get the sale price, like in order to get it back […] to the 

same price I would multiply by point eight.” She then performed the following series of 

calculations in order. 

 440 x 0.8 = 352 

 440 / 0.8 = 550 

 440 / 0.2 = 2200 

 440 x 0.2 = 88 

After examining these calculations, she stated that $352 was deducted from the initial 

price to get the sale price, so the initial price was $440 + $352 = $792. Table 9.14 shows 

that Gina answered this question differently on the post-test. 
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Table 9.14 
 
Student Responses to the Sale Price Task (Post) 
 

answer 
choice 

Intervention 
Class (Post) 

Pathways 
In-Person 

Class (Post) 

Gina 
(Post-
test) 

Marcus 
(Post-
test) 

Shelby 
(Post-
test) 

John 
(Post-
test) 

Lisa 
(Post-
test) 

a.  $352.00 9% 19%      
b.  $366.67 2% 0%      
c.  $528.00 19% 41%      
d.  $550.00  
** 

69% 
(+31%) 

35% (+9%) ● ●, I ●, I ●, I ●, I 

e.  $2200.00 2% 5%      
$792.00   I     

 
 While solving these tasks, Gina never drew a diagram or referred to any of the 

visualizations from the unit lessons. She also never justified her calculations as she 

performed them. It was clear that her primary solution method involved performing 

operations with as many combinations of values given in the problem or that she had 

identified as potentially important and deciding which result seemed most reasonable 

(although her criteria for deciding this was not always revealed and seemed to change 

quickly if I asked her follow-up questions). Considering that she performed the 

calculation 131/195 = 0.672 and reported this result as a 67% increase of 131, I have little 

confidence that she could explain the result of most calculations she performed in these 

contexts in terms of what was being measured and the reference unit for the measurement 

[MCM-1 and MCM-3, or MCP-2 for understanding the role of multiplying by 100 to 

produce a percentage comparison from a relative size comparison, or MCPC-1 for 

justifying percent change calculations]. Note that after she provided her solutions, I asked 

her if she could draw diagrams to represent the relationships between the prices in each 

problem and how the percentage values and percent change values were related. I 
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interpreted her reaction and the ensuing discussion as indicating that she did not routinely 

draw diagrams like those displayed in the module lessons while working on her own. 

This could be because she did not understand what they were trying to convey, she did 

not find them useful, or perhaps she found persistent guessing a quicker method of 

eventually getting a correct answer to most tasks.  

 Shelby claimed that the repair cost in the Muffler task increased by “about 150%” 

(from $131 to $195), but immediately second-guessed herself and said that the answer 

might be “flipped”. She thus tested the ratio 131 / 195 = 0.67. When increasing 131 by 

67% did not yield 131 she returned to her original answer. Her work is shown in Figure 

9.37. 

 
Figure 9.37. Shelby’s written work on the Muffler task in the post-interview. 
 
It was very common for Shelby and Marcus to choose answers that were “off” by 100 on 

course exams and in the post-interview because they tended not to carefully distinguish 

between a percentage as a measure of relative size [MCP-1] and a percent change as a 

measurement of relative size for the difference in two values [MCPC-1]. I wanted to see 
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if Shelby would recognize her error if she drew a diagram, so I asked her to create a 

diagram to demonstrate what 150% represented in this context. She produced the graph 

shown in Figure 9.37 and said that the slope of the line was 1.5. This response indicates a 

lack of productive meanings for percentage and percent change as measurements but also 

a lack of productive meaning for slope (constant rate of change). I suspect they both 

derive from her inattention to the meanings of her calculations in terms of producing the 

values of quantities she has conceptualized and intends to represent. 

Time ran short on my interviews with both Gina and Shelby and I was unable to 

ask them directly about how they would define “exponential function” in their post-

interviews. However, I did present the graph in Figure 9.38 to Marcus and asked him how 

he would respond to a student who said something like the following. “This graph shows 

that the U.S. national debt increased exponentially from 2000 to 2016 because it was 

increasing really, really fast.” 

 
Figure 9.38. A fictitious student example to assess Marcus’s meaning for exponential 
growth. 
 
1 Marcus: Um, so I mean for that, that problem, um, I would say that it is looking for  
2  exponential growth, um just because that number is getting higher and  
3  higher and higher. It’s moreso how the way you look at it. If you were to  
4  look at it in a decaying factor like the, like the increase in price but you  
5  were using negatives,  
6 AO: Mm-hmm [yes]. 
7 Marcus: instead of like the positives, of like it getting bigger and bigger, using the  
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8  kind of like the percent change, moreso um, that graph, graph would be  
9  downward, and I would say that would be decay.  
10 AO: Okay. 
11 Marcus: But for this, I would say that’s exponential growth. 
12 AO: So their description is fine? Their, their use of the term exponential is fine  
13  in that case? 
14 Marcus: I would say yes.  
15 AO: Okay. 
16 Marcus: For that problem, most definitely. 
 
This exchange provides further evidence of Marcus’ impoverished conception of 

exponential growth. He does not appear to recognize the need to explore how the 

quantities being represented by the graph are related and change together as a way of 

classifying a function as exponential or not. Admittedly there were no numbers on the 

axes, but the fact that he did not see that specific values or comparisons were needed 

suggests that his general meaning for exponential functions, at least when represented 

graphically, is tied to “increasing”. 

Emergent symbol meaning. Students who engage in emergent symbol meaning 

have an expectation that the symbols they write and the calculations they represent on 

paper are communicating relationships between quantities’ values. They see each part of 

an expression as representing values of new quantities in relation to the values of other 

quantities. Their expectation that symbols and expressions have quantitative referents 

also allows them to look at given calculations, expressions, and formulas and expect that 

they can make sense of the relationships between quantities thus represented.  

These behaviors and expectations were not generally present during the pre-

interviews with incoming Precalculus students. Instead, students exhibited behaviors such 

as associating addition with any mention of an increase in value and appearing to perform 

literal transcriptions of task goals into symbolic representations without attending to the 
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quantities’ values represented by the expressions they wrote. Students employed 

techniques like circling all variables and numbers explicitly given in a problem statement 

and then generating calculations or models using only those values and variables with 

some combination of operations. Thus, they often failed to include necessary values in 

their models that were not explicitly given in the problem statement. The combination of 

these ways of reasoning explain why most students wrote h = 7 + 0.13t to model the 

tomato plant height in terms of elapsed time in weeks for the Tomato Plant B task at the 

beginning of the course. 

For the Tomato Plant B task on the post-test, 23% of students in the intervention 

class chose models consistent with associating “increasing” with addition and/or 

choosing a model that could result from a literal translation of the task goal. See Table 

9.15, answer choices (b) and (e). 

Table 9.15 
 
Student Responses to the Tomato Plant B Task (Post) 
 

answer 
choice 

Intervention 
Class (Post) 

Pathways In-
Person Class 

(Post) 

Gina 
(Post-
test) 

Marcus 
(Post-
test) 

Shelby 
(Post-
test) 

John 
(Post-
test) 

Lisa 
(Post-
test) 

a.  h = 7(0.13)t 10% 10%      
b.  h = 7 + 1.13t 9% 17% I *56    
c.  h = 7(1.13t) 9% 4%      
d.  h = 7(1.13)t  ** 59% (+39%) 60% (+36%) ● ● ● ● ● 
e.  h = 7 + 0.13t 14% 9%   *56   

 
Student interviews confirmed that these meanings remained strong among some students 

for the Tomato Plant B task (although less so in the Bacteria Doubling task). Shelby first 

wrote “f (t) = 7 + 0.13t” after reading the problem statement, but then said, “Oh, wait, this 

                                                      
56 These represent the students’ initial responses during the interview. Both students recognized the error on 
their own and changed their answers to match their response on the post-test, but their initial models are 
worth noting. I discuss this in more detail later in this results section. 
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is exponential” and changed her response. Her next response was to write “f (t) = 

7(0.13)t”, updating it to “f (t) = 7(1.13)t” only after evaluating f (2) and recognizing that a 

height of 0.1183 inches was not a reasonable value. Marcus initially wrote “h = 7 + 

1.13t” and explained that 1.13t represented “thirteen percent of the already made seven-

inch tomato plant.” As soon as he said this, however, he changed his answer to a correct 

algebraic model. While these solutions may demonstrate some progress for Marcus and 

Shelby relative to recognizing the quantitative meaning for expressions and formulas they 

write, the fact that both students initially used linear models for their answers even after 

completing the entire unit on exponential growth supports how deeply imbedded these 

tendencies and meanings are for many students. I would be interested to interview many 

students from this course and see if the models they produce would, over time, revert to 

one of these linear forms. 

 Gina’s responses to the Tomato Plant A and B tasks and the Bacteria Doubling 

task showed that her meanings for exponential growth and her expectation for the goal of 

generating mathematical models did not noticeably change during the course. She 

continued to produce models consistent with interpreting an increase as requiring 

addition and, as long as her models showed that the dependent values increased as the 

independent value increased, she believed that her models were reasonable. She did not 

consider the meaning of her intermediate calculations nor did she discuss growth factors 

or percent comparisons as measurements with specific reference quantities within her 

solutions. The following excerpt is taken from her solution to the Tomato Plant B task 

and shows her producing and justifying h = 7 + 1.13t as a model for the plant’s height in 

terms of the number of elapsed weeks. 
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1 Gina: [She draws a vertical segment and writes “7 in” next to it as she reads the  
2  problem statement.] So, it’d be [pause]. Since it’s asking for the height  
3  [she writes “h=” and underlines “h” in the problem statement] and like in  
4  terms of t [she underlines “t” in the problem statement] of weeks since it  
5  was already seven inches [she writes “7” after h] when it were first  
6  planted I’m just gonna go ahead and add the seven. And then if it’s  
7  growing, so it’d be one point, and if you make it into a decimal it’d be [she  
8  writes “+ 1.13(t)” after h = 7]. So, if I wanna, it’d give me, [she uses a  
9  calculator to evaluate “1.13x0”] yeah, okay. I don’t know, yeah it would  
10  be, I feel like this would be, it’s growing at like the, like this is the rate, or  
11  like it’s growing by 13 percent. Um, one point one three, cuz like I said if  
12  you add one point one three, and then, um, like it’s asking like for  
13  whatever week [she underlines “t” in her formula] like this week, say if it  
14  was like two weeks, um, and then it’s [she writes “(1.13)(2)”], so like, this  
15  is the amount that it grew. So [she uses a calculator to evaluate “1.13x2”]  
16  it grew, in two weeks it grew two point two six [she writes “2.26 in”]  
17  inches, but since it was already seven inches when it like first got planted  
18  [she uses a calculator to evaluate “2.26 + 7”] his total height [she writes  
19  “h = 7 +” in front of 2.26 in] would be nine point two six inches. So this  
20  would be the function [she draws a box around “h=7+1.13(t)”] that I  
21  would use to find like the total of his height of whatever week they give  
22  me. 
 

 
Figure 9.39. Written work for Gina’s response to the Tomato Plant B task in the post-
interview. 
 
In the Tomato Plant A task (not shown here), Gina followed a similar process that was 

equivalent to developing and evaluating the model h = 4 + 1.5t. Table 9.16 shows Gina’s 

and others’ responses to this task in both the post-test and post-interview. 
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Table 9.16 
 
Student Responses to the Tomato Plant A Task (Post) 
 

answer 
choice 

Intervention 
Class (Post) 

Pathways 
In-Person 

Class (Post) 

Gina 
(Post-
test) 

Marcus 
(Post-
test) 

Shelby 
(Post-
test) 

John 
(Post-
test) 

Lisa 
(Post-
test) 

a.  5 inches 2% 4%      
b.  6 inches 3% 3%      
c.  8 inches 12% 34%      

d.  9 inches  ** 
83% 

(+23%) 
57%  

(+6%) 
● ●, I ●, I ●, I ●, I 

e.  12 inches 0% 1%      
7 inches   I     

 
In justifying her interview answer she said she had to use 1.5 because if she used 0.5 that 

would indicate a decrease. While this is true for growth factors in exponential models, 

she was essentially claiming that h = 4 + 0.5t is a decreasing function. In the Bacteria 

Doubling task Gina created the pattern “14, 28, 56” after reading the problem but 

attempted to model the number of bacteria using the expression “14 + 2t”. However, she 

tested this model and recognized that it did not produce the expected results. She 

subsequently gave up on the task. See Table 9.17. 

Table 9.17 
 
Student Responses to the Bacteria Doubling Task (Post) 
 

answer 
choice 

Intervention 
Class (Post) 

Pathways 
In-Person 

Class (Post) 

Gina 
(Post-
test) 

Marcus 
(Post-
test) 

Shelby 
(Post-
test) 

John 
(Post-
test) 

Lisa 
(Post-
test) 

a.  p = 14 + 2t 5% 6%      
b.  p = 28t 0% 0%      
c.  p = 14(1.2)t 3% 6%      
d.  p = 142t   9% 17%      
e.  p = 14(2)t   ** 83% (+23%) 71% (+29%) ● ●, I ● ●, I ●, I 
No final answer   I     
f (t) = 14(1.5)t     I   
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Throughout the post-interview Gina displayed little awareness of how the expressions 

that comprise her model may or may not represent valid relationships between quantities 

in the situation. 

  Summary. Gina, Marcus, and Shelby displayed some variation in their progress 

relative to the meanings I intended students to conceptualize. However, looking at 

commonalities among these three students help clarify a few key findings. The unit did 

support these students in making significant gains on the post-test relative to recognizing 

correct solutions to tasks involving modeling exponential functions and reasoning with 

percent change. However, these assessment results did not reveal some persistent 

challenges. Gina, Marcus, and Shelby all continued to struggle to varying degrees in 

clearly identify reference quantities for making percentage and percent change 

measurements, and their conceptualizing addition as the operation needed to represent 

any increase in a quantity’s value interfered with their ability to produce accurate models 

for exponential relationships. In addition, a lack of expectation that various parts of 

algebraic models represented specific quantities’ values and relationships between 

quantities made it difficult for the students to consistently reproduce their responses from 

the multiple-choice post-test. This also perhaps contributed to high attempt counts and 

persistent guessing on lesson tasks since the students viewed accurate models more in 

terms of producing acceptable answers as opposed to representing relationships between 

quantities they conceptualized within a quantitative structure. 

The case of John and Lisa: positive shifts relative to key learning goals. John 

and Lisa also had strong post-assessment scores, correctly answering all post-test items 

covering exponential growth and related ideas, averaging of 23.5/25 on the entire post-
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test, and both earning an A on the final exam. However, their post-interviews show that 

they made greater shifts relative to targeted meanings and they displayed common 

behaviors and meanings including the following. (1) They confidently manipulated 

applets used in the unit and were able to explain key connections between the applets as 

well as how those applets could be used to demonstrate mathematical ideas; (2) they had 

lower attempt counts on lesson tasks and more frequently completed tasks correctly on 

the first attempt; (3) they tended to identify clear referents when working with 

percentages and percent change when asked and had relatively productive meanings for 

growth factor and exponential function; and (4) they were generally able to describe their 

calculations, expressions, and formulas in terms of quantities and quantitative 

relationships. 

How did students conceptualize key visualizations and applets? Both John and 

Lisa had little trouble manipulating the Unit Ruler and Sliding Interval applets to 

demonstrate key ideas, and several exchanges throughout the post-interview suggested 

that they found the visualizations useful in their reasoning. 

 I showed John the unit ruler applet and, after exploring it briefly, he explained 

how he could measure the length of the bottom segment as a percentage of the unit ruler 

length regardless of whether the length to be measured was longer, shorter, or the same 

length as the unit ruler [MCM-1].57 For each case he adjusted the applet to demonstrate 

the scenario and described the relationships without emphasizing specific values. He then 

                                                      
57 While John said “percentage” here, I saw no evidence in the post-interview that either John or Lisa 
thought about percentage measurements as using a different “unit ruler” than direct relative size 
measurements. My current hypothesis is that, despite developing more productive meanings for several 
mathematical ideas, both John and Lisa still think of a ratio value and percentage comparison as essentially 
the same except that they move the decimal to report one or the other. 
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described how the length to be measured will always be the same percentage of the unit 

ruler as he moved the “co-vary the quantities” slider [MCM-4]. I next asked John how 

this applet helps us understand exponential functions without showing him the Sliding 

Interval applet. 

1 John: So, any change, your previous one is always, so your y one, say your unit  
2  ruler, cuz that’s what you’re measuring your y2 off of, it’s always gonna  
3  be the same percentage of your second one, or vice versa. Um. So, even if  
4  you start out in like the beginning of your graph and you’ve got little baby  
5  measurements [he moves the “co-vary the quantities” slider until both  
6  lengths are very short] to further on [he moves the “co-vary the  
7  quantities” slider until both segments are near their maximums lengths]  
8  it’s, if you divide them it’s always gonna be the same. 

 
Although John said, “if you divide them, it’s always gonna be the same,” (line 8) he did 

not have numerical measurements of any lengths in this applet. I interpreted his invoking 

division here as a substitute for a mental image of making a relative size comparison 

between two instances of a quantity (lines 1-2) [MCM-3] and not just thinking about 

performing a calculation. Throughout the post-interview he was able to estimate the 

values of growth factors even without values and explained how he could correctly 

reinterpret and represent the Muffler task as a percent decrease from the higher cost if 

that was requested. It is also worth emphasizing that John described how the relative size 

of the two instances of a quantity can hold as that quantity varies while also invoking 

variation in a second quantity (lines 3-8) [MCEF-2]. He seemed to be imagining the 

Sliding Interval applet even while working with the Unit Ruler applet. 

Instead of displaying the Sliding Interval applet next, I instead presented Figure 

9.40 showing three different representations for the same exponential function. 
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Figure 9.40. Three representations of an exponential function including John’s annotation 
as he discussed them. 
 
I asked John how the ideas he just described show up in each of the representations. 

Since other students had struggled to describe a meaning for the unit ruler in various 

representations, I wanted to see how John connected his explanations in the Unit Ruler 

applet to these “static” representations and if he would spontaneously invoke images of 

co-variation. 

9 John: So, say if this is like my unit ruler [he draws a vertical segment from (0,0)  
10  to (0,3)], so I just start at zero. Um, and you wanna look at your one [he  
11  draws a vertical segment from (1,0) to (1, 4)], for, if, so like if you’re  
12  sliding to covary, these are always gonna be the same percentage if they, if  
13  you keep moving them back and forth [he indicates that he imagines  
14  sliding the one-unit interval], this is always gonna be, um, four point two  
15  six divided by three times as large as your initial one, whatever point you  
16  are on the graph.  

 
John’s response is significant for three reasons. First, he created an interval and 

represented two dependent function values as magnitudes (lines 9-11), then described 

sliding the interval and attending to what remained invariant (lines 11- 13) [MCEF-1 and 

MCEF-2]. Second, he seamlessly connected the table of values and graphical 
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representations and described his one-unit growth factor as 4.36/3 (lines 14-15) without 

needing to evaluate this ratio with a calculator. I thus interpreted that he was imagining 

this as the value for the measurement he had in mind and not just a calculation. Third, he 

described this value as the one-unit growth factor “whatever point you are on the graph” 

(lines 15-16). In other words, he did not anticipate needing to recalculate the growth 

factor as the function values updated. He was confident the expression 4.36/3 was the 

one-unit growth factor and was constant even as the quantities’ values changed. In his 

initial answer he did not mention the algebraic representation, so I asked him how he sees 

the unit ruler idea represented in the formula. 

17 John: So, it’s just the one point four two is, oh, you have a hundred percent of  
18  your initial, so like your unit ruler, and then your length is forty-two  
19  percent of your unit ruler added to a hundred percent of your unit ruler and  
20  then your three is just your reference, where you’re starting. 

 
John described the meaning of the various components of the algebraic formula [MCEF-

3], although again his exact meaning of “percentage” is not clear. 

 Lisa’s explanations for the ideas conveyed by the applets were quite similar to 

John’s so I will not include long segments of her interview. Two brief excerpts are worth 

sharing because they highlight something that Lisa and John discussed that differed from 

Marcus’s and Shelby’s responses. In this first part she is interacting with the Sliding 

Interval applet. 

1 Lisa: Yeah, so like on every single graph, like this obviously is different from  
2  this [she moves the “1-unit growth factor” slider and leaves it at a value  
3  of about 1.1 or 1.2] 
4 AO: Yeah. But whenever you lock that one in- 
5 Lisa: Yeah, whenever I lock that one in, that’s always gonna be the same  
6  growth factor [she is moving the “sliding interval” slider as she talks]. 
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The data (lines 1-6) supports that Lisa recognized that changing the “1-unit growth 

factor” slider creates different relationships, but that locking in that value indicates what 

remains invariant as the independent and dependent values vary [MCEF-2]. In the next 

part Lisa is interacting with the Unit Ruler applet. 

7 Lisa: [She moves the “co-vary the quantities” slider”.] So it always just, it just  
8  depends on like what fraction, like if you know that your measurement is  
9  point seven five of the unit ruler, but your unit ruler is you know this long  
10  [she moves the “co-vary the quantities” slider to increase the length of  
11  both segment], then it’s always gonna be point seven five, but if your unit  
12  ruler is this long [she move the “co-vary the quantities” slider to decrease  
13  the length of both segments] it’s gonna look a lot closer. So it’s like the  
14  same thing just in a different format. Just like if it’s double [she moves the  
15  “length to be measured” applet so that the bottom segment is twice the  
16  length of the unit ruler segment] […] If you know it’s double, and, of the  
17  unit ruler, and the unit ruler gets longer, it’s gonna be double that, so it’s  
18  gonna look a lot bigger than if it was a small thing. Just like on the graph. 

 
In lines 7-9 she made a similar acknowledgement in the case of the Unit Ruler applet, 

noting that she could fix the relative size and that this will remain constant as the two 

lengths change in tandem [MCM-4]. She then explained how this applied to two specific 

examples (lines 11-13 and lines 14-18) where she not only talked about this relative size 

but discussed the implications for how the difference in values appears different as the 

lengths vary even though the relative size is constant [MCPC-4].  

While Shelby and Marcus struggled to describe mathematical ideas that the 

applets might convey unless they locked in single examples, both John and Lisa 

spontaneously discussed growth factors and relative size comparisons either in general 

terms or using a variety of examples to demonstrate different possible circumstances. 

This suggests that John and Lisa may have connected the ideas across various tasks to 
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develop more generalized meanings for ideas like “growth factor” while Marcus and 

Shelby focused more on applying solution methods to single problems.  

 I asked John and Lisa the question shown in Figure 9.41 to assess the flexibility in 

their meanings for growth factor and percent change over different-sized intervals. Their 

responses are given. 

 
Figure 9.41. A question that assesses flexibility and connections between growth factors 
over different-sized intervals. 
 
1 Lisa:  I mean I guess to me it makes sense just because um, just like you have  
2  like the unit rulers or what not, where you talk about like the growth  
3  factor, how you can take it at one per every year or you can max out. You  
4  can say like every four years this is always going to be the factor. So I  
5  guess it’s just making that large scale, to me, is like every, you know that  
6  it’s gonna be doubled every 23 point five years, so it’s just taking the  
7  original unit measurement of like one year and just making it incredibly  
8  large scale. Um, and just like it wouldn’t matter where on the graph you  
9  would put like negative one to zero, or five to six, you know that’s always  
10  going to be the same, so it’s the same idea just on a larger scale.  
 
Lisa expressed an understanding that the independent interval size under consideration 

does not matter for the general property of a constant relative size between two dependent 

values to remain constant (lines 3-4) [MCEF-3], and then described how this applied to 

the given scenario based on using the given time interval (23.5 years) and the relative size 

(2) (lines 6-8). She also describes her understanding of how these relationships hold 

throughout the function’s domain (lines 8-10) [MCEF-2]. John described many of the 

same meanings as Lisa. John’s description, however, included more detail about how an 

Increasing exponential functions have a constant doubling time based on 
the 1-unit percent change. For example, if the price of milk increases by 
3% per year, then its price doubles every 23.5 years. 
 
Why does it make sense that a given exponential function has a constant 
doubling time no matter what specific input values we are considering? 
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increase of 3% per year eventually will cause the value to double (lines 1-5 in the 

following excerpt).   

1 John: Um, because if you have a specific um percent change per year, or per  
2  whatever your um unit is, um, eventually after so many changes in x it’s  
3  gonna be, um, double whatever you started with or double whatever  
4  you’re referencing as your starting point, um, because it’s always, it’s a  
5  constant change per year.  
6 AO: Okay. So why would it, why would I expect, as I start to slide that  
7  interval, the twenty-three point five year interval,  
8 John: Mm-hmm [yes]. 
9 AO: I start to slide it, why should I expect that the doubling relationship should  
10  be maintained? 
11 John: Because the ratio after applying three percent for twenty-three point five  
12  years, per year, um and if you calculated that that is for any point, um, it’s  
13  gonna be double whatever your initial is, the percent, the ratio’s gonna  
14  stay the same. It’s the same as if, finding a ratio between just one change  
15  in x, once you find, instead of it being a three percent change it’s then a,  
16  uh, a hundred percent change. Yeah. [laughs] Then you can find that  
17  across any, any points on the graph. 
18 AO: Okay. 
 

Both John and Lisa demonstrated flexibility in thinking about the interval size 

over which comparisons in function values are made. They each acknowledged that if a 

quantity grows by three percent per year that it will grow by a different percentage over 

longer periods of time, and that whatever that growth factor is (including two) would 

apply over any equal length of time elapsed [MCEF-3]. This suggests that the sliding 

interval applet and similar visualizations in the module was a very useful tool for 

supporting John and Lisa in developing flexible and productive meanings for growth 

factors. Not only could they reason with and explain one-unit growth factors as 

measurements, but they generalized this reasoning to intervals of any size and at any 

point in the function’s domain. 
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Implications of Low Attempt Counts. Lisa and John more often answered 

questions correctly on the first attempt and tended to have lower numbers of attempts 

when their responses were incorrect. While I had clear evidence that Gina, Marcus, and 

Shelby tended to engage in persistence guessing, the data suggests that John and Lisa did 

not utilize this tactic, at least not to the same extent. I think much more research and a 

larger sample size is needed to make stronger claims about the sources of lower attempt 

counts, such as making claims about whether John and Lisa responded to system 

feedback on incorrect attempts by reflecting on their work and perhaps reconceptualizing 

the question and context. However, the data supports that John and Lisa did construct 

more productive meanings (both compared to their pre-course meanings and compared to 

the other students I interviewed) for many ideas targeted in instruction, and that those 

meanings appeared useful in helping them more efficiently and successfully complete a 

range of tasks. This is likely connected to their tendency to have lower attempt counts, 

but I do not have enough data to definitively explain the connection. 

Attention to reference quantities and a meaning for growth factor, percentages, 

and percent change. During the post-interview, John and Lisa both consistently held in 

mind the reference quantities for relative size comparisons, percentages, and percent 

change (that is, the answer to the questions, “Compared to what?” or “Percent of 

what?”).58 Lisa’s solution to the Tomato Plant B task is shown, which is similar to John’s 

response to the same task. This excerpt picks up after she wrote down the solution “h = 

7(1.13t)” and I asked her to justify her answer. 

                                                      
58 Again, the only exception is that they do not often differentiate percentages as measurements with a 
different unit compared to relative size comparisons between quantities. They appear to use the ideas 
interchangeably without ever mentioning a reason for moving the decimal place. 
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1 Lisa: Every time I think of like, every time I get these kind of questions, I  
2  literally just view it as the little like plant or bar, that’s not a tomato, but  
3  it’s gonna work [she draws a vertical segment with a flower on top and  
4  writes “7” next to it between brackets that extend to the top and bottom of  
5  the figure]. 
6 AO: That’s fine. 
7 Lisa: Alright. [laughs] Um, like I view it as just like a little week by week  
8  growth. Just these lines, like [she draws two more similar figures to the  
9  right, each one taller than the previous figure], so I know, one, that it’s  
10  never gonna get smaller cuz it grows. Dit-, it hasn’t wilted yet. But, um,  
11  yeah, and that these are gonna get like exponentially larger [emphasis  
12  hers], so like eventually it’s gonna be like this [she draws a fourth figure  
13  that is taller than the previous three], so it’s not gonna be the equal  
14  distance, so it’s just gonna get like really long [emphasis hers] every  
15  single time [she draws a fifth figure that is taller than the previous four  
16  figures. See Figure 9.42 for her written work thus far.] 

 

 
Figure 9.42. Lisa’s written work on the Tomato Plant B task during the first part of the 
post-interview. 

 
17 AO: Okay. And where would somebody see the point one three in the, in these  
18  drawings that you did? 
19 Lisa: I mean really it’s, it would just be like [she draws a horizontal segment  
20  beneath all of the figures] this open space here [she indicates the area  
21  between the tops of the two figures furthest to the left]. Especially, I guess  
22  the best way to view would just be of course in the first original pair [she  
23  draws a box around the two figures furthest to the left and writes “1.13”  
24  between the two figures]. Um, so this would be point one three here of  
25  seven, so it’s just like this distance [emphasis hers, she draws a bracket on  
26  the figure second from the left that indicates the difference in heights for  
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27  the two figures she boxed]. Does it equal, yeah. So it’d be like that  
28  distance, or whatever from the top of the flower to the, the, like the, the  
29  stem growth in this example, it’d be like this empty space here. [She  
30  repeats indicating the difference in heights between each consecutive  
31  figure. See Figure 9.43.] for every single one. 

 

 
Figure 9.43. Lisa’s written work on the Tomato Plant B task during the second part of the 
post-interview. 

 
32 AO: Okay. And where do they see the one part of that. So that’s where the  
33  point one three comes from, but where’s the one in your diagram?  
34  Because you’ve got the one point one three. 
35 Lisa: Um, so it’d just be the top, like wherever the top of the previous one hits  
36  [she indicates the horizontal segment extending from the top of the first  
37  figure]. So because that would make it one hundred percent of the original.  
38  And then, so, well I guess technically the whole flower would be the one  
39  point one three compared to the original, but this, like the growth  
40  [indicates the difference in height between the second and third figures],  
41  would be the point one three almost, like the difference. Yeah, okay so I  
42  described that wrong. So this would 
43 AO: No, I think you described that right.  
44 Lisa: Okay, I was like, and then the one would just be wherever it’s equal  
45  [indicates the height of the second figure] so all of this would be the one  
46  and then this would be the extra [indicates the difference in height  
47  between the second and third figures], the point one three, so the whole  
48  it’s the point one point, one point one three. Yeah. Yeah. 
 
Lisa’s solution suggests that she has a clear image of a growth factor as a measurement of 

one instance of a quantity using another instance as the measurement unit (lines 21-24, 
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35-39) [MCM-3], and that she can differentiate between measuring values of a quantity 

and changes in the quantity using this reference unit (lines 24-31, 39-41) [differentiate 

between MCM-3 and MCPC-1]. She also clearly linked these measurement values to her 

algebraic representation [MCEF-3] since she described her meanings for these values 

after producing the model. After explaining her solution to the Tomato Plant B task Lisa 

returned to the Muffler task and demonstrated that a similar way of reasoning justifies the 

calculations and solution to that task. She drew the image in Figure 9.44, using plant 

heights to substitute for prices, and discussed how the difference in the repair costs was 

identical to discussing the stem growth from one instance to the next (that is, measuring 

only the quantity’s new magnitude in excess of the previous magnitude), and that the 

measurement is reported in terms of the magnitude before the change. 

 
Figure 9.44. Lisa’s diagram she used to justify her solution to the Muffler task. 
 

Emergent symbol meaning. It is challenging to recognize emergent symbol 

meaning in interviews on tasks that are at least somewhat familiar to the interviewees 

such as modeling exponential functions after completing a unit designed to teach this 

idea. In these cases, the students are more likely to be relying on familiar algebraic 

structures to produce solutions in expected forms as opposed to authentically deriving 
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expressions and formulas by conceptualizing a novel situation, exploring the 

relationships between quantities, and building the formula to reflect the relationships they 

identify. However, Lisa’s work in the Tomato Plant B task shown in the previous section 

suggests that, at the very least, she has a productive meaning for the various components 

of the formula she produced. An example from John’s post-interview is also worth 

sharing. 

In the Tomato Plant A task John was the only student who spontaneously 

represented the plant height as an exponential expression rather than calculating 50% of 

the starting value and adding this to the original height, then repeating the process using 

the height at the end of the first week. He wrote “y = 4 x (1.5)2” [“x” representing 

multiplication] as his answer and then he determined that value with a calculator. He first 

evaluated (1.5)2 to get 2.25 and multiplied this by four. I asked him if 2.25 was an 

important number to understand or if it just represented an intermediate step in the 

calculation process. 

1 John: “It’s the rate of change for a, or for, um, two changes in x. Um. For this  
2  graph and then you apply it to your, to your starting y.”  
 
Although he called it a “rate of change”, this was the only time he used that phrase while 

describing his reasoning on these tasks. I believe he intended to say “growth factor”, in 

which case he was able to interpret and justify the steps in his evaluation process 

meaningfully in terms of relationships between quantities. This tended not to be a feature 

of Gina’s, Marcus’s, or Shelby’s evaluation and solution processes. This is also the 

foundation for MCEF-4 and MCEF-5, which describe understanding the meaning of bx in 

the formula f (x) = abx as the x-unit growth factor and the value of the ratio f (x) / f (0), a 
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meaning I hypothesize is critical if students are to see quantitative significance in the 

order of operations for evaluating exponential functions. 

 Summary. All five students I interviewed had relatively high post-test scores and 

earned an A or B on the course final exam. Post-interviews with John and Lisa, however, 

demonstrated that they made larger gains relative to my learning objectives, including 

being able to clearly articulate reference quantities for making percentage and percent 

change comparisons and being able to justify their solution methods and algebraic models 

with respect to quantities they conceptualized in the situation. John’s and Lisa’s 

flexibility in using the applets that appeared within the unit, describing the ideas the 

applets could be used to demonstrate, and describing how similar ideas are represented in 

each applet clearly differentiated their reasoning from that of Gina, Marcus, and Lisa, as 

did their repeated reference to the imagery displayed in these applets within their solution 

methods across the post-interview. It is clear that John and Lisa found these applets and 

related imagery to be powerful tools in supporting their reasoning about exponential 

growth and related ideas and this raises questions about how to better support all students 

in interacting with these applets and making connections between the ideas they are 

intended to support. 

 

Discussion 

This study makes important contributions to research in online learning, student 

thinking and learning about exponential functions, percentages, and percent change, and 

the utility of promoting students’ quantitative reasoning skills. In these final sections I 
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discuss implications of my results and map out future research opportunities and next 

steps for this work. 

 

Teaching, Learning, and Conducting Research in the Online Environment 

An online mathematics course provides both opportunities and challenges for 

designing high-quality student learning experiences. Many teaching experiment studies 

(e.g., Moore, 2014; Ellis et al., 2016) demonstrate how certain meanings may be 

productive for students, how certain tasks and didactic objects might be leveraged to 

facilitate conversations that promote those meanings, and how aspects of specific 

learning trajectories may have supported students in making connections between 

different ideas. It remains an open question as to how this research based and refined 

online instructional intervention (course) compares with in-class precalculus courses 

using different curriculum and/or instructional approaches. I conjecture that instructors in 

face-to-face settings who have clear meanings for a course’s key ideas (Thompson, 

2013), are oriented to make sense of and support student thinking, and who use course 

materials that are similarly designed to support students’ development of essential 

reasoning abilities and understandings may better support student learning compared to a 

fully online course. For example, that instructor can engage students in emergent 

conceptual discussions, pose novel questions to respond to models of students’ thinking, 

or foster effective collaborative exploration among small student groups. I also conjecture 

that an online course based in research on student learning of targeted ideas and 

developed using design research will likely result in larger gains in student learning than 

a course taught by a procedurally-focused instructor using a procedurally-focused 
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curriculum. By engaging in focused research over time online instruction may even 

evolve to be better at anticipating the diverse thinking that students present than many 

teachers. In fact, there is evidence that mathematics instructors often possess weak 

meanings of key ideas in precalculus level courses they are teaching (e.g., Musgrave and 

Carlson, 2017) and little interest in understanding or acting on student thinking (Bas and 

Carlson, 2018).  

 

Exponential Growth and Related Ideas and Comparing Student Learning 

Students in this intervention demonstrated significant growth from the pre-test to 

the post-test. These gains suggest that the online course led to improvements in students’ 

ability to respond to tasks assessing students’ ability to recognize accurate models for 

exponential relationships and to reason about percent change and repeated constant 

percent change. Furthermore, students demonstrating the largest shifts relative to targeted 

learning goals demonstrated flexibility in applying meanings for growth factors and 

relative size comparisons across a variety of tasks and situations. Students entered the 

course with vague meanings for exponential functions, such as viewing exponential 

growth as relating to “bigger numbers” or having a graph with a certain general shape. 

There was little evidence that students’ meanings were mathematically productive—the 

meanings they described and the behaviors they exhibited suggested that there was little 

substance carried with these meanings that could productively support reasoning about 

situations involving exponential growth, constant percent change, and percentage 

measurements. This was also true for some students at the end of the class, but other 

students did develop productive meanings for exponential functions and growth factors 
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that suggest potentially powerful ways of reasoning about these relationships even if it 

also revealed challenges in designing lessons to support students in constructing these 

meanings. 

Researchers studying student learning of exponential growth and related ideas 

(e.g., Confrey, 1994; Confrey & Smith, 1994, 1995; Ellis et al., 2012, 2015, 2016; Ström, 

2008) grounded their work in images of repeated multiplication and/or assumed that 

students’ background knowledge involved characterizing exponential growth as repeated 

multiplication. Thus, their focus on productive meanings for “growth factor” emerged 

from this foundation. However, it was uncommon for these researchers to focus on 

expressing exponential growth as a constant percent change in a dependent quantity 

relative to uniform changes in an independent quantity. My data suggests that supporting 

students in seeing the connection between meanings for growth factors as expressed in 

these studies and constant percent change is nontrivial. Students tended to focus on the 

amount to add when reasoning about percent change and repeated constant percent 

change. This carried forward into their reasoning about representing repeated percent 

change. As one example, most students produced the formula h = 7 + 0.13t to model the 

height of a plant after t weeks assuming that its initial height is 7 inches and it grows by 

13% per week. Contributing to this tendency is the common student belief that their 

answers should reflect some combination of the variables and numbers explicitly given in 

a problem statement. Thus, students often overlook the need to account for quantities and 

quantity values that are not directly mentioned, such as not including the growth factor 

1.13 in their algebraic models since neither 1.13 nor 113% are explicitly given in the 

problem statement or when one student wrote P = 14t to model a doubling function when 
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only 14 and the two variable names were directly stated in the problem text. Finally, 

these incorrect models reveal a general lack of student awareness for how the expressions 

and formulas they write should represent the relationship between values of quantities 

they have conceptualized in the situation. If students tend to view percent change in terms 

of repeated addition (even if they recognize a need to update the reference value for 

determining the value to add when performing calculations), if they struggle to routinely 

consider and answer the question, “Percent of what?” when reasoning about percent 

change, and if they tend not to reflect on the quantitative meaning for components of the 

models they produce, then students are unlikely to generalize meanings they might 

develop within learning trajectories such as that proposed by Ellis et al. (2016) when 

presented with descriptions of exponential growth as constant percent change. 

I hypothesized that a focus on measurement as the source for the values used to 

describe quantities and as a visualization for thinking about relative size comparisons 

could help students connect ideas across lessons and units and could be a productive 

foundation for thinking about exponential growth and related ideas. Evidence suggests 

that this hypothesis might hold for students like John and Lisa who internalized this 

imagery and used it to justify their mathematical processes. However, the overall course 

design and the lessons and tasks I created did not support this internalization for all 

students. Three of the students I interviewed showed uneven development in their 

meanings relative to my learning goals despite significant improvements in their ability to 

answer assessment questions in the course. I hypothesize that the differences between the 

two groups is best explained by the degree to which the students engaged in reflection on 

their meanings during lessons.  
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Thompson (1985) contrasted figurative thought and operative thought. Figurative 

thought refers to a person’s thinking within a certain scheme and manifests itself in 

relation to that scheme as an inability to work beyond the task at hand and reason about 

more general relationships and connections. Operative thought involves mental 

representations of actions and consideration of the consequences of those actions that 

allows students to make propitious decisions about next steps in their reasoning process 

and how those steps connect to conclusions already made. Thus, operative thought 

implies the person is exercising a level of coordination and control over her reasoning. 

Furthermore, “once a student has created a structure of operations, he or she may reflect 

on the current state of affairs into that structure, and think in terms of possibilities: What 

would happen if I did (or did not) do this?” (p. 197). A key aspect of operative thought is 

the conservation of relationships within a system regardless of variations in what is being 

considered. 

I conjecture that the student grouping I noticed reflects evidence of students 

engaging in reflective thought vs. operative thought within tasks in the post-interview. 

Gina, Marcus, and Shelby tended to focus on features of a specific problem and struggled 

to think more generally about how certain relationships were preserved across contexts, 

different representations, and variations in the kinds of information provided within a 

task. For example, Marcus and Shelby both had difficulties explaining general ideas that 

could be supported by the Unit Ruler and Sliding Interval applets unless they were 

discussing only a single established example. Consistencies in their work across tasks 

were due more to general solution strategies such as circling all numbers and variables in 

a problem statement and fitting them together in some string of calculations rather than 
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seeing commonalities in quantitative relationships and regularities in mathematical 

reasoning across contexts. John’s and Lisa’s work in the post-interview paints a different 

picture, perhaps best encapsulated by their explanations for the ideas that the Unit Ruler 

and Sliding Interval applets could help demonstrate. Both students described 

mathematical ideas conveyed within each applet, connected the two applets by describing 

how ideas in each applet could be visualized within the other applet, and communicated 

the application of those ideas across multiple examples and in general terms. 

Furthermore, the meanings they conveyed and the visualizations they described appeared 

in their reasoning and solutions across multiple tasks in the post-interview.59 

 Thompson (1985) argued that promoting the development of operative thought 

should be the goal of mathematics instruction. The differences I identified between the 

two groups of students provides a good example of why this is important. But for 

students to develop an understanding for the conservation of relationships within a 

system, they must engage in repeated reasoning about these relationships in increasingly 

sophisticated ways that support the mathematical structure of the ideas at hand and they 

must reflect on their reasoning in ways that highlight consistencies in reasoning across 

various tasks and scenarios. That Gina, Marcus, and Shelby did not appear to engage in 

reflection on their meanings and common features of their reasoning within the unit 

lessons potentially explains much of the differences in learning outcomes and informs 

some needed modifications to future iterations of the intervention. 

 

                                                      
59 It is worth noting that I presented the applets to students near the end of each interview after they had 
described their reasoning and justified their solutions to all tasks in the post-interview. 
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Emergent Symbol Meaning 

O’Bryan and Carlson (2016) demonstrated that professional development training 

for a teacher (Tracy) focused on the following ideas helped her shift to pay attention to 

her students’ meanings for the calculations they performed and the expressions and 

formulas they produced: (1) attending to and writing out in words the quantities she 

constructed and quantified in each step in reasoning through a solution process, (2) 

considering how to represent each of those quantities with notation using nested 

mathematical expressions, (3) considering how the order of operations for evaluating 

models she produced mirrored the steps in her original reasoning process, (4) noticing 

how a mathematically equivalent model that follows a different order of operations may 

produce the same values but have different underlying justifications and produce values 

for different quantities during the evaluation process, and (5) attempting to explain how a 

person might be reasoning about a situation when presented with the mathematical model 

he produced. After focusing on these ideas during training, Tracy began creating her own 

lesson activities to replicate the experiences for her students, such as asking students to 

write out in words the steps in their reasoning, write out those steps in symbols, and then 

explain what quantity’s value was being calculated at each step in an evaluation or 

solving process. She also routinely prepared alternative solutions to lesson tasks so she 

could present them and ask questions such as, “How must this student have defined his 

variables for this model to be accurate?” Observations of her lessons showed that 

students were increasingly attentive to the quantitative meaning for calculations they 

performed and the models they produced. It was this study that first highlighted the 

power of what we are now calling emergent symbol meaning. 
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 We describe emergent symbol meaning relative to students’ expectations when 

symbolizing mathematical reasoning or interpreting algebraic statements and 

calculations. Students engaging in emergent symbol meaning have an expectation that the 

calculations they perform and components of expressions and formulas they write 

represent a process of quantifying and representing new quantities in relation to other 

quantities in a situation. They also expect that the order of operations involved in 

evaluating an expression reflects the steps in their reasoning process and that this insight, 

when applied to already-written expressions and formulas, can help them unpack the 

meanings, reasoning, and conceptualized quantities that someone used to generate the 

statement. Note that the term “emergent symbol meaning” is intended to echo Moore and 

Thompson’s (2015) emergent shape thinking construct referring to a way of 

conceptualizing graphing as visualizing a trace emerging from coordinating magnitudes 

or values of two co-varying quantities. A person with this image is also positioned to 

view already-produced graphs as having emerged from such a trace, and attempting to 

reproduce the trace uncovers important insights about the modeled phenomenon. 

 My study highlighted the important role of emergent symbol meaning as a cross-

cutting way of thinking and novel research construct worthy of additional research. 

Moore and Carlson (2012) demonstrated that students’ initial conception of quantities in 

a situation heavily influenced the mathematical representations they produced to model 

relationships between those quantities. Evidence from this study suggests that, even when 

students have conceptualized certain quantities or processes, representing those 

algebraically requires that the students attend to how each aspect of their model reflects 

relationships between quantities and a process of representing new quantities. As one 
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example, in the Tomato Plant A task most students were able to correctly determine a 

plant’s height after two weeks given its initial height and the weekly percent change in 

height. However, in attempting to model the same phenomenon algebraically in the 

Tomato Plant B task, students produced models such as h = 7 + 0.13t with calculations 

and an order of operations that did not reflect their solution process in the Tomato Plant B 

task. Similar results occurred in the Bacteria Doubling task where students could 

determine how many bacteria should be present at the end of one or two weeks but 

struggled to produce algebraic models for a general doubling process. Students likely 

lacked a strong meaning for exponential notation entering the course, and it is fair to 

assume that students might not have had this notation available to represent a relationship 

that they had conceptualized. There is a more significant implication of these results, 

however. Four of the five students who produced, or started to produce, the model h = 7 

+ 0.13t failed to recognize that this did not reflect the relationship that they intended to 

represent. It is one thing for a student to acknowledge that they do not have appropriate 

notation to represent a certain process. It is quite another for students to generate an 

incorrect model, have no awareness that what they produced contains calculations and 

produces values for quantities not present in their previous solution methods, and to 

declare the model acceptable. That this occurred so frequently demonstrates that students 

entering Precalculus generally do not engage in emergent symbol meaning when 

generating algebraic models. It also suggests that supporting students in shifting their 

expectations relative to the meanings for components of algebraic models is a worthy 

instructional goal and one that might positively impact students’ success in mathematics. 
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An Observation about Assessments as Measures of Student Learning 

In this study student answers on multiple-choice items often differed from their 

responses to the same tasks in interviews. In the pre-test and pre-interviews on several 

tasks that required modeling with algebraic representations, working with exponential 

functions, and reasoning about percent change, students provided identical answers only 

45% of the time. During the post-test and post-interview the number increased to a little 

over 70%. The most likely reason for this discrepancy between assessment and interview 

responses is that it is easier to recognize an appropriate model when presented than it is to 

create one from scratch. Many students in this study judged the appropriateness of their 

models in interviews based on whether the models produced final values that matched 

what students might have expected or that seemed reasonable. When presented with a 

choice of models as multiple-choice options, students could test each option until they 

found one that produced certain expected values (such as correctly doubling a value after 

one week) or could at least eliminate answers that produced values that seemed 

unreasonable. These strategies are less available when the models are not provided. 

However, even correct responses to tasks either on the assessment or in interviews did 

not necessarily reflect that a student possessed the most productive conceptual meanings 

for the underlying ideas. For example, all of the interviewed students held procedural 

meanings for “percent” (something like “when I see a percent value I move the decimal 

point two places before doing calculations”) including students who answered questions 

correctly involving percentages and percent change. Some of these ways of thinking may 

be so deeply ingrained in past experiences that changing students’ schemes will be 
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challenging for any intervention, but it is also likely that this intervention requires 

modifications to better support shifts in students’ meanings. 

Overall, these findings suggest a need for assessment validation methods to attend 

to the underlying meanings and ways of thinking that research literature has revealed to 

be critical for student learning and using ideas. Features of the tasks, the question format 

(such as multiple choice vs. open-ended), and the choice of values explicitly given in 

problem statements may contribute as much to students’ performance on these items as 

the meanings students hold for the mathematical ideas we intend to assess. Any research 

study or analysis that relies on student assessment performance must consider how an 

assessment’s form and question selections may impact the data collected. 

 

Next Steps and Future Research 

There are a number of implications of this study both in terms of modifications 

needed to the intervention and productive future lines of inquiry. 

 

Modifications Suggested by the Study 

 Promoting student reflection. Thompson (1985) explained that operative 

thought develops when students reflect on what remains invariant across a variety of 

problems and when they can differentiate the results of their reasoning and the reasoning 

that produced those results. This is the process whereby schemes are altered, allowing 

students to spontaneously and productively use these mental actions in novel (but similar) 

problem contexts. Task design can help foster experiences where students might engage 

in this behavior, and certainly more work is needed to assess the effectiveness or 
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ineffectiveness of tasks and task sequences within this unit to create lessons that better 

promote student reflection. I am certain that a variety of tasks within the lessons could be 

improved to better support students in reflecting on their reasoning and making 

connections in how they reasoned across different situations. However, I also believe that 

students have certain dispositions influencing whether they engage in this reflection when 

the opportunity arises. Thompson argued that integrating technology into lessons and 

tasks provides students opportunities to test hypotheses, gain immediate feedback on 

these hypotheses, and draw important conclusions from these interactions. But this study 

showed at least some students respond to this feedback by engaging in persistent 

guessing, and the students I interviewed who did this frequently were the students who 

struggled most to make connections between ideas in the unit and who often failed to 

provide a reasonable mathematical justification for their reasoning and solutions.  

Thus, future iterations need to test modifications that deter high attempt counts 

while still allowing students space to test hypotheses and receive feedback. For example, 

we could attempt to program lessons to prevent students from submitting more than five 

attempts to a single question during any five-minute period. If students know about this 

limitation, it may encourage them to think more carefully about the task and the question 

being asked before submitting their first attempt, and they may take more time to reflect 

on their reasoning and their solution before submitting additional attempts. A small-scale 

study could investigate how this change impacts student behaviors, expectations, 

motivation, and learning prior to scaling this change to an entire class. We can also 

compare alternative methods for reducing persistent guessing such as awarding lower 

lesson scores for higher attempts or programming follow-up questions for key tasks that 
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ask the students to pick reasons from a list explaining why they believe their answer was 

wrong. It will be important also to attend to potential collateral effects of these 

modifications. For example, it is possible that one of these changes might cause higher 

student frustration levels and lower persistence rates because students find it more tedious 

and time-consuming to complete lessons. 

Supporting an increased focus on quantities and references and supporting 

students in seeing connections between key applets. Reducing persistent guessing 

might help change students’ expectations and behaviors for engaging with course tasks, 

but it does not address issues such as students’ tendency to conceptualize a given 

visualization or applet in ways other than what the designer intended. In particular, it 

seemed that students’ ability to see the connection between the Unit Ruler applet and the 

Sliding Ruler applet, as well as use the applets to describe general ideas in exponential 

growth, was integral to their ability to reason productively in tasks throughout the post-

interview. Four initial changes to the unit are likely to pay large dividends in helping 

students develop productive ways of thinking when using these applets and identifying 

important quantities and reference values. 

First, students need to be held accountable for drawing diagrams to represent their 

image of the relationship between quantities in a given situation, such as the relationship 

between an original price, a sale price, and a discount amount both in dollars and 

percentages. During this iteration we struggled to integrate more open-ended tasks in the 

iMathAS environment due to programming/assessment limitations. However, these 

diagrams seem to be useful tools that facilitate students’ reasoning and construction of 

productive meanings. Therefore, we need to work to create and program tasks where 
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students must draw diagrams to support their solutions. Pilot studies also showed that 

asking students to drag quantities’ descriptions onto diagrams and drag mathematical 

expressions onto diagrams to demonstrate what quantities they evaluate/represent 

positively impacted students’ ability to identify quantities in a situation and model those 

quantities using various representations. This study highlights the importance of finding a 

way to program such tasks within the iMathAS environment and integrate them within 

our lessons.  

Second, the interactive applets representing variations on the Unit Ruler and 

Sliding Interval applets should be included within more tasks, and students should be 

asked to not only solve the given tasks but alter and submit applet states to demonstrate 

their solution. For example, if students are given two populations and asked to compare 

their relative size, we could require students to not just provide the value but to also set 

the Unit Ruler applet to a state that shows their approximate relative size. We may also 

include more prompts for students to interpret what a quotient value (that represents a 

relative size of say two populations) represents. My data suggest that many students were 

not fluent in interpreting a quotient as representing how many times as large the 

numerator value is than the denominator value, nor did they see the quotient as 

representing the value of the numerator measured in units of the denominator.   

Third, tasks explicitly linking variations of the Unit Ruler applet to variations of 

the Sliding Interval applet should be included that focus on commonalities in the ideas 

they can demonstrate. Doing so is not just a way to help students more productively 

respond to that question in the post-interview. The connection between the ideas 

demonstrated by the applet is key to developing the reasoning I targeted as evidenced by 
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students’ responses in the post-interview. In particular, we need to develop tasks that 

include both applets within the same question set with interactions between the two 

representations necessary to solve the task. For example, students might use the Unit 

Ruler applet to estimate the relative size of two instances of a quantity and then modify 

the growth factor in the Sliding Interval applet to represent the same relative size. This 

leads into the final modification I will discuss. 

Fourth, we should introduce tasks that encourage students to examine the impact 

of changes in the growth factor for an exponential model and how those changes are 

reflected in various representations of the function relationship. The post-interview data 

suggests that the unit did not contain enough opportunities for students to think about the 

impact of changing the one-unit growth factor. Not explicitly asking students to compare 

the impacts of different growth factors in a given situation likely contributed to uneven 

results in students’ ability to connect meanings for growth factors across various tasks 

and representations. 

 Supporting flexibility in meanings for growth factors and emergent symbol 

meaning. Kuper (2018), in a teaching experiment to support students constructing 

productive meanings for logarithmic functions, found that students struggled to see the 

equivalence of repeated multiplication by some set of factors and multiplying by the 

product of those factors. For example, students could not fluently recognize and use the 

fact that multiplication by two followed by multiplication by three is equivalent to 

multiplication by six. This is a significant finding for planning interventions to support 

students in understanding logarithms and logarithm properties and also suggests 

instructional goals for teaching exponential growth. My study examined students’ 
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meanings for growth factors as measurements of relative size between two instances of a 

quantity and demonstrated challenges in students conceptualizing a single multiplicative 

comparison, let alone the results of multiple consecutive comparisons.  

O’Bryan and Carlson (2016) showed that it was useful for students to expect that 

the algebraic models they produce reflect features of their reasoning process, such as the 

order of operations used to evaluate the model reflecting a hierarchy in the quantities they 

conceptualized. This expectation helped them develop productive meanings for symbolic 

representations. Relative to an exponential function, this frames how students might need 

to think about exponential function formulas such that they fit within this general way of 

thinking. Given  

f (x) = abx, evaluating f (n) for some real number n involves a particular order of 

operations. (1) Evaluate bn (call this value c). (2) Evaluate a·c. Following the order of 

operations here creates a slightly different interpretation compared to an image of growth 

determined by multiplying a by b, then the result of that by b, and so on (i.e., repeated 

multiplication by b). Instead, understanding the calculations in the order of operations 

requires having a meaning for bn as the value of some quantity such that a times that 

value has meaning as well (in this case, bn is the n-unit growth factor, which is then used 

to scale a to determine f (a)). As Kuper demonstrated, however, it is nontrivial for 

students to see multiplying by the value bn and multiplying by n factors of b as 

equivalent. My study suggests cases where exponential growth is communicated as a 

repeated constant percent change in a dependent quantity relative to some constant 

additive change in the independent quantity introduce additional complications. Students 

tend to strongly link percent change with addition, and thus they need specific support to 



 

327 

see the connection between percent change and growth factors and flexibly convert 

between them by relying on productive meanings of measurement before they can then 

be supported in seeing the equivalence of and connection between using growth factors 

for different interval sizes to evaluate the same final product.  

While I did target the meanings discussed in the previous paragraph within the 

unit, and at least one student (John) twice during interviews described a flexible meaning 

for growth factors by describing both what b and bn represent in an exponential context 

consistent with those meanings, most students did not show evidence that they developed 

these intended meanings. I believe more progress is possible after making other revisions 

already described, but specific attention to developing a meaning for bn is also necessary. 

In the next iteration I foresee two focal points for revisions. First, applets simultaneously 

showing comparisons across multiple one-unit intervals might need to include more 

specific information directing students to attend to various comparisons. For example, a 

toggle slider can be programmed so that moving the slider highlights different 

measurements across different intervals and links the measurement values to the one-unit 

growth factor both numerically and symbolically. The applet can be imbedded in 

questions that require students to position the applet in different states to represent given 

comparisons and can ask them to enter expression representing various growth factors in 

relation to the one-unit growth factor. This may help support students in visualizing bn as 

a measurement of relative size over some interval but also as the cumulative effect of n 

consecutive b-tuplings (using the language introduced by Kuper (2018)). Second, more 

emphasis is needed on representing repeated percent change, such as seeing 4(1.15) as a 

value that is 15% greater than four, 4(1.15)2 as a value that is 15% greater than 4(1.15), 
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and so on while also comparing 4(1.15)2 to 4. Creating tasks that require students to 

represent their solutions as expressions that they could simplify to produce a numerical 

answer might further support students in develop the intended meanings. In this iteration 

we encouraged students to represent their calculations in iMathAS, but many students 

used separate calculators and then entered only numerical answers to tasks. It might be 

that it is only within contexts requiring students to reason about, represent, and attempt to 

generalize repeated percent change that they make meaningful connections between 

percent change and growth factors. 

 

Future Research 

Future research and follow-up work can strengthen and extend conclusions from 

this study. I foresee at least five productive avenues for future research extending from 

the work in this study. 

Thinking with magnitudes. Thompson et al. (2014) argued “that children’s 

development of algebraic reasoning and calculus reasoning is strongly dependent upon 

their abilities to think with magnitudes” (p. 9) but acknowledged that this is merely a 

hypothesis since “research on mathematics learning has not attended to issues of 

magnitude” (p. 9). They call for more work in this area, including performing conceptual 

analysis to reveal mathematical ideas where thinking with magnitudes might be important 

and investigating how levels of thinking with magnitudes influence learning and teaching 

specific ideas. My conceptual analysis of exponential functions provides a detailed 

description of how thinking with magnitudes might contribute to productive meanings for 

exponential growth and related ideas. However, I did not collect data explicitly designed 
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to: (1) characterize the levels of thinking with magnitudes students engaged in for various 

tasks, (2) characterize the level of thinking with magnitudes a given student was capable 

of and how this may have impacted their success internalizing intended meanings, or (3) 

chart the impact of lessons and tasks on supporting students in developing more 

sophisticated ways of thinking with magnitudes in general. Pursuing this in future studies 

related to this intervention could provide insights that inform future iterations of the 

course but also contribute to further development of Thompson et al.’s framework. 

Additional analysis on course data. The current study generated far more data 

than could be analyzed and described in this report. Within the seven lessons and 

associated homework assignments in the exponential functions sections we have all 

students’ responses to every attempt for every task, including the order in which series of 

incorrect responses were entered. This amounts to over 11,000 sets of responses and 

several times as many individual attempts across all tasks for approximately 65 students 

in this section alone. This data set could provide important insights into questions 

including but not limited to the following. 

 What were the most common initial attempts to each task? The most common 

incorrect initial attempts? What might this suggest about how students are 

interpreting each task? 

 Did students’ responses reflect incorrect or unproductive meanings identified in 

the pre-interviews? If not, is the unit currently designed to recognize whether 

students are attempting to leverage unproductive reasoning (beyond simply 

telling them their answer is incorrect)? If so, is there evidence to suggest that 
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certain tasks or lessons contributed to a decrease in students’ applications of this 

reasoning? 

 When students produced a high number of attempts to a question, was there a 

recurring pattern to their guesses? If so, what might that tell us about their 

thinking? 

 Are there “lynchpin” tasks within the lessons that seem highly predictive of how 

students respond to later tasks? If so, does analyzing those tasks provide any 

insights into productive ways of understanding ideas, challenges preventing 

students from making certain connections, or common ways that students 

interpret tasks or visualizations in unintended ways? 

Continue iterations of reflection, redesign, implementation, and study. This 

intervention iteration demonstrated the usefulness of certain mathematical meanings 

while reasoning about tasks related to exponential growth and percent change but also 

revealed challenges in supporting those meanings. Much work is needed to continue to 

shape the course into a higher-quality learning experience for students, and this will 

require many iterations of studying student behaviors and learning within the course, 

generating new theory based on our observations, hypothesizing and testing adaptations, 

and starting the cycle again. Of particular interest will be: i) adapting and studying the 

impact of new approaches for supporting students in conceptualizing and relating 

quantities in a problem context; ii) analyzing the effectiveness of a general focus on 

measurement and relative size as a key theme uniting a variety of mathematical topics 

and ideas; iii) supporting and studying efforts to support students in applying quantitative 

reasoning across lessons;  iv) supporting and studying efforts to support students in 
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making connections across lessons and across units The results of this work will not only 

help to create a better intervention but can also contribute new theory in areas such as 

learning trajectory research, online learning, and quantitative reasoning. 

Creating and validating items to assess students’ meanings for exponential 

growth and related ideas. Several of the tasks used in this study were written for 

inclusion in broadly disseminated formative assessments that could be used as course 

exams, readiness or placement tests, or to measure the impacts of intervention studies. To 

that end it is important to understand how students respond to these tasks, how certain 

answer choices reflect specific ways of thinking about targeted ideas, and using the best 

choice of distractor such that the questions best capture the variety of ways students 

might be thinking about the targeted ideas. Item validation requires repeated iterations of 

task redesign and data collection until our data supports that all items assess what we 

intend and item distractors capture common student thinking (e.g., Carlson et al., 2010).  

I will continue to use, refine, and test refinements of items in this study to examine the 

impacts of future modifications to the course as well as contribute to the important work 

of generating validated assessment items for assessing students’ meanings for specific 

mathematical ideas, beginning with ideas of percent, percent change, growth factor and 

exponential growth models. This will extend past research that produced broad 

assessments of key ideas of a course (e.g., PCA, CCR).  

Emergent symbol meaning. I described emergent symbol meaning relative to 

students’ expectations that calculations performed and algebraic representations 

generated reflect connections to reasoning patterns emerging from attending to quantities 

in a situation and relationships between quantities. I also described students with this 
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image having a similar expectation that they can analyze algebraic representations, 

including the order of operations used to evaluate the expression/formula, to unpack the 

reasoning that generated those representations. O’Bryan and Carlson (2016) 

demonstrated that activities supporting such a focus can productively help both teachers 

and students engage in more productive discourse about algebraic representations and 

increase their attention on the quantities and relationships they intend to model. However, 

more work is needed to flesh out this construct. Much like Moore and Thompson (2015) 

explored students’ covariational reasoning in generating graphs and were able to flesh out 

differences between and implications of static vs. emergent shape thinking, researchers 

focusing on how students think about symbolic representations in modeling contexts are 

likely to uncover nuances influencing how students see algebraic representations as 

representative of their reasoning and how they see these representations as constructed 

systematically by linking the constructed order of operations and a hierarchy of quantities 

within a quantitative structure. Studying students across many age levels, courses, and 

with respect to different mathematical ideas while seeking to promote the expectations 

described as emergent symbol meanings may reveal benefits of this focus and generate 

new insights into how coherent themes (like emergent symbol meaning, emergent shape 

thinking, etc.) may help students connect their learning experiences across topics and 

courses and promote their success in STEM courses and careers. 
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CHAPTER 10 

CONCLUSION 

Thompson (2013) demonstrated that a strong system of meanings is critical for 

teachers (and curriculum designers). He argued that a weak or incoherent system of 

meanings creates more space for students to construct incorrect or unhelpful meanings 

and for the teacher (or designer) to remain unaware of students’ constructions. 

Understanding exponential functions seems particularly challenging for students, which 

is not surprising given the complexity inherent in fully unpacking critical features for 

such relationships and evidence that many curricula overlook this complexity when 

introducing the concept (see Paper 3). Several previous studies on exponential growth 

worked from the assumption that students conceptualize exponential relationships via 

images of repeated multiplication (Confrey, 1994; Confrey & Smith, 1994, 1995; Ellis et 

al., 2012, 2015, 2016). This introduces two broad areas of conceptual difficulties. First, 

interpreting the meaning of and motivation for operations in evaluating exponential 

functions, determining growth factors, and solving exponential equations involves 

reasoning about products, quotients, ratios, and relative size, and many researchers have 

demonstrated students’ difficulties with these ideas (i.e., Harel & Behr, 1995; Johnson, 

2015; Kaput & West, 1994; Simon & Placa, 2012; Sowder, Armstrong, Lamon, Simon, 

Sowder, & Thompson, 1998; Steffe, 2010; Thompson et al., 2014). Second, an image of 

exponential growth grounded in repeated multiplication does not generalize well to 

evaluating that function over its entire domain and students (and teachers) often struggle 

to connect their image of repeated multiplication and the closed-form representation of 

exponential functions (Davis, 2009; Ellis et al., 2012, 2015, 2016; Presmeg & 
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Nenduardo, 2005; Ström, 2008). Kuper (2018) recently demonstrated that students have 

difficulties conceptualizing that multiplication by ab is equivalent to multiplication by a 

followed by multiplication by b. This result helps to explain why students might struggle 

to see the value of bx as a ratio of f (x) to f (0) for any x, a key learning goal for Ellis et al. 

(2012, 2015, 2016) and myself. 

Student performance on tasks researchers classify as related to exponential growth 

demonstrate the impoverished nature of student images of these relationships. For 

example, only about 35% of college precalculus students who took Carlson, Oehrtman, & 

Engelke’s (2010) multiple choice Precalculus Concept Assessment at the end of their 

courses could identify the impact on the growth pattern when updating a function 

definition from p(t) = 7(2)t to p(t) = 7(3)t (Research and Innovation in Mathematics and 

Science Education, 2007). Weber (2002a, 2002b) found that most college algebra and 

precalculus students receiving rules-based instruction could not provide an adequate 

justification for exponential and logarithmic properties only a few weeks after the topics 

were covered in class, nor could these students provide a rationale for why functions like 

f (x) = (½)x are decreasing. Table 10.1 shows U.S. 12th grader performance on several 

assessment items from the National Assessment of Educational Progress (National Center 

for Education Statistics). The results indicate that U.S. students are not developing useful 

and lasting meanings for growth patterns especially when expressed as a constant percent 

change, which is a typical way of characterizing exponential growth.  

 Evidence from student interviews in this study, however, points to an additional 

issue not reported in other studies. The current body of literature focuses attention on 

addressing challenges in generalizing images of repeated multiplication. But what if  
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Table 10.1 

Results from the National Assessment of Educational Progress (12th Grade) 

 
2009 Assessment [M1899E1] 
 
The population P of a certain town is given by the equation P = 50,000(1 + r)t, where r is the 
annual rate of population increase and t is the number of years since 1990. 
(a)  What was the population in 1990? 
Answer: _________________ 
(b)  In 2001 the population was 100,000. What was the annual rate of population increase? 
Answer: _________________ 
 
Incorrect:  38% of students 
Partial 2:   1% of students 
Partial 1:   46% of students 
*Correct   9% of students 
Omitted:    8% of students 
Off task:    2% of students 
 
2005 Assessment [M133801] 
 
A car costs $20,000. It decreases in value at the rate of 20 percent each year, based on the 
value at the beginning of that year. At the end of how many years will the value of the car 
first be less than half the cost? 
Answer: ______ years 
Justify your answer. 
 
Incorrect:  60% of students 
Partial 2:   5% of students 
Partial 1:   5% of students 
*Correct   26% of students 
Omitted:    4% of students 
 
2005 Assessment [M127001] 
 
The number of bacteria present in a laboratory sample after t days can be represented by 
500(2)t. What is the initial number of bacteria present in the sample? 

A.  250        [10% of students] 
*B.  500      [33% of students] 
C.  750        [5% of students] 
D.  1,000     [46% of students] 
E.  2,000      [4% of students] 
                    [2% of students did not answer] 
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students do not conceptualize representing repeated multiplication as the goal of 

modeling these situations? The students in my study displayed a strong tendency to rely 

on images of repeated addition to solve tasks that I classified as related to exponential 

growth (such as a constant percent change in a quantity’s value over equal intervals of 

time). My initial conceptual analysis and lesson design were based on the expectation that 

I would need to support shifts in students’ meaning for growth factors (the number by 

which they would expect to multiply repeatedly). That students held very weak meanings 

for exponential functions was not surprising, but the meanings they apparently did hold 

(and the implications for those meanings) were surprising, and I am not sure that the 

course lessons, as written, were fully prepared to support students in productively shifting 

their meanings. Addressing this will be a key focus in future iterations of the unit and 

course. 

 I was motivated to focus on exponential functions in this study because I viewed 

it as an opportunity to begin to perform conceptual analyses and unpack learning 

trajectories to generate empirical evidence for the challenges and benefits of supporting 

students in thinking with magnitudes (Thompson et al., 2014). I hypothesized that this 

learning goal, when repeated across many topics in the course, might support students in 

conceptualizing an important way of reasoning that connects topics and could help the 

students experience a coherent mathematics course. I noticed that identifying broader 

learning goals and explicitly describing how those goals might support students in 

understanding topics throughout a course and into future courses is not always present in 

researchers’ work with learning trajectories. This motivated me to write Paper 1, which 

calls for an increased focus on explicating how particular learning goals targeted in 
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learning trajectory research feed into a system designed to promote coherency within and 

across courses. 

 I situated my study in an online learning environment because I believe that 

online learning will play an increasingly prominent role in students’ academic careers, 

yet we know little about how to design these courses to best support students in 

constructing productive meanings that will serve them well in future math and STEM 

courses. In addition, studying the meanings students do construct within these courses is 

conspicuously absent from current research. To ensure that the growing prevalence of 

online mathematics courses does not unintentionally harm students’ long-term 

mathematical development, it is important to look beyond measurements of performance, 

emotional responses, student satisfaction, and retention rates as evidence for the quality 

and success of these courses. Addressing this call to action includes the design and 

implementation of teaching experiments within these environments. Analyzing the results 

of such studies might additionally require modifications to common research 

methodologies. These concerns motivated me to write Paper 2 and also describe the 

connections I see between Paper 2 and the other papers that comprise this dissertation. 
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Question 1 

If Porter is 60 inches tall and Maddox is 45 inches tall, what does the quotient 
଺଴

ସହ
=

ସ

ଷ
 

represent? 

a. Porter’s height is 
ସ

ଷ
 more than Maddox’s height 

b. Porter is 
ସ

ଷ
 inches taller than Maddox 

c. Porter is 
ସ

ଷ
 times as tall as Maddox 

d. Maddox is 
ସ

ଷ
 times as tall as Porter 

e. None of the above 

 

Question 2 
A landscaper is exploring the varying sizes of a circular 
flower-bed that can be built within a 10 ft x 10 ft square 
region. Let 𝑟 represent the varying length (in feet) of the 
radius of the circular flower bed. 
What are the possible values of the radius length (in feet) of 
the flower-bed, 𝑟? 

a. 𝑟 = 5 
b. 𝑟 = 10 
c. 𝑟 can vary from 0 to 5 
d. 𝑟 can vary from 0 to 10 
e. 𝑟 cannot vary because 𝑟 is an unknown 

 

Question 3 
A vase is filled with water. The graph to the right 
shows the volume of water in the vase in cm3, 𝑣, in 
terms of height of water in the vase in cm, ℎ. 
What does the point (8, 8.38) on this graph 
represent? 

a. 8 minutes after the vase started filling the 
volume of water in the vase is 8.38 cm3 

b. 8.38 minutes after the vase started filling 
the height of water in the vase is 8 cm 

c. When the height of water in the vase is 8 
cm the volume of water in the vase is 8.38 
cm3 

d. When the height of water in the vase is 8.38 cm the volume of water in the vase is 
8 cm3 

e. The volume of water in the vase is currently 8.38 cm3 
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Question 4 
The graph to the right shows a relationship between 𝑥 
and 𝑦. What does the 3 next to the vertical vector 
(arrow) represent? 

a. The value of 𝑦 is 3. 
b. When 𝑥 = 1.5, 𝑦 = 3. 
c. When 𝑥 = 2.5, 𝑦 = 3. 
d. As 𝑥 increases from 1 to 2.5, 𝑦 increases by 3. 
e. As 𝑥 increases from 1 to 2.5, 𝑦 = 3. 

 

Question 5 
A tomato plant that is 4 inches tall when first planted in a garden grows by 50% each 
week during the first few weeks after it is planted. How tall is the tomato plant 2 weeks 
after it was planted?  
 

a. 5 inches    
b. 6 inches   
c. 8 inches   
d. 9 inches 
e. 12 inches  

 

Question 6 
When preparing a prescription, a pharmacy mixes 7 parts of water with 2 parts of 
concentrated Amoxicillin. Which formula should the pharmacy technician use to 
determine the number of milliliters of water 𝑛௪ to add to 𝑛௔ milliliters of concentrated 
Amoxicillin? 

a. 𝑛௪ = 7𝑛௔ + 2 
b. 𝑛௪ = 2𝑛௔ + 7 

c. 𝑛௪ =
ଶ

଻
𝑛௔ 

d. 𝑛௪ = 7𝑛௔ − 2 

e. 𝑛௪ =
଻

ଶ
𝑛௔ 
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Question 7 
Kirk’s distance from a park bench (in feet) in terms of the number of seconds since he 
started walking is represented by this graph. 

 
Which of the following statements about this situation is false? 

a. As the number of seconds since Kirk started walking increases from 0 to 8 
seconds, Kirk’s distance from the park bench is always increasing. 

b. As the number of seconds since Kirk started walking increases from 8 to 12 
seconds, Kirk’s distance from the park bench decreases at a constant rate. 

c. As the number of seconds since Kirk started walking increases from 0 to 4 
seconds, Kirk’s distance from the park bench increases by a greater amount each 
second.  

d. As the number of seconds since Kirk started walking increases from 4 to 8 
seconds, Kirk travels a greater distance each consecutive second. 

e. After Kirk has walked for 8 seconds Kirk changes directions and begins walking 
toward the park bench. 

 

Question 8 
The equation of a line is given by 𝑥 + 2𝑦 = 14. What is the slope of this line? 

a. −
ଵ

ଶ
 

b. 
ଵ

ଶ
 

c. −2 
d. 2 
e. 14 
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Question 9 
The given table shows ordered pairs for an exponential function. What is the value of y 
when x = 0? 

x 2 3 4 
y 36 108 324 

 
a. –108 
b. –36 
c. 4 
d. 12 
e. 324 

 

Question 10 
The graph to the right shows how 𝑥 and 𝑦 are 
related. The constant rate of change of 𝑦 with 
respect to 𝑥 is 2. What is the value of 𝑦 when 
𝑥 = 3.5? 

a. 𝑦 = 2.5 
b. 𝑦 = 3 
c. 𝑦 = 4 
d. 𝑦 = 7 
e. None of the above 

 
 

Question 11 
José plants a 7-inch tomato plant in his garden. The plant grows by about 13% per week 
for several months. Which formula represents the height h of the tomato plant (in inches) 
as a function of the time t in weeks since it was planted? 

a. ℎ = 7(0.13)௧ 
b. ℎ = 7 + 1.13𝑡 
c. ℎ = 7(1.13𝑡) 
d. ℎ = 7(1.13)௧ 
e. ℎ = 7 + 0.13𝑡 
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Question 12 
A vase with flowers is filled with 10 cups of water. The flowers in this vase drink the 
water at a constant rate of 1.2 cups per day. Which formula determines the number of 
cups of water in the vase, n, in terms of the number of days, t, that have elapsed since the 
vase was filled. 

a. 𝑛 = 1.2𝑡 
b. 𝑛 = 1.2𝑡 + 10 
c. 𝑛 = 1.2 − 10𝑡 
d. 𝑛 = −1.2𝑡 
e. 𝑛 = 10 − 1.2𝑡 

 

Question 13 
Consider the line shown to the right. Which of 
the following is an equation for this line? 

a. 𝑦 = 1.6𝑥 − 2 
b. 𝑦 = 1.6(𝑥 − 2) + 1 
c. 𝑦 = 3.2𝑥 − 2 
d. 𝑦 = 3.2(𝑥 − 2) + 1 

e. 𝑦 = 3.2𝑥 

 
 
 

 

 

Question 14 
The cost of replacing the exhaust muffler on your car is currently $195. The previous 
time that you had the same replacement done, the cost was $131. What is the percent 
increase in your repair bill (rounded to the nearest percent)? 
 

a. 33% 
b. 49% 
c. 64%    
d. 67%   
e. 149%    
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Question 15 
Suppose 𝑥 and 𝑦 vary together such that 𝑦 = 0.96𝑥 + 0.15. Which of the following 
statements best describes what 0.96 conveys in the context of this situation? 

a. For any change in 𝑥, Δ𝑥, the change in the 𝑦 is 0.96Δ𝑥. 
b. For any change in 𝑦, Δ𝑦, the change in 𝑥 is 0.96 Δ𝑦. 
c. 𝑦 increases by 96% whenever 𝑥 increases by 1. 
d. Any time 𝑥 increases, 𝑦 increases by 0.96. 
e. None of the above. 

 

Question 16 
A culture containing 14 bacteria doubles every day. Which of the following formulas 
represents the number of bacteria, p, in the culture after t days? 
 

a. 𝑝 = 14 + 2𝑡 
b. 𝑝 = 28𝑡 
c. 𝑝 = 14(1.2)௧ 
d. 𝑝 = 14ଶ௧ 
e. 𝑝 = 14(2)௧ 

 

Question 17 
The two points shown are ordered pairs for an exponential function. Which of the 
following is a formula for the exponential relationship? 

 
 

a. 𝑦 = 8(1.75)௫ 
b. 𝑦 = 14(1.75)௫ 
c. 𝑦 = 8(10.5)௫ 
d. 𝑦 = 10.5(𝑥 − 1) + 14 
e. 𝑦 = 10.5𝑥 + 14 
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Question 18 
A line has a slope of 2.5 and the point (−2, 1) is on the line. Which of the following is an 
equation for the line? 

a. 𝑦 = 2.5𝑥 + 1 
b. 𝑦 = 2.5(𝑥 − 2) + 1 
c. 𝑦 = 2.5(𝑥 + 2) + 1 
d. 𝑦 = 2.5(𝑥 − 2) − 1 
e. 𝑦 = 2.5𝑥 

 

Question 19 
If 𝑦 = 3௫ and x is increased by 2, then… 
 

a. y increases by 2. 
b. y increases by 9.    
c. y increases by a factor of 2.  
d. y increases by 6.  
e. y increases by a factor of 9.  

 

Question 20 
𝑥 and 𝑦 vary together and are related by a 
constant rate of change. The graph of 𝑦 in 
terms of 𝑥 is shown to the right (the axes each 
have the same scale). 
Use the graph to approximate the value of 𝑚, 
the constant rate of change of 𝑦 with respect to 
𝑥. 

a. -2 
b. -1 
c. 1 
d. 2 
e. Not enough information 

 

Question 21 
Which of the following logarithmic equations is equivalent to the statement 5ିଷ = భ

భమఱ
? 

 
a. logହ( భ

భమఱ
) = −3 

b. logହ(125) = −3 
c. 125 ⋅ log(5) = −3 
d. logଷ(5) = భ

భమఱ
 

e. logିଷ( భ

భమఱ
) = 5 
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Question 22 
Two cars that are originally 216 miles apart start traveling toward one another at 9 am. One car 
travels 62 miles per hour and the other travels 68 miles per hour. Both cars travel at a constant 
speed. Which formula represents 𝑑, the distance between the two cars in miles, in terms of the 
number of hours after 9 am, 𝑡? 
 

a. 𝑑 = 62𝑡 + 68𝑡 
b. 𝑑 = 216 − 62𝑡 
c. 𝑑 = 68𝑡 − 62𝑡 
d. 𝑑 = 216 − (68𝑡 + 62𝑡) 
e. 𝑑 = 216 + (68𝑡 + 62𝑡) 

 
 

Question 23 
A line has a slope of −4 and a 𝑦-intercept of −2.5. Which of the following is an equation 
for the line? 

a. 𝑦 = −4𝑥 
b. 𝑦 = −4𝑥 + 2.5 
c. 𝑦 = 4𝑥 + 2.5 
d. 𝑦 = 2.5𝑥 − 4 
e. 𝑦 = −4𝑥 − 2.5 

 

Question 24 
Jim bought a computer on sale at a 20% discount off of the original price. If Jim’s sale 
price was $440.00, what was the original price of the computer? 
 

a. $352.00 
b. $366.67 
c. $528.00     
d. $550.00 
e. $2200.00 

 

Question 25 
The amount of medicine (in milligrams) in a patient’s bloodstream 𝑡 hours since taking a 
pill can be modeled by 𝑦 = 300(0.85)௧. The patient must take another pill when the 
amount of medicine in her bloodstream reaches 100 milligrams. How long since taking 
the first pill does the patient need to take the second pill? 

a. 6 hours 
b. 6.75 hours 
c. 7 hours 
d. 8.5 hours 
e. 32.6 hours 
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APPENDIX B 

STUDENT BELIEFS SURVEY 
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Thank you for taking the time to fill out this survey. The completion of this survey is 
required for your course grade; however, you are not required to share your responses as 
part of a research study. If you consent to sharing your responses, your identity will not 
be disclosed to any party and your responses will be anonymous. All data is confidential. 
Therefore, consenting to sharing your anonymous responses requires no extra effort, and 
does not subject you to any harm. If you refuse to consent to sharing your anonymous 
responses, it will not impact your grade on this assignment. Please indicate below 
whether or not you consent to having your anonymous responses be used as part of a 
research study. 

 I do consent to having my (anonymous) responses be part of a research study. 

Background Information 

Your name: 
 
Your teacher's name: 
 
Your student id number: *  
 
Your school: * 
 
Course name: * 
 
Gender: * 
Female 
Male 
 
Grade level: * 
Freshman 
Sophomore 
Junior 
Senior 
Other: 
 
What was your last mathematics course?  
Algebra II    College Algebra   Precalculus        Calculus I        Other: 
__________ 
 
What grade did you receive in your last mathematics course?  
A B C D F 
 
When did you complete your last math course?  
2017  2016  2015  2014  Prior to 2014 
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What grade do you expect (or did you receive) in this course?  
A  B  C  D  F 
 
Do you intend to take another math course? *  
Yes 
No  
I'm not sure 

Affect: Confidence, Mathematical identity and Enjoyment 

I enjoy mathematics 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I see myself as a strong mathematics student 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I get frustrated when asked to complete challenging problems on my own 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I am confident in my mathematical abilities.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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If I had a choice I would not take another mathematics course 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 

Students’ Mathematical Methods/Practices 

Making unsuccessful attempts when solving a mathematics problem is a natural 
part of doing mathematics.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
When trying to solve a problem that is challenging for me I persist until I find an 
answer.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I learn mathematics best when someone shows me steps for getting an answer.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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I try to understand mathematics instead of just memorize how to get an answer.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I enjoy seeing how ideas in mathematics are connected.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I am good at working word problems. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
When reading a word problem I typically draw a picture to represent the situation. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
When working a word problem I try to make sense of the problem. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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Students’ experience in CAO 

I prefer to learn from a teacher in a face-to-face classroom setting. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I understand ideas better when they are taught online. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
My understanding improved as a result of watching the course videos.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
The lessons in this course were confusing. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I stayed engaged when watching the videos.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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I was unable to follow the reading in the online lessons. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
The homework was aligned with the lessons.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
The homework reinforced my understanding of the content. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
The amount of homework was adequate for helping me learn the ideas. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I enjoyed working through the online lessons.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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Doing mathematics in an online environment is frustrating.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
The online instruction focused primarily on helping me understand and use ideas in 
the course. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I will recommend this online course to a friend. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I was able to complete the problems in this online course. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
I think the ideas in this course will be useful to me. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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What aspects of this online course did you like the most?  
<text box>  
 
What aspects of this online course do you like the least?  
<text box>  
 
What recommendations do you have for improving this online course?  
<text box>  
 
On a scale of 1-5, rate the usefulness of each component of this online course. 
1 Not at all Useful   
2 Slightly Useful    
3 Moderately Useful   
4 Very Useful      
5 Exceptionally Useful 
 
__    videos 
__   animations and applets 
__   written explanations in the lessons 
__   questions I completed while working through the lessons 
__   homework sets 
__   quizzes 
 

The nature of mathematics (in this course) 

I see a mathematics formula as a means of representing how the values of two 
quantities change together.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
A variable is a letter that stands for a single unknown value.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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Solving equations in mathematics is useful. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
A function’s graph represents how the values of two quantities change together.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
Solving an equation involves finding a specific input value for a formula when an 
output value for the formula is known. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
Evaluating a function involves finding a specific input value of the function for a 
specific output value. 
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
 
A variable is used to represent the varying values of some quantity.  
1 Strongly Disagree 
2 Disagree 
3 Slightly Disagree 
4 Slightly Agree 
5 Agree 
6 Strongly Agree 
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APPENDIX C 

CLARIFICATION OF THIOMPSON ANALYSIS 

  



 

378 

Thompson (personal communication, November 7, 2018) explained that this 

characterization may not accurately capture his theory. His theory on quantitative 

reasoning derived originally from work with children and analyzing how meanings they 

developed or that were productive in various situations might also be productive in the 

future. Thompson’s later work then traced those implications forward while working with 

progressively older students. It was through conceptual analysis that he was able to both 

look forward to consider implications of learning and look backwards to consider 

productive ways to build for future learning. Thompson relayed his concern that my 

characterization might frame his work as insensitive to children’s reasoning and a “top-

down” approach whereby learning goals for all levels of mathematics are dictated only by 

specific ways of understanding Calculus ideas.  

As my work moves toward formal publication, I will correct errors in my 

characterization. It was not my intent to suggest that Thompson’s conceptual analysis is 

not based on a reciprocal relationship between looking forward and looking backwards to 

articulate productive learning goals. It was only my intention to help emphasize why 

Thompson’s learning goals for exponential functions are markedly different from other 

researchers’—namely conceptualizing function values emerging in a piecewise linear 

manner. This goal, at least in part, is informed by his conceptualization of the 

Fundamental Theorem of Calculus.  
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APPENDIX D 

ASU IRB APPROVAL 
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EXEMPTION GRANTED 

 
Mathematics and Statistical Sciences, School of 
480/965-2891 
MARILYN.CARLSON@asu.edu 

Dear Marilyn Carlson: 

On 12/11/2017 the ASU IRB reviewed the following protocol: 
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Type of 
Review: 

Initial Study 

Title: Studying the Effectiveness of Online Curriculum Materials 
in College Algebra and Precalculus 

Investigator: Marilyn Carlson 
IRB ID: STUDY00006662 

Funding: Name: National Science Foundation (NSF), Grant Office 
ID: TKS0202, Funding Source ID: 1323753 

Grant Title: TKS0202;  
Grant ID: TKS0202;  

Documents 
Reviewed: 

• Lesson Capture Interview Protocol.pdf, Category: 
Measures (Survey questions/Interview questions /interview 
guides/focus group questions); 
• NSF Grant Award.pdf, Category: Sponsor Attachment; 
• CITI Course Completion Alan, Category: Other (to 
reflect anything not captured above); 
• Sample Online Lesson and Homework.pdf, Category: 
Participant materials (specific directions for them); 
• Consent Form for Interviews, Category: Consent Form; 
• General Consent Form (Control), Category: Consent 
Form; 
• Beliefs Survey (Post).pdf, Category: Measures (Survey 
questions/Interview questions /interview guides/focus 
group questions); 
• Recruitment Statements, Category: Recruitment 
Materials; 
• NSF Award, Category: Sponsor Attachment; 
• CAO Study Protocol, Category: IRB Protocol; 
• General Interview Protocol.pdf, Category: Measures 
(Survey questions/Interview questions /interview 
guides/focus group questions); 
• Beliefs Survey (Pre).pdf, Category: Measures (Survey 
questions/Interview questions /interview guides/focus 
group questions); 
• Concept Assessment.pdf, Category: Measures (Survey 
questions/Interview questions /interview guides/focus 
group questions); 
• Table of Contents.pdf, Category: Resource list; 
• General Consent Form (Treatment), Category: Consent 
Form; 
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The IRB determined that the protocol is considered exempt pursuant to Federal 
Regulations 45CFR46 (1) Educational settings, (2) Tests, surveys, interviews, or 
observation on 12/11/2017.  

In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

cc: Grant Sander 
Marilyn Carlson 
Grant Sander 
Alan O'Bryan 
 
 

 


