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ABSTRACT 
 

Researchers have described two fundamental conceptualizations for division, 

known as partitive and quotitive division. Partitive division is the conceptualization of 

𝑎 ÷ 𝑏 as the amount of something per copy such that 𝑏 copies of this amount yield the 

amount 𝑎. Quotitive division is the conceptualization of 𝑎 ÷ 𝑏 as the number of copies of 

the amount 𝑏 that yield the amount 𝑎. Researchers have identified many cognitive 

obstacles that have inhibited the development of robust meanings for division involving 

non-whole values, while other researchers have commented on the challenges related to 

such development. Regarding division with fractions, much research has been devoted to 

quotitive conceptualizations of division, or on symbolic manipulation of variables. 

Research and curricular activities have largely avoided the study and development of 

partitive conceptualizations involving fractions, as well as their connection to the invert-

and-multiply algorithm. In this dissertation study, I investigated six middle school 

mathematics teachers’ meanings related to partitive conceptualizations of division over 

the positive rational numbers. I also investigated the impact of an intervention that I 

designed with the intent of advancing one of these teachers’ meanings. My findings 

suggested that the primary cognitive obstacles were difficulties with maintaining multiple 

levels of units, weak quantitative meanings for fractional multipliers, and an unawareness 

of (and confusion due to) the two quantitative conceptualizations of division. As a 

product of this study, I developed a framework for characterizing robust meanings for 

division, indicated directions for future research, and shared implications for curriculum 

and instruction. 
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CHAPTER 1 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Researchers have identified two fundamental conceptualizations for division, 

known as partitive and quotitive division (Beckmann, 2011; Fischbein, Deri, Nello, & 

Marino, 1985; Gregg & Underwood Gregg, 2007; Harel, Behr, Lesh, & Post, 1994; 

Jansen & Hohensee, 2016; Kribs-Zaleta, 2008; Lo & Luo, 2012; Simon, 1993; Thompson 

& Saldanha, 2003). These conceptualizations are based on a quantitative, non-

commutative model for multiplication whereby 𝑎	 × 	𝑏 = 𝑐 is taken to mean 𝑎 groups (or 

copies) of the amount 𝑏 yield the amount 𝑐. Partitive division (also called sharing 

division) is the operation that determines 𝑏, given that 𝑎 and 𝑐 are known. It is the 

conceptualization of 𝑐 ÷ 𝑎 as the amount of something per copy such that 𝑎 copies of this 

amount yield the amount 𝑐. Quotitive division (also called measuring division) is the 

operation that determines 𝑎, given that 𝑏 and 𝑐 are known. It is the conceptualization of 

𝑐 ÷ 𝑏 as the number of copies of the amount 𝑏 that yield the amount 𝑐, or the 

measurement of 𝑐 in terms of 𝑏. 

Researchers have identified primitive intuitive rules regarding partitive and 

quotitive division that are rooted in operating with whole numbers, such as division 

makes smaller or that partitive division must involve a whole number of groups 

(Fischbein et al., 1985; Greer, 1994; Harel et al., 1994; Lamon, 2011; Rizvi & Lawson, 

2007; Simon, 1993; Thompson & Saldanha, 2003; Tirosh, 2000). Some of these 

researchers have suggested that these primitive rules have contributed to students’ and 

teachers’ weak meanings for division involving non-whole values (Jansen & Hohensee, 

2016; Rizvi & Lawson, 2007; Sharp & Adams, 2002; Tirosh, 2000), while others have 
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commented on the need for and the challenges related to helping students extend their 

meanings for division to accommodate non-whole numbers (Greer, 1994; Lamon, 2011). 

Researchers have also studied the gaps in teachers’ and students’ thinking 

between conceptualizations of division and algorithms for numerical division (Borko et 

al., 1992; Kribs-Zaleta, 2008; Perlwitz, 2004, 2005; Rizvi & Lawson, 2007; Sharp & 

Adams, 2002; Simon, 1993; Tirosh, 2000). One such gap is the pervasive inability among 

teachers to explain the invert-and-multiply algorithm despite demonstrating some level of 

conceptual understanding of division (Rizvi & Lawson, 2007; Sharp & Adams, 2002; 

Tirosh, 2000). Another gap is teachers’ and students’ inability to resolve two apparently 

different answers, one obtained from numerical procedures for division and the other 

obtained through quantitatively modeling the operation (Borko et al., 1992; Kribs-Zaleta, 

2008; Perlwitz, 2005; Simon, 1993). As an explanation for such gaps, The National 

Council of Teachers of Mathematics (NCTM) has suggested that in too many classrooms, 

teachers overemphasize procedural learning while neglecting conceptual development. 

To mitigate this issue, The NCTM has stated that “effective teaching of mathematics 

builds fluency with procedures on a foundation of conceptual understanding so that 

students, over time, become skillful in using procedures flexibly as they solve contextual 

and mathematical problems” (National Council of Teachers of Mathematics, 2014, p.42). 

In most of the studies mentioned above, the focus of the research has been on 

quotitive conceptualizations of division, or on symbolic manipulation of variables, as 

noted by Ott, Snook, and Gibson (1991) in the following remark: 

Although the measurement (quotitive) meaning of division of fractions has 

received considerable attention, a review of the literature indicates that the 

partitive meaning for division of fractions has been almost totally ignored. The 
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partitive meaning of division of fractions has been very resistant to clear, concrete 

explanations. In fact, one writer . . . went so far as to say that partitive division of 

fractions does not make sense (Ott et al., 1991). 

 
Despite the general tendency to focus on quotitive meanings, some researchers 

(Beckmann, 2011; Gregg & Underwood Gregg, 2007; Jansen & Hohensee, 2016; Kribs-

Zaleta, 2008; Ott et al., 1991) have shared ways to conceptualize partitive division with 

rational numbers. Some of these researchers (Beckmann, 2011; Gregg & Underwood 

Gregg, 2007) have even shared justifications for the invert-and-multiply algorithm which 

are based on partitive conceptualizations. Very few researchers (Jansen & Hohensee, 

2016) have focused more closely on partitive meanings with non-whole divisors, and I 

have found almost no insights into the development of these meanings. 

My purpose for this dissertation study was to add to the field’s understanding of 

partitive conceptualizations of division over the positive rational numbers, by focusing on 

the advancement of teachers’ partitive meanings to accommodate fractional values. I am 

interested in this research for the following three main reasons: (1) partitive division over 

the positive rational numbers is detrimentally underemphasized in contemporary 

curriculum and standards for teaching mathematics, (2) partitive meanings form a 

conceptual foundation for other mathematical meanings, such as rates and proportional 

correspondence, and for the invert-and-multiply algorithm, and (3) limited research is 

available on this topic. For this study, I investigated and described the impact of an 

intervention that I designed with the intent of promoting the development of in-service 

middle school mathematics teachers’ partitive meanings. I focused on the following two 

primary research questions, with accompanying secondary research questions. 
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RQ1 (Primary Research Question 1): What meanings, with their affordances and 

limitations, do in-service middle school mathematics teachers possess relative to partitive 

conceptualizations of division with non-whole divisors? 

RQ1.1: What meanings do teachers reveal when they engage in tasks that I 

designed to elicit meanings for fractions as measures of relative size, with a focus 

on fractions as reciprocal measures of relative size? 

RQ1.2: What meanings do teachers reveal when they describe and model 

symbolic (decontextualized) statements of multiplication, both general and 

specific, with a focus on fractional multipliers? 

RQ1.3: What meanings do teachers reveal when they describe and model 

symbolic (decontextualized) statements of division, both general and specific, 

with a focus on fractional divisors? 

RQ1.4: What meanings do teachers reveal when they engage in tasks that I 

designed to elicit partitive conceptualizations of division, with varying degrees of 

abstraction, and with a focus on fractional divisors? 

RQ1.5: What justifications do teachers provide for the invert-and-multiply 

algorithm after working through the tasks mentioned in the previous research 

question? 

RQ1.6: What cognitive obstacles do teachers further reveal as I actively attempt 

to promote the development of their meanings that are foundational to partitive 

division over the rational numbers? 



 

5 
 

RQ2 (Primary Research Question 2): How do these teachers’ meanings change as a 

consequence of an instructional sequence that emphasized quantitative reasoning to aid in 

the advancement of these meanings? 

RQ2.1: How do the teachers’ post-intervention meanings compare to their pre-

intervention meanings? 

RQ2.2: What advancements to the teachers’ schemes are evident and what 

challenges remain? 

 To answer these questions, I designed a qualitative study that allowed me to 

describe models of the teachers’ meanings that explained their actions. The study 

included clinical interviews (Clement, 2000; Hunting, 1997) and a teaching experiment 

(Steffe & Thompson, 2000). To analyze the data, I used open and axial coding to 

generate and test grounded theory, as described by Corbin and Strauss (2008). As a result 

of this study, I was able to identify cognitive obstacles to the advancement of meanings 

for partitive division. I also described a framework for characterizing robust division in 

general. The findings from this study will address the research gap relative to 

understanding teachers’ partitive meanings and will ultimately inform the development of 

curricular materials and future research efforts. 
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CHAPTER 2 

LITERATURE REVIEW 

As I briefly mentioned in the introduction, there are two fundamental 

conceptualizations for division that researchers have discussed, known as partitive and 

quotitive division (Beckmann, 2011; Fischbein et al., 1985; Gregg & Underwood Gregg, 

2007; Harel et al., 1994; Kribs-Zaleta, 2008; Simon, 1993; Thompson & Saldanha, 2003). 

These conceptualizations are based on a quantitative, non-commutative model for 

multiplication whereby 𝑎 × 𝑏 = 𝑐 is taken to mean 𝑎 copies of the amount 𝑏 per copy 

yield the amount 𝑐. As discussed by Thompson and Saldanha (2003), I use the word 

copies instead of groups for a few reasons. The word group does not entail consistency in 

size, e.g., splitting students into groups doesn’t necessarily mean the groups will have 

equal sizes. As such, thinking of a partial group is cognitively perturbing, because for 

some people, there exist only smaller groups and larger groups, but no partial groups. On 

the contrary, the idea of copying parallels meanings for iteration by implying consistency 

in the size of each copy. It is also easier to think of partial copies in general, although the 

quantity that is being copied can still affect whether partial copies are sensible. To 

facilitate discussions about multiplication, I use the following terms, placed in their 

respective positions of a statement of multiplication: 

multiplier	×	multiplicand	=	product. 

I use the convention that the multiplier should precede the multiplicand in a 

multiplication statement, thus rendering the model conceptually non-commutative; 2 

copies of 3 apples is not situationally equivalent to 3 copies of 2 apples, despite that there 
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are six apples in total in each situation. As for statements of division, I use the following 

terms, placed in their respective positions: 

dividend ÷ divisor = quotient. 

Partitive division, also known as sharing division, is the conceptualization of 𝑐 ÷ 𝑎 as 

the amount of something per copy such that 𝑎 copies of this amount yield the amount 𝑐. 

A second meaning for division is quotitive, or measuring, division, which is the 

conceptualization of 𝑐 ÷ 𝑏 as the number of copies of the amount 𝑏 that yield the amount 

𝑐. Or, characterized in another way, 𝑐 ÷ 𝑏 is the measurement of the amount 𝑐 in units of 

size 𝑏. 

A third meaning for division is that of determining relative size of one quantity as 

compared multiplicatively to the size of another quantity (Byerley, Hatfield, & 

Thompson, 2012; Thompson, Carlson, Byerley, & Hatfield, 2014). By quantity I mean 

the conceptualization of a measurable attribute of an object or phenomenon (Smith & 

Thompson, 2007)1. Since I consider quotient as relative size to be an abstraction of either 

partitive or quotitive division2, I will primarily focus my review of the literature on 

partitive and quotitive conceptualizations for division with fractions. 

Primitive Models for Partitive and Quotitive Division 

Children are first exposed to meanings for division in the context of operating on 

whole numbers3. Several researchers have identified primitive models and subsequent 

                                                
1 I say more about this in my theoretical framework chapter. 
2 I say more about this in my conceptual analysis chapter where I discuss ratios. 
3 According to the CCSSM, notions of partitioning begin in 1st grade and division with 
whole numbers is formally introduced in 3rd grade (National Governors Association, 
2010). 
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intuitive rules for partitive and quotitive division that result from operating with whole 

numbers (Fischbein et al., 1985; Greer, 1994; Harel et al., 1994; Rizvi & Lawson, 2007; 

Simon, 1993; Thompson & Saldanha, 2003; Tirosh, 2000). Fischbein, Deri, Nello, and 

Marino (1985) noted that division with whole numbers leads children to develop 

misleading intuitive rules regarding division which are not generally true for division 

with rational numbers. Concerning partitive division, these intuitive rules include (1) the 

dividend must be larger than the divisor, (2) the divisor must be whole, and (3) the 

quotient must be no bigger than the dividend – i.e. “division makes smaller.” The third 

intuitive rule is a consequence of the second, and primitive models for partitive division 

that require at least the second and third rule are referred to as fair-sharing models 

(Gregg & Underwood Gregg, 2007; Rizvi & Lawson, 2007). Concerning quotitive 

division, the primitive model of repeated subtraction requires the divisor to be smaller 

than the dividend, in anticipation of a whole number quotient (Fischbein et al., 1985). 

These primitive models, and their accompanying intuitive rules, for partitive and 

quotitive division are rooted in reasoning with whole numbers and research suggests that 

they exert an influence on the reasoning of students and teachers. For example, Harel, 

Behr, Lesh, and Post (1994) conducted a quantitative study involving more than 450 in-

service and pre-service elementary teachers in which the researchers controlled for some 

of the factors – including primitive intuitions – that had been known to influence the 

success of students on division problems involving non-whole values. They observed a 

significant drop in the ability of the subjects to produce a correct answer when primitive 

intuitive rules were violated. In a later study, Rizvi and Lawson (2007) noticed that none 

of the 17 preservice teachers from their study could initially pose a word problem that 
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required division by a fractional value. Also, they observed that when they asked subjects 

to produce a word problem that required division by a whole number, the subjects 

produced problems involving only partitive division. Rizvi and Lawson attributed these 

limitations to the influence of the primitive fair-sharing and repeated subtraction models 

for division. They said the following about fair-sharing. 

The fair-sharing, or partitive model is a traditional teaching model for 

division of whole numbers, but it can act as a barrier in the representation 

of division of fractions. For example, 48 ÷ 1/4 cannot be represented by 

the same model of fair-sharing because it is senseless to share 48 lollies 

among a quarter of a girl (Rizvi & Lawson, 2007, p.378). 

In this quote, I do not believe that Rizvi and Lawson are suggesting that 48÷1/4 cannot 

be modeled by partitive division; but instead, I believe they are suggesting that thinking 

of partitive division as fair-sharing is limiting in its scope. In their study, Rizvi and 

Lawson observed that some of their subjects could successfully use the model of repeated 

subtraction (the primitive model for quotitive division) to justify why division by 1/3 is 

numerically equivalent to multiplying by 3. But they suggested that the requirement that 

the dividend must be larger than the divisor was an obstacle to conceptual development. 

They said the following about repeated subtraction. 

This model (repeated subtraction) helps the learners to represent some 

division of fraction problems, but it also appears to be difficult for 

students to use this model to represent division situations when the divisor 

is bigger than the dividend. For example, in representation of 1/3÷1/2 it is 

confusing to ask how many times one half can be subtracted from one 

third, perplexing for the students of elementary classes who are not used to 

subtracting a bigger number from a smaller number. (Rizvi & Lawson, 

2007, p.378). 
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 Another consequence of primitive notions as described by researchers (Jansen & 

Hohensee, 2016; Simon, 1993) is the phenomenon of interpreting division by a unit 

fraction as a multiplication problem instead. For example, these researchers have 

observed that expressions such as “6÷1/2” have a relatively high risk of being interpreted 

as one-half of six, yielding an answer of three, instead of the correct answer of 12. This 

can be attributed to the primitive notion that division must make smaller. 

Extending Beyond Primitive Conceptualizations 

Primitive models for division are not conducive to productively thinking about 

division with non-whole values. Researchers have acknowledged the need to extend 

primitive meanings for division beyond the scope of whole numbers only. Cajori said the 

following: 

That, in the historical development, multiplication and division should 

have been considered primarily in connection with integers, is natural . . . 

First come the easy but restricted meanings of multiplication and division, 

applicable to whole numbers. In due time the successful teacher causes 

students to see the necessity of modifying and broadening the meanings 

assigned to the terms (Cajori, 1897, p.183). 

Researchers have since identified various cognitive barriers to the development of more 

robust meanings for division. Greer (1994) confirmed that persistent primitive intuitions 

regarding division were likely one such obstacle. He also alluded to research showing 

that children had difficulties creating word problems that elicited given acts of division 

with values that violate primitive intuitive rules, and that children had difficulty 

identifying an appropriate operation given a word problem when the numbers were less 

convenient. Greer went on to say that a “vertical extension of the meanings of the 
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operations is beset with cognitive obstacles; elucidating these and finding means to help 

children overcome them more effectively is a major challenge for research in this field” 

(Greer, 1994, p.81). Since Greer’s publication, researchers have shed more light on 

identifying and overcoming some of the cognitive obstacles to which Greer is referring. 

For example, Lamon (2011) highlighted several reasons why learning about fractions 

(including division with fractions) could be challenging. These reasons are summarized 

below. 

1. Fractions are written using an unfamiliar notation; two numbers separated by 

a bar. As such, fractions can be perceived as a collection of two values, 

instead of as a single magnitude. 

2. The language used to discuss fractions is unfamiliar. 

3. The fraction symbol  +,  can represent a variety of meanings. 

4. Fractions can represent values of intensive quantities, which are multiplicative 

comparisons between the values of two quantities, e.g., dollars per mile, and 

which can be abstract and difficult to conceptualize. 

5. Operations involving fractions are dependent on developing new ways to 

operate, e.g., a multiplier of 3 involves only iterating, but a multiplier of 4/3 

involves partitioning and iterating. 

6. Operating with fractions requires coordinating multiple levels of units, e.g., 

2/3 of one unit (a whole) can be thought of as 2 of another unit (1/3 of a 

whole). 

7. There can be interference from whole number intuitions, e.g., division makes 

smaller. 

In regards to items (1) and (3) from the list above, Tzur and Hunt (2015) suggested some 

teaching activities to help build the meaning that a unit fraction represents a single 

amount that, when iterated a certain number of times, produces a whole amount. The 

activities involve students starting with a whole strip of paper and then creating a second 



 

12 
 

strip that estimates a unit fraction of the length. Next, the student iterates the estimation 

to determine its accuracy, and then makes and analyzes adjustments to the estimation 

until an appropriate length of the unit fraction is obtained. Tzur and Hunt said the 

following: 

Through activities of iterating units, then, the child begins to understand 

unit fractions not just or mainly as shaded or folded pieces of a whole 

(e.g., one of five parts) but as a multiplicative relationship between a unit 

and the whole into which it fits a given number of times. In our example, 

the child comes to think of 1/5 as a unique quantity that, when repeated 

five times, exactly reproduces or fits inside of a referent whole (Tzur & 

Hunt, 2015). 

 
In this quote, Tzur and Hunt point out that the described activities reinforce the notion of 

a unit fraction as a representation of a single magnitude. Conceiving of a fraction as a 

single value is an important development to make sense of division of fractions. 

Relationship of Conceptualizations of Division to Constant Rate of Change 

In this section, I comment on literature regarding meanings for constant rate of 

change and how they relate to conceptualizations for division. Thompson, Carlson, 

Byerley, and Hatfield (2014, p.6) suggest that upon traveling 62 miles in 2.7 hours, 

quotitive meanings are inappropriate when dividing 62 miles by 2.7 hours. Instead they 

suggest that proportional reasoning (I could substitute here partitive schemes) be used to 

conclude that 22.96 miles corresponds to 1 hour of traveling, establishing a relative size 

between the value of distance traveled and the value of time elapsed.  Further reflection 

on the situation leads one to conclude that if traveling at a constant speed, the number of 

miles traveled will always be 22.96 times as much as the number of hours elapsed. 
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 In a teaching experiment with a 10 year-old fifth-grader called JJ, Thompson 

(1994b) investigated the development of the notion of speed as a rate. Initially, JJ’s image 

of speed was a fixed length of distance, and not a ratio between distance traveled and 

time elapsed. Time was not an extensive4 quantity in her thinking, only distance was. For 

her, time was a ratio between the distance traveled and one speed-length. As such JJ was 

initially only able to operate with distance-lengths and speed-lengths, dividing them and 

interpreting the quotient as the time elapsed. When Thompson asked JJ to find the rate 

required to go a certain distance in a certain non-whole amount of time, she resorted to 

guess and check strategies, guessing the speed-length and iterating it an appropriate 

number of times to determine if her guess was correct. She operated this way because she 

was restricted to operating only with speed-lengths and distance-lengths. It was only later 

in the teaching experiment that JJ could abstract time into an extensive quantity with 

which she could operate. She was ultimately able to conceive of speed as a ratio of total 

distance and total time, which she imagined as a rate, thus establishing a proportional 

correspondence between variable amounts of both distance and time. 

 JJ’s conflation of speed, as a constant ratio between distance and time, with speed 

as distance was similarly observed by Person, Berenson, and Greenspon (2004). Their 

subject was a high school teacher who conflated rate of change (which relates two 

covarying quantities) with an amount of change (which is concerned with a single 

quantity). Thompson (1994a) made a similar observation when one of his subjects 

struggled due to thinking of a rate as a change in a single quantity. 

                                                
4 An extensive quantity is a quantity that can be measured directly (J. Kaput & West, 
1994; Post, Behr, & Lesh, 1988; Thompson, 1990). 
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Subjects’ Difficulties Connecting Procedures to Conceptualizations of Division 

In the last few decades, researchers have been studying students’ and teachers’ 

connections between conceptualizations of division and procedures for numerical 

division. In a study of 30 preservice elementary teachers, Tirosh (2000) presented the 

subjects with four division tasks (1/4÷4, 1/4÷3/5, 4÷1/4, 320÷1/3) and asked each of 

them to (1) calculate each result, (2) list common mistakes a seventh grader might make, 

and (3) describe potential sources for each of these mistakes. She noted that all 30 

subjects suggested that a misapplication of the invert-and-multiply algorithm was a 

potential source of error. Only four of the subjects cited primitive intuitions regarding 

partitive division as a potential source of error. She also observed that all 30 subjects 

resorted to the invert-and-multiply algorithm to calculate each result, instead of relying 

on meanings for division, such as 4÷1/4 is 16 because there are 16 quarters in 4. Tirosh 

noted that the subjects could use the invert-and-multiply algorithm but could not explain 

why it worked. Similarly, Rizvi and Lawson observed that none of the 17 preservice 

subjects in their study could “explain the thinking that lies behind this (the invert-and-

multiply) algorithm” (Rizvi & Lawson, 2007, p.382). To demonstrate formal, generalized 

justifications for the algorithm, Tirosh (2000) shared the following explanations. 

1. Since division is the inverse of multiplication, division of fractions can be 

interpreted as a missing multiplicand problem. Understanding how to 

procedurally multiply fractions and reduce the terms allows one to arrive at 

the result of the invert-and-multiply algorithm. 
𝑎
𝑏 ÷

𝑐
𝑑 = 𝑥	 → 	

𝑐
𝑑 ∙ 𝑥 =

𝑎
𝑏 	→ 	𝑥 =

𝑎𝑑
𝑏𝑐  
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2. Interpret division of fractions as a complex fraction and then put the complex 

fraction into a form with a unit denominator by appropriately scaling the 

numerator and denominator of the complex fraction. 

𝑎
𝑏 ÷

𝑐
𝑑 	= 	

𝑎
𝑏1

𝑐
𝑑1
	= 	

𝑎
𝑏1

𝑐
𝑑1
∙
𝑑 𝑐1
𝑑 𝑐1

	=
𝑎𝑑

𝑏𝑐1
1 	= 	

𝑎𝑑
𝑏𝑐  

 
3. Get a common denominator then divide numerators and divide denominators. 

𝑎
𝑏 ÷

𝑐
𝑑 	= 	

𝑎𝑑
𝑏𝑑 ÷

𝑏𝑐
𝑏𝑑 = 	

𝑎𝑑 ÷ 𝑏𝑐
𝑏𝑑 ÷ 𝑏𝑑 = 	

𝑎𝑑 ÷ 𝑏𝑐
1 	= 	

𝑎𝑑
𝑏𝑐  

Tirosh shared these arguments with her subjects so they could see examples of 

generalized justifications for the algorithm. However, these formal arguments are based 

largely on manipulation of contextually empty symbols, and not based on quotitive and 

partitive meanings. Also, it is unclear whether some of these justifications would be 

accessible to elementary students. 

In a study of 22 fifth grade students, Sharp and Adams (2002) had their subjects 

solve realistic problems that elicited quotitive conceptualizations for division, e.g., how 

many bows could be made from 11 feet of ribbon if each bow requires 1½ feet of ribbon? 

The subjects solved many such tasks, all involving quotitive division. The researchers 

anticipated that some of the subjects would be able to generalize an algorithm for 

numerical division with fractions in the following way. 

1. Interpret 3
4
÷ 5

6
  as “how many times can 5

6
 be subtracted from 3

4
?” 

2. Change to “how many times can 45
46

 be subtracted from 36
46

?” 

3. Re-unitize to change to “how many times can 𝑏𝑐 be subtracted from 𝑎𝑏?” 

4. Interpret as 𝑎𝑑 ÷ 𝑏𝑐 

5. Interpret as 36
45
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This justification is a blend of notions of repeated subtraction, unitizing, and fractions as 

quotients. Sharp and Adams observed that all the subjects demonstrated conceptual 

understanding of division but that none of them invented an algorithm that resembled the 

invert-and-multiply algorithm. They said the following: 

Our students did not appear to be aware of an operational inverse 

relationship between division and multiplication. Hence, no knowledge 

existed on which they could construct the invert-and-multiply algorithm. It 

seems that trying to force a connection between the invert-and-multiply 

algorithm and whole-number operational knowledge would have been 

confusing to our students (Sharp & Adams, 2002, p.346). 

This quote indicates that Sharp and Adams believe that the invert-and-multiply algorithm 

is conceptually dependent on an understanding that multiplication and division are 

inverses of each other. However, they did not elaborate on what they meant by that 

comment. In this quote, they also acknowledge their students’ difficulty in connecting the 

invert-and-multiply algorithm to primitive meanings for division based on whole 

numbers. In their article, Sharp and Adams also cited research that suggested that the 

common denominator method for resolving a quotitive division task was most useful for 

establishing meaning behind the procedures (Sharp & Adams, 2002, p.336). 

 In a study of a pre-service teacher progressing through her first two years of 

student teaching, Borko, Eisenhart, Brown, Underhill, Jones, and Agard (1992) observed 

that despite having a basic quotitive meaning for division, their subject did not possess 

the schemes necessary to represent division of fractions using a visual model such as strip 

diagrams or pie charts. Also, their subject could use the algorithm and give a quotitive 

interpretation of the result but could not justify the algorithm itself. During the subject’s 
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period of student teaching, the subject participated in a teaching methods course which 

included a unit on division with fractions. The instructor of this course unfortunately 

believed that his students (pre-service teachers) should learn that "(a) there is no direct 

relationship between stories or concrete and semi-concrete representations of the 

measurement interpretation of division of fractions and the standard algorithm; (b) 

representations can be used to verify a solution obtained through use of the algorithm, but 

not to derive the algorithm; and (c) the derivation of the algorithm demonstrated by the 

instructor was not within the knowledge constraints of many young learners" (Borko et 

al., 1992, p.214). I contend that none of these three statements is correct. 

Other researchers have also provided evidence of a gap between procedural 

fluency and conceptual understanding in relation to division (Kribs-Zaleta, 2008; 

Perlwitz, 2005; Simon, 1993). During a class discussion on dividing fractions, Perlwitz 

(2005) gave her college students the task of finding how many pillow cases could be 

made from 10 yards of fabric if each pillow case required 3/4 of a yard. When using the 

invert-and-multiply algorithm, the class agreed on the numerical answer of 13 and 1/3. 

However, when they used a 3/4-yard measuring stick, they arrived at 13 pillow cases with 

1/4 yard left over, thus claiming the answer should be 13 and 1/4. Although eventually 

successful, it was not trivial for these students to reconcile the two answers. Kribs-Zaleta 

(2008) and Simon (1993) observed similar issues when their subjects also could not 

interpret the remainder in units of the divisor. In his study of preservice elementary 

teachers, Simon noticed that the subjects could accurately execute procedures for long 

division of whole numbers, but that these procedures were not well connected to the 

subjects’ meanings for division. He stated that “their lack of conceptual understanding 
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given their algorithmic competence seems to challenge the idea that procedural practice 

eventually leads to understanding” (Simon, 1993, p.249). In other words, Simon observed 

that procedural fluency did not imply an understanding of the underlying quantities. 

Referring to the preservice teachers involved in his study, Simon said “the handling of 

remainders and fractional quotients in school was a procedural matter that did not help 

these subjects sort out the complex referential issues inherent in division” (Simon, 1993, 

p.249). 

Partitive Division with Fractions in the Literature 

Several researchers have shared ways to think about partitive division with 

fractions, although without sharing relevant student data. Ott et al. (1991) presented 

situations which elicit partitive division with fractional values, such as determining the 

number of egg cartons per set and the number of dollars per ounce. They demonstrated 

proportional reasoning to determine the quotients, but without emphasizing partitioning 

and iterating. They further suggested a context-based learning trajectory that begins with 

whole number divisors, followed by fractional divisors less than one, culminating with 

fractional divisors greater than one that are presented as mixed numbers. Also, Gregg and 

Underwood Gregg (2007) provided justifications for the invert-and-multiply algorithm 

that are based on partitive conceptualizations. Although it is helpful to discuss ways to 

reason through contexts that elicit partitive division with fractions, none of the 

researchers mentioned above shared data of students thinking through such tasks.  

Some studies did reveal students’ work. Kribs-Zaleta (2008) provided contexts 

that elicit partitive division with fractional values, such as cutting ribbon and pouring 

lemonade, and shared the work of 6th grade students who had not yet received formal 
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instruction on division with fractions. In one task, a student was trying to determine how 

many oranges make a serving, given that one and one-half oranges constitutes three-fifths 

of a serving. This student recognized that one-half of an orange corresponded to one-fifth 

of a serving and was able to reconstitute a whole serving of oranges. This study revealed 

that students can have productive meanings prior to formal instruction.  

In another study, Jansen and Hohensee (2016) researched 17 prospective 

elementary teachers (PSTs) to identify challenges that PST’s face specifically when 

solving partitive division tasks with fractional divisors. The researchers characterized a 

productive conception of partitive division as one that is both flexible and connected. I 

summarize their definitions for flexible and connected, as well as the opposite constructs 

rigid and disconnected, in Table 1. 

Table 1 
Jansen’s and Hohensee’s Constructs for Conceptions of Partitive Division 

Flexible 
A person is “aware it is appropriate to partition the dividend for whole 
number divisors, iterate the dividend for unit fraction divisors, and both 
partition and iterate the dividend for non-unit proper fraction divisors.” 

Connected 

Condition 1: 
Translating 
Between 
Representations 

A person can “translate from a symbolic number 
sentence to a story problem situation that accurately 
represents that number sentence (or from a story 
problem situation to a symbolic number sentence).” 

Condition 2: 
Unit Rate 
Awareness 

A person has “awareness that partitive division 
generates a unit rate across tasks with a range of 
divisors, such as whole numbers and proper fractions.” 

Jansen’s and Hohensee’s definition of flexibility makes it seem that only 

awareness is required, but in their paper, they implied that they measured flexibility 

partly by whether a person could obtain right answers. The researchers used these 

constructs to analyze the PSTs’ responses to three tasks prior to starting an instructional 
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unit on division. Since this study so closely relates to my own research interests, I share 

the three tasks they used, which I summarize in Table 2. 

Table 2 
Tasks Used by Jansen and Hohensee in Their Study 

1a Kelly ran 4 miles in 2/3 of an hour. How far did she run in 1 hour? 

1b 
Choose the number sentence that you think represents the story in 1.a. the best, if any of 
them do. How did you decide? 
7
8
× 4 =?        4 ÷ 7

8
=?       4 + ;<

8
× 4= =?        7

8
÷ 4 =?      None of these 

2a Write a realistic story problem for the following number sentence, using the given 
quantities: 24 DVDs ÷ 4 hours = ? 

2b Solve this problem using a drawing. Use a discrete, area, or linear model to show how 
you solved the problem. 

3a Write a realistic story problem for the following number sentence, using the given 
quantities: 24 oz. of water ÷ 1/4 hours = ? 

3b Solve this problem using a drawing. Use a discrete, area, or linear model to show how 
you solved the problem. 

Jansen and Hohensee used these tasks to measure the flexibility and 

connectedness of the PSTs’ conceptions for partitive division. The researchers inferred 

flexibility if a PST was successful using partitioning and/or iterating to resolve a task. 

They inferred connectedness, in the sense of translating between representations, if a PST 

could establish a link between the situation and the symbolic statement of division. They 

inferred connectedness, in the sense of awareness that the quotient is a unit rate, if a PST 

revealed appropriate evidence of such awareness at any point during any part of the tasks. 

Regarding connectedness, the data revealed that only three of the 17 PSTs 

identified the correct symbolic statement in Task 1. In Task 3, only four PSTs created a 

valid context, with the primary mistake being the description of a context for 24×1/4 

instead of for 24÷1/4. In their paper, the researchers summarized two types of 

disconnected conceptions. First, a PST incorrectly translates between representations, and 
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inconsistently expresses awareness of the purpose of determining a unit rate across task 

components. Second, a PST still incorrectly translates between representations and does 

not demonstrate any awareness of the purpose of finding a unit rate. The researchers also 

described a new construct they called “emerging connected conception” by defining it as 

having a fully connected conception for some tasks, but not for all. 

Regarding flexibility, the data revealed that 15 of the 17 PSTs accurately solved 

Task 1, but only six correctly solved Task 3. I am not surprised by the PSTs’ difficulty 

with Task 3 since many of them created an inappropriate context in the first place. In 

their paper, the researchers summarized two ways in which PSTs demonstrated rigid 

conceptions. First, a PST could partition and iterate to get a correct answer for Task 1a, 

but did not associate the iteration as a component of division, as evidenced by the results 

of Task 1b. Second, a PST correctly solved Task 3b by iterating, and connected this to 

the given division statement, but then could talk about division only in the context of 

reversing the process by partitioning the quotient to get the original dividend. 

The dual-construct of connectedness, as the researchers defined it, presents some 

challenges. Can we say that a person has demonstrated the second type of connectedness 

if that person does not connect a context to a single symbolic statement of division, but 

succeeds at connecting the context to the goal of finding a unit rate? In addition, the data 

showed varying levels of success from task to task, suggesting that the two categories of 

connectedness are insufficient when talking about partitive division in general. For any 

one kind of value (e.g. whole divisors) I can imagine that a person may always, 

sometimes, or never demonstrate awareness of the purpose of finding a unit rate. Also, a 

person may always, sometimes, or never be able to translate between a context and a 
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single symbolic statement of division. As such, it would be possible to characterize a 

person as “always-sometimes” for whole divisors, meaning that the person can always 

connect a symbolic statement with a context, but only sometimes demonstrates awareness 

of the goal as finding a unit rate. This degree of categorization would allow for a more 

detailed analysis. 

Concerning the tasks used in Jansen’s and Hohensee’s (2016) study, no improper 

fractions were used as divisors, thus missing opportunities to get additional data. Also, 

the researchers said they were looking for evidence that the PSTs were aware that the 

purpose of the division task was to find a unit rate, yet Task 1a asks for a distance, not a 

rate. This may have biased the PSTs to thinking about extensive quantities, and not 

intensive quantities.  

Absence of Partitive Division in Curriculum 

As a critique, a survey of the Common Core State Standards in Mathematics 

(CCSSM) placements5 for grades K-8 (National Governors Association, 2010) reveals 

almost no emphasis on partitive meanings. In fact, the only mention of partitive and 

quotitive meanings is found in grade 3, where division is limited to whole dividends, 

divisors, and quotients. Also, all examples listed in grades 5 and 6 that involve non-whole 

divisors are quotitive in nature. There are no examples listed in these placemats that 

involve partitive conceptualizations with non-whole divisors.  

Not only does the Common Core gloss over partitive meanings, but a brief survey 

of textbooks and online resources reveals that many models for division with fractions 

                                                
5 A summary of the CCSSM placements regarding meanings for division and division 
with fractional divisors can be found in the appendices. 
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are quotitive in nature. It is rare to come across curricular suggestions involving partitive 

division with fractions, although in recent years many researchers have done so 

(Beckmann, 2011; Gregg & Underwood Gregg, 2007; Kribs-Zaleta, 2008; Ott et al., 

1991). Beckmann, in her textbook for prospective elementary teachers (2011), used 

amount of paint and number of walls that can be painted as the context for partitive 

division with fractional divisors. However, in her textbook, the partitive contexts are 

presented as optional. Gregg and Underwood Gregg (2007) used number of cakes and 

number of containers to model partitive division with fractional divisors. Ott et al. (1991) 

used unit prices, average speeds, and other contexts to discuss partitive division with 

fractional divisors. Lastly, Kribs-Zaleta (2008) shared four different contexts that elicit 

partitive division with non-whole divisors, including length of ribbon per bow and 

amount of lemonade per glass.  

Conclusion 

In my review of the literature, most of the research regarding division with 

fractions involved quotitive conceptualizations, with just a few exceptions. I did not find 

any literature that specifically addressed the advancement of partitive meanings over the 

rational numbers, although Jansen and Hohensee (2016) said that they were in the process 

of conducting such a study. Also, a brief survey of the CCSSM (2010) and other curricula 

revealed little to no emphasis on partitive meanings with non-whole divisors. These are 

the primary reasons that motivated me to conduct this dissertation study. In the next 

chapter, I comment on my theoretical framework that guided the design and analysis of 

my study. 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

My theoretical framework is rooted in constructivism. I believe that a person’s 

mathematical understandings are constructed by adding to and refining existing 

understandings. This is done by harmonizing existing understandings with new 

experiences. A person can make sense of a concept if he or she has an adequate 

foundation of knowledge that supports the integration of the new concept. Sometimes a 

person will need to restructure existing understandings to make sense of the new 

experiences. Furthermore, I believe that a person’s body of knowledge is constructed and 

structured in a way that is likely unique to that person. These constructivist beliefs are 

inspired by the work of Piaget, as described by Von Glasersfeld (1995). I also base my 

design and analysis of the data from this study on the quantitative theory as elaborated by 

Thompson (1994, 2011), with ideas for thinking with magnitudes as discussed by 

Thompson et al. (2014). In this chapter, I discuss important constructs for both 

constructivism and quantitative reasoning that guided my design of this study and the 

analysis of the results. I begin with a discussion of quantitative reasoning constructs in 

the following section. 

Quantitative Reasoning 

I believe that numbers are ultimately meaningless, unless they are thought about 

in some sort of context. For example, to say “I will give you four” is not meaningful until 

it is made clear to what the “four” is referring. When the context is more meaningful and 

connected to units-of-measure, the greater the opportunity a person has for making sense 

of operations and coordinating multiple levels of units. My dissertation study focused on 
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making meaning of operations by situating the operations in contexts that provided 

concrete things to think about, as well as the words to describe them. In other words, I 

provided opportunities for my subjects to engage in quantitative reasoning, as extensively 

described by Thompson over the years (1994b, 2011). The following section focuses on 

the following constructs: (1) quantity, (2) quantification, (3) value of a quantity, and (4) 

quantitative operation versus numerical operation. 

Quantity 

Thompson (1994b, p.7) characterizes a quantity as the conception of an attribute 

of an object that admits a measuring process, or briefly, a measurable attribute of an 

object. For example, someone can conceive that a person has an attribute of tallness when 

standing, often referred to as that person’s height. Thompson interprets the word object 

broadly. For example, the discrepancy between two people’s heights is a quantity itself. 

In this case, the object is the collection of the two people, and the measurable attribute is 

the discrepancy in height. To be clearer, Thompson and Smith later added to the 

definition of quantity by stating that “quantities are attributes of objects or phenomena 

that are measurable” (Smith & Thompson, 2007, p.10). Quantities are not objects 

themselves – they exist in the mind of the person who is imagining them. Quantities can 

be imagined to be measured, combined, or compared. Also, combinations and 

comparisons can be additive or multiplicative. It is important to note that quantities can 

be imagined without being measured. Also, it is not necessary for two quantities to be 

measured before combining or comparing them. I can imagine a new quantity that is the 

difference between the heights of two people without needing to measure the height of 

either person. 
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Quantification 

Thompson defines quantification as “the process of conceptualizing an object and 

an attribute of it so that the attribute has a unit-of-measure, and the attribute’s measure 

entails a proportional relationship (linear, bi- linear, or multi-linear) with its unit” (2011, 

p.37). I interpret this as the act of establishing the relative size of a quantity with respect 

to some appropriate unit-of-measure. I use the word appropriate to emphasize that the 

unit-of-measure should6 measure the same kind of attribute as the quantity in mind. For 

example, it is appropriate to use a unit of length to measure another length. Borrowing 

from Thompson et al. (2014), I consider the magnitude of a fixed quantity to represent an 

invariant amount, which is not dependent on the choice of unit-of-measure (e.g., 1 foot, 

12 inches, and 1/3 yard all represent the same magnitude). 

Value of a Quantity 

The value of a quantity is the numerical result of a measurement, which is a 

multiplicative comparison of the magnitude of the quantity in terms of the magnitude of 

some appropriate unit-of-measure. For example, 3.2 feet is the value of a length-quantity 

which represents a length that is 3.2 times as long as a 1-foot length. Given this 

definition, I consider the values of 1 yard and 3 feet to be two different values. However, 

they represent the same magnitude. I borrow from Thompson’s constructs by defining a 

fractional value of a quantity to be the value of a quantity whose numerical component is 

not a whole number. For example, a value of 3 gallons is not a fractional value but the 

                                                
6 If a correspondence between two different kinds of quantities is established then it is 
possible to measure one kind of quantity in units of another kind of quantity, e.g. one 
light year measures a distance using time as the unit. 
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value of 7/8 of a gallon is a fractional value of a quantity. In summary, I adopt the 

concise descriptions that a quantity is something that can be measured, quantification is 

the act of measuring the quantity, and the value of the quantity is the result of the 

measurement. Several of these constructs regarding quantities are depicted in Figure 1. 

 
Figure 1. Constructs related to quantities. 

Quantitative Operation vs. Numerical Operation 

Thompson (2011) describes a quantitative operation as the act of either 

combining two quantities (additively or multiplicatively) or comparing two quantities 

(additively or multiplicatively). The result of a quantitative operation is a new quantity 

which, when connected through the quantitative operation to the original quantities, 

forms a quantitative relationship. Again, I emphasize that measuring quantities is not a 

prerequisite to the creation of a quantitative relationship — I can imagine combining 

some number of buckets, each bucket containing some amount of liquid, and producing a 

total amount of liquid, without measuring any of these amounts. A network of connected 

quantitative relationships forms a quantitative structure. A quantitative operation should 

not be confused with a numerical operation, which is the act of calculating numbers by 

operating on numbers. 
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Quantitative Reasoning Summary 

In summary, Thompson defines quantitative reasoning as the act of reasoning 

with quantities and creating quantitative structures using quantitative operations. It is not 

to be confused with reasoning with numerals and the calculation of the results of 

numerical operations. Thompson and Thompson (1992) succinctly define quantitative 

reasoning as “reasoning about things and their attributes” (p.1). Quantitative reasoning is 

at the heart of productive modeling of realistic scenarios using mathematics. As such, it is 

at the heart of this study on meaningful operations. Valid reasoning with quantities 

should precede and ultimately dictate appropriate numerical operations on the values of 

those quantities. Thompson and Saldanha (2003) suggest that “rules and shortcuts for 

operating symbolically should be generalizations from conceptual operations instead of 

being taught in place of them” (p.36). The National Council of Teachers of Mathematics 

(2014) echoes this sentiment by stating that procedural fluency should emerge from 

conceptual understanding. 

Constructivism 

Piaget (1954, 1972, 2001) is credited for advancing the meanings of scheme, 

assimilation, accommodation, and reflecting abstraction into robust constructs that are 

useful in describing behavior from a constructivist point of view. In this proposal, I 

provide my own interpretations of these constructs, as influenced by Piaget’s works and 

the works of many others who have followed (e.g., Chapman, 1988; Derry, 1996; 

Dubinsky, 1991; Montangero & Maurice-Naville, 1997; Steffe, 1994; Thompson, 1994b; 

Thompson et al., 2014; von Glasersfeld, 1995). 
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Scheme 

My interpretation of a scheme is the mental activity that underlies a repeatable, 

directional response to a stimulus (see Figure 2). I explain the components of this 

interpretation below, but first, I illustrate with an example. When I see the written 

expression “6÷2” I can then draw (or imagine drawing) six apples, and then organize 

them into two groups of three apples per group. In this example, the stimulus is the 

written expression that entered my visual field. My scheme recognizes and interprets this 

sensory input and then triggers and guides my physical actions (or mental actions) to 

express my meaning of the written expression. 

 
Figure 2. The nature of a scheme. 

By stimulus, I refer to anything, such as an idea or something that is in a 

perceptual field (such as visual, auditory, etc.), that triggers some sort of response. If the 

something does not trigger a response, then I do not consider the something to be a 

stimulus. Furthermore, I phrase my description of stimulus so that it can be connected to 
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sensory input in the moment or to the memory (subconscious or conscious) of past 

sensory input. For example, in the example above, the expression 6÷2 can be currently 

visible, or it could be imagined from memory. Thus, my characterization of scheme is 

broad enough to include the notion of responses to evoked memories. This is an 

important specification because it allows for the possibility of chain reactions where a 

stimulus triggers a mental response that yields a familiar mental result, which triggers 

another response, etc. I consider the coordination of such chain reactions to be a 

composite scheme resulting from the combination of multiple schemes. 

When I say response in my interpretation of a scheme, I refer to any action 

(thought, movement, or emotion (Piaget et al., 1977)), or combinations thereof, that is 

triggered by the stimulus. By directional response, I mean that the scheme directs the 

triggered action toward some “anticipated” result. This result can be a physical result or 

simply a mental result (a thought). By repeatable response, I mean that the mental 

activity pertaining to the response has a degree of permanence that enables repeated 

stimuli to trigger similar, if not identical responses. However, schemes can change over 

time, due to their modification or due to their inactivity. 

Per my description, a scheme is an organization of mental activity, which happens 

to coordinate a directional response to stimuli. I emphasize this because I wish to make 

clear that I do not consider the stimulus, nor the directional response that is triggered by 

the stimulus, to be components of the scheme itself. The directional response (regardless 

of the types of actions involved) is simply a manifestation of the scheme. Indeed, I think 

of a scheme as a blueprint that includes instructions on recognizing and interpreting a 

stimulus, and on coordinating the directional response.  
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To an outside observer, there would be no evidence of a scheme if the response 

that is triggered by the stimulus involves only imperceptible actions (like thoughts or 

subtle emotions). However, it is an observable response to a stimulus that allows outside 

observers to make models of thinking. Steffe and Thompson (2000) use the constructs the 

students’ mathematics to refer to students’ actual schemes (which are inaccessible to us) 

and the mathematics of the student to refer to our models of their schemes based on our 

observations of student behavior (p.268). Since the actions involved in the directional 

response are sometimes observable, they can easily be confused with the underlying 

scheme itself. This is like confusing the movements of a construction worker, who is 

following a blueprint, with the blueprint itself. In my analogy, only the movements of the 

construction worker are observable; the blueprint is not. Also, using this blueprint 

metaphor, the coordination of schemes is like coordinating multiple blueprints into one 

blueprint – a scheme of schemes. 

Schemes are malleable and subject to change or generalization. If a new stimulus 

is similar enough to a past stimulus, the recognitive and interpretive functions of the 

scheme may trigger identical (or nearly identical) directional responses. For example, if I 

see the written expression 7÷3, the mental actions involved in the directional response 

differ slightly from those that are triggered when I see 6÷2. I talk more about this in my 

discussions on assimilation, accommodation, and abstraction. 

Schemes do not need to be organizations of deliberate mental activity. Many 

schemes that govern our responses to stimuli are instinctive, automatic, or subconscious, 

such as reflexes. Also, schemes can exist independent of our awareness of their existence. 

This is obvious in the case of infants; an infant’s schemes guide his behavior well before 
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his intelligence has reached the capacity to obtain an awareness of these schemes. For 

example, Piaget (1954) ascribes the actions of an infant reaching for an object or sucking 

on the nipple of a bottle to the existence of schemes, yet an infant is not capable of 

metacognition about these schemes. In fact, it is reasonable to think that many of a 

person’s schemes will elude his awareness for a long time, perhaps for the duration of his 

life. 

In their article on schemes for thinking with magnitudes, Thompson et al. (2014) 

suggest that a person’s meanings refers to that person’s schemes. I adopt this convention 

by using the terms scheme and meaning interchangeably throughout my writing. 

Assimilation 

I interpret assimilation as the mental activity involved in the recognition and 

interpretation of a stimulus, thereby accessing an existing scheme (see Figure 3).  As 

mentioned earlier, I described a stimulus as an idea or something that is (or was) in a 

perceptual field, and that triggers a response. Given my characterizations of scheme, 

stimulus, and assimilation, assimilation is therefore responsible for the “correspondence” 

of a stimulus to a scheme.  
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Figure 3. Assimilation of a stimulus to a scheme. 

In the example of the expression 6÷2, when I see, hear, or think about this 

expression, I recognize it as something familiar and interpret the symbols. In other words, 

I assimilate the expression. This assimilation provides access to multiple schemes, and, as 

such, can trigger multiple directional responses. Simply put, I assimilate the expression to 

multiple schemes. Assimilation of the entire expression is comprised of assimilation of 

each of the expression’s components. To illustrate, when I see the 6 in this context, I 

interpret it as a total amount of something. When I see the ÷ symbol in this context, I 

interpret this as a command to divide, which gives me access to numerous schemes 

involving division. Thus, assimilation of the symbol ÷ could trigger thoughts about fair-

sharing (partitive division), thoughts about measuring (quotitive division), thoughts about 

doing the long division algorithm, thoughts about writing a fraction, or other thoughts 

that allow me to arrive as some result. 

Piaget (as cited in Montangero & Maurice-Naville, 1997) provided a description 

of assimilation: “Assimilating an object to a scheme involves giving one or several 

meanings to this object, and it is this conferring of meanings that implies a more or less 
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complex system of inferences.” I take the liberty of rephrasing this quote to provide an 

interpretation of it that utilizes the terms and constructs that I have established in this 

chapter: “Assimilating a stimulus to a scheme involves giving one or several 

interpretations to this stimulus, and it is this conferring of interpretations that grants 

access to a more or less complex system of schemes.” This rephrasing describes 

assimilation in a way that is compatible with my characterization of assimilation. As an 

alternate characterization of assimilation, given that I consider meanings to be schemes, I 

could describe assimilation as the act of attributing meaning to a stimulus. To me, this 

new characterization of assimilation is compatible with my original characterization of 

assimilation. 

Accommodation 

Whenever a stimulus cannot be attributed to a scheme, a modification of a current 

scheme, or the creation of a new scheme, is required for the stimulus to be assimilated. 

Similarly, when a directional response produces a result that contradicts the image of the 

anticipated result, a perturbation is experienced, which can be neutralized through a 

modification of a current scheme, or the creation of a new scheme. For both situations, I 

characterize an accommodation as the modification of a current scheme, or the creation 

of a new scheme7. Below, I expound on these two situations. 

                                                
7 One could argue that I am being redundant because modifying a scheme results in a new 
scheme, so there is no need to characterize accommodation in two ways. I suspect that 
some schemes are innate, and that others are developed through experience. I also suspect 
that most newly created schemes are nothing more than combinations or modifications of 
existing schemes. But I do not rule out the possibility that a scheme can be created from 
“thin air”, hence my two-pronged characterization of accommodation. 
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Type 1 accommodation: An accommodation may occur in response to a perturbation 

when a stimulus cannot be attributed to a scheme (see Figure 4). Either there is no 

scheme to which the stimulus can be assimilated, or the stimulus does not trigger an 

existing scheme. I believe that when a person is bombarded with a wave of sensory input, 

only the stimuli that are assimilated are understood. All other pieces of sensory input are 

either discarded subconsciously or they cause a perturbation. To neutralize such a 

perturbation, an accommodation is required. To illustrate, suppose I have a fair-sharing 

scheme triggered by the stimulus 6÷2. If I now see 7÷2 my fair-sharing scheme may not 

be able to cope with the odd numerator. One way to accommodate is to expand my 

existing scheme for fair-sharing six objects to include how to fairly share the 7th object. 

Another way for the mind to cope with a stimulus that cannot be assimilated is to 

interpret the stimulus as if it were a stimulus that could be assimilated, such as 

misinterpreting 7÷2 as 6÷2. However, I do not consider such a coping mechanism as an 

act of accommodation. 

 
Figure 4. Type 1 accommodation. 

Type 2 Accommodation: An accommodation may occur to neutralize a perturbation that is 

caused when the result of a directional response to a stimulus contradicts the image of the 



 

36 
 

“anticipated” result (see Figure 5). For example, some schemes for division include the 

expectation that division makes smaller. When a person with such a scheme divides nine 

by ½, they get a result that contradicts the scheme’s image of the result. The resulting 

perturbation can be neutralized in many ways, such as modifying the scheme to expect 

division to sometimes increase a quantity, or by creating a new scheme specifically for 

divisors that have the value ½. 

 
Figure 5. Type 2 accommodation. 

Assimilation and accommodation are related to each other. Piaget (as cited in 

Montangero & Maurice-Naville, 1997) said that “assimilation and accommodation are 

the two poles of an interaction between organism and the environment.” I believe that 

Piaget is referring to the following relationship: assimilation is attributing meaning to a 

stimulus and accommodation is the modification (or creation) of a scheme brought about 

by a stimulus. As such, there exists a certain symmetry between assimilation and 

accommodation; in assimilation, the person is acting on the perception of the stimulus, 

and in accommodation the perception of the stimulus is acting on the person (on their 

schemes). Accommodation is a mechanism that serves assimilation. A person 
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accommodates a scheme or schemes so that they can assimilate what they could not 

assimilate before. 

Why does accommodation occur? People have an innate desire for cognitive 

coherence. To this end, accommodation would occur to neutralize incoherence. Having 

briefly addressed why accommodation occurs, it is natural to discuss how it is brought 

about. I suspect that some schemes are created or refined through repetitive actions. It’s 

also possible that some schemes are innate, embedded in our genetic code. In many cases, 

I would attribute the creation or modification of schemes to the act of reflection, which 

leads me to a discussion of the Piagetian construct of reflecting abstraction. 

Reflecting Abstraction 

At the risk of oversimplification, I will treat abstraction synonymously with 

generalization. Piaget and others have described three different types of abstraction (e.g., 

Dubinsky, 1991; Piaget, 2001; von Glasersfeld, 1991) related to the scenario where a 

stimulus triggers an action which produces an expected result, which scenario is guided 

by an underlying scheme (see Figure 6). 

Type 1 Abstraction: A person who focuses on the stimulus and generalizes from the 

attributes of the stimulus is engaging in empirical abstraction. For example, I could focus 

on a collection of even numbers (without acting on them) and generalize that all numbers 

are even. (Keep in mind that the generalizations do not have to be accurate.) 

Type 2 Abstraction: A person who generalizes only from the results of the action is 

engaging in pseudo-empirical abstraction. For example, I could do several calculations 

of a certain type which all produce an even number and generalize that this type of 
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calculation always produces an even number, without focusing on the actions of the 

calculation. 

Type 3 Abstraction: A person who generalizes from the actions is engaging in reflecting 

abstraction.  For example, I could focus on the actions involved in the calculation that led 

to even-numbered results and sensibly generalize that such actions will always produce 

an even number. 

 
Figure 6. Three types of abstraction. 

 

Conclusion 

I characterize the learning of mathematics as the advancement of schemes through 

accommodation and reflective abstraction. A primary objective of this dissertation study 

is to identify cognitive obstacles (or cognitive barriers) by which I mean attributes of 

mental activity that impair assimilation of stimuli to appropriate and productive schemes, 

or that impair the advancement of schemes. Since each person has a unique combination 

of schemes related to thinking about dividing the values of two quantities, I expect 
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teachers to demonstrate a variety of ways that they might assimilate the tasks I used in 

this study. In the next chapter, I discuss some of these ways to think about division 

involving fractional values, as well as meanings that teachers may hold related to 

fractions.  
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CHAPTER 4 

CONCEPTUAL ANALYSIS 

In Chapter 2, I shared several justifications for the invert-and-multiply algorithm 

identified by researchers (e.g., Sharp & Adams, 2002; Tirosh, 2000). However, these 

justifications were not primarily based on partitive and quotitive meanings. In this 

chapter, I will discuss the following: (1) meanings associated with fractions, (2) partitive 

and quotitive conceptualizations regarding division with non-whole values and how they 

relate to numerical division, including how they form a meaningful foundation for the 

invert-and-multiply algorithm, and (3) partitive and quotitive conceptualizations as a 

foundation for other mathematical meanings. 

Teachers’ Meanings for Fractions 

To properly study how teachers might think about division with fractional values, 

it is important to consider how they might think first about the fractions. Researchers 

have identified and elaborated on several meanings triggered by the fraction symbol 

(Lamon, 2011; McCloskey & Norton, 2009; Norton & McCloskey, 2008; Siebert & 

Gaskin, 2006; Steffe & Olive, 2010; Thompson & Saldanha, 2003; Tzur, 1999, 2004; 

Tzur & Hunt, 2015). In this section, I share some of these meanings as well as other 

meanings that may be held by teachers. I will attempt to distinguish the more mature, 

coherent meanings from the more primitive, limiting meanings. It is reasonable to say 

that the extent to which someone can meaningfully conceptualize division with fractional 

values is largely determined by the extent to which that person has robust meanings for 

the fractions that are being divided. The meanings I will discuss are introduced in the list 

below. I listed the more primitive meanings first and the more mature meanings last, but I 
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do not suggest that this is an authoritative ranking of robustness, nor do I suggest that 

such a linear ranking is even possible. 

1. Part-to-whole conception: 2/3 is interpreted as 2 out of 3 parts. 

2. Fraction as an operation: 2/3 is interpreted as divide 2 by 3. 

3. Fraction as a quotient: 2/3 is interpreted as the result of 2 divided by 3. 

4. Fraction as an operator: 2/3 of a unit means partition the unit and iterate a part. 

5. Fraction as a ratio: 2/3 is interpreted as the result of a multiplicative 

comparison between 2 of something and 3 of something else. 

6. Fraction as a rate: 2/3 is interpreted as a constant intensive quantity. 

Part-to-Whole Conception 

A teacher is engaged in part-to-whole thinking when they imagine 2/3 of a 

quantity as the combined size of two parts when that quantity is partitioned into three 

equally-sized parts (Steffe & Olive, 2010). This conception of fractions can be 

oversimplified to mean 2 parts out of 3 parts. However, researchers such as Siebert and 

Gaskin (2006), Thompson and Saldanha (2003), and Tzur and Hunt (2015) have shown 

that this simplification impedes productive thinking related to fractions in ways that are 

included in the summary below. 

1. When thinking 2 parts out of 3 parts, it might not be significant to a person 

whether the three parts are equal in size. 

2. When thinking 2 parts out of 3 parts, the focus may be on counting. As such, the 

fraction 2/3 may have no more meaning than simply a counting exercise. 

3. When thinking 2 parts out of 3 parts, a teacher may construe a fraction as two 

separate values, instead of a single value. 
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4. When thinking 2 parts out of 3 parts, it might not be clear to someone whether the 

three parts constitute a whole. 

5. The word part implies that any one part (or collection of parts) must be smaller 

than the whole. As such, improper fractions seem nonsensical. For example, what 

does it mean to say 4 parts out of 3 parts? 

6. The word part implies a sense of inclusion. When thinking 2 parts out of 3 parts, 

it is easily imagined that the two parts are a subset of the three parts. Prolonged 

exposure to such part-to-whole thinking can instill an intuitive sense for inclusion. 

However, such an intuition is limiting because fractions can also represent 

multiplicative comparisons between two disjoint or even dissimilar quantities. 

7. Part-to-whole thinking does not support thinking about fractions with non-whole 

numerators or denominators. It is challenging to make sense of the fraction 8/7
7/?

 by 

thinking 3/2 parts out of 2/7 parts. 

8. The part-to-whole conception can obscure comparisons of fractional values. It is 

reasonable to claim that 2 out of nine identical candy bars are more than 1 out of 3 

of these candy bars, but, referring to the same whole, 2/8 is less than 1/3. 

9. Finally, the part-to-whole conception can impede sensible operations with 

fractions. What sense is made of 5/8×3/4 if you are thinking (5 out of nine parts) 

× (3 out of 4 parts)? Also, 5 out of nine parts combined with 3 out of 4 parts can 

mean nine out of 12 parts, which conflicts with the calculation 5/8+3/4 = 11/8. 

Research has clearly identified several ways in which primitive part-to-whole 

conceptions of fractions can impede the development of robust reasoning with fractions. 
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Fraction as an Operation 

If m/n means nothing more to a teacher than divide 𝑚 by 𝑛 then the teacher will 

have trouble operating with fractions themselves. The fraction symbol gains maturity 

once it represents the result of division in the mind of the teacher. 

Fraction as a Quotient 

This is interpreting a fraction as the result of division. I consider partitive and 

quotitive meanings for fractions to be mature. The partitive meaning is the 

conceptualization that c/a represents the amount per group such that 𝑎 copies of that 

amount yield the amount 𝑐. The quotitive meaning is the conceptualization that c/b 

represents the number of copies of the amount 𝑏 needed to constitute the amount 𝑐. The 

quotitive meaning can also be framed in terms of measurement; B, represents the 

measurement of 𝑐 in units of size 𝑏. 

Fraction as an Operator 

This can be a powerful meaning for fractions, provided the numerous schemes 

related to operating with this meaning are adequately developed. Steffe and Olive (2010) 

have extensively discussed such schemes and their development. I will discuss fractions 

as operators for the case of m/n where 𝑚 and 𝑛 are positive integers. Thinking of a 

fraction as an operator means to think of m/n as m/n of something, even if that something 

is an unspecified whole. As for unit fractions, a mature conception of 1/m of a unit is the 

single amount such that 𝑚 iterations of that amount would collectively produce one 

whole unit. This is slightly different, but no less valid, than conceiving of 1/m as the size 

of one piece following the partitioning of a whole into 𝑚 equal pieces. Concerning non-
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unit fractions, a person may imagine m/n of a unit as the single amount that results when 

a whole unit is partitioned into 𝑛 equal parts, and one of those parts is iterated 𝑚 times. 

As such, m/n of a unit is thought of as 𝑚 copies of 1/n of a unit. This last 

conceptualization was heavily emphasized during AMP workshops. For a teacher with 

more advanced schemes, the ordering of the partitioning and iterating is irrelevant, which 

yields the numerical equivalence of m×1/n and m÷n. Also, some schemes for 

partitioning and iterating are reversible. A teacher with reversible schemes realizes that 

n/m of (m/n of a unit) gives back one whole unit. Possessing reversible schemes is 

foundational to making sense of the invert-and-multiply algorithm using partitive and 

quotitive conceptualizations, which I will demonstrate in the next subsection. In the 

absence of a specified unit, a teacher with an operator conception of fraction still 

imagines m/n as m/n of 1 something. The maturity of the meaning of fraction as an 

operator is dependent on the extent to which the underlying schemes are developed. 

Fraction as a Ratio or a Rate 

I adopt the meanings for the terms ratio and rate as articulated by Thompson 

(1994b) and Thompson and Thompson (1992). A ratio is the result of a multiplicative 

comparison between the magnitudes of two fixed quantities. Thompson (1994b) calls a 

rate a “reflectively abstracted constant ratio (p.18),” which I interpret as a ratio that is 

held constant in one’s mind as one imagines the corresponding quantities covarying 

within some broader scope. As such, a rate establishes a directly proportional relationship 

between the two covarying quantities. I emphasize that these meanings for the terms ratio 

and rate, which cast ratio and rate as ways of thinking about situations and not as 

properties of situations, are not ubiquitous in the field of mathematics education or 
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among teachers. To present alternative viewpoints, Thompson and Thompson (1992) 

provide a concise summary of the most frequent distinctions between ratio and rate found 

in the literature, as cited below (p.2). 

1. A ratio is a comparison between quantities of like nature (e.g., pounds vs. pounds) 

and a rate is a comparison of quantities of unlike nature (e.g., distance vs. time 

(Vergnaud, 1983)). 

2. A ratio is a numerical expression of how much there is of one quantity in relation 

to another quantity; a rate is a ratio between a quantity and a period of time 

(Ohlsson, 1988). 

3. A ratio is a binary relation that involves ordered pairs of quantities. A rate is an 

intensive quantity—a relationship between one quantity and one unit of another 

quantity (J. Kaput, Luke, Poholsky, & Sayer, 1986; Lesh, Post, & Behr, 1988; 

Schwartz, 1988). 

It is likely that the lack of consensus among researchers regarding the meanings for these 

two terms extends to teachers. Not only can definitions for these terms vary from teacher 

to teacher, but for any one definition, underlying meanings can also vary. Regarding 

fractions, the meanings a teacher holds for fraction as a ratio or a rate can vary from weak 

to mature. For some teachers, a fraction may simply represent a coordination of two 

values that are somehow related. This would be a weak meaning if this were the extent of 

their conceptualization. For others, a fraction may represent a coordination of two values 

which are multiplicatively compared, but they may not interpret the fraction as a symbol 

for the result of that comparison. Hence, a fraction remains a representation of two values 

instead of a single value. Borrowing from Thompson (1994b), when a person sees the 
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symbol “3/2” (or “3:2”), he or she could be thinking 3 of these always go with 2 of those, 

which is a precursor to imagining a proportional relationship. Or, he or she could be 

thinking this is 3/2 as large as that, which is a relative size way of thinking. As discussed 

in my review of the literature, not all people have equally robust conceptions of rate. For 

some, a rate was an extensive quantity – for example, JJ considered speed to be a length 

(Thompson, 1994b). Thus, a teacher may also interpret a fraction symbol as a single 

value that is a rate, but a rate that is just an extensive quantity.  

Summary of Teachers’ Meanings for Fractions 

Mature, coherent meanings for fraction are ultimately dependent on the 

sophistication of the underlying schemes. Above, I presented a categorization of 

meanings and suggested that within any one category, the level of maturity of that 

meaning can vary. I propose that a rich collection of meanings for fraction depends of the 

development of a multitude of the meanings I mentioned earlier, as well as establishing 

connections between these meanings. Thompson & Saldanha (2003) share in a similar 

belief by inextricably connecting fractions to other related concepts. They argued that a 

rich understanding of fractions is composed of developed meanings for measurement, 

multiplication, division, and relative size. 

Partitive Conceptualizations when Dividing by Fractions 

The partitive (or sharing) model of division involves thinking about the size of a 

whole group when a known quantity is distributed among a known number of uniform 

groups (partial groups are possible). Partitive division has the general form: 

Total amount of stuff ÷ number of groups = amount of stuff per whole group 
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Partitive division presumes a proportional correspondence between a varying number of 

groups (which changes from 𝑎 to 1) and a varying amount of stuff (which changes from 𝑐 

to 𝑐 ÷ 𝑎). As discussed in Chapter 2, the primitive model of fair-sharing involves 

intuitive beliefs that the number of groups should be a whole number and that the 

resulting group size should be smaller than the original amount. However, these primitive 

intuitions are not amenable to thinking about partitive division over the rational numbers. 

For someone with more sophisticated meanings, the partitive division model is viable no 

matter the types of values that are involved, and it is possible to have a quotient that 

exceeds the dividend. 

As discussed in my literature review chapter, partitive division with fractional 

values is largely absent from curriculum and the CCSSM. However, there are many 

instances where partitive division with a non-whole number of copies is required; for 

example, spreading soil over 2.3 acres, or pouring water into 2.25 containers. It is even 

sensible to split money between 2.5 people if I interpret this in such a way that two 

people get the same amount of money and that a third person gets only half as much. 

Furthermore, I can think more abstractly and distribute a certain amount of distance over 

2.75 hours, which connects meanings for partitive division with schemes for rates and 

proportional correspondence. 

To discuss the schemes relevant to a partitive conceptualization for division 

involving any positive rational number, I present two situations below, each involving 

water and containers, and share some ways that a person might think about them. I will 

also demonstrate how certain ways of thinking are not only productive, but conducive to 

the emergence of the invert-and-multiply algorithm. 
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Situation 1: Suppose six cups of water fill 2.25 containers.  People could arrive at 

8/3 cups in one container in a variety of ways. They could guess and check through 

multiplication or repeated addition trying to answer “2.25 copies of what make six cups?” 

Or, since 2.25 is nine quarters, they could imagine a container such that six cups fill nine 

of those containers, yielding 6/9 of a cup per container. If they then imagine a new 

container size such that the six cups fill 1/4 as many containers as before, then each of 

these new containers should contain 4 times as much as 6/9 of a cup. As a third way of 

thinking, perhaps a more elegant way of thinking, they begin by interpreting 2.25 

containers as nine quarter-containers. Thus, they could split six cups into nine pieces and 

then copy 4 of those pieces to reconstitute a whole container. Thus, 4/9 of six cups 

corresponds to one whole container. This yields the numerical equivalence of 6÷9/4 and 

4/9×6 and is depicted in Figure 7. 

 
Figure 7. Six cups filling 2.25 containers. 

Situation 2: Suppose six cups of water fill 2/3 of a container.  People could arrive 

at nine cups in one container in a variety of ways, but I only present one solution. They 

could recognize that 2/3 of a container is the same as 2 one-third containers. Thus, they 

could split six cups into 2 pieces and then copy 3 of those pieces to reconstitute the 
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capacity of a whole container. This scheme establishes the numerical equivalence of 

6÷2/3 and 3/2×6 and is depicted in Figure 8. 

 
Figure 8. Six cups filling 2/3 of a container. 

In both situations, six cups were considered, but for the schemes that were 

mentioned last in each situation, this amount of water could be replaced by an arbitrary 

amount of water, without affecting the scheme. As such, these examples illustrate 

partitive justifications for the invert-and-multiply algorithm, which I can generalize as 

follows. Imagine that 𝑎 cups of water fill m/n containers, or 𝑚 copies of 1/n of a 

container. Partition 𝑎 cups into 𝑚 pieces and then copy 𝑛 of one of those amounts to 

reconstitute a whole container. This shows that a÷m/n is equivalent in meaning to 

m/n×a.  

In situation 1, I illustrated a certain way of thinking that I comment on now. More 

sophisticated partitive reasoning includes images of the effect on the quotient as either or 

both the dividend and divisor vary. For instance, if the number of groups (divisor) is 

doubled, while the total amount of stuff (dividend) remains constant, then the amount of 

stuff per whole group (quotient) should be halved. This leads to the following numerical 

generalization. 
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𝑐 ÷ (𝑘𝑎) = F
G(𝑐 ÷ 𝑎) where 𝑘 ∈ 𝑹J 

However, if the total amount of stuff (dividend) is doubled, while the number of groups 

(divisor) remains constant, then the amount of stuff per whole group (quotient) is also 

doubled. This leads to the following numerical generalization. 

(𝑘𝑐) ÷ 𝑎 = 𝑘(𝑐 ÷ 𝑎) where 𝑘 ∈ 𝑹J 

Quotitive Conceptualizations when Dividing by Fractions  

The quotitive (or measuring) model of division involves thinking about the 

number of equally-sized groups needed to constitute some total amount, given that the 

group size and total amount are known. Quotitive division has the general form: 

Total amount of stuff ÷ amount of stuff per group = number of groups 

A person is describing quotitive division when he or she describes the meaning of c÷b as 

“how many times does 𝑏 go into 𝑐”, or something similar. Note that unlike partitive 

division, with quotitive division, the dividend and divisor involve similar kinds of 

measurements, with the distinction that the divisor’s measure corresponds to one group. 

As such, quotitive division is akin to asking to measure some total amount of stuff in 

units of groups, which is why quotitive division is also referred to as measuring division. 

Thus, c÷b could be interpreted as the measurement of 𝑐 in units of size 𝑏. 

As discussed in Chapter 2, the primitive model of repeated subtraction involves 

intuitive beliefs that the total amount of stuff should be more than the amount of stuff per 

group. Some primitive intuitions also include an expectation that the resulting number of 

groups should be a whole number. However, these primitive intuitions are not amenable 

to thinking about quotitive division with rational numbers. For someone with more 
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sophisticated meanings, the quotitive division model is viable no matter the types of 

values that are involved. For example, it is equally sensible to consider how many groups 

of 2 make six as it is to consider how many groups of 2 make 1/3. 

Several researchers and educators have shared scenarios that elicit quotitive 

division with non-whole divisors. For example, Gregg and Underwood Gregg (2007) 

talked about finding the number of servings in a collection of cookies. Also, Kribs-Zaleta 

(2008) shared four different contexts that elicit quotitive division with non-whole 

divisors, such as the number of posters that can be made from a number of sheets of 

paper. Several researchers have also alluded to the common denominator method as a 

way to reason through a quotitive division task (Flores, Turner, & Bachman, 2005; Gregg 

& Underwood Gregg, 2007; Sharp & Adams, 2002; Tirosh, 2000). To elaborate on this 

method and discuss other schemes relevant to quotitive division, I present two situations 

below, each involving two measures of length in yards, and share some ways that a 

person might think about them. I will also demonstrate how certain ways of thinking, 

other than the common denominator method, are conducive to the emergence of the 

invert-and-multiply algorithm. 

Situation 1: How many copies of 3/4 of a yard make six yards? People could 

answer this by engaging in repeated subtraction and be relieved to discover that a whole 

number of copies answers the question. Or, they could get a common denominator 

(hence, a common unit-of-measurement) so that the two resulting measurements could be 

more easily compared. Thus, they seek to determine how many 3-fourths make 24-

fourths? This is equivalent to asking how many groups of 3 make 24, which yields 24÷3, 

or eight groups. Often, the use of fraction bars or some other visual can aid in 
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determining how many 3-fourths make 24-fourths. Another way to think about this 

situation is to consider that six yards represent a measurement of a length using a 1-yard 

unit-of-measure. Finding how many copies of 3/4 of a yard make six yards, is equivalent 

to thinking about measuring the 6-yard length, but in units of measure that are ¾ of a 

yard long. A person may realize that there are 4/3 of 3/4 yard in each yard, thus there are 

6×(4/3 of 3/4 yard) in six yards. This last scheme establishes the numerical equivalence 

of 6÷3/4 and 6×4/3. 

Situation 2: How many copies of 7/4 of a yard make six yards? I only present two 

solutions. First, someone could engage in repeated subtraction and get to 3 copies with 

3/4 of a yard unmeasured. This unmeasured portion is 3/7 of a copy of 7/4 of a yard. 

Hence, the conclusion is that 3 and 3/7 copies of 7/4 of a yard make six yards. Another 

way to approach this problem is to think about measuring the 6-yard length, but in units 

of measure that are 7/4 of a yard long. There is 4/7 of 7/4 yards in each yard. Thus, there 

are 6×(4/7 of 7/4 yards) in six yards. This last scheme efficiently establishes the 

numerical equivalence of 6÷7/4 and 6×4/7. 

In each situation, six yards were considered, but for the schemes that were 

mentioned last in each situation, this amount of distance could be replaced by an arbitrary 

length, without affecting the scheme. As such, these examples illustrate quotitive 

justifications for the invert-and-multiply algorithm, which could be generalized as 

follows. Suppose something measures 𝑎 yards in length. The measurement of this same 

length in units of m/n yards is represented by a÷m/n. One yard is n/m copies of m/n 

yards, so 𝑎 yards is a×(n/m copies of m/n yards). This establishes that a÷m/n is 

equivalent in meaning to a×n/m. 
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Furthermore, more sophisticated quotitive reasoning includes images of the effect 

on the quotient as either or both the dividend and divisor vary. For instance, if the amount 

of stuff per group (divisor) is doubled, while the total amount of stuff (dividend) remains 

constant, then the number of groups (quotient) should be halved. This is akin to saying 

that if some quantity is measured in some unit, and then the magnitude of the unit-of-

measure is doubled and the quantity re-measured, then the new measurement of the 

quantity should be half of the original measurement. This leads to the following 

numerical generalization. 

𝑐 ÷ (𝑘𝑏) = F
G(𝑐 ÷ 𝑏) where 𝑘 ∈ 𝑹J 

However, if the total amount of stuff (dividend) is doubled, while the amount of stuff per 

group (divisor) remains constant, then the number of groups (quotient) should also be 

doubled. This is akin to saying that if some quantity is measured in some unit, and then 

the magnitude of that quantity is doubled and re-measured, without changing the unit-of-

measure, then the new measurement of the quantity should be double the original 

measure. This yields the following numerical generalization. 

(𝑘𝑐) ÷ 𝑏 = 𝑘(𝑐 ÷ 𝑏) where 𝑘 ∈ 𝑹J 

Relationship of Conceptualizations of Division to Ratios, Rates, and Proportions 

As stated earlier, I adopt the meanings for the terms rate and ratio as articulated 

by Thompson (1994b) and Thompson and Thompson (1992). A ratio is the result of a 

multiplicative comparison between the magnitudes of two fixed quantities. It does not 

matter whether the quantities that are being compared are similar or not (e.g., both could 

be lengths or one could be a length and the other could be a weight). Also, a ratio can be 
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evaluated by dividing the values of the fixed quantities that are being compared. As such, 

I consider a ratio to the result of an abstraction of either partitive (such as when 

comparing dissimilar quantities) or quotitive meanings (such as when comparing similar 

quantities). This conception of ratio aligns with the notion of quotient as relative size as 

discussed by Thompson and his colleagues, who use the term relative size even when 

comparing dissimilar kinds of quantities (Byerley et al., 2012; Thompson, 1994a; 

Thompson et al., 2014). I present below some examples of the meanings for division that 

underlie conceptualizations of ratio, first in cases when the compared quantities are 

perceived to be similar, then when they are considered to be dissimilar. 

First, consider the case of comparing two similar kinds of quantities. Now 

consider that these quantities are measured with a common unit. For example, suppose 

you have $12 and I have $3, I can imagine each of my dollars as an abstract group, and 

the ratio of 4 could be interpreted as you have $4 for every $1 that I have (or $4 per 

group). In this case, the ratio is the result of an abstraction of partitive meanings. 

Alternatively, the quotient of 4 can be interpreted as the number of copies of my amount 

of money that would constitute your amount of money, were my money to be copied. As 

such, the ratio of 4 is the result of quotitive meanings. If the units of measure are different 

(e.g., $12 compared to 3€), then partitive meanings establish a $4 to 1€ proportional 

relationship. In cases of comparing two similar kinds of quantities using quotitive 

meanings, ratios can be construed as measurements of one quantity’s magnitude in units 

of the other quantity’s magnitude. Additionally, a ratio, in such cases, can be determined 

without knowing the values of the compared magnitudes. For example, it is possible to 

determine that one length is three times as large as another length, without needing to 



 

55 
 

first measure the two lengths in terms of some other unit. Steffe and his colleagues 

(McCloskey & Norton, 2009; Norton & McCloskey, 2008; Steffe & Olive, 2010) have 

described one scheme that is triggered when trying to determine the ratio that represents 

one unmeasured magnitude in terms of another unmeasured magnitude. They called it the 

partitive fractional scheme, and, in the case of lengths, it is comprised of the following: 

(1) partitioning the smaller length, (2) iterating one piece of the partition to try to match 

the larger length, and (3) repeating until a successful partition and iteration is discovered. 

This scheme enables someone to describe the smaller magnitude in terms of the larger 

magnitude, as measured by a proper fraction. I also contend that the scheme could be 

adapted and used to describe the reverse relative size – large in terms of small – as 

measured by the reciprocal improper fraction. 

Now, consider the case of comparing two dissimilar kinds of quantities. For 

example, if $12 is multiplicatively compared to 3 pounds, then each pound can be 

thought of as an abstract group and the quotient reveals the dollar amount per group, 

which is $4 per pound. This is an abstraction of partitive meanings. Thus, no matter 

whether the ratio is the result of comparing two similar (same or different units of 

measure) or two dissimilar quantities, the underlying meanings are abstractions of either 

partitive or quotitive conceptualizations of division. 

Partitive meanings are intertwined with meanings for rate (as an abstracted 

constant ratio) and proportion. To illustrate, first consider a generic case of partitive 

division. Suppose 12 units fit evenly into 3 groups. Then the quotient of 4 is interpreted 

as 4 units per 1 group. This quotient can be thought of as a ratio that remains constant 

(i.e., a rate) as the number of groups varies, thus establishing a proportional 
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correspondence between the number of groups and the total number of units contained in 

the collection of groups. If the number of groups were to be tripled to become nine 

groups, then the total number of units would need to triple to become 36 units, so that the 

quotient of 4 units per group remains constant. Now consider a classic situation involving 

distance and time. Suppose that an object that is moving uniformly takes 3 seconds to 

travel 12 yards. The ratio that results from comparing 12 yards to 3 seconds is 4, which is 

interpreted as 4 yards per 1 second. Imagining each second as a group which contains 

yards is an abstraction of the partitive conceptualization. We now imagine that this ratio 

remains constant as the object moves (i.e., we imagine the ratio as a rate), which is to say 

that any amount of distance traveled is proportional to the amount of time that has 

elapsed up to that point. In other words, in 𝑥 ∙ 1 seconds, the object will have moved 𝑥 ∙ 4 

yards, for any 𝑥 ∈ 𝑹J. 

Conclusion 

In this chapter, I provided a conceptual analysis for the two fundamental 

conceptualizations for division. I consider a person to have robust meanings for division 

if that person… 

1) Can operate meaningfully with both partitive and quotitive conceptualizations 

over the positive rational numbers. 

2) Possesses an awareness of the distinctions between partitive and quotitive 

conceptualizations regardless of number type. 

3) Can recognize and/or invent situations that elicit both partitive and quotitive 

conceptualizations involving any kind of positive rational values. 
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A person who can operate meaningfully with both conceptualizations, no matter the types 

of values involved, has a strong conceptual foundation for other mathematical concepts 

such as rates and proportions, and for numerical algorithms such as the invert-and-

multiply algorithm. Unfortunately, as discussed in my literature review chapter, the 

absence of partitive conceptualizations for division over the rational numbers in the 

mathematics curriculum is acutely felt, which I find to be detrimental to the development 

of robust mathematical meanings for students. These observations form a powerful 

motivation for my study. In the next chapter, I describe the methodology I used to 

investigate the advancement of partitive meanings for division.  
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CHAPTER 5 

METHODOLOGY 

I approached my dissertation study having already been involved with three pilot 

studies related to division with non-whole, positive rational numbers. These pilot studies 

provided me with insights into some of the cognitive obstacles which can impede the 

development of more robust schemes. For the pilot studies, I employed a variety of 

methodologies, some of which I leveraged in this study. In the next section, I briefly 

describe these types of methodologies. 

Descriptions of Methodologies 

In this section I provide a brief description of the types of methodologies used in 

the three pilot studies and in my dissertation study. Based on a constructivist perspective, 

I characterize the learning of mathematics as the advancement of schemes through 

accommodation and reflective abstraction. Each person’s collection of schemes is, 

perhaps, as unique to that person as his or her fingerprint. As such, to investigate the 

advancement of schemes, it is essential for researchers to utilize methods of data 

collection that furnish qualitative data which allow the researcher to model the subject’s 

meanings. One such method is through conducting task-based, semi-structured clinical 

interviews between one researcher and one subject. Borrowing from Goldin (2000), an 

interview is (1) semi-structured if a general protocol is developed beforehand, but the 

researcher is free to adapt the protocol in the moment, in response to the subject’s actions 

(e.g., utterances, gestures, inscriptions) and probe beyond the reach of the established 

protocol and (2) task-based if mathematical tasks serve as the catalyst for the collection 

of the qualitative data. As described by other researchers (Clement, 2000; Hunting, 1997; 
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Steffe & Thompson, 2000), an interview is clinical if the researcher does not try to 

influence the subject’s thinking but instead only interacts with the subject to probe for 

greater insights into the meanings that were underlying the subject’s actions. In contrast 

to clinical interviews, during a teaching experiment, as described by Steffe and 

Thompson (2000), the researcher attempts to influence a subject’s meanings. The clinical 

interview focuses on what a subject knows in the moment, but the teaching experiment 

aims at understanding the cognitive development of the research subject. 

Teaching experiments tend to be guided by already existing theories (a 

convergent study as described by Clement (2000)), yet they may also generate new 

hypotheses (a generative study as described by Clement (2000)). If there are no existing 

theories regarding cognitive development, then Steffe and Thompson (2000) suggest 

conducting an exploratory teaching episode, whereby a researcher interacts with a group 

of subjects to experiment with lesson trajectories or pedagogies. From this exploration, 

hypotheses can be formulated about learning which can inform the design of subsequent 

teaching experiments. Alternatively, this kind of exploratory teaching need not occur 

with a multitude of students at once. If the exploratory teaching involves only one subject 

then I borrow the term exploratory teaching interview, a type of interview described by 

Steffe and Thompson, but named by Moore (2010). The distinction between a teaching 

experiment and an exploratory teaching interview is that during an exploratory teaching 

interview, the researcher’s primary focus is on generating hypotheses, and during a 

teaching experiment, the researcher’s primary focus is on testing existing hypotheses. 
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Summaries of Pilot Study Methodologies 

Prior to my dissertation study, I was a primary contributor to the design, 

implementation, and analysis of three pilot studies that directly informed the 

methodology of my dissertation study. In the section below, I summarize the 

methodologies of these pilot studies. Later in this chapter, I discuss the findings from the 

pilot studies that influenced the design of my dissertation study. 

Pilot Study A: Methods Summary 

Eight middle school mathematics teachers from four different schools within one 

district volunteered to participate in a two-year study. They were all members of one out 

of four cohorts of teachers who were participating in the Arizona Mathematics 

Partnership (AMP), an NSF-funded, six-year professional development and research 

project that was based in the Phoenix metropolitan area. All eight teachers participated in 

six semi-structured, task-based clinical interviews conducted by researchers on the AMP 

project. Each interview was videotaped and included 6-10 questions and mathematical 

tasks, with each interview lasting approximately 50-70 min. The six interviews were 

spread out evenly over the course of the teachers’ two-year involvement with the AMP 

project. The purpose of the study was to create models of teachers’ schemes as they 

struggled through tasks that focused primarily on topics related to the multiplicative 

conceptual field, such as problems involving fractions, multiplication, division, 

proportional reasoning, and multiplicative comparisons. 
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Pilot Study B: Methods Summary 

I designed an exploratory teaching episode that involved 13 pre-service teachers 

in an elementary education course at a community college. I taught a three-session unit 

on division that I designed to help the students (1) have two conceptualizations for 

division (partitive and quotitive), (2) connect meanings for division with meanings for 

multiplication, (3) be able to use partitive and quotitive meanings (instead of algorithms) 

to divide two non-whole, positive rational numbers, (4) construct contexts which elicited 

both partitive and quotitive meanings for division with non-whole, positive rational 

numbers, and (5) make sense of the invert-and-multiply algorithm based on a partitive 

conceptualization for division. The three-session unit was preceded and interspersed with 

four task-based assignments to assess the cognitive progression of the students 

throughout the study. The three-session unit was also preceded by a session devoted to a 

review of fractions. Below is a summary of the timeline for the study. 

• Students complete assignment 1 (a pre-assessment of students’ meanings). 

• Pre-session: Review of fractions; particularly fractions as multiplicative operators. 

• Session 1: Discuss meanings for multiplication and division and discuss some 

problems from assignment 1. 

• Students complete assignment 2. 

• Session 2: Review meanings for multiplication and division and discuss some 

problems from assignments 1 and 2. 

• Students complete assignment 3. 

• Session 3: Review meanings for multiplication and division, draw attention to the 

connection between the invert-and-multiply algorithm and partitive division, and 

discuss some problems from assignments 1 through 3. 

• Students complete assignment 4 (a post-assessment of students’ meanings). 
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Of the 13 students in the course, I selected two of them, one low-performing and one 

high-performing, to do their four task-based assignments in a clinical and semi-structured 

interview setting. Concerning class time, I used some time to present material in a lecture 

format with whole class interaction and discussion. These lectures included dynamic 

visual models using Power Point of both partitive and quotitive conceptualizations of 

division with fractions. The basic trajectory of the unit progressed from specific to 

abstract, and from whole to non-whole values. Also, a significant portion of class time 

was devoted to small group discussion to allow students opportunities to solve problems 

at the white boards. Students showcased their solution strategies and critiqued the 

reasoning of their classmates. 

Pilot Study C: Methods Summary 

For this study, I selected one middle school mathematics teacher who had 

completed the two-year AMP program. I met with this teacher on four separate occasions 

to gather data, each meeting lasting approximately 90-120 minutes. The first meeting 

consisted of a semi-structured, task-based clinical interview. The remaining three 

meetings were task-based exploratory teaching interviews, where we discussed the 

teacher’s prior work and assessed her understanding with new tasks. The purpose of the 

study was to help me identify the subject’s ways of operating, along with their 

affordances and limitations, when trying to resolve tasks that elicit partitive meanings for 

division. Additionally, I wanted to study how my deliberate interventions could help 

promote the teacher’s development of more productive ways of operating. To better study 

the advancement of meanings, I selected a teacher with weaker mathematical meanings 

and who tended to operate numerically with decimal representations when presented with 
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non-whole values. I retained flexibility by planning only one interview in advance, so I 

could analyze the data after each interview in preparation for the next interview. I 

selected only tasks that involved trying to answer the question “so many copies of what 

amount make some other amount?” I framed these tasks in the context of attempting to 

identify the amount of water in one whole container given that a certain amount of water 

filled a certain number of containers. The tasks varied in complexity, which tended from 

whole to non-whole values, and from specified to unspecified values. They also included 

numbers of containers that were both less than and greater than one. For this study, I 

encouraged the teacher to use fraction circle manipulatives to coordinate the amount of 

water and the corresponding number of containers. 

Methodology of Dissertation Study 

Having briefly discussed some general methods of qualitative data collection, as 

well as the methodologies specific to my three pilot studies, I move on to discuss the 

methodology of this dissertation study. I begin by restating my primary research 

questions and formulating secondary research questions that guided the methods and 

analysis of the data. 

Primary and Secondary Research Questions 

The purpose of this dissertation study was to investigate the advancement of 

teachers’ partitive conceptualizations of division to accommodate fractional values. As 

established in my literature review chapter, very little insight is available about the 

development of partitive schemes. Additionally, partitive division over the positive 

rational numbers is underemphasized in curricula and in national standards for teaching 
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mathematics, even though there are many realistic scenarios where partitive division with 

a non-whole number of groups is required (e.g., spreading soil over 2.3 acres). 

Additionally, I have established in my conceptual analysis chapter that partitive meanings 

are foundational to meanings for rates and proportional correspondence, and they form a 

conceptual foundation for the invert-and-multiply algorithm. For these many reasons, my 

dissertation study focused on the following primary research questions. 

Primary Research Question 1 (RQ1): 

What meanings, with their affordances and limitations, do in-service middle 

school mathematics teachers possess relative to partitive conceptualizations of 

division with non-whole divisors? 

Primary Research Question 2 (RQ2): 

How do these teachers’ meanings change as a consequence of an instructional 

sequence that emphasized quantitative reasoning to aid in the advancement of 

these meanings? 

Partitive schemes are but a cog in the grander machinery of multiplicative reasoning. The 

development of productive meanings for division with fractional values is dependent on a 

mature network of mathematical meanings, including, but not limited to, partitioning, 

iterating, measurement, fractions, multiplication, relative size, and proportionality. As 

part of my study, I needed to gain insight into teachers’ meanings regarding several of 

these mathematical concepts.  

Since my study involved an intervention, I needed to conduct both a pre- and 

post-assessment to furnish data that I could compare to look for advancements in the 

teachers’ meanings. This necessitated three phases of my study. The pre-assessment 
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(Phase 1) allowed me to investigate and describe the affordances, limitations, and 

generalizability of the teachers’ schemes related to partitive division. This data informed 

my intervention (Phase 2), after which a post-assessment (Phase 3) allowed me to discuss 

advancements and obstacles to advancement. I was also interested in observing whether 

the advancement of partitive schemes would naturally lead to a meaningful justification 

of the invert-and-multiply algorithm. For each phase of the study, I formulated secondary 

research questions that served to answer my primary research questions, which are found 

in Table 3 below. 

Table 3 
Secondary Research Questions 

Phase 
1 

RQ1.1 What meanings do teachers reveal when they engage in tasks that I 
designed to elicit meanings for fractions as measures of relative size, 
with a focus on fractions as reciprocal measures of relative size?  

RQ1.2 What meanings do teachers reveal when they describe and model 
symbolic (decontextualized) statements of multiplication, both 
general and specific, with a focus on fractional multipliers? 

RQ1.3 What meanings do teachers reveal when they describe and model 
symbolic (decontextualized) statements of division, both general and 
specific, with a focus on fractional divisors? 

RQ1.4 What meanings do teachers reveal when they engage in tasks that I 
designed to elicit partitive conceptualizations of division, with 
varying degrees of abstraction, and with a focus on fractional 
divisors? 

RQ1.5 What justifications do teachers provide for the invert-and-multiply 
algorithm after working through the tasks mentioned in the previous 
research question? 

Phase 
2 

RQ1.6 What cognitive obstacles do teachers further reveal as I actively 
attempt to promote the development of their meanings that are 
foundational to partitive division over the rational numbers? 

Phase 
3 

RQ2.1 How do the teachers’ post-intervention meanings compare to their 
pre-intervention meanings? 

RQ2.2 What advancements to the teachers’ schemes are evident and what 
challenges remain? 
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For Phase 1, I conducted two task-based, semi-structured clinical interviews with 

six practicing middle school mathematics teachers. For Phase 2, I selected two of the six 

teachers and conducted four teaching experiment interviews. For Phase 3, I conducted 

one task-based, semi-structured clinical interview, with each of the two teachers from 

Phase 2, to assess the impact of my intervention. For all meetings in all phases, I planned 

on each interview to last about 90 minutes, and each meeting was with one teacher at a 

time. I summarize the structure of this study in Figure 9. 

 
Figure 9. Summary of the three phases of this dissertation study. 

Research Subjects 

I selected the subjects for this dissertation study from among a pool of middle 

school mathematics teachers who were former participants in the AMP project. These 

teachers had various amounts of experience teaching Kindergarten through 8th grade. 

During their involvement with the AMP project, each teacher attended 18 full-day 

workshops and participated in at least 16 after school professional learning community 

meetings, facilitated by a representative of the AMP project. One purpose of the AMP 

project was to help the teachers gain a deeper understanding of the Common Core State 

Standards for mathematical practice (National Governors Association, 2010), which 
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Arizona calls the Arizona Mathematics Standards. Another purpose was to help teachers 

develop their content knowledge related to numbers and operations, problem solving, 

statistics, and functions. Concerning schemes for division by fractional values, the 

teachers were exposed exclusively to quotitive conceptualizations during the project. 

However, it is not known the extent to which the teachers’ participation in the AMP 

project impacted their schemes for division with fractions. I considered this lack of 

knowledge on my part to be insignificant because Phase 1 of this study would be a pre-

assessment of their schemes going into the study. Following their participation in the 

AMP project, the pool of teachers was administered the Learning Mathematics for 

Teaching (LMT) post-test, which assessed their mathematical knowledge for teaching 

(MKT) with regards to Number Sense and Operations (NCOP), as well as other strands 

of mathematical content. The data for NCOP were analyzed using item response theory to 

classify the teachers as high, mid, or low. Scores less than negative one were categorized 

as low. Scores between negative one and positive one (inclusive) were categorized as 

mid. Scores above one were categorized as high. 

For Phase 1, I selected six teachers; one who had performed in the low-level for 

numbers and operations on the LMT post-test, three teachers from the mid-level, and two 

teachers from the high-level. I did this to ensure that I had teachers with various 

capabilities regarding numbers and operations. The aliases I adopted begin with the same 

letter as the teacher’s placement according to the LMT post-test – Linda was from the 

low-level; Mark, Mindi, and Mel were from the mid-level; and Uma and Ursa were from 

the upper(high)-level. For Phases 2 and 3, I narrowed my subjects down to Linda and 

Uma (the two highlighted rows) Phases 2 and 3, for reasons I describe at the end of 
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Chapter 6. The AMP project compensated the six teachers for any time they devoted to 

this study. The subjects, with their NCOP score level, teaching experience, and 

participation in this study are listed in Table 4. 

Table 4 
Research Subjects 

Alias NCOP Level 
Years of Teaching 

Experience Current 
Grade 

Phase 
1 

Phase 
2 

Phase 
3 

K-5 6 7-8 
Linda low 9 5 4 6, 7, 8 ü ü ü 
Mark mid   6 7 ü   
Mindi mid 17 3  6 ü   
Mel mid 6 5 2 7 ü   
Uma upper (high) 5 10  coach ü ü ü 
Ursa upper (high) 4  8 7 ü   

 

Methods of Analysis 

The nature of my research questions required me to conduct a qualitative study as 

described by Corbin and Strauss (2008). My primary data were video recordings of the 

teachers’ hand gestures, utterances, and inscriptions as they worked through various tasks 

and activities. I scanned all written work and uploaded all video data and scanned 

artifacts to a secure server for storage and future analysis. Once the qualitative data was 

gathered, I analyzed it using open and axial coding in order to generate grounded theory, 

as described by Corbin and Strauss (2008). These authors described coding as “deriving 

and developing concepts from data” (p.66), and grounded theory as theory that “is 

derived from qualitative analysis of data” (p.1). They described open coding as 

maintaining an open mind so that analysts can “open up the data to all potentials and 

possibilities contained within them” (p.159), and axial coding as “relating concepts to 
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each other” (p.195). My analysis involved open coding as I tried to generate any 

constructs and theories that helped me answer my research questions, and it involved 

axial coding to the extent that (1) my analysis involving comparing data from Phases 1 

and 3, and (2) my analysis was informed by findings and theories from my pilot studies. 

In particular, my research questions required me to perform a scheme-based analysis of 

the data, which is more challenging than a behavior-based analysis. Thompson and 

Saldanha (2003) commented on this complication. 

“There is a practical drawback to scheme-based characterizations of learning 

objectives. Assessment of whether students have achieved a learning objective is 

more complicated when expressing it in terms of schemes of conceptual 

operations than when expressing it in terms of behavioral skills. When learning 

objectives are stated in terms of skills, determining whether a student has 

achieved them is straightforward. When learning objectives are stated as schemes 

of operations, students’ behavior must be interpreted to decide whether it reflects 

reasoning that is consistent with the objectives’ achievement. This complication is 

unavoidable” (p.37). 

As part of my analysis of the teachers’ schemes, I was interested in whether their 

schemes were productive, generalizable, limiting, flexible, and connected. At the same 

time, I maintained a generative position, meaning that I was open to generating models, 

constructs, and frameworks that could inform future research, curriculum development, 

and educational policies. I intended to make models of the teachers’ schemes that 

explained the teachers’ observable actions regarding fractions, multiplication, division, 

relative size, partitioning, iterating, etc. These models would need to explain why the 

teachers could do what they could, why they were unable to do what they could not, and 
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the extent to which they could generalize their thinking. Furthermore, I needed to model 

any changes to their schemes that resulted from the teaching experiment. 

Throughout the study, it was necessary to analyze the data at different junctions, 

as depicted in Figure 10. The first analysis came at the end of Phase 1, the pre-

assessment. I needed to analyze the data from Phase 1 before beginning Phase 2 for two 

practical reasons. First, I used the data from Phase 1 to narrow the group of subjects from 

six teachers to two teachers based on which teachers needed development as supported 

by the data, but being careful to select teachers for whom it would be possible to benefit. 

I say more about who I selected, and why, following my discussion of the data from 

Phase 1. Second, the data from Phase 1 informed my pedagogical decisions regarding the 

impending teaching experiment in Phase 2 for these two teachers. 

 
Figure 10. Timing of my analyses of the data. 

Throughout the four-session teaching experiment, I needed to continually monitor 

the two teachers’ progress, and wherever possible, draw them back to my learning goals. 

This required me to analyze data between each session of the four-session teaching 

experiment, so that I could make any necessary adjustments. At the end of Phase 2, I 

analyzed the data from the teaching experiment so I could properly adjust, if necessary, 
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the upcoming post-assessment in Phase 3. At the end of Phase 3, I performed a 

comparative analysis of the data from the pre- and post-assessments. 

Phase 1 Methods: Pre-Assessment 

Before actively attempting to advance the teachers’ schemes, I needed to conduct 

a pre-intervention investigation. I conducted two task-based, semi-structured clinical 

interviews, with each of the six teachers. For this phase of my study, I designed 25 tasks 

that adhere to the following guidelines. 

1. The tasks primarily involve partitive division. I also included tasks to investigate 

the teacher’s meanings regarding fractions, and reciprocal relative size, 

multiplication involving fractions, and division in general. 

2. Most of the tasks are contextually grounded, typically using volume of liquid, 

number of equally-sized containers, and capacity of each whole container as the 

relevant quantities. I chose these quantities because they can comfortably be 

imagined with non-whole values. However, some tasks are not presented in a 

context, for reasons I discuss later in this chapter. 

3. The tasks involve values of quantities that challenge primitive intuitive rules of 

partitive division. Specifically, I included situations with non-whole divisors 

which are, in some cases, greater than one, and in other cases less than one. 

4. The tasks are generally devoid of words that trigger the numerical operation of 

division. Specifically, I generally avoid using the words divide, partition, and 

split. I am interested in teachers’ meanings for partitive conceptualizations, and 

I’d like to minimize, if possible, any interference from existing meanings related 

to numerical division. 
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5. The tasks vary in level of generality. For some tasks, I am explicit about the 

values of the relevant quantities, and for other tasks I am not. This is done to gain 

insight into the limitations and generalizability of the teachers’ schemes, and to 

test the teachers’ ability to engage in quantitative reasoning. 

6. Most of the tasks involve non-whole values in some way. At least one of the 

dividend, divisor, and quotient will have a non-whole value. For some tasks, the 

divisor will be whole and for others it will not. This will give me a basis for 

ascertaining the extent to which the type of numerical value for the divisor can 

affect a teacher’s partitive schemes. 

I administered the 25 tasks over the course of two separate meetings with each of the six 

teachers. For each task, I asked teachers to verbalize their meanings. Since I was 

interested in getting data on the teachers’ quantitative reasoning, I also asked them to 

model their meanings with a picture. Thompson and Saldanha (2003) said “part of 

building conceptual operations is the attempt to express them in symbols and diagrams. 

Symbolic operations can become the focus of instruction once students have developed 

coherent and stable meanings that they may express symbolically” (p.37). During the first 

meeting, I presented each teacher with the first 13 tasks, and the rest of the tasks during 

the second meeting. The second meeting occurred no more than one week following the 

first meeting, so that the effects of elapsed time were minimal. A summary of the tasks is 

found in Table 5. In the section that follows the table, I give my reasons for including 

them and ways that I anticipated a teacher might reason through them and overcome 

certain cognitive perturbations. I also share how some findings from the pilot studies 

have influenced the design of some of these tasks. 
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Table 5 
Phase 1 Tasks 

M
ee

tin
g 

1 

Task Set 1 
Fractions 

1 Explain your meanings for the expression:  3
4
 

2 The given line has a length that is 8/5 of a unit. Draw a line that is one unit 
long. 

3 
Given these two strips of paper, how long is the red strip compared to the 
green strip? How long is the green strip compared to the red strip? (The red 
strip is 7 inches long, and the green strip is 4 inches long.) 

Task Set 2 
Multiplication 

4 Explain your meanings for the expression:    𝑎	 × 	𝑏 

5 Explain your meanings for the expression:    5	 ×	L
8
 

6 Explain your meanings for the expression:    M
8
	× 	2 

7 Explain your meanings for the expression:    M
8
	× 	2 

Task Set 3 
Division 

8 Explain your meanings for the expression:    𝑎 ÷ 𝑏 

9 Explain your meanings for the expression:    4 ÷ 3 

10 Explain your meanings for the expression:    4 ÷ <
8
 

11 Explain your meanings for the expression:    <
7
÷ 8

L
 

Task Set 4 
Missing 

Multiplicand 

12 <P
8

 copies of what amount combine to make the amount 15? 

13 6 copies of what amount combine to make the amount 15? 

M
ee

tin
g 

2 

Task Set 5 
Fair-Sharing 

14 How much is in one group if 15 of something is split into <P
8

 groups? 

15 How much is in one group if 15 of something is split into 6 groups? 

Task Set 6 
Whole 
Divisor 

16 Suppose 13 gallons of water fill 5 equal containers. Describe the capacity 
of one whole container. 

17 Suppose QR gallon of water fills 5 identical containers. Describe the capacity 
of one whole container. 

18 Suppose a certain amount of water fills 5 identical containers. Describe the 
capacity of one whole container. 

Task Set 7 
Non-whole 

Divisor 
> 1 

19 Suppose 27 gallons of water fill SR identical containers. Describe the 
capacity of one whole container. 

20 Suppose 3 gallons of water fill SR identical containers. Describe the capacity 
of one whole container. 

21 Suppose a certain amount of water fills SR identical containers. Describe the 
capacity of one whole container. 

Task Set 8 
Non-whole 

Divisor 
< 1 

22 Suppose 5 gallons of water fill TQ of a container. Describe the capacity of 
one whole container. 

23 Suppose UR gallons of water fill TQ of a container. Describe the capacity of 
one whole container. 

24 Suppose a certain amount of water fills TQ of a container. Describe the 
capacity of one whole container. 

Final Task 25 
Explain why it is that when you divide by a fraction, 
you can multiply by the reciprocal of the fraction 
instead. In other words, explain the following: 

𝑎 ÷
𝑏
𝑐 = 𝑎	 ×	

𝑐
𝑏 
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Description of tasks. In this section, I describe the Phase 1 tasks, give my 

reasons for including them, discuss ways that I anticipated a teacher might reason through 

them. I also share how some findings from the pilot studies have influenced the design of 

some of these tasks. 

Task Set 1: Fractions (Tasks 1-3). I designed the first set of tasks to help me 

model each teacher’s meanings triggered by the fraction symbol, as well as meanings for 

fractions as operators and fractions as ratios. Much of what I expected teachers to do for 

the first two tasks is based on my findings from pilot studies A and B. However, the third 

task was not used in any of the three pilot studies. These tasks are as follows. 

Task 1: Explain your meanings for the expression:  3
4
 

Task 1 helped me to gather data regarding each teacher’s meanings associated with the 

fraction symbol. For this task, I told the teachers to limit the numerator and denominator 

to representing positive integers. I hoped that teachers would talk about their meanings in 

general terms, but I suspected that many teachers would want to use specific fractions so 

that they could discuss their meanings more concretely, such as with visual aids. For 

teachers that preferred to talk about specific fractions, I asked them to make drawings 

that represented their meanings. I made sure that teachers considered both proper and 

improper fractions in their descriptions. I asked teachers to imagine a context where they 

would need to think about a fraction. I also encouraged each teacher to give as many 

meanings as they could think of in the moment, while realizing that they likely would 

have a broader web of meanings than they could conjure in the moment, perhaps even 

some meanings they were not aware of. I suspected that all teachers would describe either 

part-to-whole meanings, fractions as commands to divide using partitive 
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conceptualizations, or fractions as the result of partitive division. I did not expect teachers 

to give quotitive interpretations, given that the denominator for this task represents a 

whole number which tends to elicit partitive meanings. I also anticipated that some 

teachers would use the term “ratio” and describe a fraction as a ratio to the extent that the 

fraction symbol represents the two values being compared, and not the single value that is 

the result of that comparison. Given the teachers’ involvement in the AMP project, I also 

expected teachers to interpret the fraction as “𝑎 copies of 1/𝑏.” 

Task 2: The given line has a length that is 8/5 of a unit. Draw a line that is one 

unit long. 

I designed Task 2 to specifically explore each teacher’s meanings for fractions as a 

reversible operator. The task involves an improper fraction to perturb part-to-whole 

meanings. Based on findings from Pilot Study A, I suspected that teachers would succeed 

in the task by partitioning the line into nine equal pieces and keeping only 5 of them. I 

planned to determine whether each teacher could construe a piece as both one fifth and 

one eighth, by having them explain the referents for these unit fractions. 

Task 3: Given these two strips of paper, how long is the red strip compared to the 

green strip? How long is the green strip compared to the red strip? 

 

I designed Task 3 to specifically explore each teacher’s meanings for fractions as 

reciprocal measures of relative size. Again, I emphasize that I did not use this task in any 

of my prior pilot studies. The green strip was 4 inches in length and the red strip was 
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seven inches in length. However, these measurements were not revealed to the teachers, 

nor did I immediately allow supplemental measuring tools to be used, because I was 

curious what strategies the teachers would use without them, such as folding the strips. I 

suspected that teachers would easily recognize that the green strip has more than half the 

length of the red strip, and that the length of the red strip is not quite twice the length of 

the green strip. I encouraged teachers to be as precise as possible with their comparisons. 

I expected that most teachers would use a partitive fractional scheme, which I described 

earlier in this proposal. For those teachers who struggled with determining the exact 

measures of relative size, I eventually allowed the use of a ruler. I suspected that some 

teachers would give additive comparisons by focusing on the difference in lengths. For 

these teachers, I prompted them to think multiplicatively by asking how many times as 

large is one strip as the other. Once a teacher gave one relationship (e.g., the green strip 

in terms of the red strip), I immediately asked about the reverse relationship, because I 

wanted to determine how naturally a teacher recognized that if the green strip is L
?
 of the 

length of the red strip, then the red strip is ?
L
 of the length of the green strip. I also 

prompted the teachers to consider the unit-of-measure for each of these two values, to 

determine how aware each teacher is of the inconsistency of the referents of the inverse 

fractions. 

Task Set 2: Multiplication (Tasks 4-7). I designed the next set of tasks to explore 

each teacher’s meanings for multiplication, specific to non-whole multipliers and 

multiplicands. These tasks are not placed in a quantitative context because I wanted to 

determine how the teachers contextualize the operations themselves, which can reveal the 
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limitations of their ways of thinking. Much of what I expected teachers to do for these 

tasks was based on my findings from Pilot Study A. The tasks are as follows. 

Task 4: Explain your meanings for the expression:    𝑎	 × 	𝑏 

I used Task 4 to begin to explore each teacher’s meanings for multiplication in general. I 

expected that some teachers would use the term groups in their language and that some 

would use the term copies, a term that workshop facilitators emphasized in the AMP 

project. I hoped that teachers would speak in general terms, but I believed that many 

teachers would use specific examples to explain their meanings, and that these specific 

examples would involve only positive integers for both the multiplier and multiplicand. I 

anticipated that many teachers would give general descriptions of multiplication that 

would not be conducive to non-whole multipliers. I suspected that all teachers would use 

some combination of array models, area models, equal groups models, and repeated 

addition models to explain multiplication. I prompted teachers to represent their 

meanings visually. I believed that some teachers would talk about commutativity, and 

that for some teachers the second number in the expression would be the multiplier. 

Task 5: Explain your meanings for the expression:    5	 ×	L
8
 

Task 6: Explain your meanings for the expression:    M
8
	× 	2 

I designed Task 5 and Task 6 to investigate issues caused by non-whole multipliers. I 

thought both tasks would be necessary since for some people the first number is the 

multiplier and for others, the second number is the multiplier. Thus, I anticipated that 

each teacher would be perturbed by at least one of the tasks. I suspected that some 

teachers would accommodate by invoking commutativity and using the whole value as 
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the multiplier regardless of its position, so that the equal groups model or the repeated 

addition model could be leveraged. However, for each of these tasks, I prompted each 

teacher to consider the first value as the multiplier. For Task 6, I thought some teachers 

would accommodate by abandoning terms such as groups and repeated addition in favor 

of using partitioning and iterating schemes that are part of their meanings for fraction as 

an operator. In Pilot Study A, I observed that for some teachers, it made no sense to talk 

about non-whole groups or to add something to itself repeatedly a non-whole number of 

times. For those teachers and in these cases, multiplication became nonsensical, 

something that they could do procedurally, but that they could not talk about 

meaningfully. 

Task 7: Explain your meanings for the expression:    7
M
	× 	L

8
 

I designed Task 7 to force teachers to work with a fractional multiplier and a fractional 

multiplicand, so that I could determine which meaningful models would emerge to make 

sense of the product. Based on findings from Pilot Study A, I anticipated that some 

teachers would have no meaning for this product and would be limited to procedural 

schemes only. I suspected that some teachers would use an area model or begin by 

finding and then combining two fifths of each of the four thirds. 

Task Set 3: Division (Tasks 8-11). I designed the next set of tasks to explore each 

teacher’s meanings for division, with a focus on non-whole dividends, divisors, and 

quotients. Since there are multiple conceptualizations of division, I planned to ask each 

teacher to discuss as many ways as possible to think about each task. Like the 

multiplication tasks in Task Set 2, these division tasks are not placed in a quantitative 

context because I wanted to determine how the teachers would contextualize the 
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operations themselves, which can reveal the limitations of their ways of thinking. Much 

of what I suspected teachers to do for this set of tasks is based on my findings from Pilot 

Study A, which showed that each of the eight teachers from the pilot study had both 

partitive and quotitive meanings, but that the meanings were not necessarily distinct in 

their awareness, let alone robust enough to be used interchangeably. For some of these 

eight teachers, the number type of the denominator dictated the triggered schemes. Some 

teachers were stumped for long periods of time, as they seemed to be trying to hold in 

mind both conceptions simultaneously. None of the teachers in Pilot Study A 

demonstrated that they could think flexibly between partitive and quotitive 

conceptualizations when non-whole divisors were present.  

Task 8: Explain your meanings for the expression:    𝑎 ÷ 𝑏 

I used Task 8 to begin to explore each teacher’s meanings for division in general. I 

expected that most teachers would give partitive descriptions of division that are 

dependent on whole values for the divisor, and that some would give quotitive 

descriptions, but that few, if any, would give both. I also suspected that teachers would 

conjure specific examples of division to explain their thinking, but limited to whole 

dividends, divisors, and quotients. For such teachers, I planned to ask for a visual 

representation of their thinking so I could better ascertain whether they were relying on 

partitive or quotitive conceptualizations. 

Task 9: Explain your meanings for the expression:    4 ÷ 3 

For Task 9, I chose values for the dividend and divisor that are mostly conducive to 

primitive models for both partitive and quotitive division, with the added complication of 

a non-whole quotient, which violates one primitive intuition regarding quotitive division. 
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I suspected that all teachers would use fair-sharing models by either putting one whole in 

each of the three groups and then splitting the fourth whole into three to share among the 

groups, or by splitting each whole into thirds first and then putting a third from each 

whole into each group. I expected that some teachers would reveal quotitive meanings in 

addition to partitive meanings. In Pilot Study A, I observed that it was non-trivial for 

teachers to think about this task both partitively and quotitively. Of the eight teachers in 

that pilot study, only three attempted to give a quotitive interpretation in addition to the 

partitive interpretation. However, two of these three were unable to resolve the confusion 

that resulted when they drew a partitive representation but uttered a quotitive description. 

Task 10: Explain your meanings for the expression:    4 ÷ <
8
 

With Task 10, I introduced a fractional divisor to perturb primitive partitive meanings. I 

did not expect any teacher to think about this partitively by wondering “one third of what 

amount makes the amount 4?” When appropriate, I challenged each teacher to rethink 

about both Tasks 0 and 0 using all the meanings they may have demonstrated during 

either of these two tasks the first time through. For example, if they gave a partitive 

explanation for Task 9, then I asked them to describe Task 10 using the same terms. This 

would help me determine any limitations in their partitive and/or quotitive thinking and 

language. During Pilot Study A, none of the eight subjects thought about this task 

partitively – they all used quotitive meanings. This was not surprising since quotitive 

meanings were highly emphasized during their involvement with the AMP project. 

During this pilot study, I observed one teacher become aware that they thought 

differently with this task than with the preceding task, but without being able to explain 

why the change happened. I challenged two other teachers in the pilot study to think 
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about this task in the same way as the preceding task by asking “what does it mean to you 

to split four into one-third groups?” One teacher said this made no sense, whereas the 

other reinterpreted what I said, but with quotitive language, by restating what I said as 

“split four into groups of one-third.” Another teacher seemed to be more aware of the 

distinction between the two conceptualizations of division by stating that for “4÷3” the 

goal was to find “how much is in each part,” and for “4÷1/3” the goal was to find “how 

many parts.” However, for this teacher, it seemed that the number type of the divisor 

dictated his way of thinking. 

Task 11: Explain your meanings for the expression:    <
7
÷ 8

L
 

I designed Task 11 to lend itself to quotitive interpretations by again choosing a non-

whole divisor. I added to the complexity by choosing a non-whole dividend which will 

yield a non-whole quotient that is less that one. However, I selected the denominators of 

the fractions being divided to minimize the amount of partitioning required to quotitively 

arrive at the quotient – only the dividend needs to be reimagined in terms of fourths. I did 

not expect any teacher to approach this task with partitive meanings by asking the 

question “three-fourths of a copy of what amount makes the amount one-half?” Instead, I 

suspected that many teachers would try to model this quotitively, but that some would 

only be able to think about this task procedurally by invoking the invert-and-multiply 

algorithm. In Pilot Study A, I again observed conflation of the two conceptualizations of 

division when teachers attempted similar tasks, but with different fractions8. To my 

                                                
8 In Pilot Study A, teachers attempted to describe the meaning of both L/8

7/M
 and <

M
÷ L

8
. For 

the current study, I combined these into one task with more compatible denominators. 
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surprise, one teacher attempted a partitive approach by declaring that “division means 

splitting up” and attempting to distribute four-thirds of a cake to two-fifths of her class 

(she was thinking about “L/8
7/M

”). This was a valid partitive scenario, but she got lost in the 

goal when she said she was trying to find how much cake each student should get, as 

opposed to how much cake would be needed for the whole class. Several teachers from 

Pilot Study A attempted to quotitively model the task using strip diagrams but lost track 

of the quotitive requirement that the dividend and divisor must refer to the same whole. 

Many of the teachers from Pilot Study A simply did the invert-and-multiply algorithm 

and then gave a quotitive interpretation of the result. 

Task Set 4: Missing multiplicand meanings (Tasks 12-13). I used the next two 

sets of tasks to explore each teacher’s schemes that may emerge when I describe partitive 

division, but in two different ways – missing multiplicand language in Task Set 4 and 

fair-sharing language in Task Set 5. I designed the tasks based on my findings from Pilot 

Study B, in which each subject was asked “How much water is in one whole container 

when 10 cups of water are divided into five-thirds containers?” and “five-thirds copies of 

what amount of water combine to make 10 cups of water?” For the pilot study, these 

questions were placed one after the other, which may have caused some bias. Despite 

this, 11 of the 13 subjects did not show identical work in resolving the two tasks, and 

seven of the subjects answered only one of the two questions correctly. At least one of 

the subjects who answered the second question correctly, did so by recognizing it as a 

missing factor problem and by numerically calculating the answer of 6, with no unit. This 

student justified the numerical answer by showing that six copies of five-thirds combine 

to make ten, which is a justification of quotitive, not partitive, thinking. For my 
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dissertation study, I designed four tasks that are a refinement and extension of the tasks I 

used in Pilot Study B. To minimize bias, I separated these four tasks, two at the end of 

the first meeting, and two to begin the second meeting. I phrased the two tasks at the end 

of Meeting 1 in terms of finding a missing multiplicand. These two tasks are as follows. 

Task 12: <P
8

 copies of what amount combine to make the amount 15? 

Task 13: 6 copies of what amount combine to make the amount 15? 

In Task 12, I phrase the problem as a missing multiplicand task, but with a non-whole 

multiplier. In Task 13, I do the same, but with a whole multiplier. I presented these two 

tasks in this order because the non-whole divisor is less likely to trigger the numerical 

operation of division, which I wanted to avoid. Instead, I wanted each teacher to solve 

these tasks without relying on procedures connected to numerical division. If teachers 

began by doing numerical division, I intended to ask them to refrain and to reason 

through the task instead. I also asked the teachers to make a diagram representing their 

thought process, so that I could better assess their ways of operating. The completion of 

these tasks marked the end of the first meeting. 

Task Set 5: Fair-sharing meanings (Tasks 14-15). The second meeting with each 

teacher began with this task set. These two tasks are a continuation of the two tasks that I 

placed at the end of the first meeting. I split the four tasks between the two interviews to 

minimize bias. The two tasks in this set are repeats of the preceding two tasks, but this 

time I phrase the tasks using language that elicits fair-sharing meanings. 

Task 14: How much is in one group if 15 of something is split into <P
8

 groups? 

Task 15: How much is in one group if 15 of something is split into 6 groups? 
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Task 14 is a repeat of Task 12 but phrased this time in fair-sharing terms. Due to 

primitive intuitions regarding partitive division, I hypothesized that Task 14 would be 

nonsensical to some teachers but speculated that Task 12 would be meaningful to all of 

them. As such, I suspected that some teachers would not interpret Tasks 12 and 14 as 

asking the same thing. Task 15 is a repeat of Task 13 but phrased this time in fair-sharing 

terms. I suspected that each teacher would be able to solve Tasks 13 and 15, but I was 

curious if the phrasing of the tasks would trigger different schemes. As with Tasks 12 and 

13, I wanted each teacher to solve Tasks 14 and 15 without relying on numerical 

procedures, and to make a diagram representing their thought process. 

Task Set 6: Partitive situations with a whole divisor (Tasks 16-18). I designed 

the next set of tasks to investigate each teacher’s meanings for partitive division by 

asking the teacher to arrive at a quotient when supplied with various values for the 

dividend, but with the same whole divisor. For each task, I asked the teachers to draw a 

representation of their thinking. If a teacher immediately resorted to a numerical 

operation, I inquired about what triggered that operation. The tasks are as follows. 

Task 16: Suppose 13 gallons of water fill 5 equal containers. Describe the 

capacity of one whole container. 

Task 17: Suppose QR gallon of water fills 5 identical containers. Describe the 

capacity of one whole container. 

Task 18: Suppose a certain amount of water fills 5 identical containers. Describe 

the capacity of one whole container. 

These tasks are situated in a specific context and they comply with primitive intuitions 

regarding partitive division. The tasks increase in complexity and I expected that teachers 
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would use partitioning schemes to arrive at answers. If needed, I planned to probe about 

how they got their answers so I could model the underlying partitioning schemes. Much 

of what I suspected teachers would do for this set of tasks was based on my findings from 

Pilot Study C. Task 18 is more abstract, and some schemes for partitioning are not 

helpful in thinking about this task. For example, a guess and check scheme for 

partitioning would not be productive here. To be successful, a teacher would need to 

unitize the entire amount of water into one whole, and then give a relative size to answer 

the question. I expected that some teachers would not be comfortable using an arbitrary, 

non-standard unit-of-measure (the total amount of water), as opposed to a standardized 

unit-of-measure (such as gallon or liter). Such teachers may think that the answer cannot 

be determined unless more information is provided. Also, a teacher may not possess 

developed schemes for fraction as a measure of relative size, thus rendering it difficult to 

think about “one-fifth” as a single amount that produces a whole when iterated five times. 

Task Set 7: Partitive situations with a non-whole divisor greater than 1 (Tasks 

19-21). This set of tasks is like the previous set, except the divisor is now a non-whole 

value that is greater than one. Again, for each task, I asked the teachers to draw a 

representation of their thinking and to justify any triggered numerical operations. The 

tasks are as follows. 

Task 19: Suppose 27 gallons of water fill SR identical containers. Describe the 

capacity of one whole container. 

Task 20: Suppose 3 gallons of water fill SR identical containers. Describe the 

capacity of one whole container. 
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Task 21: Suppose a certain amount of water fills SR identical containers. Describe 

the capacity of one whole container. 

I take a moment and comment on some linguistic nuances of these water-

container tasks, by explaining the process I went through to settle on the phrasing. 

Consider the following phrasing of a division-by-a-fraction task. 

Phrasing 1: Find the size of a group if some amount of water is divided into 9/4 

groups. 

I used the quantity amount of water because it is concrete and can easily be imagined and 

described. However, the notion of a group is more abstract. When I designed the tasks in 

this study, I wanted to use something concrete, like the water, to also represent a group, 

and so I chose to use a container. I also wanted to get away from words that trigger the 

operation of division, and so my phrasing became the following. 

Phrasing 2: Find the amount of water in one container if some amount of water 

fits into 9/4 containers. 

However, using the imagery of fitting into containers potentially introduces some 

complications. Like for groups, partial containers could be cognitively challenging. For 

some, partial containers do not exist, just containers of various sizes, so the notion of 9/4 

containers is perturbing to the thinker. Such people may look at an image of 9/4 

containers and see 3 containers, where one is simply smaller than the other two. Thus, I 

thought I should make it clear that the containers are identical, and that the water should 

be distributed, filling one container at a time, until there is no more water, which will 

potentially result in a partially filled final container. With this way of thinking, the 

potential for this perturbation is minimized, because there are no partial containers, just 
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partially filled containers. Thus, I decided to change from fits into to fills. This change 

would be propitious because it also solved another potential issue, which is to imagine 

containers that have a greater capacity than what is needed. For example, if I say that two 

cups of water fit into 9/4 containers, and a person is imagining gallon-sized containers, 

then it is likely not clear to that person what I mean. Thus, the phrasing now became the 

following. 

Phrasing 3: Find the amount of water in one container if some amount of water 

fills 9/4 containers. 

Even with this phrasing, it is still possible to be perturbed by fills, because of the partial 

container. If I am imagining all the containers to be identical, then technically, the last 

quarter container does not get filled, it only gets partially filled. If it became apparent that 

someone was bothered by this nuance, I could clarify it in one of two ways. I could either 

maintain the imagery of identical containers and explain that, yes, the last container is 

only partially filled, despite the language in the prompt. Or, I could encourage the person 

to imagine three containers, where two are identical, and the third is one quarter as big as 

either of the other two, and all three containers are filled. In either case, whether the 

person is imagining identical containers or one smaller container, I would need to make 

sure the person was attempting to describe the water in a whole container, as opposed to 

the smaller (or partially filled, if imagining identical containers) container, and so the 

phrasing became the following. 

Phrasing 4: Find the amount of water in one whole container if some amount of 

water fills 9/4 containers. 
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I settled on this last phrasing, until I realized there could be another complication when 

the water filled less than one container, such as filling 2/3 of a container. If I say that 2 

gallons fill two thirds of a container, and then ask how much water is in one whole 

container, the answer is trivially 2 gallons, unless more water is summoned. Thus, I 

wanted the reader to focus on the capacity of a container, and not its actual contents. And 

so, the phrasing took its final form as follows. 

Phrasing 5: Suppose some amount of water fills 9/4 containers. Describe the 

capacity of one whole container. 

This phrasing was as clear as I could muster, and it was versatile enough to apply to any 

number of containers, even less than one container. As my subjects engaged with these 

tasks, I was prepared to help them either imagine all equal containers, with one partially 

filled, or one smaller container and all of them filled. One downside to this phrasing, is 

that if I change the amount of water, but do not change the number of containers, then the 

person must adjust and reimagine new container-sizes. For example, if two gallons fill 

9/4 containers, and then I change to two cups fill 9/4 containers, then the capacity of a 

whole container must also change. This could be a problem, because once a person 

imagines a container, which is a concrete unchanging physical object, then it might 

perturb the person when, suddenly, a different amount of water fills the containers. If this 

issue arose, then I figured I would simply suggest that the subject start afresh by 

imagining new containers. In the end, what really matters with these water-container 

tasks and a divisor of 9/4, is that the subject is imagining three groups of water, two 

groups equal in size, and the third group is one fourth as large. If focused on this 

objective, then how the subject imagines the containers becomes insignificant – the 
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number of containers that a person imagines, the sizes of the containers, whether they are 

all equal in size, and whether the containers are filled, are ultimately unimportant, 

provided the subject imagines containers that are sufficient in both quantity and capacity. 

As I conducted the study and presented these water-container tasks to my subjects, I had 

to be mindful that just because I was using finely tuned language, it was still possible that 

some of these nuances would surface and cause perturbations for the subject, or would 

cause answers that seem unreasonable to me, but which are reasonable to the subject. 

Now I return to discussing this task set. I suspected most, if not all, teachers 

would interpret “nine-fourths containers” as “two and one-fourth containers.” I expected 

more perturbations with this set of tasks than with the previous set, because intuitive rules 

about fair-sharing could interfere. In Pilot Study C, the teacher tended to convert non-

whole numbers into mixed numbers or decimals. This impeded her dramatically. 

However, I encouraged her to avoid using mixed numbers and decimals. Ultimately, this 

helped her realize that “two and one-fourth containers” could be construed as nine equal 

pieces of a container. Once she had this epiphany, she then easily generalized her scheme 

of partitioning into nine pieces and iterating one of those pieces four times to resolve any 

task involving “nine-fourths containers.” I suspected that teachers in this study would 

have similar issues as they approached these tasks. However, since the interviews during 

Phase 1 were clinical, I did not intervene by prompting the teachers toward productive 

thinking. 

Task 19 is the least challenging of the set because it yields a whole quotient 

following the initial partitioning. Task 20 introduces a complexity, in that the initial 

partitioning leads to a non-whole amount of water. Furthermore, some teachers may 
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become confused because one-quarter container can hold one-third of a gallon, and I 

anticipated that some teachers would confound the units of measure for these otherwise 

similar numerals. I expected that Task 21 would be problematic for any teacher who 

could not think abstractly about the total amount of water and who does not possess 

developed schemes for fractions as a measure of reciprocal relative size or fractions as an 

invertible operator, which includes robust schemes of partitioning and iterating to 

reconstitute a whole. In Pilot Study B, I observed one student solved Task 19 by using a 

guess and check scheme to partition the water. Not surprisingly, this same student was 

not able to think about Task 21 productively. 

Task Set 8: Partitive situations with a non-whole divisor less than one (Tasks 

22-24). The next set of tasks is like the previous two sets, but this time the divisor is a 

non-whole value that is less than one. Again, for each task, I required the teachers to 

draw a representation of their thinking and to justify any triggered numerical operations. 

The tasks are as follows. 

Task 22: Suppose 5 gallons of water fill TQ of a container. Describe the capacity of 

one whole container. 

Task 23: Suppose UR gallons of water fill TQ of a container. Describe the capacity of 

one whole container. 

Task 24: Suppose a certain amount of water fills TQ of a container. Describe the 

capacity of one whole container. 

These tasks violate the primitive intuition that division makes smaller. However, if 

someone does not connect these tasks to the numerical operation of division, then the 

expectation of a smaller quotient may not come into play. It is because of such tasks, 
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where the divisor is less than one, that I asked teachers to discuss the “capacity” of a 

whole container, as opposed to the “contents” of a whole container. When the given 

amount of water doesn’t fill a whole container, the focus must be on the whole 

container’s capacity, which would only equal the volume of its contents if more water 

were added. Since focusing on the capacity is valid regardless of the number of 

containers, and for the sake of consistency, I framed all the tasks involving water and 

containers in terms of describing container capacity. During Pilot Study C, I observed a 

source of confusion when the teacher was attempting to discuss such tasks with divisors 

less than one. These kinds of tasks, involving water and containers, require thinking 

about two different amounts of water, the given amount of water and the amount of water 

that would fill a whole container. The teacher in Pilot Study C always referred to the 

larger of these two amounts as the total amount of water. In cases where the number of 

containers filled was greater than one, the total amount of water represented to her the 

given amount of water. However, in cases where the number of containers filled was less 

than one, she used total amount to refer to the amount of water that would fill a whole 

container. Thus, in these latter cases, she was no longer able to focus on the size of the 

capacity relative to the given amount, and instead focused on the size of the given amount 

relative to the capacity – she could only focus on proper fractional amounts of the total 

amount of water. This was a barrier to her development in forming a meaningful 

foundation for the invert-and-multiply algorithm. 

Final Task: Invert-and-multiply algorithm. I concluded the second meeting 

(thus, concluding Phase 1) with one final task, as follows. 
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Task 25: Explain why it is that when you divide by a fraction, you can multiply 

by the reciprocal of the fraction instead. In other words, explain the following: 

𝑎 ÷
𝑏
𝑐 = 𝑎		 × 	

𝑐
𝑏 

I included Task 25 at the end of the second interview, so I could have baseline data about 

each teacher’s ability to meaningfully explain the invert-and-multiply algorithm. I 

speculated that the teachers would attempt to explain this in one of several different 

ways, as discussed in my review of the literature. Some of these ways include symbolic 

manipulations that rely on procedural or quotitive meanings. I did not suspect that any 

teacher would attempt to explain this algorithm using partitive meanings, despite having 

just completed several partitive tasks. 

Phase 2 Methods: Teaching Experiment 

In Phase 2 of my study, I attempted to advance teachers’ schemes regarding 

partitive division, but for only two of the six teachers from Phase 1. I narrowed my 

subjects down to two teachers based on which teachers needed development as supported 

by the data, but being careful to select teachers for whom it would be possible to benefit. 

I discuss the choices I made, and the reasons I made them, at the end of Chapter 6. I 

characterize Phase 2 as a teaching experiment interview because I worked one-on-one 

with each of the two teachers as I actively attempted to promote accommodations to their 

schemes, as guided by theories pertaining to their learning. From this point on, I refer to 

Phase 2 simply as a “teaching experiment,” and I leave off the word “interview.” As 

discussed by Simon and Tzur (2004), my hypothetical learning trajectory had three 

components: (1) my objectives for teachers’ learning, (2) the mathematical tasks I will 
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use to promote that learning, and (3) hypotheses about the process of that learning. One 

focus of my teaching experiment will involve the development of schemes regarding 

relative size and fractions as multipliers. My general learning objective and seven 

specific learning objectives for the two teachers are in Table 6. 

Table 6 
Learning Objectives for the Teaching Experiment in Phase 2 

General 
Learning 
Objective 

 

The teacher develops the schemes necessary for meaningful partitive 
division involving any positive rational divisor, which will ideally form a 
quantitative foundation for a generalized justification of the invert-and-
multiply algorithm. 

Seven 
Specific 
Learning 

Objectives 

1 The teacher has schemes for multiplication over the positive rational 
numbers. 

2 The teacher has schemes for fractions as reciprocal measures of 
relative size. 

3 

The teacher has two distinct meanings for division that are based on 
meanings for multiplication, by framing division as either a missing 
multiplier task or a missing multiplicand task. In particular, the 
teacher can use the how much is in each copy meaning to make sense 
of division with any positive rational divisor. 

4 
The teacher has generalizable schemes for finding the amount of 
water per container when some amount of water fills a whole number 
of identical containers. 

5 
The teacher has generalizable schemes for finding the amount of 
water per container when some amount of water fills a non-whole, but 
greater than one, number of identical containers. 

6 
The teacher has generalizable schemes for finding the amount of 
water per container when some amount of water fills a non-whole, but 
less than one, number of identical containers. 

7 
The teacher arrives at the realization that regardless of the number of 
containers, the invert-and-multiply algorithm sensibly produces the 
amount of water in one whole container. 

There are several hypotheses that guided the design of my teaching experiment. 

As I mentioned earlier, the partitive and quotitive conceptualizations of division are 

based on a quantitative, non-commutative model for multiplication whereby 𝑎 × 𝑏 = 𝑐 is 

taken to mean 𝑎 copies of the amount 𝑏 produce the amount 𝑐. The Common Core State 
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Standards for Mathematics (CCSSM) repeatedly refer to creating meaning for division by 

situating the values being divided in a multiplicative relationship (National Governors 

Association Center, 2010). As such, partitive division can be thought of as a missing 

multiplicand task characterized by the question “𝑎 copies of what amount make the 

amount 𝑐?”, whereas quotitive division can be thought of as a missing multiplier task 

characterized by the question “How many copies of the amount 𝑏 make the amount 𝑐?” 

To be able to think about partitive division with non-whole divisors, it is imperative to 

lean away from primitive notions of fair-sharing. As such, my first hypothesis is as 

follows. 

Hypothesis 1: Connecting meanings for partitive division with meanings for 

multiplication by characterizing partitive division as a missing multiplicand task 

and steering away from the language and notions of fair-sharing is conducive to 

productive thinking about partitive division with non-whole divisors. 

Furthermore, having developed meanings for fractions as multipliers and for 

fractions as measures of relative size is critical to forming one meaningful 

foundation for the invert-and-multiply algorithm. 

The second standard from the Common Core Standards for Mathematical Practice 

(National Governors Association Center, 2010) suggests that learners be able to “reason 

abstractly and quantitatively”. This means that learners should be able to reason about 

quantities, while simultaneously representing and manipulating quantitative relationships 

symbolically. In particular, this teaching experiment involves quantities that can 

comfortably take on non-whole values. I contend that mathematical procedures should 

always be connectable to contexts in such a way that these procedures are infused with 
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quantitative meaning. In my review of the literature, I shared research that demonstrated 

a general disconnect between procedures and conceptual understanding regarding 

division (Kribs-Zaleta, 2008; Perlwitz, 2005; Rizvi & Lawson, 2007; Sharp & Adams, 

2002; Simon, 1993). To counter this issue, the National Council of Teachers of 

Mathematics has stated that procedural fluency should emerge from conceptual 

understanding (2014). For these reasons, my second hypothesis is as follows. 

Hypothesis 2: Reasoning about quantities (that can be comfortably imagined with 

non-whole values) and their relationships, not just with numbers, is propitious for 

the development of conceptually grounded schemes and procedures. Beginning 

with concrete representations of the quantities and ending with abstract 

representations fosters productive accommodation through reflective abstraction. 

To test this hypothesis, I have designed tasks that use physical manipulatives and which 

are conducive to the development of the schemes I am trying to promote. These 

manipulatives include working with actual containers of water, as well as working with 

foam fraction circles. The details are discussed later in this section 

Learning objectives. A major principle that guided my interactions with the 

teachers relates to my constructivist views on the nature of learning. Borrowing from 

Piagetian theories, I characterize “learning” as accommodation, even if the learning is 

misguided and produces problematic schemes. I characterize “cognitive advancement” as 

learning that yields schemes that are more productive, general, and robust than before. I 

agree with the adage that there is value in struggling, and that learners should be given an 

appropriate amount of time to struggle. Perturbing the learners begins the struggle, but 

learners must be given enough time and guidance to accommodate on their own. Since 
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each learner has their own unique signature of schemes, I was required to adapt so that I 

could strategically and productively perturb each learner. 

The teaching experiment began no sooner than two weeks following the end of 

Phase 1. This gave me adequate time to analyze the six teachers’ pre-intervention 

schemes, and to narrow down to two teachers. For each teacher, the teaching experiment 

was spread over the course of four meetings, with about one meeting per week, each 

meeting lasting about 90 minutes. I spread the meetings out due to scheduling constraints 

and because I needed several days between each session to adjust to each teacher’s 

personal development as I attempted to align their learning with my hypothetical learning 

trajectory. I focused on the seven learning objectives in order, but I was not particular 

about making sure a certain number of objectives was accomplished on any given day. I 

simply progressed through the objectives in order, and for each teacher, the four meetings 

were adequate to get through the trajectory. I now discuss each learning objective and the 

tasks I used to accomplish each learning goal. 

Learning Objective 1. The first learning objective is as follows. The teacher has 

schemes for multiplication over the positive rational numbers. This includes having 

schemes for fractions as operators. Also, teachers can describe multiplication in a 

general way that is conducive to thinking with any positive rational multiplier. 

To develop schemes for fractions as an operator, I gave each teacher a strip of 

paper, no matter what length, and asked them to draw a strip that is 𝑎 times as long for 

𝑎 = 3, 2 <
8
, 1.4, <

M
, 8
M
, ?
M
. In Pilot Study C, I observed that a predisposition to think of non-

whole numbers in terms of mixed numbers or decimals was not conducive to triggering 

the two-step scheme of partitioning and iterating. Thus, I encouraged each teacher to 
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consider the decimals and mixed numbers in terms of single fractions of whole numbers, 

and then to consider one instance of partitioning followed by one instance of iterating. 

To promote the development of language to describe multiplication over the 

positive rational numbers, I asked the teachers to describe their meanings for 4×5, 4×5/3, 

and 4/3×5, by using language and by modeling with pictures. I insisted that the teacher 

avoid invoking commutativity when trying to avoid a fractional multiplier. I guided the 

teachers toward describing a×b=c as “a copies of the amount b gives the amount c,” 

where fractional multipliers means to partition and then iterate. 

Learning Objective 2. The second learning objective is as follows. The teacher 

has schemes for fractions as measures of relative reciprocal size, which enable him to 

describe the size of one given quantity relative to a second given quantity, as well as the 

reciprocal relative size. 

In Pilot Study B, I observed one student who could talk about the fraction “4/9” 

when I shaded four out of nine contiguous boxes, but she could not say that four-ninths of 

the total amount of water was in one container when that total amount of water filled 

nine-fourths containers, despite a drawing of this scenario that she made and that was 

identical to my drawing of the nine contiguous boxes. I theorized that this student was 

relying on a primitive part-to-whole scheme for fractions that, to her, was no more than 

an exercise of counting shaded boxes and total boxes. Thus, weak conceptions of 

fractions were a hindrance to her development. Objective 1 is for the teachers to develop 

schemes for fractions as a measure of relative size. To accomplish this, I repeated 

exercises like Task 3 in Phase 1, but this time I proactively guided each teacher’s 
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thinking towards partitioning followed by iterating. I also prompted the teachers to 

consider the reverse comparison as well. 

Learning Objective 3. The third learning objective is as follows. The teacher has 

two distinct meanings for division that are based on meanings for multiplication, by 

framing division as either a missing multiplier task or a missing multiplicand task. Each 

teacher can characterize these meanings as trying to find either “how many copies” or 

“how much is in each copy.” Each teacher can use the “how much is in each copy” 

meaning to make sense of division with any positive rational divisor. 

In Pilot Study A, I observed that most of the teachers in the study did not have 

both meanings for division. For those teachers who did, they did not seem to be aware 

that the meanings were different and became confused when trying to toggle between 

these meanings. For a few teachers with both meanings, the value of the divisor dictated 

the meaning. As such, my goal in this part of the teaching experiment was to create an 

awareness of the two conceptualizations of division. I began by asking each teacher to 

describe the meaning of “a÷4” and then “a÷1/4” in the same way. I suspected that this 

would cause a perturbation, which would motivate the teachers to reframe their meaning 

for partitive division. To accomplish this, I needed to first help the teachers become 

aware of the two distinct conceptualizations of division. I did this by asking the questions 

“How much water is in one container when 20 gallons fill 4 identical containers?” and 

“How many containers are needed to hold 20 gallons of water if each container can hold 

4 gallons?” I suspected that each teacher would resort to the numerical operation of 

division to arrive at a numerical answer of “5.” We discussed the different quantitative 

interpretations of this number, then reviewed the non-commutative structure of 
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multiplication. For each question, we discussed the proper positions in the multiplicative 

structure for the numbers “20,” “4,” and “5.” We then reframed each question by placing 

the numbers “20,” “4,” and the symbol “?” in their proper positions of the multiplicative 

structure, and rephrased the questions more generally in terms of either a missing 

multiplier task (e.g., “how many copies of 4 gallons are in 20 gallons?”) or a missing 

multiplicand task (e.g., “4 copies of what amount of water makes 20 gallons?”). I 

discussed the fact that the multiplicand and the product should be referring to the same 

unit, with the exception that the multiplicand is a unit rate. I then helped each teacher 

generalize further by describing division as trying to find either the amount per copy or 

the number of copies. From here, I return to the three previous examples, a÷4 and then 

a÷1/4, and guided the teacher away from fair-sharing language toward missing 

multiplicand language. As such, each teacher should be able to think consistently, if not 

yet productively, about partitive division with any positive rational divisor. 

Learning Objective 4. The fourth learning objective is as follows. The teacher has 

schemes for finding the amount of water per container when some amount of water fills a 

whole number of identical containers, connecting this to the “how much is in each copy” 

meaning for division. These schemes should allow the teacher to think productively 

through situations that involve both whole and non-whole dividends and/or quotients. 

These schemes should include ways to describe the amount of water in a whole container 

compared to the given amount of water, even when the given amount of water and the 

whole number of containers are not specified. 

Before I comment on this objective, I discuss a pedagogical decision regarding 

language. Earlier in this chapter, when I discussed Task Set 8 of Phase 1, I revealed a 
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cognitive obstacle that emerged during Pilot Study C when the divisor was less than one 

container. This issue related to the teacher who always referred to the larger amount of 

water as the total amount. For this reason, I encouraged the teachers to use language that 

helps distinguish the two relevant amounts of water in each task involving water and 

containers. During the teaching experiment, I tried to steer the teachers away from the 

expression total amount of water and toward using the expressions the given amount of 

water and the amount of water in (or capacity of) one whole container as they reasoned 

through each task. 

I began the water/container tasks with cases where the whole number of 

containers is specified, but the given amount of water is unspecified, such as some 

amount of water fills five containers. I theorized that with robust schemes for fractions as 

measures of relative size, teachers would not have trouble reasoning at this level of 

abstraction, especially with a whole number of containers. If necessary, I planned to use 

fraction circles and actual bottles of water to aid in the tasks. However, it was not 

necessary to do this with either of the two teachers. My goal was for each teacher to 

conclude that one-fifth of the given water fills each container. 

If necessary, I planned to repeat this activity, each time with an unspecified 

amount of water, but a different whole number of containers, until I had evidence that the 

teacher interpreted a÷n as the answer to the question “n copies of what amount give the 

amount of water a?” and arrived at the answer 1/n×a. This would accomplish my 

objective of creating a generalized scheme, but if there was time, I had planned to help 

the teachers use partitioning schemes to apply this generalization to specified amounts of 

water, by working through the following cases. 
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1. a is whole and n divides a 

2. a is whole but n does not divide a 

3. a is a fraction of whole values and n divides the numerator of a 

4. a is a fraction of whole values but n does not divide the numerator of a 

Learning Objective 5. The fifth learning objective is as follows. The teacher has 

schemes for finding the amount of water per container when some amount of water fills a 

non-whole, but greater than one, number of identical containers, connecting this to the 

“how much is in each copy” meaning for division. These schemes should allow the 

teacher to think productively through situations that involve both whole and non-whole 

dividends and/or quotients. These schemes should include ways to describe the amount of 

water in a whole container compared to the given amount of water, even when the given 

amount of water and the non-whole number of containers are not specified. 

Like for Objective 4, I began with cases where the non-whole number of 

containers is specified, but the given amount of water is unspecified. Again, I theorized 

that with robust schemes for fractions as measures of relative size, teachers would not 

have trouble reasoning at this level of abstraction. As an example of using containers, I 

might give the teacher two differently sized containers, one three-fourths as large as a 

second one that is marked as the whole. I would also have available a white-rimmed 

container, that is one-fourth the size of the whole container. This would provide 

something concrete to talk about, as we work toward the realization that we can measure 

one amount in multiple ways – the white-rimmed container is one-third of the smaller 

container, one-fourth of the whole container, and one-seventh of the collection. As such, 

the smaller container is three-sevenths of the collection. 
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I planned to repeat such activities, each time with an unspecified amount of water, 

but a different non-whole number of containers, each greater than one, until the teachers 

realize that they are giving meaning to the expression a÷n/m by reasoning through the 

question n/m copies of what amount of water give the amount of water 𝑎? and arriving at 

the answer m/n×a. Again, this would accomplish my objective of creating a generalized 

scheme, but if there was time, I had planned to help the teachers use partitioning schemes 

to apply this generalization to specified amounts of water, by working through the 

following cases. 

1. a is whole and n divides a 

2. a is whole but n does not divide a 

3. a is a fraction of whole values and n divides the numerator of a 

4. a is a fraction of whole values but n does not divide the numerator of a 

Learning Objective 6. The sixth learning objective is as follows. The teacher has 

schemes for finding the amount of water per container when some amount of water fills a 

non-whole, but less than one, number of identical containers, connecting this to the “how 

much is in each copy” meaning for division. These schemes should allow the teacher to 

think productively through situations that involve both whole and non-whole dividends 

and/or quotients. These schemes should include ways to describe the amount of water in 

a whole container compared to the given amount of water, even when the given amount 

of water and the non-whole number of containers are not specified. 

This objective is nearly identical to Objective 5, but with a proper fraction of a 

container. I placed this objective later in the learning trajectory because of a few 

cognitive obstacles that could hinder productive thinking, one of which is the issue 
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related to using the expression the total amount of water. I planned to do the same type of 

activities with this objective as I did with Objective 5. 

Learning Objective 7. The seventh learning objective is as follows. The teacher 

arrives at the realization that regardless of the number of containers, the invert-and-

multiply algorithm sensibly produces the amount of water in one whole container. 

I theorized that if a teacher conceived of a÷m/n as a command to find the 

capacity of one whole container when the amount 𝑎 fills m/n containers, and if this 

teacher possesses the schemes to do so for any positive rational divisor, then this teacher 

will be able to quantitatively justify 𝑎 ÷ W
X
= X

W
	× 	𝑎. I am hopeful that the teachers will 

make this connection without me explicitly drawing attention to it. However, I intended 

to ask the teachers to reflect on the teaching experiment and to summarize anything they 

have learned. To facilitate this, I planned to provide them with copies of their work to 

stimulate recollection of what they have done. Apart from this, I planned to make no 

additional efforts to accomplish Objective 7. Instead, I assessed during Phase 3 whether 

the teachers could make this connection. 

Phase 3 Methods: Post-Assessment 

Following the teaching experiment, I held one last meeting, a post-assessment, 

with each of the two teachers, which occurred about a week following the end of Phase 2. 

For the post-assessment, I repeated 12 of the tasks from Phase 1 (the pre-assessment) and 

compared the results from the two phases. These tasks are in Table 7. During Phase 3, I 

presented the tasks to the teachers in the order they are listed in the table, but numbered 

1-12. In the table and in my writing, I refer to these tasks using Phase 1 numbering. 
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Table 7 
Phase 3 Tasks 

3 Given these two strips of paper, how long is the red strip compared to the green 
strip? How long is the green strip compared to the red strip? (red = 8/3 green) 

6 Explain your meanings for the expression:    M
8
	× 	2 

8 Explain your meanings for the expression:    𝑎 ÷ 𝑏 

9 Explain your meanings for the expression:    4 ÷ 3 

10 Explain your meanings for the expression:    4 ÷ <
8
 

18 Suppose a certain amount of water fills 5 identical containers. Describe the 
capacity of one whole container. 

16 Suppose 13 gallons of water fill 5 equal containers. Describe the capacity of one 
whole container. 

21 Suppose a certain amount of water fills SR identical containers. Describe the 
capacity of one whole container. 

20 Suppose 3 gallons of water fill SR identical containers. Describe the capacity of one 
whole container. 

24 Suppose a certain amount of water fills TQ of a container. Describe the capacity of 
one whole container. 

23 Suppose UR gallons of water fill TQ of a container. Describe the capacity of one whole 
container. 

25 
Explain why it is that when you divide by a fraction, you can multiply by the 
reciprocal of the fraction instead. In other words, explain the following: 
 𝑎 ÷ 4

5
= 𝑎	 ×	 5

4
 

Below, I explain why I chose these tasks for the post-assessment in Phase 3. For 

each task, I asked the teachers to draw a representation of their thinking, and if a teacher 

immediately resorted to a numerical operation, I asked about what triggered that 

operation. 

Task 3: Given these two strips of paper, how long is the red strip compared to the 

green strip? How long is the green strip compared to the red strip? 
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Since the notion of fractions as reciprocal measures of relative size is so fundamental to 

the meanings I was attempting to promote, I repeated Task 3 from Phase 1. But in Phase 

3, I used different lengths because I had repeatedly referred to the original lengths 

throughout the teaching experiment, and so the original lengths could no longer serve as 

an adequate post-assessment task. I also pre-partitioned the strips with small marks, to 

mitigate any inaccuracies due to folding or some other tactic. This time around, I was 

hoping to see the teachers be able to fluidly switch from one comparison to the reverse 

comparison, accompanied by a sensible justification for the change in denominator. This 

would suggest an ability to switch from one perception of a whole to another, thus being 

able to relatively describe one magnitude using multiple unit fractional values, e.g. one 

third of the green strip has the same length as one eighth of the red strip. 

Task 6: Explain your meanings for the expression:    M
8
	× 	2 

I repeated Task 6 from Phase 1 because of the importance of robust meanings for 

fractions as operators in my learning trajectory. I wanted to determine if my subjects 

could sensibly think about fractions in the role of the multiplier. If they could not, then 

there would be virtually no chance of having developed the meanings that I intended.  

Task 8: Explain your meanings for the expression:    𝑎 ÷ 𝑏 

Task 9: Explain your meanings for the expression:    4 ÷ 3 

Task 10: Explain your meanings for the expression:    4 ÷ <
8
 

I included Tasks 8 through 10 from Phase 1 because of my attempts to raise the teachers’ 

awareness of the dual meanings for division, characterized as how many copies and how 

much is in each copy. When specific values were involved, I encouraged the teachers to 
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describe all ways they could think about these problems, and I was hoping that the 

teachers would be able to resolve them using both partitive and quotitive 

conceptualizations. I suspected that water and containers may be a context that the 

teachers would conjure (because of the teaching experiment) to facilitate any partitive 

conceptualizations. 

Task 18: Suppose a certain amount of water fills 5 identical containers. Describe 

the capacity of one whole container. 

Task 16: Suppose 13 gallons of water fill 5 equal containers. Describe the 

capacity of one whole container. 

Task 21: Suppose a certain amount of water fills Y
L
 identical containers. Describe 

the capacity of one whole container. 

Task 20: Suppose 3 gallons of water fill Y
L
 identical containers. Describe the 

capacity of one whole container. 

Task 24: Suppose a certain amount of water fills 7
8
 of a container. Describe the 

capacity of one whole container. 

Task 23: Suppose ?
L
  gallons of water fill 7

8
  of a container. Describe the capacity 

of one whole container. 

I presented the six tasks above in a different order from Phase 1, by asking the teachers to 

discuss general situations before discussing specific situations, which follows the order of 

the learning trajectory from Phase 2. I wanted to look for evidence of quantitative 

reasoning by requiring the teachers to think about general situations for which numerical 
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operations were not possible. I was hoping to see that the teachers had successfully 

developed a general meaning for partitive division with a rational divisor, before giving 

them a task for which numerical calculations would be performed, per the teachers’ 

schemes. These tasks were foundational to providing me the evidence I needed to address 

my research questions regarding the development of meanings related to partitive 

conceptualizations for division. 

Task 25: Explain why it is that when you divide by a fraction, you can multiply 

by the reciprocal of the fraction instead. In other words, explain the following: 

𝑎 ÷
𝑏
𝑐 = 𝑎		 × 	

𝑐
𝑏 

Part of my learning trajectory was to promote the development of a meaningful 

foundation for the invert-and-multiply algorithm. As such, I included Task 25 from Phase 

1 to determine if any of the teachers would naturally connect their experiences from the 

teaching experiment to this algorithm. I was hopeful that both teachers would. In the next 

chapters, I discuss the results of the study and present my analysis of the data. 
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CHAPTER 6 

PHASE 1 RESULTS AND DISCUSSION 

I based my analysis of the data from Phase 1 on my secondary research questions 

for this phase, which I repeat in Table 8. 

Table 8 
Secondary Research Questions Corresponding to Phase 1 

RQ1.1 What meanings do teachers reveal when they engage in tasks that I designed 
to elicit meanings for fractions as measures of relative size, with a focus on 
fractions as reciprocal measures of relative size?  

RQ1.2 What meanings do teachers reveal when they describe and model symbolic 
(decontextualized) statements of multiplication, both general and specific, 
with a focus on fractional multipliers? 

RQ1.3 What meanings do teachers reveal when they describe and model symbolic 
(decontextualized) statements of division, both general and specific, with a 
focus on fractional divisors? 

RQ1.4 What meanings do teachers reveal when they engage in tasks that I designed 
to elicit partitive conceptualizations of division, with varying degrees of 
abstraction, and with a focus on fractional divisors? 

RQ1.5 What justifications do teachers provide for the invert-and-multiply 
algorithm after working through the tasks mentioned in the previous 
research question? 

These secondary research questions are sub-questions related to RQ1: What meanings, 

with their affordances and limitations, do in-service middle school mathematics teachers 

possess relative to partitive conceptualizations of division with non-whole divisors? In 

this chapter, I discuss the data relative to these secondary research questions. 

RQ1.1: Fractions as Reciprocal Measures of Relative Size 

I designed Tasks 2 and 3 to provide data to answer RQ1.1: What meanings do 

teachers reveal when they engage in tasks that I designed to elicit meanings for fractions 

as measures of relative size, with a focus on fractions as reciprocal measures of relative 

size? First, I discuss the data from Task 2, and then I discuss the data from Task 3. 
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Task 2: Do the following and justify your answers. 

This line has a length that is 
8/5 of a unit. 

→  

Draw a line here that is 1 
unit long. 

→  

 

While working on Task 2, all teachers imagined the given line as eight somethings and 

attempted to partition the given line into eight equal pieces. Mel and Mindi thought to do 

this by dividing the line in half, then each half into fourths, and then each fourth into 

eighths. The rest tried to do this by iterating a length, one iteration at a time, making 

minor adjustments so that the eighth iteration ended where the given line ended. I share 

the work of Mel, Uma, and Linda in Figure 11 below. 

 
Figure 11. The work of Mel, Uma, and Linda on Task 2 in Phase 1. 

Uma’s first attempt at iterating led to seven pieces reconstituting the given line, so 

she just reimagined the given line to be a little longer to compensate. Once the teachers 

partitioned the given line, only Linda did not imagine the length of five of these 

segments. Instead, she increased the given line to be two units long, and then cut this new 

line in half. She guessed at how long to make the new line, saying that it should just be a 

little bit longer than the given line, because “I just need two-fifths of a unit more.” 
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However, she did not reveal a rigorous way of thinking that guided her attempt to extend 

the given line an accurate amount. She divided the new line into 10 pieces that did not 

look equal in length, possibly due to an attempt to make it so that eight of the pieces 

would align with the given line. However, she did say that the 10 pieces should be equal 

in length. Linda’s strategy is significant because it revealed that she did not think to 

divide the given line into eight pieces to begin with, which suggests that the two-step 

scheme of contracting by a factor of one-eighth, followed by expanding by a factor of 

five was not available to her. I now move on to the data from Task 3. 

Task 3: Given these two strips of paper, how long is the red strip compared to the 

green strip? How long is the green strip compared to the red strip? (The red strip 

was seven inches long and the green strip was 4 inches long.) 

I designed Task 3 to give me more insights about the teachers’ meanings for 

fractions as reciprocal measures of relative size. I comment on each teacher below. Recall 

that the red strip was seven inches long and the green strip was four inches long, but I did 

not reveal this to the teachers. 

For Task 3, Linda recognized that two greens would be longer than the red strip 

and decided to fold the green in fourths. She determined that she needed to add three of 

those fourths to the end of the green strip to match the length of the red strip. She said the 

“red strip is larger by seven-fourths of the green strip,” which is a confusing blend of 

additive and multiplicative thinking – does this mean that the red strip is a green strip 

plus seven-fourths of a green strip, or is the red strip just seven-fourths of a green strip? 

She then said the “green strip is seven-fourths smaller than the red strip,” which she was 

uncomfortable saying, but she could not think of another way to express it. Her last 
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utterance is a consequence of additive thinking, in that if something is a certain amount 

more than another thing, then the lesser thing is the same amount less. She did not have 

the language to describe the reverse multiplicative comparisons. She later wrote “7/4 of 

the green strip is one red strip,” and when I pressed her to write down the reverse 

comparison, she wrote “1 red strip is 7/4 of the green strip,” which is a restatement of her 

first comparison, but in reverse order by mentioning the red strip before mentioning the 

green strip. She assimilated my suggestion to a scheme that produced a sensible answer 

for her, as if switching the order of the color references in her speech was adequate for 

doing the reverse comparison. Ultimately, she was unable to transition to the red strip 

being the unit-of-measure. I asked her to rethink the scenario supposing that the red strip 

was twice the length of the green strip, and even in this case, she did not say that the 

green strip would be half of the red strip. Instead, she kept repeating that two green strips 

would be one red strip. This task was revealing, in that Linda could not easily switch 

from one strip as the unit-of-measure to the other strip, which contributed to her inability 

to describe the reciprocal multiplicative relationships between the two strips. 

For Task 3, Mark thought that the red strip was one-fifth of a green smaller than 

two greens so he concluded that the red strip was 1 and 4/5 green strips. His instinct for 

the reverse direction was to say that the green strip was 5/9 of the red strip but he said he 

was not confident. He said he got “5/9” by thinking of 1 and 4/5 as 9/5 and finding the 

reciprocal, but he was not sure the reciprocal was what he needed. Even after he iterated 

one-fifth of the green strip nine times to get the red strip (done sloppily, hence the 

incorrect comparisons) he still said that he did not understand the “math of why the 
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reciprocal works.” He said he did the reciprocal because "something went off and made 

me do it." 

For Task 3, Mel took a convoluted approach. She constructed a unit-length, which 

was one green minus half of a red, and called it a “ted.” However, due to imprecision 

caused by the folding of the paper strips, she concluded that the green was seven teds and 

that a red was 12 teds. She then used her green strip as a ruler and measured the red as 1 

and 5/7 greens. Using her ted units, she was able to determine that one green was 7/12 of 

a red. At first, she did not recognize the reciprocal nature of the measurements due to the 

mixed number. Only when I asked whether she could find green in terms of red, but only 

from knowing that 1 and 5/7 green made a red, that she noticed that expressing 1 and 5/7 

as 12/7 helped her recognize the reciprocal relationship. 

For Task 3, Mindi folded the red in half repeatedly until it was partitioned into 16 

pieces, then used the folded paper to conclude that green was 9/16 of red. For the other 

comparison, she said her “gut says to do the reciprocal of nine-sixteenths,” but she was 

unsure. She wrote that the answer was 16/9, which she converted to 1 and 7/9, but she 

expressed concern about the nine in the denominator. I theorize that she was perturbed 

because she was unable to think of each segment as simultaneously being 1/16 and 1/9. It 

is not until she imagined two extra segments added to the end of the red strip (making 

two whole greens) that she realized that the nine was an appropriate denominator because 

each whole green was nine pieces. 

For Task 3, Uma cut off a piece of the green strip that appeared to be about 1/11 

of the green, observed that 19 of them make the red, and concluded that the red was 

“eight-elevenths larger than the green.” For the reverse comparison, she said the green 
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was “eight-elevenths shorter than the red,” which indicates additive thinking, similar to 

what Linda said. I pressed Uma to provide a unit for the 8/11 in her reverse comparison 

and she acknowledged that the fraction was referring to the green strip and that it was 

weird to say, “The green strip is eight-elevenths of the green strip less than the red strip.” 

After some silence, I rephrased the question by asking, "What fraction of the red strip is 

the green strip?" She eventually said 11/19, but admitted she was not very confident with 

this answer. When I asked her why, she stated that she had camera fright and was not 

thinking clearly. Ultimately, she accepted the reverse comparison of 11/19 but never 

seemed very confident with it. 

For Task 3, Ursa sloppily folded the green into seven pieces and concluded by 

writing that the red was “1 and 5/7 larger than the green.” Her language suggests an 

additive comparison, but I am confident she was trying to say that the red is 1 and 5/7 

greens. She used her partitioned green strip to conclude that the green is 7/12 of the red. I 

asked her if she could use her first answer to get her second answer, but she could not 

provide an explanation initially. However, she reasoned that if a strip is triple another, 

then the smaller strip is one-third as long, which led her to think that the two answers 

should be reciprocals of each other. She then confirmed that she could convert 1 and 5/7 

to 12/7, for which the reciprocal was 7/12. It is noteworthy that she did not give a 

quantitative explanation for using the reciprocal of 12/7, but instead she relied on a 

generalization of a simplified scenario. 

When I presented Task 3 to the teachers, I asked for both comparisons at once. 

This was a design flaw because I was not able to determine which question each teacher 

thought they were answering first. All teachers, except Mindi, first expressed red in terms 
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of green. Due to imprecisions, such as those caused by folding the paper strips, only one 

teacher (Linda) determined the correct comparison of red in terms of green (red is 7/4 of 

green). But Linda could not reverse the comparison, which meant that no teacher 

determined the correct comparison of green in terms of red (green is 4/7 of red). No 

teacher immediately, and confidently, summoned the reciprocal of their first comparison 

as the reverse comparison. Mark, Mel, Uma, and Ursa each gave a mixed number to 

express red in terms of green, which prevented Mel and Ursa from seeing the reciprocal. 

Linda and Uma used additive language for the reverse comparisons, from which only 

Uma recovered by eventually giving a multiplicative comparison. Mindi and Mark both 

used the reciprocal for the reverse comparison on their own, but they did so without 

confidence, and only Mindi could eventually justify why. 

Even though some teachers were eventually confident that the reciprocal was 

significant to the reverse comparison, initially it was not trivial for them to think so. 

Thompson and Saldanha (2003) used the construct fractions as reciprocal measures of 

relative size to refer to a reversible scheme of comparing the magnitudes of two 

quantities, one in terms of the other, as well as the reverse comparison. To illustrate, 

suppose that some amount A is 3/5 as large as some amount B. Like Thompson and 

Saldanha, I consider a person to have meanings for fractions as reciprocal measures of 

relative size when that person recognizes that A	is 3/5 as large as B, while simultaneously 

recognizing that B is 5/3 as large as A. The development of such a reversible scheme is 

dependent on a person’s ability to re-unitize by reconceiving a new whole and expressing 

the reverse comparison in terms of this new whole. It is essential to recognize that in the 

example above, 1/3 of A has the same magnitude as 1/5 of B. Once a reversible scheme is 
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sufficiently developed, a person would be able to take any fractional value of a quantity 

and automatically reconstitute one whole. In my conceptual analysis chapter, I explained 

how reciprocal comparisons are crucial to meaningfully operating with fractional divisors 

in such a way as to form a foundation for the invert-and-multiply algorithm for either 

conceptualization of division. As such, I consider the development of fractions as 

reciprocal measures of relative size as foundational to the advancement of meanings for 

division. 

RQ1.2: Decontextualized Multiplication 

I designed Tasks 4-7 to address RQ1.2: What meanings do teachers reveal when 

they describe and model symbolic (decontextualized) statements of multiplication, both 

general and specific, with a focus on fractional multipliers? The tasks were as follows. 

Task 4: Explain your meanings for the expression:    𝑎	 × 	𝑏 

Task 5: Explain your meanings for the expression:    5	 ×	L
8
 

Task 6: Explain your meanings for the expression:    M
8
	× 	2 

Task 7: Explain your meanings for the expression:    7
M
	× 	L

8
 

I summarize the observable behaviors from Tasks 5-7 in Table 9. The ümeans the 

teacher successfully modeled the product with the indicated multiplier, the û means the 

teacher tried but did not succeed, and the hash mark means the teacher did not attempt to 

model the product with the indicated multiplier. 
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Table 9 
The Multipliers in the Teachers' Thinking for Tasks 5-7 

 Task 5 
5 × L

8
 

Task 6 
M
8
× 2 

Task 7 
7
M
× L

8
 

 Multiplier Multiplier Contract by 1/3 
then expand by 5 

Multiplier 
 5 4/3 2 5/3 2/5 4/3 

Linda ü - ü O N/A O - 
Mark ü - ü ü No 

 
ü - 

Mindi ü - ü ü No 
 

ü - 
Mel ü - ü ü No 

 
ü - 

Uma ü - - ü No 
 

ü - 
Ursa ü - ü ü No 

 
ü - 

In the paragraphs that follow, I discuss the data from Tasks 5 and 6. For Task 5 

(Explain your meanings for 5×4/3), all six teachers imagined 5 as the multiplier, even 

Uma who consistently described the second factor as the multiplier, like she did when 

describing 𝑎 × 𝑏 as “a is going to represent a number, times b representing how many 

groups of that number there are.” All teachers were successful at modeling the product by 

grouping five ones, three one-thirds, with two one-thirds remaining to get a result of six 

and 2/3. Mel’s work on this task, as depicted in Figure 12, is exemplary of the schemes 

that all six teachers used. I did not ask the teachers for other ways of thinking on this task. 

 
Figure 12. Mel's work on Task 5 in Phase 1. 
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For Task 6 (Explain your meanings for 5/3×2), Linda could not productively 

think about 5/3 as the multiplier. She relied on commutativity and seemed satisfied to 

instead draw two copies of five-thirds, which gave an answer that she confirmed with the 

algorithm. She realized that this was not the same as representing 5/3 copies of 2, and she 

said she could not think about the meaning of “five-thirds copies.” Mark defaulted to 2 as 

the multiplier, but switched when I prompted him. He thought of 5/3 as a mixed number 

but paused when he tried to model 2/3 of 2. He then focused on 1/3 of 2 and procedurally 

obtained 2/3. He then interpreted 5/3 of 2 as 5 copies of 1/3 of 2, or 5 copies of 2/3. He 

then created a visual model by combining five copies of a representation of two-thirds to 

justify his answer of 10/3. He then manipulated the expression until he had a whole 

number of copies that he finally modeled with a picture. It is significant to note that Mark 

used a blend of procedures and modeling to arrive at his answer. Mel, Mindi, Uma, and 

Ursa first modeled with 2 as the multiplier, switched when I prompted them, and 

interpreted 5/3 as 1 and 2/3 to arrive at a sensible answer. Mel had no trouble doing this, 

Mindi struggled only because she made a procedural error that was contradicting her 

models, and Uma and Ursa both struggled a great deal to arrive at an answer. I further 

discuss Uma’s and Ursa’s struggles in the next paragraphs. It is important to note that 

none of the teachers contracted 2 by a factor of 1/3, followed by expanding this amount 

by a factor of 5. This was significant to me because the mixed number obscured the 

elegance of the dual-scheme of contraction followed by expansion. As such, the mixed 

number can be a cognitive obstacle to reversing the effects of a fractional multiplier by 

imagining the reciprocal fraction. 
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Multiplier-Switch 

I return to Ursa’s difficulties while modeling 5/3×2 in Task 6. In this task, Ursa 

used the language “five-thirds copies of two”, paused to think about it, and then defaulted 

to 2 as the multiplier instead. I stopped her and urged her to consider the meaning of her 

own words “five-thirds copies of two.” There was a long pause and after unsuccessfully 

trying to model this through drawings, she said that “five-thirds copies of one is 

five…thirds… hmm… so I have to do that twice.” This led her to drawing two 

representations of five-thirds. Ursa was aware that she had switched the multipliers as 

evidenced when she said, “I feel like that’s two copies of five-thirds and not five-thirds 

copies of two. I don’t think that’s fair. I think that’s the easy way out.” I represent her 

transition symbolically in the following way: 

M
8
× 2 = M

8
× (1 + 1) = M

8
+ M

8
= 2 × M

8
 

Ursa started over and eventually she was successful at modeling 5/3×2 by doing one 

copy of two, followed by clunkily showing that two-thirds of two resulted in one and one 

third. Despite her ultimate success, her method was so convoluted that it would have been 

cognitively taxing to reverse, obfuscating the simplicity of reversing the effects of a 5/3 

scale factor by scaling by 3/5. I call this phenomenon a multiplier-switch, which I define 

to occur when a person imagines one factor as the multiplier, but then – during the 

process of modeling – the person instead views the model (with or without awareness) as 

a justification for the other factor as the multiplier. This phenomenon is likely to occur 

when the multiplicand is a whole number, due to a presence of deeply engrained schemes 

for multiplication as repeated addition. To illustrate, consider the symbolic representation 

of an example of a multiplier-switch below. 
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𝑎 × 5 

= 𝑎 × (1 + 1 + 1 + 1 + 1) 

= 𝑎 + 𝑎 + 𝑎 + 𝑎 + 𝑎 

= 5 × 𝑎 

A person who cannot successfully model with a fractional multiplier will not be able to 

model partitive division. Although I consider a multiplier-switch to be a sensible way to 

provide a quantitative justification for the commutativity of multiplication in general, 

thinking this way would circumvent the two-step scheme of fractional multipliers as a 

contraction followed by an expansion. As such, I consider the multiplier-switch to be a 

cognitive barrier to the advancement of schemes relative to fractional multipliers, and 

hence to partitive division with fractional divisors. 

Multiple-Unit Coordination 

Several teachers exhibited difficulties throughout Phase 1 related to re-unitization. 

To give an example of this, I return to Uma’s difficulties while modeling 5/3×2 in Task 

6. For this task, Uma drew two contiguous rectangles and called them “two.” She then 

split each rectangle into three columns and represented 5/3 of one of the rectangles by 

shading in five out of the six total pieces. I share her work in Figure 13. This led Uma to 

say that the result was 5/6, which she instantly knew was wrong because the algorithm 

produced 10/3. 
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Figure 13. Uma’s work on her first attempt with Task 6 in Phase 1. 

There are at least two issues related to unitizing here. First, Uma represented five-

thirds of one row, not five-thirds of the collection of two rows, due to maintaining the 

same unit for the 5/3 as for the 2. Each of these values was in terms of one row, and she 

was unable to view the two rows as a new whole. Second, she saw five out of six pieces 

shaded and gave an answer of 5/6, which represents a change in unit, although she likely 

did not intend, nor was aware of this change. The confusion here lies with maintaining 

that each of the five shaded pieces represents one-third of one row, which is the same 

amount as one-sixth of two rows. She decided to start over by converting 5/3 to 1 and 2/3. 

She drew one group of two rows, then a second group of two rows, and divided both 

groups into three columns. This resulted in six pieces per group. She labeled the first 

group as 1, became momentarily confused, and then also labeled it as 2, saying that the 1 

was referring to the 1 in “1 and 2/3,” and the 2 was referring to the fact that the group had 

a “value of 2.” I share her work in Figure 14. 
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Figure 14. Uma’s work on her second attempt with Task 6 in Phase 1. 

Uma kept one whole group and shaded in two-thirds of the second group and said 

that her answer was 6/6 plus 4/6 which produced a total of 10/6. This caused her to pause 

again because the algorithm produced an answer of 10/3. Aided by the algorithm, she 

eventually realized that she should think of each piece as 1/3 and not 1/6. Technically, 

her first answer of 10/6 was correct in terms of groups of two rows. Had it not been for 

the algorithm, she was very likely to have been confident with this answer and moved on. 

The data revealed that Uma lacked a strong awareness that, given the quantitative model 

for multiplication, the unit of the product should agree with the unit of the multiplicand. 

This is the reason why 5/3 of 2 is 10/3, and not 10/6. Contrarily, if the unit of the product 

agreed with the unit of the multiplier, then the numerical value of a product would always 

match the numerical value of the multiplier; 5/3 of 2 would just be 5/3. Her confusion in 

this task was compounded by the fact that there was no particular context that provided 

clearer quantities about which she could easily reason. It is noteworthy that she had 

trouble articulating the meanings of the 1 and 2 when she was using them both to refer to 

the first group she drew. If I had presented a situation where cupcakes came in packages 
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of two, it would have been easier to discuss that one-third of a cupcake corresponded to 

one-sixth of a package, ultimately giving the statement: 

5/3 packages = 5/3 × (2 cupcakes) = 10/3 cupcakes. 

A task that is situated in a clear context not only provides something concrete to think 

about, but it also enables the use of vocabulary to keep the quantities distinct in the mind 

of the problem solver. As such, it is reasonable to conclude that a person would struggle 

less to coordinate multiple levels of units.  

RQ1.3: Decontextualized Division 

I designed Tasks 8-11 to address RQ1.3: What meanings do teachers reveal when 

they describe and model symbolic (decontextualized) statements of division, both general 

and specific, with a focus on fractional divisors? These tasks provided data regarding the 

teachers’ meanings for division in general, as well as their awareness of the dual 

conceptualizations. I repeat the tasks below. 

Task 8: Explain your meanings for the expression:    𝑎 ÷ 𝑏 

Task 9: Explain your meanings for the expression:    4 ÷ 3 

Task 10: Explain your meanings for the expression:    4 ÷ <
8
 

Task 11: Explain your meanings for the expression:    <
7
÷ 8

L
 

Recall that when each teacher finished Tasks 9 and 10, I challenged the teacher to rethink 

both Tasks 0 and 0 using all meanings they demonstrated during either of these two tasks 

the first time through. For example, if a teacher revealed a partitive meaning for Task 9 

but a quotitive meaning for Task 10, then I asked that teacher to repeat each task using 

the other meaning. If a teacher only gave quotitive meanings for Tasks 9 and 10, then I 
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could not ask the teacher to reconsider the tasks using another meaning because the 

teacher revealed no other meaning. I summarize the observable behaviors from Tasks 8-

10 in Table 10. For Task 8, the ü means the teacher described the indicated 

conceptualization. For Tasks 9 and 10, the ü means the teacher successfully modeled the 

quotient using the indicated conceptualization, the û means the teacher tried but was 

successful, and the hash mark means the teacher did not attempt to model the quotient 

using the indicated conceptualization. 

Table 10 
The Teachers’ Conceptualizations for Division in Tasks 8-10 

 Task 8 
𝑎 ÷ 𝑏 

Task 9 
4 ÷ 3 

Task 10 
4 ÷ <

8
 

Task 9 
revisited 
4 ÷ 3 

Task 10 
revisited 
4 ÷ <

8
 

 Quo Par Quo Par Quo Par Quo Par 
Linda ü - O - ü - No need No need 

Mark - ü - ü ü - Did not ask O 
Mindi ü ü ü ü ü ü No need No need 

Mel ü - - ü ü - Did not ask ü 
Uma - ü - ü ü - ü O 
Ursa ü ü O ü ü - No need O 

I now discuss the data from each teacher, focusing on their awareness of the two 

meanings for division and their ability to model division using both conceptualizations. 

Partitive-Quotitive Awareness 

Linda gave a quotitive description in Task 8 by saying, “How many copies of 

three can be taken from four?” Since she revealed only quotitive meanings for Tasks 9 

and 10, I did not ask her to rethink either task. Of these two tasks, she was successful 

only at modeling 4÷1/3, the task that yielded a whole number as the quotient. Later in the 
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study, she revealed partitive meanings when she was reasoning through contextualized 

tasks that elicited partitive thinking, which I discuss later in this chapter. This suggests 

that she had schemes (to some extent) for both meanings. Her one meaning that she was 

aware of – quotitive – was so strong that when given a decontextualized division 

statement, she could not summon a partitive meaning. This was still true even when she 

could not quotitively model 4÷3 – even then, she did not transition to a partitive model to 

cope with the perturbation. Also, at the start of Phase 2, even after finishing several tasks 

in Phase 1 that required partitive thinking, she still described division using only quotitive 

language. In fact, Linda’s quotitive meaning was so dominant that she was the only 

teacher who did not give a partitive interpretation for 4÷3. Linda’s lack of partitive 

meanings in these tasks does not suggest that she did not have any. In fact, Linda 

demonstrated partitive meanings in subsequent tasks. Instead, the data implies that 

partitive meanings were simply not accessible to her when given decontextualized 

symbolic statements of division. 

Mark described only a partitive meaning in Task 8 by saying “a broken up into b 

parts,” which allowed him to successfully model 4÷3. When he finished this task, he 

said, “that’s all I got.” In the next task, he revealed a quotitive meaning when he 

successfully modeled 4÷1/3 by thinking about “four pies broken up into thirds.” These 

data suggest that he had schemes for both conceptualizations, but was not aware of them. 

I can think of two possible levels of awareness for Mark. First, it is possible he was aware 

of his changed thinking, but could not explain why or did not think it significant to 

mention. Second, he believed he was thinking in the same way each time. There is 

evidence to support the latter claim. It is important to note that his language for the two 
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meanings is very similar, “a broken up into b parts” versus “four pies broken up into 

thirds.” Despite the similarity in language, he demonstrated partitive reasoning when he 

modeled 4÷3 and quotitive reasoning when he modeled 4÷1/3. The similarity in 

language is evidence that he thought his two models were conceptually equivalent. Soon 

after, I asked him to interpret 4÷1/3 as “four cut into one-third part,” which is how he 

phrased 4÷3, and he interpreted this as “how many thirds are there in four wholes,” 

which is an assimilation of a partitive task to a quotitive scheme. This assimilation 

provided additional evidence that he thought his two models were conceptually 

equivalent. The data suggest that Mark did not have an awareness that there are two 

distinct quantitative meanings for division. Unfortunately, I neglected to ask him to 

reconsider 4÷3, but instead using the quotitive meaning he displayed for 4÷1/3. 

From the onset, Mindi demonstrated a distinct awareness of the two 

conceptualizations for division. She gave two examples involving kids and groups, but 

which used only whole numbers, which is expected when partitioning children. She 

quantitatively distinguished between the quotients in each case, calling one the “group 

size,” and the other the “number of groups.” In Tasks 9 and 10, she had no trouble 

modeling 4÷3 and 4÷1/3 both quotitively and partitively. As such, there was no need to 

have her revisit these tasks. The only issue I observed was her language when she was 

modeling 4÷1/3 partitively. She said 4 was the group size, and she also said 1/3 was the 

group size. Despite her language, her partitive and quotitive schemes were correct for 

these tasks and she demonstrated an awareness of their distinction. She used “number of 

groups” and “group size” as her two quantitative options for thinking about the meaning 

of the divisor. 
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In Task 8, Mel gave a quotitive interpretation, using “group size” to think about 

the divisor. However, when modeling 4÷3, she used a partitive conceptualization, then 

switched right back to a quotitive interpretation for 4÷1/3. The data suggest that she had 

schemes for both conceptualizations, but lacked awareness that there were two meanings. 

When I asked her to compare her two solutions, she initially said her thinking was the 

same. When I rephrased 4÷3 as dividing four into three groups and asked if she was 

doing the same for 4÷1/3 she became perturbed. After a few moments, she came up with 

a strategy for how to divide four into one-third of a group, by saying that if four of 

something is one-third of a group then 12 would be the “new group size.” It seemed like 

she was inventing this way of thinking, in the moment, and she was fascinated with her 

discovery. She characterized this kind of thinking about division as a group-size 

transformation, going from a group that has four things in it, to a group that has 12 of 

those things in it. I wonder why she did not seem to think this about division when she 

gave a partitive model for 4÷3. I agree that partitive meanings can be thought of as 

group-size transformations, but it could be problematic to characterize both the dividend 

and the quotient as "the group size." I neglected to ask her to give a quotitive model for 

4÷3. The data suggested that Mel had a flexibility that allowed her to accommodate her 

“diving into groups” division scheme when challenged with a fractional divisor so that 

she could assimilate “four divided into one-third of a group.” Prior to this realization, it 

would seem that, despite operating efficiently with both conceptualizations, she thought 

that the two meanings were the same. 

For Task 8, Uma gave a partitive description of division saying, “a is the total 

amount, or beginning amount, and b is the number of parts.” She also said that division is 
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the “inverse of multiplication” and is used to find a missing factor, giving an example of 

$4000 for 400 t-shirts and using division to find the amount per shirt, which is a partitive 

conceptualization. In the next task, she successfully drew a partitive model for 4÷3 and 

said she could not think of another way to do it. Then I asked her to model 4÷1/3, to 

which she said she should be thinking, “How many copies of one-third make four?” Uma 

successfully drew a quotitive representation and she said that she could not think about it 

in another way. Again, these data suggest she had schemes for both conceptualizations, 

but she lacked awareness that there were two meanings. When I asked her to think about 

4÷1/3 in the same way as 4÷3 she interpreted “break four into one-third groups” as 

partitioning four into groups of size one-third, and referred to her quotitive model as 

representing this meaning. This was a case of assimilation of a partitive task to a quotitive 

scheme. When I asked her to think about 4÷3 in the same way as she thought about 

4÷1/3, she said she needed to find “how many copies of three are in four.” She struggled 

at first but eventually drew four circles, circled three of the circles and wrote “1 copy of 

3,” and then indicated that the fourth circle was 1/3 of a copy of 3. Uma demonstrated 

flexibility in adapting her quotitive scheme so she could sensibly justify the result of 

4÷3. However, she was not able to accommodate her partitive scheme adequately, and so 

she assimilated the partitive version of 4÷1/3 to her quotitive scheme. 

For Task 8, Ursa immediately described both conceptualizations by saying “how 

many copies of b make a” and “a divided up into b equal parts.” She gave a few 

examples that involved only whole numbers. In the next task, she had no trouble 

partitively modeling 4÷3 by drawing four circles, breaking the fourth circle into three 

parts, and then shading one whole circle and one-third of the fourth circle. She then tried 
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to use this same drawing to make sense of the quotitive question “how many copies of 

three make four?” While struggling with this she uttered "three copies of what make 

four," which is a partitive question. Ursa identified “one copy of three” by identifying 

three whole circles, but then wondered why the fourth circle was broken into three pieces. 

After several minutes of struggling, she drew four new circles, enclosed three of them 

saying that is “one three,” which she described in writing as 3/3, and then broke the 

fourth circle again into three pieces, shaded one piece and called it 1/3 saying the 

denominators have to be the same. The data seem to suggest that her issue had to do with 

a lack of unitizing, combined with interference from her partitive drawing. Eventually, 

she drew four circles side by side, cut them all into three rows, and satisfyingly said each 

row is four-thirds. She seemed relieved with this model, but which is partitive and not 

quotitive. It is not clear to me if she thought she had correctly produced a quotitive 

model, or if she was just content to draw any model that made sense to her. Her struggles 

at the end were an example of a task repeatedly failing to be assimilated to a quotitive 

scheme that could not accommodate it, only to finally be assimilated to a partitive 

scheme, bringing an end to her perturbation. Since she kept relying on her partitive 

drawing to make sense of the quotitive question, perhaps she thought the two different 

ways of describing division could be successfully modeled with one image, much like 

quantitative commutativity of multiplication can be modeled with a single image. In the 

end, she was unable to use her partitive drawing to justify her quotitive question. During 

the next task, she did not have trouble modeling 4÷1/3 with a quotitive 

conceptualization. She did not attempt a partitive conceptualization, so I prompted her to 

think of 4÷1/3 in the same partitive way she described 4÷3. Like Mark and Uma, Ursa 
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also assimilated the task to a quotitive scheme. She phrased 4÷1/3 as “four split into one-

third groups,” mimicking how she described 4÷3, and then referred to her quotitive 

drawing and said, “I feel like that’s what I’m doing here. I have four, and I’m splitting it 

into one-third groups, and I have 12 groups.” Ursa is an interesting case because she 

demonstrated an awareness of two different ways to describe division, but then she 

lacked the necessary schemes to model them. In fact, her schemes seemed to interfere 

with each other, suggesting that she has not yet reflectively abstracted them to two 

distinct, generalized schemes that are flexible enough to cope with non-whole numbers. 

The data presented above revealed that the teachers had varying abilities to model 

with both conceptualizations, and that only Mindi and Ursa had an awareness of the two 

meanings for division. I consider a person to have partitive-quotitive awareness if that 

person (1) is aware of the two quantitative conceptualizations for division, and (2) can 

operate under one conceptualization without interference from the other, while 

maintaining an awareness of the conceptualization with which they are operating. I use 

the construct partitive-quotitive interference to refer to any such interference described 

in condition 2. The data also revealed that awareness and capability were not connected. 

For example, Ursa acknowledged the two meanings in Task 8, but she was not able to 

quotitively model 4÷3, and she could think of 4÷1/3 only quotitively. Whereas Mel did 

not initially demonstrate an awareness of the two meanings on her own, but she could 

successfully model both tasks with both conceptualizations when I prompted her, and 

even invented, in the moment, a partitive scheme for 4÷1/3. These findings are similar to 

those of Simon (1993) who noted that the prospective elementary teachers in his study 

“were unable to think flexibly and consciously about division as partitive and quotitive… 
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Being unaware that they had selected a particular model of division, they were unable to 

reverse that decision when it proved unsuccessful (p.247).” 

Partitive-to-Quotitive Assimilation 

The second condition of partitive-quotitive awareness is that a teacher can operate 

under one conceptualization without interference from the other. One type of partitive-

quotitive interference revealed by the data occurred when teachers assimilated partitively-

framed division tasks to quotitive schemata, a phenomenon I refer to as partitive-to-

quotitive assimilation. This occurred for Mark, Uma, and Ursa, who all gave a quotitive 

description of 4÷1/3 even after I asked them to think about it in the same partitive way 

they thought about 4÷3. In each of these three cases, the teacher experienced a moment 

of hesitation before giving their quotitive response. This could be because they perceived 

cues from either myself or from their own intuition that their second explanation of 

4÷1/3 should somehow be different from their first quotitive explanation. They 

neutralized their momentary perturbation by interpreting the task as they had the first 

time, with a quotitive conceptualization. I do not consider this type of “mis-assimilation” 

as an act of accommodation. I simply consider such a mis-assimilation to be a coping 

mechanism to neutralize a perturbation. The teachers mentally changed the task so that 

they could operate with an existing scheme. For these teachers, partitive-to-quotitive 

assimilation prevented them from formulating a partitive meaning with a fractional 

divisor. 

I was not surprised to witness partitive-to-quotitive assimilation when fractional 

divisors were present – I had witnessed this in several of my pilot studies. It was 

especially likely for Tasks 9 and 10, which involved decontextualized symbolic 
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statements of division. This lack of a context gave some measure of freedom so that the 

tasks could be assimilated to whatever schemes the teachers had. 

Division Interpreted as another Operation 

Researchers have reported cases where subjects were asked to construct contexts 

that would elicit given symbolic division statements (e.g., Jansen & Hohensee, 2016; 

Simon, 1993). These researchers noticed that when fractional divisors were present, 

subjects had an increased likelihood to construct contexts that mistakenly elicited 

operations other than division. For this study, I also noticed this tendency during Task 11 

of Phase 1 where the teachers were asked to model 1/2÷3/4. Unlike other studies, I did 

not ask the teachers to invent a context that would elicit this instance of division, but 

instead I asked for their meanings of the expression as well as a drawing that represented 

their meanings. In doing so, the data revealed that teachers modeled multiplication rather 

than division. I describe this data next. 

Linda gave a quotitive interpretation by writing, “how many copies of 3/4 (are) 

out of 1/2?” However, her model supported the operation “one-half of three-fourths” and 

she produced an answer of 3/8. At first, she seemed confident with her conclusion but 

then became perturbed when she decided to check her answer procedurally by using the 

invert-and-multiply algorithm, which yielded 2/3. Despite knowing the answer should be 

two-thirds, she was unable to justify this result using quotitive meanings. 

Uma also initially interpreted the task as 3/4 of 1/2 and drew a picture. She 

performed the algorithm in her head (she admitted this later in the task) which exposed 

her misconception, and she changed to a quotitive meaning by asking, “How many copies 

of three fourths make one half?” She also admitted later that she was trying to find a way 
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of thinking that supported the answer produced by the algorithm. She was perturbed for 

some time, presumably because the divisor was larger than the numerator. When she 

finally realized she had to reduce 3/4 to 1/2 she changed her language to "what fraction 

of three-fourths makes one-half?" This suggests that Uma thought her first phrasing was 

not helpful, or perhaps not even sensible. Eventually, she succeeded – although not 

smoothly – at justifying the answer produced by the algorithm by using a quotitive 

conceptualization. 

Ursa also drew a picture that supported one-half of three-fourths, she gave the 

answer 3/8, and she ultimately caught her error through the algorithm. After several 

moments of reflection, I asked her what question she was trying to answer and she 

responded, “How many times does three-fourths go into one-half?” She kept trying to 

interpret her existing drawing in such a way that she could justify the answer of 2/3 as if 

her representation of one-half of three-fourths could also be used to represent 3/4÷1/2. 

She said that she had been taught to get a common denominator and then divide only the 

numerators, which confirmed the answer of 2/3. She stated that there “is a bunch of 

meaning behind this,” but that she could not think of how to depict this meaning. 

Ultimately, she was unsuccessful with the task. 

Procedural Contamination 

In the preceding section, I discussed the work of Linda, Uma, and Ursa who each 

errantly modeled multiplication for Task 11 (explain your meanings for 1/2÷3/4). These 

teachers arrived at an answer of 3/8, but then caught their mistake through use of the 

invert-and-multiply algorithm. Of these three teachers, only Uma was successful at 

subsequently providing a quantitative justification of the result of the algorithm. I was 
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careful just now to say the result of the algorithm, as opposed to quantitatively justifying 

the algorithm itself, which is a much more challenging endeavor. Concerning the other 

teachers for this task, Mindi could not model the quotient, so she used the result of the 

algorithm to guide her to a quantitative justification. Mark, who normally defaulted to an 

algorithm when he could not reason productively, made a deliberate effort to avoid using 

the algorithm entirely on this task. Ultimately, he was unable to produce any result. Mel 

was the only teacher who did not appear to use the algorithm and was still successful at 

producing 2/3 (using a quotitive conceptualization). However, Mel did use the algorithm 

to confirm her correct result. 

I wonder what data would have been revealed during Task 11, had none of these 

teachers known about the invert-and-multiply algorithm. One challenge for researchers 

who are working with pre- or in-service teachers is the fact that these teachers are already 

familiar with, and largely dependent on, the algorithms9 for calculating the results of 

operations with fractions. It can be very difficult, maybe impossible, for a researcher to 

know the extent to which procedural results are guiding the thinking of their research 

subjects. Of course, this would not be a concern for research involving subjects who have 

not yet been exposed to the relevant procedures. However, in my study, it was an 

endemic concern. I define procedural contamination as the use of procedures to aid in 

conceptual understanding. I use this construct to describe the act of procedurally 

calculating a result (due to an unsuccessful attempt to reason quantitatively) followed by 

(or not followed by) trying to quantitatively justify the result (with or without success). I 

                                                
9 I use the terms “algorithm” and “procedure” interchangeably. 
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acknowledge that the word contamination has a negative connotation, as if the use of 

procedures is detrimental to success, but this is not my intended meaning. In fact, 

procedural contamination tended to keep the teachers on track and helped them find and 

resolve errors in their thinking. Thus, the use of procedures increased the teachers’ 

success at modeling calculations. I use the word “contamination” to suggest that the use 

of procedures tended to put an end to the teachers’ attempts at quantitative reasoning. In 

this study, procedural contamination surfaced almost every time a teacher became 

confused by a task, either before arriving at an answer or when trying to verify an answer.  

In a few cases, procedural contamination was the source of unnecessary 

perturbation when the procedure was done incorrectly, casting doubt on the teacher’s 

answer. This occurred with Mindi while modeling 5/3×2 on Task 6 in Phase 1. She 

procedurally calculated the result as 10/3 but then incorrectly converted this to the mixed 

number 1 and 1/3. This caused several minutes of struggling, before I finally relieved her 

by directing her to convert 10/3 to a mixed number again. She smacked her forehead in 

disgust at the simple error, then she resolved the task to her satisfaction. 

Most teachers were obvious when using a procedure to help them reason through 

a task. However, Uma was very discrete about it, as if ashamed to admit it. She knew that 

I was interested in researching her conceptual understanding of the operations, so she was 

fearful that using the algorithm to guide her thinking was somehow cheating. It took 

several tasks for me to begin to suspect that she was calculating in her head and then 

trying to quantitatively justify the result. At several moments during the study, I would 

ask her if she had first done the algorithm in her head, and at first, she would sheepishly 

admit that she had, only to boldly admit in later tasks that of course she had. This makes 
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me wonder how many times she was secretly trying to reverse-engineer a task that I did 

not catch, which makes me wonder to what extent this was happening with the other 

teachers as well. It is unfortunate that my subjects relied on the use of procedures to 

guide their quantitative reasoning, because the use of procedures offered the teachers an 

alternative approach, which seemed to quell the flow of data that would ordinarily 

accompany perseverance in problem solving. 

RQ1.4: Partitive Scenarios 

I designed Tasks 12-24 to address RQ1.4: What meanings do teachers reveal 

when they engage in tasks that I designed to elicit partitive conceptualizations of division, 

with varying degrees of abstraction, and with a focus on fractional divisors? I phrased 

Tasks 12-15 using language to elicit partitive meanings, but I used abstract wording – 

such as amount and group. Tasks 16-24 also evoked partitive conceptualizations but with 

less abstract quantities, such as amount of water and number of containers. I first discuss 

the data from Tasks 12-15, and then I discuss the data from Tasks 16-24. 

Task 12: <P
8

 copies of what amount combine to make the amount 15? 

Task 13: 6 copies of what amount combine to make the amount 15? 

Task 14: How much is in one group if 15 of something is split into <P
8

 groups? 

Task 15: How much is in one group if 15 of something is split into 6 groups? 

Tasks 12 and 13 are examples of missing multiplicand tasks, which correspond to 

partitive division. Tasks 14 and 15 are sharing tasks, using language typically associated 

with partitive conceptualizations. All four tasks imply a quantitative basis for a partitive 

conceptualization of division, albeit the quantities are abstract. Despite the fact that Tasks 

12-15 involved clearer partitive contexts than Tasks 8-11, there were still a few instances 
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of partitive-to-quotitive assimilation. I discuss such occurrences for Linda and Mel 

below. 

Partitive-to-Quotitive Assimilation 

In Task 12, Linda rewrote the question as “how many copies of 10/3 make 15?” 

and she confidently stated that her rewritten question had the same meaning as the given 

question. She then unsuccessfully attempted to model the task quotitively. The partitive-

to-quotitive assimilation was not surprising to me since, up to this point in the interview, 

Linda had demonstrated only an awareness of this one meaning for division. But in Task 

13, Linda’s work revealed a partitive interpretation. I did not detect any perturbation due 

to the fact that she was now using a meaning that was different from her dominant 

quotitive meaning. Perhaps there was no perturbation because she did not connect Task 

12 to the operation of division. Or perhaps, she did not sense that her partitive actions 

were a contradiction to her quotitive meanings. Whatever the reason, Linda did not 

interpret Task 12 with a partitive conceptualization. 

In Task 14, Mel also demonstrated partitive-to-quotitive assimilation. She said “so 

this (pointing to 10/3) is telling me how many groups I have, and so… there’s 15 things 

and each group is this size (again pointing to 10/3), so if a group is three and one-third 

items then…” Her transition happened very quickly and, in the same sentence, she 

switched from one quantitative meaning for 10/3 to another. She then modeled the task 

using a quotitive interpretation by showing how many groups of three and one-third 

cookies make 15 cookies. However, in Task 15, she gave a partitive interpretation by 

splitting 15 kids into six elevators, which required some kids to be cut in half (she 

chuckled). 
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Quotitive-Modeling Interference 

I repeat that the second condition of partitive-quotitive awareness is that a teacher 

can operate under one conceptualization without interference from the other. As 

discussed earlier, one such type of interference is partitive-to-quotitive assimilation. 

Another type of partitive-quotitive interference is connected with the modeling itself. 

With quotitive meanings, the dividend and divisor each refer to the same unit, and so 

drawing representations of them is less challenging. When modeling quotitive division, 

where the quotient would be a whole number, it is often sufficient to draw a 

representation of the dividend with a representation of the divisor nestled within, and then 

count how many copies of the divisor constitute the dividend. A person can be successful 

doing this without an awareness of the re-unitization that occurs when the divisor amount 

is thought of as a single unit – in other words, without maintaining two levels of units. In 

such a case, successful division amounts to little more than a counting exercise. In my 

study, every teacher was successful at modeling quotitive division when the quotient was 

a whole number, even if the divisor was not. While the values of the dividend and divisor 

with a quotitive conceptualization each refer to the same unit, this is not true for a 

partitive conceptualization. This presents a challenge while modeling with a partitive 

conceptualization because two levels of units must be maintained and/or represented 

during the modeling process. Teachers can develop habits and/or expectations for 

modeling division that are productive for quotitive conceptualizations, but which are 

obstructions to successful partitive models. I use quotitive-modeling interference to refer 

to any difficulties in modeling partitive division that are caused by inappropriately 

applying meanings or strategies that are typically associated with quotitive division 



 

138 
 

models. In other words, quotitive-modeling interference occurs when aspects of quotitive 

modeling schemes inadvertently obstruct attempts at partitive modeling. I illustrate this 

construct by discussing some of the data for Linda, Uma, and Ursa. 

While working on Task 13 in Phase 1, Linda was trying to answer “6 copies of 

what amount combine to make the amount 15?” She drew six rectangles, and her goal 

was to put something in each rectangle so that the total would be 15. She guessed and 

checked, and eventually discovered that if she partitioned each rectangle into five pieces 

and counted in pairs, that she would count to 15. I share Linda’s work in Figure 15. 

 
Figure 15. Linda’s work on Task 13 in Phase 1. 

Linda should have consequently concluded that each pair represented an amount of 1, 

thus each rectangle had an amount of 2 and 1/2. Instead, she concluded that the answer 

was “two-fifths copies of one.” By “copies of one,” the data suggest she meant copies of 

one rectangle. Her tone suggested she was confident in her answer of 2/5, until she tried 

to check it by procedurally calculating 6×2/5. The fact that she tried to verify her answer 

through this calculation demonstrated to me that she properly assimilated the task, in that 

she was indeed trying to find an amount, six copies of which would yield 15. Not 

surprisingly, she was perturbed when her procedural calculation did not yield 15. She 

eventually realized that she had established that 15 copies of 2/5 produced 6, which she 
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confirmed procedurally, while acknowledging that this was not the objective. To resolve 

this perturbation, she re-unitized by considering each pair of fifths of a rectangle as one, 

and adjusted her answer to 2 and 1/5, but this whole number and this fraction do not have 

the same referent. Her answer should have been 2 and 1/2, because one fifth of a 

rectangle is really one-half of the new unit (which new unit is two-fifths of a rectangle). 

She checked six times 2 and 1/5 and, again, did not get 15. Ultimately, Linda was unable 

to resolve this task to her satisfaction. Linda’s difficulties with this task reveal her 

weakness with re-unitizing. It was difficult for her to look at one piece out of five 

contiguous pieces and think something other than one-fifth. This is why she initially gave 

an answer of 2/5 in each container, as if she was trying to answer the partitive question 

“15 copies of what amount make 6?” instead of “6 copies of what amount make 15?” In 

this case, Linda’s difficulty with re-unitizing is an example of quotitive-modeling 

interference, in that she did not perceive two levels of units in her representation, which 

is also true of her quotitive models. One could argue that she did re-unitize when she 

counted in pairs to get to 15, but I contend that the act of counting does not imply an 

awareness of a second unit of reference – she did not view each of what she was counting 

as a new whole. Instead, Linda was limited to imagining that one of the six blocks served 

as the only unit-of-measure, but to be successful with this task, Linda needed to be able to 

coordinate two levels of units, the number of copies and the quantity referred to by the 

15. 

Now let us consider Uma’s work on Task 13 in Phase 1. Uma began by drawing 

15 circles, divided each circle into six pieces, then stopped. The data is not conclusive 

about why she stopped, but she adopted a quotitive meaning instead, by circling two 
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groups of six circles, with three circles remaining. After some fumbling, Uma eventually 

said that the three remaining circles were “three out of six” and so she gave an answer of 

2 and 1/2. Despite her quotitive drawing, she then summarized her work using partitive 

language by saying, “six copies of two and one-half make 15,” which she demonstrated 

with a new visual of 15 circles. Figure 16 illustrates Uma’s work on Task 13. 

 
Figure 16. Uma’s work on Task 13 in Phase 1. 

I pointed out to Uma that her two pictures looked different, and she agreed and said that 

“it wasn't until I came up with two and a half copies of six in 15 that I felt I could 

demonstrate that there are actually six copies of two and a half in 15.” To summarize her 

solution path, she abandoned a partitive model in favor of a quotitive model, arrived at an 

answer, invoked numerical commutativity, and then demonstrated a partitive 

conceptualization instead. This approach was only possible because of a dependence on 

numerical commutativity of multiplication, which was a quantitatively weak link in her 

strategy. I consider Uma’s work to reveal aspects of quotitive-modeling interference for a 

the following reasons: (1) her strategy was dependent on quotitive meanings to generate 

an answer in the first place, (2) she used a quotitive modeling tactic by beginning with a 

representation of the dividend, and (3) she defaulted to quotitive modeling to cope with 

the confusion that resulted from being unable to think of the six in terms of the circles she 
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had already drawn. In other words, she was tempted to draw a representation of the six in 

terms of circles, but she instinctively knew that it was inappropriate to do this. She 

adjusted by deliberately reinterpreting the task with a quotitive conceptualization so that 

she could imagine that both the six and 15 were referring to circles. In reference to point 

number (2) above, it is perhaps more productive to model partitive division by drawing a 

representation of the divisor first, in order to devise a strategy for the partitioning and/or 

iterating of the dividend. Once a person devises such a strategy, that person could then 

focus on a representation of the dividend and on how to partition and/or iterate 

appropriately. I emphasized this approach during the teaching experiments in Phase 2. 

Now let us consider Ursa’s work on Task 14, where she was trying to determine 

“how much is in one group if 15 of something is split into 10/3 groups.” Ursa began by 

drawing 15 circles and acknowledged that she was trying to make three and one-third 

groups. She suggested that if she put five circles in each group, then she would only have 

three groups, which is too few. If she put four circles in each of the three groups, then she 

would have three circles left over, and she said she did not know what to do with the 

three circles that remained. However, this task triggered numerical division and she 

procedurally calculated	15 ÷ <P
8
= 4 <

7
. Ursa returned to her diagram and broke up the 

remaining three circles each in half, and she distributed one-half of a circle to each of the 

three groups so that each group would have four and one-half circles, with one and one-

half circles remaining. She said she did not know what one-third of a group meant, nor 

did she recognize that the remaining circles constituted one-third of a group, likely 

because the size of the group seemed inconsistent as she kept toying with how many 

circles were in a whole group. Unsatisfied, she started again by drawing a picture of three 
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and one-third rectangles. She put “4” in each whole rectangle (not “4 and 1/2”) and wrote 

“3” next to the one-third rectangle, but she said that it did not make sense. Ultimately, 

Ursa was unsuccessful with this task and her work is illustrated in Figure 17.   

 
Figure 17. Ursa’s work on Task 14 in Phase 1. 

Ursa’s difficulties had several sources, one of which was her insistence on drawing a 

representation of the dividend first, a form of quotitive-modeling interference. Other 

issues related to her understanding of what “one-third group” meant, and to her insistence 

on expressing 10/3 groups as a mixed number. 

 Quotitive-modeling interference hindered Linda, Uma, and Ursa from being able 

to productively construct partitive models. As such, these teachers did not possess 

partitive-quotitive awareness, which – as I discussed earlier – is a significant obstacle to 

advancements in partitive meanings for division. 

Procedural Contamination 

In Task 12, Mark was trying to answer the question “10/3 copies of what amount 

combine to make the amount 15?” He correctly identified this as a missing multiplicand 

task (i.e., a partitive conceptualization), but he could not model the division. Instead, he 
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resorted to using the algorithm to produce 4 and 1/2 and then demonstrated quantitatively 

that the product (3 and 1/3)×(4 and 1/2) yielded 15. When I asked if he would have been 

able to resolve this task without using the algorithm, he said that he would not. This 

example is interesting because he did not use the result of the algorithm to guide him 

toward a strategy that would have been helpful in resolving the task without the 

algorithm. Thus, the algorithm did not serve to advance his problem-solving abilities. 

Something similar happened in Task 13 when Uma was trying to answer the question, “6 

copies of what amount combine to make the amount 15?” I discussed this in more detail 

in the preceding section of this chapter, but in summary, she deliberately converted to a 

quotitive conceptualization, arrived at an answer, invoked numerical commutativity, and 

then demonstrated a partitive conceptualization by showing that six copies of two and 

one-half make 15. I consider the procedural use of commutativity in her strategy to be an 

instance of procedural contamination. As I said elsewhere, it was the quantitatively weak 

link in her solution path, without which she may not have been able to resolve the task at 

all. 

Specific Water-Container Task Results 

Tasks 16, 17, 19, 20, 22, and 23 involved distributing a known amount of water 

into a known number of containers. These tasks did not use typical language associated 

with division, so some teachers may not have realized that division was a relevant 

operation. I repeat these tasks below. 

Task 16: Suppose 13 gallons of water fill 5 equal containers. Describe the 

capacity of one whole container. 
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Task 17: Suppose 3/4 gallon of water fills 5 identical containers. Describe the 

capacity of one whole container. 

Task 19: Suppose 27 gallons of water fill 9/4 identical containers. Describe the 

capacity of one whole container. 

Task 20: Suppose 3 gallons of water fill 9/4 identical containers. Describe the 

capacity of one whole container. 

Task 22: Suppose 5 gallons of water fill 2/3 of a container. Describe the capacity 

of one whole container. 

Task 23: Suppose 7/4 gallons of water fill 2/3 of a container. Describe the 

capacity of one whole container. 

For these tasks, I was only interested in modeling the teachers’ schemes, as 

revealed through their efforts to solve the problems, and whether these schemes were 

conducive to forming a foundation for the invert-and-multiply algorithm. As such, I did 

not generally ask the teachers to provide a symbolic operation that would answer the 

question, although in several cases, this data surfaced organically. For these tasks, no 

teacher demonstrated partitive-to-quotitive assimilation. This is certainly due to the 

explicit contexts of the tasks, where water and containers served to provide concrete 

things to think about, thus making it unlikely to conflate the two quantities and interpret 

the division tasks quotitively. Also, every teacher was eventually successful at creating a 

partitive model that supported a valid quotient. The only exception was Mark in Task 16 

who did this task procedurally, without the aid of a visual model. This overall success by 

the teachers does not suggest that there were no cognitive barriers in the process, or that 

the schemes that were revealed were generalizable. I discuss these matters below. 

For Task 16 (13 gallons fill 5 containers), all six teachers first distributed whole 

numbers of gallons to the five containers, and then figured out how to evenly distribute 
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any remaining gallons. They did this in slightly different ways, but none of the teachers 

gave a visual model that indicated a contraction of the 13 gallons by a factor of 1/5. The 

work from Uma and Linda are provided in Figure 18. 

 
Figure 18. The work of Uma and Linda on Task 16 in Phase 1. 

 Unlike in Task 16, for Task 17 (3/4 gallon fills 5 containers), some teachers 

(Mindi, Uma, and Ursa) gave a visual model that suggested a contraction by a factor of 

1/5. This is because in Task 17, the dividend was smaller than the divisor, so the teachers 

could not first share whole numbers of gallons in the same way they worked through 

Task 16. The work of Mindi, Uma, and Ursa is in Figure 19. 
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Figure 19. The work of Mindi, Uma, and Ursa on Task 17 in Phase 1. 

For Task 19 (27 gallons fill 9/4 containers), some confusion resulted from the 

non-whole number of containers. Linda began by interpreting nine-fourths of a container 

as nine one-fourths, which she drew as two and one-fourth containers. She then became 

perturbed and paused to reflect for several minutes. Speaking to herself, she confirmed 

that the water “should be shared equally.” I asked her what the goal was, and she said she 

was looking for the amount in a container, and she circled a whole container. She 

proceeded to deal out gallons, one at a time, until she arrived at nine gallons per container 

(including the partial container). I share Linda’s work in Figure 20. 

  
Figure 20. Linda’s work on Task 19 in Phase 1. 
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It appeared that she was not imagining the containers (and the partial container) to be full, 

because she was not bothered when she imagined the partial container to be big enough 

to hold nine gallons of water – or perhaps she was reimagining the containers as three 

equal containers so that she could do fair-sharing. At this point, I emphasized that the 27 

gallons should fill up the partial container and the two whole containers. After thinking, 

she said that 15 gallons was too much, presumably thinking that 15 gallons in each whole 

container would exceed the allotted 27 gallons. Linda adjusted her answer and concluded 

that 13 gallons would be in each whole container, and that one gallon would be in the 

“quarter container.” She was guessing and checking until she had some same amount of 

water in each of the whole containers, and some smaller amount of water in the quarter 

container. Her answer suggested that she did not realize that if the nine quarter containers 

were filled, then the quarter container should contain one-fourth as much water as a 

whole container. Perhaps she was content with this answer because she lost sight of the 

fact that the containers were filled and she reasoned that if 13 gallons could fit in a whole 

container, then 1 gallon would be able to fit in a quarter container. I guided her by 

commenting, “the quarter container has to be filled and so if there are 13 gallons here 

(gesturing at a whole container) and only one gallon here (gesturing to the quarter 

container) then…”, and I trailed off leaving her to think about the reasonability of what I 

was saying. Linda then changed her answer to 12 gallons in each whole container, and 

three gallons in the quarter container, at which point she filled in each of the nine quarter 

containers with a 3. She was using a guess-and-check strategy, tweaking her answer until 

the conditions were met (with a little help from me), and she was fortunate that the task 

involved numbers that were conducive to success with this strategy. It is important to 
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note that Linda did not divide 27 by nine, perhaps because she was no longer thinking 

nine of anything, but rather two and a quarter of something. 

Ursa also was initially confused by the non-whole number of containers in Task 

19. She first calculated 27÷9/4 to get an answer of 12, but then I asked for a visual 

model. She drew two whole containers and one-fourth of a container more. She was 

momentarily confused, and she was not sure how the 12 related to the picture. This 

revealed that she did not initially know how to interpret the question. After several 

moments of silence, she divided the whole containers into quarters as well and counted 

nine quarter-containers in total, put “3” in each quarter container, and confirmed that 12 

is in one whole container. 

 For Task 19, Mindi also used a guess-and-check strategy. She drew three 

containers and knew that only one-fourth of the third container would be full. She did not 

initially partition the two whole containers into quarter pieces. She began to guess and 

check, first with “10” in each whole container, then with 12 in each whole container. She 

stopped here because “12 + 12 + 3 = 27.” At this point, she partitioned the wholes into 

quarters and labeled each quarter as “3.” She mentioned that she only had a guess-and-

check strategy. The data suggests that Mindi was so focused on 2 and 1/4, instead of 9/4, 

that it did not occur to her to divide 27 by 9. 

 In Task 19, only Uma and Mel divided 27 by nine to find the amount in one 

quarter-container. For the other teachers, it was a hindrance to think of 9/4 as 2 and 1/4. 

This prevented them from dividing 27 gallons by nine to get the amount of water in one 

quarter-container, and forced Linda and Mindi to use a guess-and-check strategy, which 
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is not generalizable to the point of forming a meaningful foundation for the invert-and-

multiply algorithm. 

For Tasks 22 (5 gallons fill 2/3 container) and 23 (7/4 gallons fill 2/3 container), 

no teacher had trouble partitioning the given amounts of water in half and then combining 

the three halves. As an example, I share Linda’s work for Task 22 in Figure 21. For 

Linda, and others as well, it was not clear to me whether she thought to combine the three 

amounts of water through multiplication. 

 
Figure 21. Linda’s work on Task 22 in Phase 1. 

General Water-Container Task Results 

 Tasks 18, 21, and 24 involved distributing an unknown amount of water into a 

known number of containers, which I repeat below. 

Task 18: Suppose a certain amount of water fills 5 identical containers. Describe 

the capacity of one whole container. 

Task 21: Suppose a certain amount of water fills 9/4 identical containers. 

Describe the capacity of one whole container. 

Task 24: Suppose a certain amount of water fills 2/3 of a container. Describe the 

capacity of one whole container. 

 For these tasks, I was looking for generalizations based on the teachers’ strategies they 

used for the same situations but with known amounts of water. I summarize the results in 
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Table 11. The ümeans the teacher suggested the indicated operations, and the hash mark 

means they did not. 

Table 11 
The Teachers' Results on the General Water-Container Tasks 

 Task 18 
? water 

5 containers 

Task 21 
? water 

9/4 containers 

Task 24 
 ? water 

2/3 container 
 ?÷5 1/5×? ?÷9/4 4/9×? 4(?÷9) ?÷2/3 3/2×? 3(?÷2) 

Linda ü ü ü - - - - ü 
Mark - ü - - - - - - 
Mindi ü ü - - ü - - ü 
Mel ü ü ü ü ü - ü ü 
Uma ü - ü - ü - - ü 
Ursa ü - - - ü - - ü 

For Task 18, everyone identified at least one operation that would resolve the 

task. For Task 21, Linda and Mark could not generalize to something other than division 

because their schemes relied on knowing the given amount of water. For Task 24, only 

Mark could not generalize to something other than division. In several cases for Tasks 21 

and 24, the teachers could describe the two-step process, but they did so without 

explicitly connecting this to one-step multiplication with a fractional multiplier. It is 

noteworthy that for Task 24, no teacher indicated division as an operation. In fact, while 

working on Task 22 (5 gallons fill 2/3 container), I asked Mel if there was an “operation 

that this (task) triggers for you," and she answered “no.”  She said that she could solve 

the problem by dividing by two and then tripling, but she did not recognize that she could 

solve the problem by a single act of division. She said, "Until I thought about it, I did not 

know what I was gonna do with the numbers…I wouldn't think of a problem like this as 

'I'll just go to an algorithm.'" This finding lends support to the findings of Jansen and 
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Hohensee (2016) who observed that, with the same rational divisor of 2/3, only three out 

of 17 subjects identified the correct symbolic statement of division given a context. 

Another issue that surfaced during the water-container tasks was the improper use 

of symbols. In Task 21, Ursa was trying to generalize a process for describing the 

capacity of one whole container when some amount of water fills 9/4 containers. She 

correctly explained that she could divide the amount of water by nine, and then copy this 

amount four times. However, when expressing her thinking symbolically, instead of 

writing (𝑥 ÷ 9) × 4, she wrote ;𝑥 ÷ Y
L
= × 4, which would numerically produce an 

incorrect amount. I share her work in Figure 22. 

 
Figure 22. Ursa’s work on Task 21 in Phase 1. 

As another example, in Task 24, Linda committed a similar error when she was trying to 

describe the capacity of one whole container when some amount of water fills 2/3 of the 

container. The data suggested that she realized she could divide the amount of water in 

two, but when she tried to express this symbolically, she errantly wrote x÷2/3 as 

representing the amount of water in one-third of the container. I share Linda’s work in 

Figure 23. 
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Figure 23. Linda’s work on Task 24 in Phase 1. 

This kind of error is not surprising given that a fraction such as 9/4 can be 

interpreted as nine one-fourths. As such, some people may interpret “divide the water by 

nine quarter-containers” into the partly symbolic expression “x÷9 quarter containers,” 

which is then inappropriately expressed as x÷9/4. I consider this kind of error to be less 

significant because it is not the consequence of an error in quantitative reasoning. 

However, such an error poses a problem when trying to build a unit rate meaning for 

partitive division by connecting the symbol x÷9/4 to the capacity of one whole container, 

as opposed to the capacity of one quarter-container. 

RQ1.5: Invert-and-Multiply Algorithm 

I intended Task 25 to help answer RQ1.5: What justifications do the teachers 

provide for the invert-and-multiply algorithm after working through the (water-

container) tasks? By placing this task at the end of Phase 1, I expected that the preceding 

tasks would influence the teachers’ attempts to justify the algorithm. Specifically, I 

expected that the teachers would leverage their generalizations of the general water-

container tasks (Tasks 18, 21, and 24) to justify the algorithm. In Table 12, I summarize 

whether each teacher was successful with a generalization for Tasks 21 and 24, and 

whether each teacher was subsequently successful at justifying the invert-and-multiply 

algorithm. The üindicates that the teacher successfully justified the algorithm with the 
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indicated conceptualization, the û indicates the teacher tried unsuccessfully, and the hash 

mark indicates that the teacher did not attempt with the indicated conceptualization. I 

discuss each teacher separately in the paragraphs that follow. 

Table 12 
The Teachers' Results when Trying to Generalize Division by a Fraction 

 Task 21 
? water 

9/4 containers 

Task 24 
 ? water 

2/3 container 

Task 25 

𝑎 ÷
𝑏
𝑐 = 𝑎 ×

𝑐
𝑏 

 Generalized to 
4/9×? or 4(?÷9) 

Generalized to 
3/2×? or 3(?÷2) Partitive Quotitive 

Linda no yes O O 
Mark no no O - 
Mindi yes yes ü - 
Mel yes yes ü - 
Uma yes yes O - 
Ursa yes yes - O 

Ursa successfully generalized for Tasks 21 and 24, however, for Task 25, she 

tried to justify the algorithm using a quotitive conceptualization. She did not seem aware 

that this was not the same conceptualization as the preceding tasks, which is indicative of 

a lack of partitive-quotitive awareness. I do not discuss Ursa’s data on Task 25, because 

quotitive justifications for the algorithm were not relevant to my research questions. Mel 

and Mindi were both able to provide a quantitative justification of the algorithm. I also do 

not discuss their work here because I am reporting on cognitive obstacles, and it suffices 

to say that I was satisfied with their explanations, which were generalizations from the 

water-container tasks. For the remainder of this section, I discuss the data for Task 25 

from Linda, Mark, and Uma. 
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Linda did not possess a general scheme for partitive division with a divisor of 9/4, 

but she did possess such a scheme for a divisor of 2/3. Furthermore, she revealed in Task 

22 (5 gallons fill 2/3 container) that the operation 5÷2/3 would resolve the task, which 

correctly connected this type of task with symbolic division. She began Task 25 by 

reflecting on the water-container tasks she had just finished, but without looking back at 

her work on the previous tasks. Consider Linda’s utterance below. 

So, we were talking about water and containers and…when I divide by the 

fraction, that’s (she did not point at anything) giving me what part of it is, and 

then I add all the parts. So, that’s multiplication because I add the amount of parts. 

Although Linda was thinking aloud, this quote provides an example of unclear language, 

something that plagued Linda repeatedly throughout the study. She constantly used vague 

pronouns, mentioned numbers without referents, and phrased quantities ambiguously. For 

example, when she said, “part of it is,” she was not clear about the meaning of it in her 

sentence. Also, her language “add the amount of parts” sounds like the quantity, number 

of parts, instead of the quantity, amounts of stuff contained in those parts. These 

examples of vague language are especially prominent in all of her work involving 

decontextualized symbolic operations. Returning to Task 25, at one point, she said, “𝑎 is 

dividing by 𝑏… times 𝑐…(pause)…no.” I could not tell if she was on a productive path 

of quantitative reasoning, or if she was simply stating the meaning of the multiplication 

statement in the prompt. Regardless, she trailed off and began to fumble with some other 

symbolic statements, as depicted in her writing in Figure 24. 
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Figure 24: Linda’s work on Task 25 in Phase 1. 

After a few minutes of struggling to say anything she had confidence in, we had the 

following dialogue. 

Excerpt 1 

1 

2 

Linda: It’s so hard because I just know that the reciprocal works. I 

wouldn’t know how to explain why. 

3 

4 

MW: Explain this part (pointing only to the division operation in the 

prompt). What is division trying to accomplish? 

5 Linda: How many parts of 𝑏	𝑐 can I pull out of 𝑎. 

6 MW: Okay, I have no questions. 

When I asked Linda what the division statement was trying to accomplish, she 

gave a quotitive explanation, despite practicing partitive meanings during the water-

container tasks. At this point, I knew that she would not be able to conceptually 

generalize the invert-and-multiply algorithm by relying on the partitive division tasks she 

had reasoned through moments earlier. 

In Tasks 21 and 24, Mark did not give a partitive generalization for a divisor of 

9/4, nor for a divisor of 2/3. Not surprisingly, he decided to use a specific example to help 

him reason through Task 25. He imagined six candies and wrote 6÷3/2, which he 

changed to 6÷1.5. He drew two rows of three, said the first row is one group, and “1.5 

candies” from the second row is a half of a group, so he said there were “4.5 candies per 

group.” Mark’s work is illustrated in Figure 25. 
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Figure 255. Mark's work on Task 25 in Phase 1. 

Mark did not seem aware that his notion of a group changed from a group-size of three to 

a group-size of four and one-half. Regardless, it was clear he was using a partitive 

conceptualization. However, when I asked him what the unit should be on the 1.5, he 

said, “candies per group,” which was troublesome for two reasons: (1) this is the type of 

unit for a divisor with a quotitive conceptualization, and (2) this implied a third group-

size. It is likely he answered this way because his image highlighted both 1.5 groups and 

1.5 candies (in the second row). He then procedurally calculated 4, which contradicted 

his 4.5. Mark was unable to resolve this perturbation, and ultimately, he gave up. 

Uma, on the other hand, was able to generalize for Tasks 21 and 24, so I expected 

her to be able to describe the algorithm. Uma used Task 20 (3 gallons fill 9/4 containers) 

to guide her thinking on Task 25. Her work on Task 20 is shown in Figure 26. 
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Figure 266. Uma's work on Task 20 in Phase 1. 

Reflecting on her work from Task 20, Uma realized that she would divide 3 by 9, then 

multiply by 4. Unfortunately, she did not recognize this as a single step of multiplying by 

4/9, because she said that “3 times 4/9 means to multiply by 4, then divide by 9,” which 

is the reverse of the order she was expecting. Regrettably, this compelled her to try to 

find another way to make sense of the algorithm. After 20 minutes of grappling with this 

task, she gave up. It was unfortunate that Uma did not realize that multiplication by 4/9 

can be construed in two ways: (1) multiply by four and then divide by nine, or (2) divide 

by nine and then multiply by 4. 

Summary of Phase 1 Findings 

The data from Phase 1 provided evidence of a variety of meanings held by the 

teachers. Since I centered my overall study on researching cognitive advancement, I 

focused my analysis on the aspects of the teachers’ schemes that were not conducive to 

acquiring advanced meanings for partitive division. I summarize these findings in the 

paragraphs that follow. 

Concerning fractions as reciprocal measures of relative size, five of the teachers 

(all except Linda) were ultimately able to compare the red and green strips to each other 

in Task 3 by imagining reciprocal fractions, but only Mel and Mindi were able to provide 
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a quantitative justification. However, for none of the teachers was imagining the 

reciprocal self-evident, suggesting that for none of the teachers was the scheme 

reversible. The data revealed that the teachers’ use of mixed numbers was a severe 

hindrance to imagining the reciprocal. 

Concerning fractional multipliers, of the five teachers who had a meaning for 5/3 

as a multiplier, none of them thought to contract 2 by a factor of 1/3, followed by 

expanding this amount by a factor of 5. Four of the teachers thought of 5/3 as a mixed 

number in order to model the product. This was significant to me because mixed numbers 

obscured the elegance of the dual-scheme for fractional multipliers of contraction 

followed by expansion. While trying to reason with a fractional multiplier, Ursa 

demonstrated a multiplier-switch, which occurs when someone begins to model a 

product, imagining one factor as the multiplier, but then, during the process of modeling, 

the person instead views the model as a justification for the other factor as the multiplier. 

This can be an impediment to formulating a productive meaning for a fractional 

multiplier because it provides a sensible way to circumvent the formulation of such a 

meaning. 

Concerning the creation and coordination of multiple levels of units, the data in 

my study revealed that the lack of a specific context contributed significantly to the 

teachers’ inability to maintain multiple levels of units. Robust meanings for 

multiplication, and hence division, are dependent on being able to maintain awareness of 

multiple levels of units. All teachers encountered perturbations at some point due to 

issues related to re-unitization. 
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Concerning the dual meanings for division, no teacher demonstrated partitive-

quotitive awareness, which is when a person possesses the following two characteristics: 

(1) awareness of the two quantitative conceptualizations for division, and (2) ability to 

operate under one conceptualization without interference from the other, while 

maintaining an awareness of which conceptualization with which they are operating. The 

data also revealed that awareness and capability did not correlate. That is, a teacher could 

be aware of the two meanings but be unable to operate meaningfully with them both. Or, 

a teacher could operate with both conceptualizations when prompted by a context, but 

without an awareness of a change in meaning. Concerning condition 2, I identified two 

kinds of partitive-quotitive interference. The first is partitive-to-quotitive assimilation, 

which occurs when a person assimilates partitively-framed division tasks to quotitive 

schemata. Four of the teachers exhibited these “mis-assimilations” at some point in Phase 

1, and it occurred when the division tasks were abstract, and when the divisors were not 

whole. The second is quotitive-modeling interference, which refers to any difficulties in 

modeling partitive division that are caused by inappropriately applying meanings or 

strategies that are typically associated with quotitive division models. Due to quotitive-

modeling interference, three teachers were impaired while trying to produce partitive 

models. 

Selecting the Two Subjects for Phases 2 and 3 

At the completion of Phase 1, I aimed to narrow my study from six to two 

teachers. Since I was interested in studying the advancement of schemes, I had planned to 

choose two teachers for whom the data revealed to have weak meanings, yet could 

benefit from the teaching experiment in Phase 2. I now summarize my assessments of 
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each teacher based on the data from Phase 1, and I discuss how I selected both Linda and 

Uma as the Phase 2 and 3 subjects. 

Linda had very weak meanings for fractions, multiplication, and division. She 

could not meaningfully model fractional multipliers. She demonstrated an awareness of 

only one meaning for division, quotitive division, which she could not model 

consistently. She demonstrated issues with re-unitizing, in that she could not maintain a 

consistent unit, nor multiple units simultaneously. Of all the teachers, she had the most 

potential to gain from participating in the teaching experiment. In addition, she had 

extensive experience teaching at the 5th and 6th grade levels, and she was currently 

teaching at the 6th grade level, which is when students are building meanings for division 

with fractional divisors. Given all these reasons, Linda was a good candidate for Phase 2. 

Mark also demonstrated weak meanings, but he was prone to procedural 

contamination every time he encountered difficulties in completing the tasks. Mark could 

benefit from the teaching experiment, but he did not exhibit perseverance in reasoning 

through tasks. Additionally, he had experience only at the 7th grade level, which meant he 

did not work with students in building initial meanings for division with fractions. 

Mindi possessed schemes that were quite advanced. During Phase 1, she 

demonstrated an acute awareness of the two models for division, and managed to give 

partitive and quotitive models to represent decontextualized statements of division, even 

with fractional divisors. Consequently, the teaching experiment with Mindi would not 

have contributed to my research goal of investigating cognitive advancement. 

Mel also possessed schemes that were very advanced. Even though she did not 

initially demonstrate an awareness of the two meanings for division, she possessed robust 
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schemes related to each conceptualization. She was able to invent in the moment a 

partitive meaning for dividing by 1/3 in Task 10. Also, in Task 21, she developed a 

perfectly generalized scheme, providing her with a conceptual foundation for the fact that 

𝑚 ÷ Y
L
= L

Y
× 𝑚. She struggled with her explanation of Task 25, but she was on the verge 

of an abstracted conceptual justification for the invert-and-multiply algorithm. 

Consequently, Mel would also not have helped me answer my research questions. 

Uma demonstrated weaker schemes, and she was also prone to procedural 

contamination, although she was very discrete about it. However, she exhibited a sincere 

desire to have a conceptual understanding of the procedures she was using, and she was 

very persistent in trying to infuse these procedures with meaning. She had some trouble 

coordinating multiple levels of units in both multiplication and division tasks, and she 

demonstrated partitive-to-quotitive assimilation. Additionally, she had extensive 

experience at the 5th and 6th grade levels, and was currently acting in the role of a 

mathematics coach to other teachers. For these reasons, Uma was a good candidate for 

Phase 2. 

Ursa also demonstrated weaker schemes. Even though she expressed an 

awareness of the two meanings for division, she could not model them consistently when 

fractions were involved. She also demonstrated partitive-to-quotitive assimilation when 

fractional divisors were present. Additionally, she relied heavily on proportional 

reasoning schemes, e.g. if x containers corresponded to y gallons, then one container 

corresponded to y÷x gallons. This method was pseudo-procedural because she resorted to 

it when other attempts at reasoning were not successful. Ursa was capable of benefitting 

from the teaching experiment, but she had no experience teaching at the 6th grade level. 
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In conclusion, the data suggested that Mindi and Mel were too advanced in their 

mathematical abilities to contribute to addressing my research questions. The other four 

teachers were good candidates, but Mark and Ursa did not have extensive experience 

with students first learning division with fractions, which occurs in the 5th and 6th grade 

levels. Linda and Uma did have such experience, and they both demonstrated a 

willingness to persevere in making sense of their work. Thus, I decided to use Linda and 

Uma for Phases 2 and 3. They both completed the next two phases, but for the purposes 

of this dissertation, I only reveal and discuss the data from Linda. 
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CHAPTER 7 

PHASE 2 RESULTS AND DISCUSSION 

This chapter describes the results and provides a discussion of findings from a 

four-session teaching experiment with Linda. I based my analysis of the data from the 

teaching experiment on my secondary research question for this phase (RQ1.6), which is, 

“What cognitive obstacles do teachers further reveal as I actively attempt to promote the 

development of their meanings that are foundational to partitive division over the 

rational numbers?”  

The hypothetical learning trajectory I described in Chapter 5 on methodology 

provided opportunities for me to adapt in order to meet Linda’s needs. Based on the 

weaker meanings that Linda revealed in Phase 1, I revised the teaching experiment 

trajectory specifically because she: (1) could not meaningfully model multiplication with 

fractional multipliers, (2) held a predominant quotitive conceptualization of division, and 

(3) demonstrated issues with re-unitizing in that she could not maintain a consistent unit, 

nor multiple units simultaneously. For Linda’s teaching experiment in Phase 2, I followed 

the ordering of the seven learning objectives (found in Chapter 5), but I devoted more 

time to activities that focused on Linda’s meanings for unitizing, fractional multipliers, 

and division. By the end of the teaching experiment, Linda and I had engaged in 

discussions that centered on twelve learning activities. I summarize the timeline of our 

discussions over the four-session teaching experiment in Table 13. In this table, I also 

identify the length of the session and the learning objective to which the activities 

aligned. I repeated some activities over multiple sessions so that I could give Linda 

several opportunities to reflect on the activity. 
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Table 13 
Timeline of the Teaching Experiment with Linda 
Session Obj. Activity 

1 
 

80 min 

1 
1 Given the pink strip of paper, draw a strip of paper that is a times as 

long. (For 𝑎 = 3, 1/5, 3/5, 7/5, 2&1/3, 1.7)  
2 Describe your meanings for the expressions: 4×5, 4×5/3, 4/3×5 

2 3 
The green strip is how many times as long as the red strip? The red 
strip is how many times as long as the green strip? (red = 7/4 green) 

2 
 

80 min 

1 4 Describe your meanings for the expressions: a×b, m/n×b 

2 

3 (Repeat task - see row above for task description) 

5 
The yellow strip is how many times as long as the blue strip? The 
blue strip is how many times as long as the yellow strip? (yellow = 
9/2 blue) 

3 

6 Describe your meanings for the expressions: a÷b, a÷4, a÷1/4 

7 
How much water is in one container when 20 gallons fill 4 identical 
containers? How many containers are needed to hold 20 gallons of 
water if each container can hold 4 gallons? 

3 
 

90 min 

1 4 (Repeat task - see row above for task description) 

2 3 (Repeat task - see row above for task description) 

3 
7 (Repeat task – see row above for task description) 

6 (Repeat task - see row above for task description) 

4 8 Suppose some amount of water fills 5 containers. Describe how 
much water would fill a whole container. 

5 9 
Suppose some given amount of water fills the blue-rimmed 
containers. Describe how much of the given amount of water would 
fill a whole container. (There are 1 and ¾ blue-rimmed containers) 

4 
 

80 min 

2 3 (Repeat task - see row above for task description) 
3 7 (Repeat task - see row above for task description) 
4 8 (Repeat task - see row above for task description) 

5 10 
Suppose some given amount of water fills 2 and 2/3 containers. 
Describe how much of the given amount of water would fill a 
whole container. 

6 11 
Suppose some given amount of water fills 3/5 containers. Describe 
how much of the given amount of water would fill a whole 
container. 

3 12 Describe your meanings for the expressions: a÷9/5, a÷3/7, a÷1/3 
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RQ1.6: Additional Cognitive Obstacles 

To address this research question, I discuss the relevant data from the four 

sessions of the teaching experiment below. 

Session 1 of the Teaching Experiment 

The first session of the teaching experiment focused on three primary activities. 

Activity 1: Finding multiples of the pink strip. This activity required Linda to 

use a given pink strip of paper to draw more strips whose lengths were multiples of the 

length of the pink strip. When Linda was attempting to draw a strip that was 2 and 1/3 

times as long, she drew 2 whole strips and 1/3 of a strip, but with gaps in between, as if 

the goal was to produce 2 and 1/3 strips. I prompted her to consider drawing one strip that 

was 2 and 1/3 times as long. She redrew her image, but as one strip, shown in Figure 27. 

 
Figure 27. Linda's work on Activity 1 in Phase 2. 

I asked her to express 2 and 1/3 in a different way and she said 7/3 and showed that her 

new strip was seven-thirds of the pink strip. At the end of this activity, Linda and I 

discussed expressing non-whole multipliers as single fractions, which means to partition 

and then iterate. The data from this activity suggest that the mixed number contributed to 

Linda losing sight of the task’s objective – she misinterpreted the task as draw 2 and 1/3 

pink strips, instead of as draw one strip that is 2 and 1/3 times as long. This provided 
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additional data to suggest that mixed numbers can be cognitive barriers to productive 

reasoning. 

Activity 2: Meanings for multiplication. At the start of this activity, I explained 

to Linda that we would adopt the convention that the first number of a multiplicative 

statement is the number of copies, or multiplier, and the second number is the amount 

that is being copied, or multiplicand. When I gave Linda the task of modeling 4/3×5, she 

said she would use the commutative property and model 5×4/3. I stopped her and 

insisted that she not use the commutative property. She wrote “4/3 copies of 5,” and I 

asked her to explain what that meant to her. After a long pause, she said the following. 

It's hard for me to visually see it when it's in this format. In each one would be 

five, but I would only take four-thirds of each one, which I don't see how that's 

possible, visually. I would need, in each one is five, but I would need four-thirds 

of each of the groups. But then I'm switching it again to the commutative 

property, because I'm trying to say five groups of four-thirds. 

Initially I did not know how to interpret what she was saying, but upon reviewing the 

data, I determined that she was describing a multiplier-switch. I will return to this a little 

later. After her comments, I gave her the pink strip and asked her to consider the task of 

thinking about 4/3 of the pink length. She drew four contiguous, equally-sized rectangles, 

where three of the rectangles combined matched the length of the pink strip. I asked her 

to consider the length of the new strip if the pink strip was five centimeters long. She said 

5.33 (no unit) which she rounded from 5 and 1/3, revealing her difficulty with seeing one 

block as anything but one-third. I asked her what the length of one rectangle was (one-

third of the pink strip), and she calculated 5 divided by 3 to get 1 and 2/3 centimeters. I 

asked her if she could find the length of one rectangle using multiplication instead of 
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division, and she said 5 times 1/3. She then wrote 5/3 in each rectangle, confirming that 

5/3 was the same as 1 and 2/3. I encouraged her to work with improper fractions instead 

of mixed numbers. Then she filled in each of the four rectangles with 5/3 and said her 

overall picture represented the meaning of the expression “4/3 copies of 5.” Her work is 

provided in Figure 28. 

 
Figure 28. Linda's first attempt at modeling 4/3 of 5 during Activity 2 in Phase 2. 

 I hid her drawing from view and asked her to describe the meaning of 4/3 copies of 5. 

She said it means “I have 4 one-third copies, 5 times” but then she caught her own 

mistake, realizing that this meant five copies of four-thirds, not four-thirds copies of five. 

She became perturbed saying that she kept reverting to the five as the multiplier. I 

thought she was too focused on representing the 4/3 and so I asked her to focus on a 

representation of the five first, and then to operate on that based on her meanings for 4/3 

as a multiplier. She drew a long box with five columns, split the five columns into three 

rows, and added one more row at the bottom, as illustrated in Figure 29. 
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Figure 29. Linda's second attempt at modeling 4/3 of 5 during Activity 2 in Phase 2. 

I optimistically thought she viewed each row in Step 2 of Figure 29 as one-third of five, 

but realized I was wrong when she said, “I have five of something and I’m gonna make 

each one of the five, four-thirds.” She then redrew her model to explain to me that she 

was thinking of 4/3 of each of the five columns, one column at a time. I share her second 

explanation in Figure 30. 

 
Figure 30. Linda's representation of 4/3 of 5 during Activity 2 in Phase 2. 

The data revealed that Linda did not view each row as one-third of the whole collection 

of five, but rather she imaged one-third of one column repeated five times. This data 

helped me understand her initial statements at the start of this task. She was describing a 
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multiplier-switch, which circumvented the two-step scheme of contracting five by a 

factor of 1/3, followed by expanding the contracted amount by a factor of 4. I represent 

this multiplier-switch symbolically below. 

4
3 × 5 

=
4
3 ×

(1 + 1 + 1 + 1 + 1) 

=
4
3 +

4
3 +

4
3 +

4
3 +

4
3 

= 5 ×
4
3 

When Linda modeled 4/3 of the pink, she partitioned and iterated, but when she modeled 

4/3 of 5, she partitioned and iterated five times, instead of just once. I pointed this out to 

her and explained that I aimed for her to always think of 4/3 of whatever as the same two-

step process. I then asked her to describe 4/3 of x, and she emphasized first multiplying 

by four. I suggested that she should think about and describe the contraction first, 

followed by the expansion. When I asked her to model 4/3 of 18, she confidently 

calculated 1/3 of 18 to get 6, and then combined four copies of that to get 24. She 

generalized this process by saying she would first divide by the denominator and then 

multiply by the numerator. I asked her to describe this two-step process without using the 

word divide, and she said she would multiply by the reciprocal of the denominator 

instead. I then asked her to write down a symbolic representation of this two-step process, 

and I share her response in Figure 31. 
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Figure 31. Linda's first attempt to represent 4/3 of 5 during Activity 2 in Phase 2. 

In her symbolic expression, the ordering of her writing was left to right, to match the 

ordering of her thinking. However, this is problematic given the convention that the 

multiplier should be left of the multiplicand. Therefore, Linda and I discussed that we 

should always place the multiplier in the first position, thinking and saying partition then 

iterate, but writing it right to left so that the first numbers are always multipliers and 

using parentheses to dictate the ordering of the two operations. She then produced the 

symbolic statement that is in Figure 32. 

 
Figure 32. Linda's second attempt to represent 4/3 of 5 during Activity 2 in Phase 2. 

I then drew her attention back to her drawing of 4/3 times 5 (seen in Step 3 of Figure 29) 

and used this image to support 4×(1/3×5) instead of 5×(4/3), by explaining that each 

whole row represented 1/3×5. She admitted that she did not interpret her picture this way 

and that this was a new way of thinking for her. To summarize our time together on this 

activity, Linda and I discussed how to think about, speak about, and symbolically 

represent the two-step process of contraction followed by expansion, when modeling 

fractional multipliers. 

The data from Activity 2 revealed recurring cognitive obstacles for Linda, as well 

as some new ones. In Phase 1, Linda had recurring issues related to re-unitizing (in Tasks 

3, 9, 13, and 19), and she exhibited similar issues during this activity. She could represent 
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4/3 of the pink strip, but when I told her to also consider that the pink strip was 5 

centimeters long, she had difficulty coordinating the two levels of units. This was 

evidenced when she said the length of the new strip was 5 and 1/3 – she easily 

coordinated one whole pink strip and 5 centimeters, but she did not coordinate 1/3 of the 

pink strip and 1/3 of 5 centimeters. The teaching experiment also revealed some new 

cognitive obstacles regarding fractional multipliers. In Phase 1, during Task 6 (Explain 

your meanings for 5/3×2), Linda said she did not know how to think about 5/3 copies of 

2, and she could only represent 2 copies of 5/3. Thus, the data from Phase 1 did not reveal 

much about the challenges that fractional multipliers posed for her. However, when I 

encouraged her to try to model 4/3 of 5 during the teaching experiment, she exhibited a 

multiplier-switch. She also revealed difficulty with fractional multipliers when she was 

trying to model 1/3 of 5, as shown in Figure 30. She could only imagine 1/3 of one 

column at a time, and did not imagine the entire row as 1/3 of all five columns. These 

data suggest that she favored thinking of fractions as fractions of one, and her difficulties 

surfaced when she had to imagine fractions of values other than one. The data from 

Activity 2 also suggested that Linda’s reliance on the commutativity of numerical 

multiplication was a hindrance to developing meanings for fractional multipliers. When 

the multiplicand was a whole number, Linda deliberately tried to switch the roles of the 

multiplier and multiplicand, with little regard for the change in quantitative meaning. 

Linda was also comfortable placing the multipliers in either position, such as shown in 

Figure 31. She was not careful about the positioning of the multiplier in her symbolic 

statements, which is likely the effect of her reliance on numerical commutativity. 

Similarly, it was difficult for her to be consistent in her thinking, speech, and writing 
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regarding the contraction-expansion dual-scheme for fractional multipliers. These data 

suggest that Linda did not possess a consistent, quantitative (hence non-commutative) 

conceptualization of multiplication. 

Activity 3: Comparing the red and green strips. I presented Linda with the 

activity of comparing a red strip (7 inches long) and a green strip (4 inches long). This 

was an exact repeat of Task 3 in Phase 1, but this time I asked for each comparison 

separately. The first comparison was, “The green strip is how many times as long as the 

red strip?” She interpreted this incorrectly and produced an answer of the red strip in 

terms of the green strip. Like in Phase 1, she said that 1 and 3/4 green strips make the red 

strip, which she expressed as “7/4 times green gives red.” She interpreted this last 

expression as “7 copies of 1/4 of green gives the red,” and she used the strips as a 

manipulative to explain the contraction of the green strip, followed by expansion to 

produce the red strip. Also, while reading the task aloud, she said, “The green strip is how 

many times longer than the red strip,” which is not what was written. At this point, I did 

not yet intervene, and we proceeded to the second comparison, which was, “The red strip 

is how many times as long as the green strip?” While reading the task aloud, she again 

said “how many times longer than” instead of “how many times as long as.” Like the first 

question, she also interpreted this question backwards, as trying to scale the red strip to 

produce the green strip. She first wrote “(blank space) ∙ red = green,” and then stopped to 

ponder. We then had the following dialogue. 
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Excerpt 2 

1 

2 

3 

Linda: I can’t do the reciprocal 4/7 because that doesn't make sense (long 

pause). If red equaled seven-fourths of green (she writes red = 7/4 

green)…it has to be the inverse (said without conviction). 

4 MW: Why do you say it has to be? 

5 

6 

7 

8 

Linda: Because…(long silence, some dialogue omitted). So, I know the 

red is seven-fourths of green, and green is four-sevenths of red 

(said without confidence). Right? I can’t take the inverse (changes 

her mind again). 

9 MW: Can I ask you some questions? 

10 Linda: Yes, I’m stuck. 

I am not sure why she had an instinct to say that the green strip should be 4/7 of 

the red strip – perhaps she solved the equation she wrote for green by multiplying both 

sides by 4/7. I intervened and confirmed that seven copies of 1/4 of the green strip make 

the red strip. We then had the following dialogue. 

Excerpt 3 

1 

2 

MW: What do you have to do to the red, to get something this long 

(pointing at one-fourth of the green strip)? 

3 Linda: I have to divide it. 

4 MW: By what? 

5 Linda: By one-fourth. Or by four. 

6 

7 

MW: So, if you divide the red in four, you’ll get this long (pointing at 

one-fourth of the green)? 

8 Linda: No. 

9 

10 

MW: I think you were thinking of the green again, right? What you have 

to do to the green to get this long, is divide it by four. 

11 Linda: Yes. 
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12 

13 

MW: What do you have to do to the red to get this long (pointing at one-

fourth of the green)? 

14 Linda: I have seven copies of that, right? 

15 MW: Yes, there were seven of them that went across (the red). 

16 

17 

Linda: Seven of them go across. What do I have to do to the red to get 

that? I divide it. 

18 MW: By what? 

19 Linda: By seven. 

Next, I asked Linda to put her thinking on paper and she wrote “1/7 copies,” but 

couldn’t progress further. I then had the idea that we needed to have a word for the length 

that is 1/4 of green, so that Linda and I could talk about it more easily. I took a blue piece 

of paper and cropped it to the same size as one-fourth of the green. This gave us a third 

color – blue – that could serve as an intermediary for going from green to red and back 

again. We spent the rest of the time discussing going from green to blue to red, as a two-

step process which we represented symbolically, then going from red to blue to green, as 

a two-step process which we represented symbolically. I did this by having her write 

down the letter g and then operate on it using only multiplication to produce red. We then 

did the same, but starting with the letter r. I share her work in Figure 33. 

 
Figure 33. Linda's work during Activity 3 in Phase 2. 
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In both cases, Linda expressed the correct order of thinking – contraction then expansion 

– and the correct symbolic notation keeping the multipliers to the left. This marked the 

beginning of building a scheme for fractions as reciprocal measures of relative size. 

 Several challenges were revealed in the data above. Linda’s difficulties with re-

unitization were again apparent when she had trouble imagining one length as both 1/4 

and 1/7. When I introduced the blue strip, it became easier for us to describe this new 

length, and to focus on it independently of the colors red and green. This color-

disassociation freed Linda from only imagining this new length in terms of green. This is 

evidenced by the fact that prior to introducing the blue strip, when I asked Linda to 

describe how to transform the red into 1/4 of the green (as I was holding the green strip 

folded in fourths), she answered she needed to divide the red strip by four. She could only 

imagine the folded green paper in terms of the green paper. The data also revealed issues 

with Linda’s interpretation of mathematical language, in that she did not answer the 

questions with the appropriate comparisons. Also, she used vague speech when she 

mistakenly said “times longer than” while reading “times as long as.” The phrase she said 

is vague because an expression such as “2 times longer than 3 feet” could be interpreted 

as six feet, or it could be interpreted as 3 feet plus six feet. 

Session 2 of the Teaching Experiment 

I started this session by asking Linda to reflect on our last session. During her 

reflection, she did not specifically mention fractional multipliers or the strip activity. 

Thus, I chose to begin the second session with Activities 4, 3 (repeated), and 5, which 

focused on fractional multipliers and reverse comparisons. Linda also participated in an 

activity that introduced her to the two meanings for division. 
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Activity 4: Meanings for fractional multipliers. During Activity 4, I asked 

Linda to model 3/4 of b. She chose b = 2, said “three copies of one-fourth... two times,” 

and then modeled 2×3/4. This was a case of a multiplier-switch. I pointed out that she 

used the commutative property, and I asked her to make sense of 3/4 copies of 2. Despite 

our discussions during Session 1, she did not know what to do, so I introduced a context 

involving a bar of chocolate that weighed two pounds. I drew a rectangle and then we had 

the following dialogue. 

Excerpt 4 

1 

2 

MW: Can you pretend that this rectangle represents two pounds of 

chocolate? How would you find three-fourths of that? 

3 

4 

Linda: So, it would be three copies of one-fourth. I’d break it up into 

fourths (she divides the rectangle into four columns). 

5 MW: Okay, so one-fourth of what? 

6 Linda: Of two. 

7 MW: Okay, so how much is one-fourth of two pounds? 

8 

9 

10 

Linda: One-fourth of two pounds would be…half (no unit). So, the 

inverse. So, it’d be three copies of one-fourth times half? Half 

copies? I don’t know. 

11 MW: Could you tell me…(she cuts me off) 

12 

13 

14 

15 

Linda: Because this (pointing to two columns) would be one pound and 

then one-fourth (pointing to one column) would be a half a pound 

(writes 1/2 above each column). Or you can just cut it in two (she 

draws a horizontal line making two rows, as shown in Figure 34). 

16 MW: Okay, so three-fourths of two pounds is… 

17 Linda: Six-eighths. 

18 MW: Of what? 

19 Linda: No, it’d be…yeah, it’d be six-eighths. 
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20 

21 

22 

MW: Can you shade in three-fourths of two pounds? (Linda shades the 

first three columns). Could you tell me how many pounds that 

represents? 

23 

24 

Linda: Six-eighths pounds, or three-fourths pounds (said without 

confidence) …uh, no….a pound and a half (said with confidence)! 

25 MW: How did you get that? 

26 

27 

Linda: Half plus half plus half (tapping each 1/2 above the first three 

columns) 

 

 
Figure 34. Linda's first attempt at modeling 3/4 of 2 during Activity 4 in Phase 2. 

Linda was successful at re-unitizing in this instance. The data suggest that the 

context helped her to focus on pounds, which allowed her to recognize and correct her 

mistake. I then asked her to summarize the two-step process for scaling 2 pounds to 1 and 

1/2 pounds. She said she found one-fourth copies of 2, and she then described finding 

three copies of this amount. She then tried to summarize more concisely, but she errantly 

wrote, “3 copies of 1/4 of 1/2 copies of 2.” I was not sure why she wrote the extra 1/2 – 

perhaps due to her picture where she unnecessarily split the rectangle into two rows. I 

thought that I should walk her through her statement to help her realize that it would 

produce an unreasonable answer. I focused on the portion of her written statement 1/2 
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copies of 2 and I asked her for the result of 1/2 copy of 2, and she said 1/4. This startled 

me, so I decided to use units, anticipating she would realize the unreasonableness of her 

statement. To my bewilderment, she confirmed several times that you obtain 1/4 pound 

when you “do 1/2 copy of 2 pounds.” She seemed very convinced which led me to 

speculate that she was interpreting the prompt “what is 1/2 copies of 2 pounds?” as “what 

is the size of 1/2 copy of a pound relative to 2 pounds?” I phrased the question differently 

by asking, “What is 1/2 of 2 pounds?” This time, she responded with “one.” Returning to 

her incorrect statement (3 copies of 1/4 of 1/2 copies of 2), I began with the 2 pounds and 

then I asked her to follow the steps as indicated by her notation. She calculated 1/2 of 2 

pounds to get 1 pound. She then began to calculate 1/4 of one pound, at which point she 

said, “I would not get my answer.” I asked, “what answer,” and she said, “three copies of 

one-fourth.” I wondered to myself whether her fractions were in terms of chocolate bars 

or pounds. I pointed out that earlier she said the answer was 1 and 1/2 pounds. This 

perturbed her because she was now trying to show that the answer should be 3/4. The 

data suggest that her confusion was because she was conflating the halves and fourths, 

despite having a context to help her keep chocolate bars and pounds distinct. The data 

also reveal that she may never have been thinking about chocolate bars because she never 

explicitly referred to a bar. At this point, I emphasized to her that each time she said a 

fraction, the referent should be clear in her thinking and in her speech. We turned the 

page over and started again. The next segment of Linda’s work is illustrated in Figure 35. 
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Figure 35. Linda's second attempt at modeling 3/4 of 2 during Activity 4 in Phase 2. 

I drew a rectangle to represent a bar. Linda modeled three-fourths of it and wrote “3 

copies of 1/4 of a bar.” I told her the bar weighed 2 pounds. She became momentarily 

perturbed, not knowing how to rewrite the statement using the 2-pounds information. She 

eventually decided on writing, “3 copies of 1/4 of a 2-lb bar.” I suggested she should just 

focus on pounds and she edited her writing to say, “3 copies of 1/4 of 2 pounds.” She 

then calculated 1/4 of 2 pounds to get 1/2 pound.  

This activity revealed some of the challenges in trying to advance Linda’s 

thinking, speaking, and symbolic writing regarding fractional multipliers. Linda rarely 

mentioned units for the numbers she was saying and writing, which suggests that she was 

quantitatively disengaged from the scenario. She also did not mention bar as a unit, 

suggesting that she was only able to think about pounds, which is additional evidence of 
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her inability to maintain two levels of units simultaneously. This explains why she had 

trouble interpreting one column in her picture as both 1/2 (of a pound) and 1/4 (of a bar). 

The data also raised some concerns for me regarding Linda’s perception of the word 

copies, because when I kept asking her to find 1/2 copy of 2 pounds, she kept answering 

1/4 of a pound. However, when I omitted the word copy and asked her to find 1/2 of 2 

pounds, she answered 1 pound. This suggests that the word copy may not have a strong 

quantitative significance for her. 

Activity 3: Comparing the red and green strips (second occurrence). Linda 

repeated Activity 3, first with the question, “The green strip is how many times as long as 

the red strip?” She misread this as “how many times longer,” as she did during Session 1. 

I pointed this out right away and tried to explain why her phrasing was vague, but Linda 

moved on without really responding to what I was saying. She concluded, “7 copies of 

1/4 of the green strip make the red strip,” which is correct, but not the measurement 

implied by the question – she misread the task as she did during Session 1. Consequently, 

I shifted my focus to help her recognize that she was incorrectly answering the question. I 

asked her to translate the wording of the prompt into a mathematical statement. At first, 

she interpreted the word is as division, such as interpreting “a is 2” as a÷2. To move her 

in the right direction, I recommended that she consider the statement “2 plus 3 is 5,” and 

she decided is suggested an equality. This led her to correctly translate the prompt into 

the mathematical statement, g = ?×r. She then recognized that in her first attempt, she 

misread the task and had actually determined that 7/4×g = r. She then focused on 

determining the correct comparison, but at first, she did not know what to do. To help 

her, I drew a box that was the same length as one-fourth of the green strip and asked her 
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to describe its length. She answered in two ways by saying one-fourth of the green strip 

and one-seventh of the red strip. This led her to conclude that 4/7×r = g. We then 

discussed how it is possible to measure one fixed amount in different ways depending on 

the unit-of-measure, much like the fact that 2 feet is the same length as 24 inches. This 

second exposure to Activity 3 revealed that Linda struggled with translating a written 

expression into an appropriate symbolic expression, which suggests a deficiency in 

quantitative reasoning, either at the level of the written expression, or at the level of the 

symbolic expression, or both. 

Activity 5: Comparing the yellow and blue strips. To ascertain Linda’s 

progress regarding fractions as reciprocal measures of relative size, I gave her two new 

strips – a yellow strip that was nine inches long and a blue strip that was 2 inches long. 

She still said “longer” instead of “as long as” when she read the prompts, but this time 

she correctly aligned the questions and the comparisons. She explained and wrote both 

comparisons in sensible ways. At this point, the data suggested that she had developed a 

productive scheme for reversing a multiplicative comparison. Additionally, she was able 

to explain why the reciprocal fraction was sensible to her. However, I wondered if her 

newly developed dual-scheme of forward and reverse comparisons was permanent, 

adaptable to situations that did not involve strips, and reciprocal in nature. 

Activity 6: Meanings for division. I designed the tasks in this activity to form a 

baseline of Linda’s thinking that we could revisit later in the teaching experiment. As 

such, I did not intervene during this first attempt at this activity. I asked her to describe 

her meanings for a÷4 and she said, “How many copies of four can I pull out of a?” I then 

asked for another meaning, but she could not think of one, which did not surprise me 
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because of what she could and could not do in Phase 1. I then asked her to describe her 

meanings for a÷1/4 and she said, “How many one-fourth copies can I pull out of a?” I 

drew her attention to the location of the word copies, and she rephrased her question as, 

“How many copies of one-fourth can I pull out of a?” I asked for another meaning, and 

not surprisingly, she could not give one. The results here were identical to the results of 

the analogous tasks from Phase 1. At this point, I moved on to the next activity, planning 

to return to this activity after Linda had formulated a partitive meaning for division. 

Activity 7: Quotitive and partitive water-container tasks. I designed two tasks 

(Task A and Task B) in Activity 7 to introduce Linda to the two conceptualizations for 

division. I first showed her Task A, “How much water is in one container when 20 

gallons fill 4 identical containers?” She said, “I want to find how many 20 gallons would 

fill just one.” Her language was odd, but her modeling revealed that she interpreted the 

task as I intended. She distributed the 20 gallons, one gallon at a time to one container at 

a time, and concluded that 5 gallons would fill one container. She also mentioned that she 

could calculate 20÷4. Her work is in Figure 36. 

 
Figure 36. Linda's work on a partitive model for 20÷4 during Activity 7 in Phase 2. 
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I then showed Linda Task B, “How many containers are needed to hold 20 gallons of 

water if each container can hold 4 gallons?” She immediately calculated 20÷4 and gave 

an answer of 5 containers. She modeled this by drawing five rectangles, each split in four 

rows, as depicted in Figure 37. 

 
Figure 37. Linda's work on a quotitive model for 20÷4 during Activity 7 in Phase 2. 

When I placed her work side-by-side, she acknowledged the following three 

things: (1) 20÷4 answered each question, (2) the fives had different meanings, and (3) her 

visual representations were different. I then hid her work from view and asked her to 

describe the meaning for 20÷4, and she said, “How many groups of four can I pull out of 

20?” I then placed her work back in view and asked her to identify the task that 

corresponded to this question, and she correctly identified Task B. We then had the 

following dialogue. 

Excerpt 5 

1 

2 

3 

MW: So, what question does this division answer (pointing to Task A)? 

It’s not the same right? This picture (Task A) doesn’t seem to be 

showing how many fours are in 20. What is it showing instead? 
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4 

5 

6 

Linda: It does show four into 20 because I have four containers...four 

containers of...would fill 20 gallons. But, this (Task B) shows that I 

have four gallons in each container. 

7 

8 

9 

10 

11 

12 

MW: When you did it this way (Task B) and you focused on gallons only 

and you pulled them off in groups of four…When you thought how 

many fours can I pull away from 20, the four and the 20 had to 

have the same unit in that case. Because you can’t pull a different 

thing away from something. I can’t pull bricks away from feathers. 

I have to pull feathers away from feathers. 

13 Linda: Right. 

The oddness of Linda’s phrasing aside, her language suggests that she thought her 

quotitive question was general enough to be interpreted partitively. I asked her to produce 

units for the 20 and 4 in each task. For Task B she correctly indicated gallons and 

gallons, and for Task A she correctly indicated gallons and containers. I then suggested 

that her typical division question – which is quotitive – felt inappropriate for Task A, 

because “it feels weird to pull containers away from gallons.” She then tried to phrase an 

appropriate question for Task A.  

Excerpt 6 

1 

2 

Linda: Out of 20 gallons, how much would four containers fill in the 

gallons? But, then I’m just restating that. 

3 

4 

5 

6 

MW: Back before we had gallons and containers, you said, “How many 

copies of four can I pull out of 20?” Could you talk about the 

meaning of 20 divided by four using the word copies that seems 

more suitable for this situation (Task A). 

7 Linda: How many copies of…How many…(trails off) 

8 

9 

MW: Okay, that’s fine. Right now I’m exploring where the boundaries 

are. This gives me the focus of our next activity. 
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Next, I showed Linda the expression, 𝑎 × 𝑏 = 𝑐, and asked her to give a general 

description of the factors and the product. She said, “a is the number of copies, b is what 

you are copying, and c is the number of copies you are copying.” I suggested that her 

meaning for c sounded like her meaning for a. She adjusted and said, “c is the total 

number of copies you are copying…the total number of groups you are copying.” Her 

difficulty in giving a general description of the product indicated a weak quantitative 

foundation for multiplication. It is significant to notice that she did not give a general 

quantitative description for b either, hence her difficulty to do so for c. I asked her to 

consider her values in Task A, and to place the 20, 4, and 5 in the correct positions of the 

multiplicative structure 𝑎 × 𝑏 = 𝑐. Her work is in Figure 38. 

 
Figure 38. Linda's attempt to create a partitive structure during Activity 7 in Phase 2. 

Linda placed the values in the correct positions, although she expressed 5 in terms of 

gallons, and so I guided her to add per container. She also put a box around the 5 to 



 

186 
 

suggest that this was the unknown factor for the task. We then had the following 

dialogue. 

Excerpt 7 

1 

2 

MW: So, with this example in place, can you think of a general way to 

describe c? (long pause) 

3 Linda: How many copies of what you are copying. 

4 

5 

6 

MW: So, c is the number of copies of what you are copying? I thought 

that’s what a was. Isn’t a the number of copies of what you are 

copying? 

7 

8 

Linda: No, that’s (pointing to a) the number of copies…multiply what you 

are copying gives you the total…amount…of copies (laughs). No. 

9 MW: So, the 20 is the total amount of containers? 

10 Linda: No. 

11 MW: What is the 20? 

12 Linda: Gallons. 

13 MW: It’s the total amount of what? 

14 Linda: Of gallons per container. 

15 

16 

17 

MW: 20 doesn’t tell me anything about how many containers there are. 

So, we need a way to describe c without saying it’s the number of 

copies. 

18 Linda: Okay. (pauses) 

19 

20 

MW: Forget the general one (I cover the expression 𝑎 × 𝑏 = 𝑐). How 

would you describe the 20 gallons? 

21 Linda: 20 gallons …uh… in four containers. 

22 MW: I like that, so 20 gallons is the amount in the four containers total. 

23 

24 

Linda: Okay, so c would be the total amount of a…in a. The total amount 

in a. 

25 MW: I think we’re definitely closer. I see where you are going with it. 
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26 

27 

Linda: So, because 20 gallons is the total amount in four containers, so c 

would be the total amount in a. 

28 

29 

MW: Right. Okay, I’m with you on that. You agree though, it’s hard to 

talk about when you don’t have a context in which to discuss it. 

This dialogue revealed that Linda had a weak general meaning for multiplication. 

Or at the very least, she lacked the language to describe a general meaning. When she 

said initially that “c is the number of copies you are copying,” I realized that, for her, the 

word copies was not necessarily a generalization of containers, else I could restate her 

description as “c is the number of containers you are copying,” which would suggest that 

c was measured in containers, contradicting that c was measured in gallons. At the onset 

of this activity, I hypothesized that Linda would realize that containers was a concrete 

representation for the word copies. However, the data suggest that this was not the case. I 

then asked Linda to place the 20, 4, and 5 in the correct positions of the general 

multiplicative structure for Task B. She placed the numbers in the correct positions, 

indicated the correct units, and placed a box around the factor that was previously 

unknown. I share her work in Figure 39. 

 
Figure 39. Linda's attempt to create a quotitive structure during Activity 7 in Phase 2. 

I finished this session by pointing out to Linda that in Task B, we were trying to find the 

multiplier, which is the number of copies, and in Task A, we were trying to find the 
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multiplicand, which is the amount per copy. I reminded Linda that her dominant meaning 

for division was the meaning corresponding to Task B, and that I was planning on 

spending the next two sessions of the teaching experiment discussing the meaning for 

division corresponding to Task A. 

The data from this activity suggested that Linda had a weak quantitative meaning 

for multiplication. This was evidenced by her difficulty in describing the quantitative 

significance of the product, both generally and in the case where the product was 20 

gallons. Furthermore, Linda did not reveal evidence that she was bothered by the 

contradiction caused when she said, “c is the number of copies you are copying,” while 

she had written on paper that c represented 20 gallons of water. This suggests that Linda 

was either not connecting copies with containers, or that she was not keeping containers 

distinct from amount of water. This activity also revealed instances of odd language such 

as, “I want to find how many 20 gallons would fill just one (container)” and “I have four 

containers...four containers of...would fill 20 gallons.” These utterances suggest that 

Linda was not engaged in quantitative reasoning, or at the very least that she was not 

attentive to using meaningful phrases to convey her thoughts. 

Session 3 of the Teaching Experiment 

During this session of the teaching experiment, Linda and I reviewed fractional 

multipliers, reciprocal comparisons, and meanings for division. We then had time to 

discuss some water-container tasks. 

Activity 4: Meanings for fractional multipliers (second occurrence). I asked 

Linda to describe the meaning of a×b and she said, “b copies of a,” which is backwards 

of what he had been practicing. I told her to reverse it so that a is the number of copies. I 
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reminded her that even though multiplication is numerically commutative, I did not 

consider it conceptually commutative, and we reviewed the meanings of the terms, 

multiplier and multiplicand. I asked Linda to describe her meanings for m/n×b and she 

said, “this (pointing at the fraction) number of copies of b.” I asked, “what does a fraction 

number of copies mean,” and she paused. Eventually she said that it is m copies of b and 

then divided by n. I told her that what she said is valid but that I wanted her to focus on 

the reverse order, so she said to divide by n then multiply by m. This time, she wrote it 

correctly by writing 𝑚 ∙ ;<
X
× 𝑏=, with the multipliers on the left and the parentheses to 

indicate the order of operations. I reemphasized the notion of contraction followed by 

expansion, which we practiced by calculating 5/3×12 and 5/3×10. The data from this 

activity revealed that Linda demonstrated meanings that contradicted our earlier 

discussions regarding the position and meaning of a multiplier, and the ordering of 

contraction then expansion. This raises the question as to what is required to effectively 

and permanently alter a person’s web of schemes. 

Activity 3: Comparing the red and green strips (third occurrence). I repeated 

Activity 3, but this time I phrased the tasks differently. I first asked, “What do you 

multiply the red strip by to get the green strip?” In response, she wrote 𝑟 ∙ 𝑥 = 𝑔, 

presumably due to the wording of the task. I told her we should reverse the multiplier and 

multiplicand because we were trying to find “how many copies of red make green” and 

she said, “yes, you are right,” and wrote L
?
∙ 𝑟 = 𝑔. Later in the activity, I used one-fourth 

of the green strip to trace a marking on the paper and asked Linda to describe its length. 

She said only, “one-fourth” but without a saying a unit. She did not give me a 
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measurement in terms of the red strip. I wondered if this was because she watched me use 

the green strip to make the marking. I further wondered if I had instead taken the red 

strip, folded it down to one-seventh, and used that to trace the marking, whether Linda 

would have said “one-seventh.” Regardless, I asked her to describe the length of the 

marking, but in a second way. She held the red strip next to the marking, hesitated, pulled 

it away, opened the green paper, and said, “it has to be based on just this one (the green 

paper).” This suggests that Linda felt that the length of the marking could only be 

represented in terms of one strip, which unsettled me because she did not reveal this 

concern during this activity in the previous sessions of the teaching experiment. But I 

insisted that she measure the length of the marking using the red strip and she said “one-

seventh.” I reemphasized that the length could be either value depending on the unit-of-

measure. The data from this activity is interesting because it raises again the question as 

to what is required to effectively and permanently alter a person’s web of schemes. 

Despite extensive discussions between us, Linda still placed the multiplier in the wrong 

position. Also, even though this was the third time through this activity, Linda still 

hesitated to imagine the contracted length as both 1/4 and 1/7. 

Activity 7: Quotitive and partitive water-container tasks (second 

occurrence). Returning to Activity 7, I showed Linda her own work for Tasks A and B at 

the same time (Figure 36 through Figure 39), and asked her reflect on what she saw. She 

acknowledged that she could use numerical division to find either a missing multiplier or 

a missing multiplicand. Furthermore, she acknowledged that in each case she calculated 

20÷4, but the two fives had different meanings. She expressed that this made sense to 
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her, so I returned to the tasks from Activity 6 to determine the extent to which her 

schemes for division had undergone accommodation. 

Activity 6: Meanings for division (second occurrence). Now that Linda had 

formulated two meanings for division during Activity 7, I returned to Activity 6 by first 

asking her to describe her meanings for x÷y. She responded, “how many copies of y 

make x,” which was slightly different from the pulling out of language she had been using 

regularly. When I asked her for a second meaning, she said, “how many copies of x make 

y.” I retorted by saying that 20÷4 “does not mean the number of copies of 20 that make 

four.” She acknowledged this and then said, “y copies of x?” Her tone suggested that this 

was a complete question, so I pointed out that this was not a coherent question. She tried 

again by saying, “how many copies of x...,” and then she stalled. We returned to her work 

from Tasks A and B in Activity 7 and I asked her to identify which task was better 

aligned with the quotitive question she was asking. After she correctly identified Task B, 

I asked her to construct a general question that aligned with Task A. She thought for a 

moment and then said, “y copies of what make x?”  

Now that Linda had formulated two questions for the two meanings of division, I 

asked her to describe her meanings for a÷4 and she said, “how many copies of 4 make a” 

and “4 copies of what make a.” She indicated the questions were reasonable. I then asked 

her to describe her meanings for a÷1/4 and she said, “how many copies of 1/4 make a” 

and “1/4 copies of what make a,” and said both questions were also reasonable. To 

determine what these last two questions meant to her, I asked her to model 3÷1/4 both 

ways. She had no trouble with the quotitive representation. She drew three rectangles, 

partitioned each into four parts, then counted 12 total parts. For the partitive question, she 
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said right away, “I don't know how to draw a picture of that though,” but she tried 

anyway. I share her work for both models in Figure 40. 

 
Figure 40. Linda's quotitive (A) and partitive (B) models during Activity 6 in Phase 2. 

While looking at the images and questions depicted above, Linda and I had the following 

dialogue. 

Excerpt 8 

1 

2 

3 

Linda: So, I have one-fourth…I made 12 copies of one-fourth to make 

three. So, (referring to question B) one-fourth (points at 1/4) copies 

of 12 (points at what) make three (points at 3). 

4 MW: So, this picture (picture B) helps me with which question? 

5 Linda: This one (points to question B). 

6 MW: Why? 

7 

8 

9 

Linda: Because I made one-fourth (points to one piece of a rectangle in 

picture B) copies of something, and I had to make three. (pauses) 

Am I still saying it backwards? 
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10 

11 

12 

13 

MW: Where is the one whole in this picture (picture B)? (Linda circles 

the four pieces of the left rectangle). Where is the three? (she 

circles the other two rectangles, one at a time) So far, we’re going 

down the same route as this one (pointing at picture A). 

14 Linda: Yeah, so I made, I drew them separate (light chuckle). 

15 MW: Where is the 12 (referring to picture B)? 

16 Linda: Each one of these (she taps each of the 12 pieces in picture B). 

17 

18 

MW: Where is the one-fourth? (Linda circles one piece in picture B). So, 

the 12 is answering which question, with this picture (B)? 

19 

20 

Linda: It’s not answering this one (points to question B)? It’s answering 

that one again (points to question A). 

21 MW: Why? 

22 

23 

Linda: Well, I think it’s answering this one (switches back to question B) 

because I drew one-fourth copies of something (I cut her off) 

24 

25 

MW: Where’s the something in this picture (B)? Where’s the x in this 

picture (B)? 

26 

27 

Linda: Each one of these (puts an x in each of the four pieces of the left 

rectangle in picture B). 

28 

29 

30 

31 

MW: So, you’re saying (pointing to the start of question B) that if I do 

one-fourth of that (pointing to one piece of a rectangle), then I’ll 

get three? (pause) It sounds more like if I do 12 x’s then I’ll get 

three. 

32 Linda: Right. Okay, then I don’t know how to draw a picture of that. 

The data is not conclusive about what was causing Linda’s trouble. One 

possibility is that the plurality of the word copies may have been the source of the 

confusion. Since the word is plural, perhaps Linda was trying to imagine many of them. I 

wonder what she might have done if I had phrased the partitive question, “1/4 copy of 

what is 3?” The data from Activity 4 suggest that Linda did not have a strong quantitative 
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meaning for the word copy, making me wonder what she might have done if I had 

removed the word copy and simply asked, “1/4 of what is 3?” Her trouble during this 

activity could also be rooted in a lack of re-unitizing due to quotitive-modeling 

interference. With her quotitive model, the 1/4 and the 3 each refer to the same unit. But 

to produce a partitive model, she would have needed to re-unitize and imagine a new unit 

for the 1/4. It is difficult to say anything conclusively, but the overall data from the study 

revealed Linda’s endemic weakness with re-unitizing and with fractional multipliers, 

which suggest that re-unitizing was the primary source of her difficulty with this activity. 

Linda tried a few more times to produce a partitive model but each attempt led to 

a quotitive model. I decided to take a different approach by asking her to model 1/4×20. 

She exhibited a multiplier-switch and modeled 20 copies of 1/4. To help her make 

progress, I suggested that she describe doing 1/4 of anything, like a pizza, and she said 

she would break the pizza up into four groups. I asked her how many pepperonis would 

be in each group if the pizza had 20 pepperonis. In response, she drew 20 circles in four 

rows of 5 to illustrate that 20÷4 is 5. We discussed how this new drawing was not the 

same as her drawing of 20 copies of 1/4. Once we had arrived at 1/4×20 = 5, I asked her 

how she would “reverse-engineer” this process if she was given 1/4×? = 5. She drew a 

box, split it in four pieces, put five circles in one piece, then copied this for each piece, 

making 20 circles in total, which is depicted in Figure 41. 
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Figure 41. Linda's work modeling “1/4 of what is 5” during Activity 6 in Phase 2. 

I suggested to Linda that this process is the way I was aiming to have her model a 

partitive meaning for division. We discussed the following four steps: (1) draw a box to 

represent the unknown value of the multiplicand, (2) operate on it according to the value 

of the multiplier, (3) populate the result of the operation with the value of the dividend, 

and (4) determine the original unknown amount. We returned to the task of modeling 1/4 

copies of what make 3, which she did correctly, in the same way she solved the pepperoni 

task.  

 This activity resurfaced several cognitive difficulties for Linda. She again 

exhibited a multiplier-switch when modeling 1/4×20. Also, there was further evidence 

that Linda had a weak quantitative meaning for the word copies. Furthermore, Linda 

again demonstrated an inability to re-unitize in that she could not imagine a unit for the 

1/4 other than the same unit she was imagining for the 3, which may have been caused by 

quotitive-modeling interference. This caused her to be unsuccessful at producing a 
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partitive model for 3÷1/4. The kind of re-unitization needed to produce a valid partitive 

model for this task required Linda to construct in her imagination an abstract unit. This is 

certainly more cognitively demanding than coordinating multiple levels of units in 

contexts where the two quantities are more concrete. For example, consider a context 

where the relevant units are one gallon of water and one container, or a context where the 

units are a green strip and a red strip. In such contexts, the units are easier to imagine and 

easier to keep distinct in one’s thinking. In such contexts, the primary issue is 

maintaining two levels of units, not necessarily creating them. However, producing a 

partitive model for the decontextualized statement 3÷1/4 required Linda to create two 

levels of units in her thinking. Linda had already demonstrated weaknesses in 

maintaining two levels of units in contexts where the units were more concrete. Thus, it is 

not surprising that she struggled in cases that required her to conjure and then coordinate 

two levels of abstract units. 

Activity 8: Unknown amount of water fills 5 containers. I asked Linda to 

describe how much water would fill a whole container, if some amount of water filled 5 

containers. She drew five rectangles and wrote 𝑥 ÷ 5 =? We then had the following 

dialogue. 

Excerpt 9 

1 MW: Which flavor of division is this? 

2 Linda: (Long pause) It would be the how many copies of x make 5. 

3 

4 

5 

MW: That would be if I had five divided by x. Remember, division, you 

want to read it this way (pointing right-to-left) so you gotta use the 

five before you use the x. 
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6 

7 

Linda: Right, so…it would be 5 copies of what make x (she also writes this 

expression). 

8 

9 

MW: What was the other option for describing this division (pointing at 

𝑥 ÷ 5)? 

10 Linda: How many copies of 5 make x. 

11 MW: Why does that feel like an inappropriate question for this situation? 

12 Linda: Because that’s not how it’s written. 

13 MW: How what’s written? 

14 

15 

Linda: How many copies of x make 5 (she also writes this expression). 

Right? 

16 

17 

MW: Okay, what’s wrong with this question (referring to her last 

expression). 

18 

19 

Linda: Because it doesn’t match. It should be how many copies of 5 make 

x. 

20 

21 

MW: Okay, right, so that question (how many copies of 5 make x) is 

different than this question (5 copies of what make x). 

22 Linda: Yes. 

23 

24 

MW: Why is this question (how many copies of 5 make x), it’s still a 

good question, but why is it inappropriate for this scenario? 

25 

26 

Linda: Because I’m not dividing up the five. I’m dividing up the x. 

Because that’s the given amount. 

27 

28 

29 

30 

31 

32 

33 

34 

MW: I think you’re answering, “why is the x first and the five second?” 

(pointing at 𝑥 ÷ 5). And I agree with that. The x should be first and 

the five should be second. But even when the x is first and the five 

is second, there are still two ways to think about division. It’s either 

5 copies of what make x, or how many copies of 5 make x. Those 

are both valid ways to think about this division (pointing at 𝑥 ÷ 5). 

But given the context now, only one of those questions seems 

relevant. 
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35 

36 

37 

Linda: It’s this one (5 copies of what make x)! Because it’s five copies of 

what makes x. So, I want to know how many copies of this 

(pointing at the what) will make x. 

38 

39 

MW: You know how many copies. You want to know how much is being 

copied. 

40 Linda: Right, how much is being copied. Yes. 

I then asked Linda to produce units for the 5 and x in the quotitive question and 

she wrote, “How many copies of 5 containers make x water?” I suggested that this 

question “feels weird, because how do you copy containers and get water out of it? It’s 

like turning straw into gold. But it does make sense to copy water and get water.” I took 

this opportunity to discuss that for a multiplicative statement, the multiplicand and 

product should be referring to the same thing. I said, “You copy apples to get apples, 

children to get children, and water to get water.” I then asked her for another operation 

that would answer the question and she wrote <
M
∙ 𝑥 =? We discussed that since 𝑥 ÷ 5 and 

<
M
∙ 𝑥 both answer the same question, then they must be the same amount, and she 

suggested this was the invert-and-multiply algorithm. 

This activity revealed some cognitive obstacles that I did not anticipate. Linda 

was conflating my questions regarding two meanings for division, with questions 

regarding commutativity of division. When I was trying to get her to think about the two 

meanings for division (5 copies of what make x and how many copies of 5 make x), she 

thought that I was referring to how many copies of 5 make x and how many copies of x 

make 5. However, Linda did recognize and explain why x÷5 was more appropriate than 

5÷x when she said, “I’m not dividing up the five. I’m dividing up the x.” The data 

revealed another cognitive obstacle when Linda tried to give a general description of the 
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missing multiplicand by saying, “I want to know how many copies of this (referring to 

the missing multiplicand) will make x.” This was a flawed way to describe the task, 

because she did know how many copies were involved – there were five copies. Her poor 

language suggests a weak quantitative conceptualization for division, which is not 

surprising given how she struggled so much during Activity 7 to give a general 

quantitative description of multiplication. 

Activity 9: Unknown amount of water fills 7/4 containers. For this activity, I 

used actual containers as manipulatives. I gave Linda two cylindrical containers with blue 

rims, one was labeled whole, and the other was 3/4 as large as the whole container. I gave 

her a third container with a white rim that was 1/4 as large as the whole container. I 

depict an image of the three containers in Figure 42. 

 
Figure 42. The three containers that we used during Activity 9 in Phase 2. 

The containers depicted above are labeled A, B, and C in the image so that I may refer to 

them in the discussion below. The actual containers that Linda used were not labeled A, 

B, and C. Linda determined that the blue-rimmed containers (A and B) represented 1 and 

3/4 containers, or seven quarter-containers. She wrote 7 copies of 1/4, and then we had 

the following dialogue. 
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Excerpt 10 

1 MW: One-fourth of what? 

2 Linda: One-fourth of the small container (C). 

3 MW: So, this (C) is one-fourth of itself? 

4 

5 

Linda: No, so this together (A and B) is seven copies of one-

fourth…(trails off) 

6 MW: And the one-fourth is referring to what? 

7 Linda: The whole, both containers (A and B). 

8 MW: So, this (C) is one-fourth of all of this (A and B)? 

9 Linda: Yes. 

10 

11 

MW: If I put them together (I stack A and B), this (C) is one-fourth of all 

of that (A and B)? 

12 Linda: Yeah. 

13 

14 

MW: (I place C next to the vertical stack of A and B) Copy that (C) four 

times. 

15 Linda: One, two, oh, seven times. (chuckles) 

16 MW: What fraction is this (C) of all of this (A and B)? 

17 Linda: Um, one-seventh. 

18 MW: Okay, so, one-fourth of what? 

19 Linda: Seven copies of one-fourth of…of this (grabs C)! 

20 MW: So, this (C) is one-fourth of itself? 

21 Linda: No, it should be one-fourth copies of seven (writes 1/4 copies of 7). 

22 MW: So, you take seven and you divide it by four? 

23 

24 

25 

Linda: Because I have one-fourth of these (C), it should be make seven, 

not of seven. (pause) One-fourth of these (C) make seven (said with 

confidence). 

26 

27 

MW: One-fourth of this (C)? If I do one-fourth of this (C), it’s going to 

get smaller. Right? If I break this (C) into four pieces… 

28 Linda: I need seven copies of this (C). 
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29 

30 

31 

32 

MW: Okay, I like that first sentence (7 copies of 1/4). I’m not sure I like 

that second sentence (1/4 copies of 7). (Linda crosses out 1/4 copies 

of 7). We’re still hung up on one-fourth of what? This (C) is one-

fourth relative to what? 

33 Linda: A whole, of this (stacks A and B). 

34 

35 

MW: And when you say a whole, do you mean the whole collective of 

the two containers put together? 

36 Linda: Yes. 

37 

38 

MW: So, in other words, if I copy this (C) four times (moving C up the 

stack, one iteration at a time), I’ll get all of it (A and B)? 

39 Linda: Yes, well no. Seven of these (C) equal that (A and B). 

40 

41 

MW: Okay, so why then are you calling this (C) one-fourth? This (C) is 

one-fourth of what? 

42 Linda: Of this one (A). 

43 MW: Not the combined? 

44 Linda: No, not the combined. 

45 MW: So, what word can you put after that (pointing to 7 copies of 1/4)? 

46 Linda: (after a long pause, she writes 7 copies of 1/4(1 container)) 

This dialogue reveals Linda’s difficulty with not just re-unitizing, but with 

unitizing. She was fixated on the value 1/4 but she could not establish its unit-of-measure. 

It was very intriguing that she suggested many times that container C was 1/4 of itself. 

And when I did not seem satisfied, she almost appeared to be guessing until she could 

read my body language for approval. Her next erroneous suggestion was that container C 

was 1/4 of containers A and B combined. After she had finally settled on “1/4 of one 

container,” I suggested that she more clearly write “1/4 of one whole container.” We then 

discussed that the quarter-container could be measured in three different ways – 1/4 of 

the whole container, 1/3 of the partial container, or 1/7 of both containers – and I related 
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this idea to the red and green strips. This again reveals Linda’s weaknesses with re-

unitizing, but it also reveals a more fundamental void in her quantitative reasoning. It was 

not until I suggested to her that she iterate to verify her claims, that she recognized her 

fallacious units. Why did this manner of verification not occur to her? In other words, 

why did Linda not simply iterate container C four times to determine which container 

was the unit-of-measure? The data does not support an answer to this question, which 

could be the focus of future research. We then returned to the task at hand, and we had 

the following conversation. 

Excerpt 11 

1 

2 

3 

MW: If you know how much water is in both of these combined (A and 

B vertically stacked), how could you figure out how much water is 

just in this one (A)? 

4 

5 

Linda: Well combined is seven-fourths,…times…well to find the water in 

just this one (A), it would be times one-fourth (writes 7/4×1/4). 

6 MW: That’s seven-fourths what? 

7 

8 

9 

Linda: Seven-fourths of the whole container (A), uh, of the containers 

combined (A and B, writes containers combined after 7/4). Because 

it’s seven-fourths of the water, of the given amount of water. 

10 MW: What is seven-fourths of the given amount of water? 

11 

12 

Linda: That’s how much, if you break it into fourths, how many copies of 

one-fourth there are. 

13 

14 

15 

MW: So, (I stack A and B) the given amount of water fills all of this 

right? What do you have to do to all of this (A and B) to make it 

just this (removes B, leaving just A)? 

16 Linda: I have to (puts B back on top of A) take this part off (removes B 

again). 
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17 

18 

19 

MW: That’s one way to do it, but let’s think of contract and expand. How 

do I contract all of this (A and B vertically stacked) down to this 

amount (C)? 

20 Linda: I divide by seven. 

21 MW: How do I expand it back up to that amount (A only)? 

22 Linda: Times it by…four. 

One of my objectives with this activity was to help Linda determine the statement 

of division that would answer the task. She looked at her work for Activity 8 (some 

amount of water fills 5 containers), and said, “I don't know how much water (writing x) 

and I'm gonna divide it by seven-fourths of the containers...to equal...” She did not finish 

this statement, although she wrote 𝑥 ÷ ?
L
=? It is noteworthy how she described the 

number of containers – she said, “seven-fourths of the containers (plural).” Her words 

make it sound like she is describing seven-fourths of seven-fourths of a container. This is 

yet another example of unclear language that beset her communication. 

Session 4 of the Teaching Experiment 

For the last session of the teaching experiment, I aimed to review reciprocal 

comparisons and meanings for division as discussed in the preceding sessions. Then I 

concluded with water-container tasks with fractional numbers of containers. 

Activity 3: Comparing the red and green strips (fourth occurrence). This was 

the fourth time that Linda compared the red and green strips. She was successful at 

making both comparisons, but not with cognitive ease. Thus, at this point I characterized 

her comparison scheme as reversible but not at an abstracted level. 
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Activity 7: Quotitive and partitive water-container tasks (third occurrence). 

This was the third time I gave Linda Activity 7 to reflect on. I asked her to describe two 

meanings for the expression 20÷4 and she quickly said, “How many groups of four can I 

pull from 20?” She then said, “The other way...would be...I can pull...blank number of 

copies...from 20?” To guide her, I put in her view her work from her first exposure to 

Activity 7 (Figure 36 through Figure 39). While looking at her previous work she said, 

“Out of 20 copies, how many groups of 4 can I make?” but she recognized that she just 

reworded her first question. She tried again saying, “4 copies of how many containers 

equal 20 gallons?”, then she settled on the question, “4 containers of how many gallons 

can make 20 gallons?” These utterances revealed Linda’s lingering issues related to units 

and what is sensible in a quantitative multiplication statement. To determine her level of 

attention to quantities, I asked her to identify – pointing at 𝑎 × 𝑏 = 𝑐 – which two 

components should be referencing the same unit. She said, “the number of copies 

(pointing at a)” and “what the answer is (pointing at c).” This again revealed a 

misconception regarding the quantitative structure of multiplication that we had been 

discussing extensively. She sensed that I disapproved, or perhaps she sensed her own 

error, and expressed frustration by saying, “I started breaking through last time. Why 

can’t it come back?” We worked together and she eventually settled again on the two 

questions, how many copies of 4 make 20? and 4 copies of what amount make 20? The 

data from this activity again reveal Linda’s weakness with quantitative multiplicative 

structures, which necessarily impairs her meanings for division. The data also reaffirm 

the difficulty in trying to build permanent mathematical meanings. 
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Activity 10: Unknown amount of water fills 2 and 2/3 containers. For this 

activity, Linda used a to represent the water in all the containers, and b to represent the 

water in “each one.” Her phrasing made me suspect that she was not imagining different 

amounts in the three containers, which she confirmed. Thus, she was not imagining the 

containers being full, despite the language in the prompt. I suggested that there was 

enough water to fill the whole containers, but only enough water to partially fill the third 

container. This was a revelation to her and she said things “make more sense now.” She 

was then able to resolve the task arriving at 3/8×a = b. The data from this activity 

confirmed that despite my careful phrasing of the water-container tasks, there was no 

guarantee that readers of the task would imagine what I intended them to imagine. For 

Linda, this presented a minor, and easily correctable, cognitive barrier. The data for 

Activities 11 and 12 did not reveal any additional cognitive barriers so I conclude this 

section of the chapter and summarize my findings for Phase 2 in the next section. 

Summary of Phase 2 Findings 

To answer RQ1.6, I focused on identifying additional cognitive obstacles that 

Linda exhibited during the teaching experiment. In this section I briefly summarize some 

of the challenges from the teaching experiment that she also exhibited during Phase 1, 

followed by summaries of the new cognitive barriers. 

Cognitive Obstacles that Linda Revealed in Phases 1 and 2 

During the teaching experiment, Linda exhibited several cognitive obstacles that 

she had also revealed during Phase 1. In Activity 1 of the teaching experiment, her focus 

on a mixed number led her to lose sight of the task’s objective, and she misinterpreted the 
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task as draw 2 and 1/3 pink strips, instead of as draw one strip that is 2 and 1/3 times as 

long. Additionally, she again revealed challenges related to re-unitization, as evidenced in 

Activity 2 where she was trying to find 4/3 of 5 centimeters and she claimed that the new 

length was 5 and 1/3. She successfully coordinated one whole pink strip with 5 

centimeters, but she did not coordinate 1/3 of the pink strip with 1/3 of 5 centimeters. 

Also, during the first three exposures to Activity 3 (comparing the red and green strips), 

Linda had trouble imagining the contracted length as both 1/4 and 1/7 because she could 

initially only imagine the contracted length in terms of the green strip. And lastly, during 

Activity 4 Linda could not coordinate the quantities, bars of chocolate and weight of 

chocolate, which explained why she had trouble simultaneously imagining both 1/2 of a 

pound and 1/4 of a bar. 

Additional Cognitive Obstacles Revealed in Phase 2 

The data from the teaching experiment allowed me to expound on some of 

Linda’s difficulties from Phase 1 and to identify new cognitive barriers. I summarize 

these findings in the paragraphs below. 

Fractional multipliers. In Phase 1, Linda did not know how to think about 5/3 

copies of 2, which did not provide much data regarding her meanings for fractional 

multipliers. However, in Phase 2, when she tried to model 4/3 of 5 during Activity 2, she 

exhibited a multiplier-switch. Linda again exhibited a multiplier-switch in Activity 6 

when she was trying to model 1/4×20. Linda revealed additional difficulty with 

fractional multipliers during Activity 2 when she was trying to model 1/3 of 5 wholes, 

and she could only imagine 1/3 of each whole, one at a time. 
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Unitization vs. re-unitization. During Activity 9 (unknown amount of water fills 

7/4 containers), Linda had difficulty with not just re-unitizing, but with unitizing. She was 

trying to operate with the value 1/4, but she could not establish its unit-of-measure. She 

made several errant suggestions regarding an appropriate unit, but she did not catch her 

errors because she did not attempt to verify her claims through iteration. She was trying 

to operate with a value, for which she could not establish an accurate unit-of-measure, 

which suggested a quantitative detachment from the task. Furthermore – during Activity 

6 (meanings for division) – Linda was not able to unitize, in that she could not imagine a 

unit for the 1/4 other than the same unit she was imagining for the 3, which caused her to 

be unsuccessful at producing a partitive model for 3÷1/4. In Phases 1 and 2, Linda had 

revealed a weakness with maintaining two levels of units, but in Phase 2, she also 

revealed an inability to create levels of units. 

Weak meanings for multiplication. During Activity 7 (quotitive and partitive 

water-container tasks), Linda revealed a weak general meaning for multiplication, when 

she said initially that the product was “the number of copies you are copying,” which 

better aligned with her description of the multiplier. She had trouble describing the 

product in both the general case and in the specific case of 4 containers with 5 gallons 

per container make a total of 20 gallons. Linda did appear to be perturbed by the 

contradiction caused when she said, “c is the number of copies you are copying,” while 

she had written on paper that c represented 20 gallons of water. The data also seem to 

suggest that Linda’s reliance on numerical commutativity contributed to her difficulties 

with maintaining a consistent, quantitative (hence non-commutative) conceptualization of 

multiplication. During Activity 2 (meanings for multiplication), Linda’s reliance on the 
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commutativity of numerical multiplication made it difficult for her to be consistent in her 

thinking, speech, and writing regarding the contraction-expansion dual-scheme for 

fractional multipliers. 

Weak meanings for division. Since Linda struggled to give a general 

quantitative description of multiplication, I was not surprised to observe that she also 

struggled with general meanings for division. During Activity 8 (unknown amount of 

water fills 5 containers), when discussing the two meanings for division (5 copies of what 

make x and how many copies of 5 make x), Linda referred to the two questions, how many 

copies of 5 make x and how many copies of x make 5. As such, she conflated questions 

relative to the two meanings for division, with questions regarding commutativity of 

division. Also, when Linda tried to give a general description of the missing multiplicand 

task (5 ∙	? = 𝑥), she said, “I want to know how many copies of this (referring to the 

missing multiplicand) will make x.” This was a flawed way to describe the task, because 

she did know how many copies were involved – there were five copies. These data 

suggested that Linda possessed a weak quantitative conceptualization for division, which 

was not surprising, since her dual meanings for division were nascent at the time that this 

data was gathered.  

Using vague and confusing language. During Activity 3 (comparing the red and 

green strips), Linda consistently and mistakenly said “times longer than” while reading 

“times as long as.” Her phrasing was vague because an expression such as “2 times 

longer than 3 feet” could be interpreted as six feet, or it could be interpreted as 3 feet plus 

six feet. During Activity 4 (meanings for fractional multipliers), Linda rarely mentioned 

units for the numbers she was saying and writing, which suggested that she was 
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quantitatively disengaged from the scenario. During Activity 7 (quotitive and partitive 

water-container tasks), Linda uttered more confusing statements such as, “I want to find 

how many 20 gallons would fill just one (container),” and “I have four containers...four 

containers of...would fill 20 gallons.” These utterances suggest that Linda was not 

engaged in quantitative reasoning, or at the very least that she was not attentive to using 

meaningful phrases to convey her thoughts. As a final example, during Activity 9 

(unknown amount of water fills 7/4 containers), Linda described 7/4 containers as, 

“seven-fourths of the containers (plural).” Her words make it seem as though she was 

describing seven-fourths of seven-fourths of a container. 

Understanding language. During Activity 4 (meanings for fractional 

multipliers), when I repeatedly asked Linda to find 1/2 copy of 2 pounds, Linda kept 

answering 1/4 of a pound. However, when I omitted the word copy and asked her to find 

1/2 of 2 pounds, she answered 1 pound. This suggested that she did not have a strong 

quantitative significance for the word copy. During Activity 3 (comparing the red and 

green strips), Linda repeatedly struggled to give the appropriate comparison, as required 

by the task. She also struggled with translating a written expression into an appropriate 

symbolic expression, which suggested a deficiency in quantitative reasoning, either at the 

level of the written expression, or at the level of the symbolic expression, or both. 

The development of schemes. During the teaching experiment, Linda had 

multiple opportunities to reason through certain tasks. She repeated Activity 3 four times, 

once per session, and her trouble with re-unitizing persisted through many of the 

attempts. By the fourth attempt, she had exhibited a newly developed dual-scheme of 

forward and reverse comparisons, but I wondered whether the scheme was permanently 
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situated in her network of meanings. I also wondered if the scheme had been adequately 

reflectively abstracted to be applied to analogous situations that did not involve paper 

strips. The data from Phase 3 suggested that she had not abstracted adequately. There 

were other instances where Linda was not consistent in her actions. For example, despite 

extensive discussions between us, she still placed the multiplier in the wrong position, as 

evidenced in Activities 3 and 4. Linda captured her frustration best during Activity 7 

when she said “I started breaking through last time. Why can’t it come back?” Linda’s 

difficulty to repeat operations of thought suggested that she had not formed permanent 

schemes. Thompson (2013) commented on this when he said, “to construct a scheme 

requires applying the same operations of thought repeatedly to understand situations 

being made meaningful by that scheme…Put another way, we construct stable 

understandings by repeatedly constructing them anew” (p.61). Linda’s inability to retain 

information, and to repeat certain ways of thinking, was a recurring cognitive obstacle 

throughout the teaching experiment.  
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CHAPTER 8 

PHASE 3 RESULTS AND DISCUSSION 

I based my analysis of Linda’s thinking from Phase 3 on my secondary research 

questions for this phase, which I repeat in Table 14. 

Table 14 
Secondary Research Questions Corresponding to Phase 3 

RQ2.1 How do the teachers’ post-intervention meanings compare to their pre-
intervention meanings? 

RQ2.2 What advancements to the teachers’ schemes are evident and what 
challenges remain? 

These secondary research questions were necessary to address RQ2: How do these 

teachers’ meanings change as a consequence of an instructional sequence that 

emphasized quantitative reasoning to aid in the advancement of these meanings? 

RQ2.1: Comparative Analysis of Phases 1 and 3 

In this section, I share Linda’s results from Phase 3 and compare them to her 

results from Phase 1 to address RQ2.1, which is, “How do the teachers’ post-intervention 

meanings compare to their pre-intervention meanings?” I began my analysis by looking 

at changes in Linda’s behavior, which I summarize in Table 15. This table also contains 

summaries of the 12 tasks that were used in Phase 3. The exact tasks are listed in 

Appendix 3. In this table, the ü indicates that I observed the behavior, and the û 

indicates that I did not observe the behavior. I highlighted in green six rows in the table to 

indicate that I observed the corresponding behavior in Phase 3 but not in Phase 1. I 

highlighted in red two rows to indicate that I did not observe the behavior in Phase 3, 

even though I did observe it in Phase 1. The rest of the rows correspond to no change in 

the indicated behavior. This table does not reflect all changes in Linda’s behavior, but it 
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does highlight the primary behaviors to indicate that the teaching experiment had an 

effect on Linda’s actions. 

Table 15 
Comparison of Linda's Behaviors from Phases 1 and 3 

Task Potential Behaviors Phase 
1 3 

3 Comparing red 
and green strips 

Successfully gave long in terms of short ü ü 
Successfully gave short in terms of long O ü 

6 5/3×2 
Successful model of 5/3 as multiplier O O 
Contracted the value 2 and expanded O O 

8 a÷b 
Gave a quotitive description ü ü 
Gave a partitive description O ü 

9 4÷3 
Successful quotitive model 
 

O O 
Successful partitive model O ü 

10 4÷1/3 
Successful quotitive model 
 

ü ü 
Successful partitive model O O 

18 Some amount fills 
5 containers 

Suggested the operation water÷5 ü ü 
Suggested the operation 1/5×water ü ü 

16 13 gallons fill 
5 containers 

Successful partitive model ü ü 
Suggested the operation 13÷5 ü ü 
Suggested the operation 1/5×13 ü ü 

21 Some amount fills 
9/4 containers 

Suggested the operation water÷9/4 ü O 
Suggested the operation 4/9×water O O 

20 3 gallons fill 
9/4 containers 

Successful partitive model ü ü 
Suggested the operation 3÷9/4 ü O 
Suggested the operation 4/9×3 O ü 

24 Some amount fills 
2/3 container 

Suggested the operation water÷2/3 O O 
Suggested the operation 3/2×water O ü 

23 7/4 gallons fill 
2/3 container 

Successful partitive model ü ü 
Suggested the operation 7/4÷2/3 O ü 
Suggested the operation 3/2×7/4 ü ü 

25 
Explain invert-
and-multiply 

algorithm 

Successful quotitive explanation O O 
Successful partitive explanation O O 
Successful other explanation O O 
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Concerning Linda’s meanings, I conducted a closer examination of the data to 

make conjectures about whether the teaching experiment had an effect on her underlying 

schemes. I share my analysis for each task in the sections that follow. 

Task 3: Compare an 8-inch Red Strip and a 3-inch Green Strip 

In Phase 1, Linda said the “red strip is larger by seven-fourths of the green strip,” 

and the “green strip is seven-fourths smaller than the red strip.” Linda could not switch 

from the green strip as the unit-of-measure to the red strip, and as such, she could not 

describe the reciprocal multiplicative relationships between the two strips. However, in 

Phase 3, Linda could express both comparisons verbally and symbolically. Her language 

is below. 

Excerpt 12 

1 

2 

Linda: The red strip is eight copies of one-third…equal red. And three 

copies of one-eighth is green. 

3 MW: Okay, and this (pointing to her written “1/3”) is one-third of what? 

4 

5 

Linda: One-third of green (writes in “green”)…and red (writes “red” next 

to her written “1/8”) 

For each comparison she wrote down a double-product symbolic representation 

(contract and expand) and a single-product symbolic representation, as depicted in Figure 

43. Additionally, she expressed one-third of the green strip as one-eighth of the red strip. 

This was a significant advancement in her thinking as compared to Phase 1, and I became 

optimistic that she would be able to coordinate multiple levels of units and consequently 

reason productively through the upcoming tasks. 
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Figure 43. Linda’s work on Task 3 in Phase 3. 

Task 6: Explain your Meanings for 5/3×2 

In Phase 1, Linda could not productively think about 5/3 as the multiplier saying 

that she could not think about the meaning of 5/3 copies. In Phase 3, she again did not 

produce a model with 5/3 as the multiplier. Linda defaulted to interpreting the task as 2 

copies of 5/3, despite multiple discussions between us during the teaching experiment 

about imagining the first number as the multiplier, even if it is a fraction. I did not remind 

her that the first number should be the multiplier. Instead, I asked her to reverse the order 

and reconsider her model. She wrote “5/3 copies of 2,” but then modeled two copies of 

5/3 again, but in a slightly different way than before. She then said, “two copies of five-

thirds,” while pointing at the written expression “5/3 copies of 2,” as depicted in Figure 

44. The data suggest that Linda interpreted 5/3 copies of 2 as 5/3 copied twice, which led 

her to produce the second drawing in which the two copies of 5/3 were more obvious. 

This is similar to a multiplier-switch as I described it in Chapter 6. However, in this case, 

the switch from 5/3 as the multiplier to 5/3 as the multiplicand happened immediately, as 

opposed to partway through the modeling process. Since Linda assimilated a task with a 

fractional multiplier to a scheme for a whole number multiplier, she circumvented the 

dual-scheme of contraction and expansion that we had extensively worked on during the 



 

215 
 

teaching experiment. If the teaching experiment was successful in developing the 

contraction-expansion scheme for Linda, then the data suggest that a decontextualized 

statement of multiplication involving a whole number as one factor did not trigger the 

scheme, even when Linda phrased the statement using language that would suggest to 

think of 5/3 as the multiplier. 

 
Figure 44. Linda's work on Task 6 in Phase 3. 

Task 8: Explain your Meanings for a÷b 

In Phase 1, Linda provided the quotitive interpretation, “How many copies of 𝑏 

can I take from 𝑎?” In the moment, she could not think of another meaning for the 

division expression. However, in Phase 3, Linda demonstrated an awareness of two 

different meanings for division by writing, “how many b copies are in a?” and “b copies 

of what = a?” She then attempted to demonstrate each meaning by modeling 10÷5 both 

ways. Her work for a quotitive conceptualization is illustrated in Figure 45. 
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Figure 45. Linda's first attempt to model both conceptualizations on Task 8 in Phase 3. 

Linda easily modeled the quotitive conceptualization (Drawing A), but when trying to 

model the partitive conceptualization, she redrew two copies of five (Drawing B) and 

wrote “2 groups of 5 make 10.” This reminded me of what she did in the prior task, 

confusing a different representation of one way of thinking as a second way of thinking. 

However, this time, she caught herself. She realized that Drawing B answered her 

quotitive question, so she tried to convince herself that Drawing A must therefore answer 

the partitive question. She wrote “5 copies of what make 10,” paused, replaced the 

“what” with “2,” then declared that Drawing A answered this question. I asked her how 

Drawing A was different from Drawing B. She got perturbed and eventually concluded 

that both of her drawings were answering the question, “How many copies of five make 

ten?” I asked her about how she might depict the question, “Five copies of what make 

10?” She paused and after much silence, she drew five boxes, split each in half, and said 

“five copies of two equal ten.” Her drawing is shown in Figure 46. 
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Figure 46. Linda's second attempt at a partitive model on Task 8 in Phase 3. 

I asked Linda where in her picture was the two she uttered and she pointed at half of one 

of the boxes, then she labeled each half of a box as 1/2. She said there were two halves in 

each box, so one whole in each box. She re-unitized but the data suggest she was unaware 

of the re-unitization. I asked her if “five copies of one make ten?” This perturbed her, and 

so she redrew five new boxes, put a 2 in each box, and then appeared to be satisfied. Her 

work is in Figure 47. 

 
Figure 47. Linda's third attempt at a partitive model on Task 8 in Phase 3. 

Her confusion with this task was related to her weakness with maintaining multiple units 

simultaneously. She was unable to think of each half of a box as a whole unit. This lack 

of attention to multiple levels of units is due to quotitive-modeling interference. The data 

in this study revealed that when Linda modeled quotitively, her drawings all referred to 

the same unit, and she simply counted groups of units, without any evidence that she was 

thinking of each group itself as a new unit-of-measure. The fact that her quotitive models 
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did not require multiple levels of units interfered with her ability to produce a partitive 

model that does require a coordination of multiple levels of units. 

Task 9: Explain your Meanings for 4÷3 

In Phase 1, Linda wrote “how many copies of 3 can be taken from 4,” but she did 

not know how to proceed. I then asked her to think about six divided by 3, which then 

prompted her to draw a quotitive model that supported the answer of 2. We returned to 

the task of 4 divided by 3. She drew four squares, circled three of them, and then said she 

had “one copy and one-third left over.” I wondered why she said “one-third.” Later data 

suggest that she procedurally divided four by three in her head, obtained an answer of one 

and one-third, and then tried to produce a drawing that showed this result. Due to this 

procedural contamination, I was not convinced that she recognized that one square can be 

thought of as one-third of a copy of three squares, so I asked her to provide a unit for one-

third, and in response she labeled each square as 1/3,”with no unit. I asked her how this 

drawing helped her answer her own question of “how many copies of 3 can be taken from 

4?” She responded by explaining that she had “one copy of 3 and one-third left.” I share 

her work up to this point in Figure 48. 

 
Figure 48. Linda’s attempt at a quotitive model on Task 9 in Phase 1. 
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If she was maintaining only one level of unit, then her drawing and utterances would be 

contradictions of each other. However, no contradiction is present if two levels of units 

are maintained (e.g., three squares is the same amount as one group of three squares). I 

was not convinced she was aware of the two levels of units so I asked her again, “one-

third copy of what?” She responded in an unexpected way by changing her answer by 

writing “3 copies of 1/3 and 1/3 left.” Her response suggested she was not aware of the 

two levels of units, nor that she imagined the fourth square as one-third of a copy of three 

squares. Instead, Linda thought of the circled copy of three squares as one, not one group 

of three wholes, so the squares each became one-third, and only one-third. These data 

suggest that inadvertent re-unitization is something that is more likely to happen when 

doing mathematics with no context. For example, each square can be thought of as one 

whole, as one-fourth of the whole collection, or as one-third of a group of three squares, 

and without a context it can be challenging to describe these various perspectives, 

assuming you even manage to keep them distinct in your thinking. The data suggest that 

she settled on each square being one-third only so that the last square would be one-third, 

which is what she obtained by doing the calculation procedurally. I asked her whether “1 

copy of 3” was interchangeable with “3 copies of 1/3” and she said yes. Even though this 

is numerically false (although it could be true depending on the units), I suspect she said 

yes because both are represented by her single picture. I do not suspect, based on the 

data, that she said yes because she was aware that the two statements can be 

quantitatively identical when appropriate units are used. 

In Phase 3, Linda had no trouble phrasing both meanings for division, whereas 

she gave only a quotitive description in Phase 1. For the partitive model, she drew three 
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boxes and labeled each as 4/3, showing that one whole and another third was in each box. 

She confirmed her work by procedurally adding three copies of four-thirds to get four. 

Figure 49 illustrates Linda’s partitive model for Task 9 during Phase 3. 

 
Figure 49. Linda's attempt at a partitive model on Task 9 in Phase 3. 

Linda then attempted a quotitive model. She drew four rows, shaded the top three rows, 

labeled each row as 1/3, then said confidently “four copies of one-third make four.” It 

would have been more sensible to say “four copies of one-third make four-thirds,” but 

she said it the way she did because she was trying to answer the question, “How many 

copies of three make four?” Here work is shown in Figure 50. 

 
Figure 50. Linda's first attempt at a quotitive model on Task 9 in Phase 3. 

I was not convinced she was maintaining multiple levels of units so I asked her “one-

third of what?” She responded by circling all four pieces. I asked where in her picture is 

one copy of three, and she circled one row only. These actions seemed incoherent to me, 
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as if she was just guessing and looking for approval from me. She admitted that she knew 

the answer should be four-thirds, a case of procedural contamination. Perhaps she sensed 

that I was unsettled, or perhaps she was unsettled herself, but she tried again. She drew 

two blocks of three rows, labeled all of them 1/3 and repeatedly said that each block is 

one whole and that there are three one-thirds in each whole. This work is in Figure 51. 

 
Figure 51. Linda's second attempt at a quotitive model on Task 9 in Phase 3. 

 At this point, the data suggest that Linda was simply drawing a representation of the 

answer of 4/3 that she got procedurally. These issues of re-unitizing are the same issues 

that she exhibited during this task in Phase 1. In both phases, Linda could not  a piece of 

a block as both one and as one-third. 

At this point, I interjected by supplying a context. I suggested that three peanut 

butter cups come in a package. I asked her to imagine that the 3 and 4 in 4÷3 each refer 

to peanut butter cups. I asked her how many packages make four peanut butter cups and 

she instantly answered "one and a third." I pointed at one peanut butter cup and asked her 

“how many cups” and she said “one.” I asked “how many packages” and she said “one-

third of the package.” When there was a context, that supplied distinctive imagery and 

vocabulary to describe both types of unit, it became easier for her to re-unitize. 
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Task 10: Explain your Meanings for 4÷1/3 

In Phase 1, Linda easily produced a quotitive model to determine that 12 copies of 

one-third make four. However, she did not attempt a partitive conceptualization because 

she was not aware that this was a possibility for this task. However, in Phase 3, Linda 

wrote “1/3 copies of what = 4” and “how many 1/3 copies make 4.” She focused on the 

first statement, but then partitive-to-quotitive assimilation occurred when she 

immediately drew a quotitive representation, as depicted in Figure 52. 

 
Figure 52. Linda’s first attempt at a partitive model on Task 10 in Phase 3. 

When I asked her which question she answered, she acknowledged that she actually 

answered the second question. She spent about 15 minutes trying to break free of her 

quotitive thinking, but each attempt ultimately led to another version of a quotitive 

model. During her confusion, she wrote, said, and drew many incoherent statements. At 

one point, she drew an image that I thought would be helpful for her, which is highlighted 

in Figure 53. She drew four boxes first and labeled each 1/3, then extended each box to 

account for the other two-thirds, putting a “?” in each new box. If she had been able to 

view the first four boxes as one-third of a larger picture, and if she had maintained that 

each box was one whole, then she might have been successful. However, once she 

labeled each box as 1/3, she could only view each row as one, instead of three. 
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Ultimately, she was unsuccessful producing a partitive model that supported the answer 

of 12. 

 
Figure 53. Linda’s second attempt at a partitive model on Task 10 in Phase 3. 

Task 18: An Unknown Amount of Water fills 5 Containers 

In Phase 1, Linda said she would “divide it (the given amount of water) by five.” I 

asked if there was anything else that she could do to resolve the task and she said no. I 

pushed her by asking what she would do if she could only use the operation of 

multiplication, and she responded that she could multiply by the reciprocal of five, which 

is one-fifth. I was seeking evidence that she thought that division by five and 

multiplication by its reciprocal are quantitatively equivalent, so I asked her to describe 

why she could just multiply by one-fifth, to which she responded, “I would have to 

multiply by the inverse of five because I’m only looking for one-fifth of the amount of 

water.” This suggested she was thinking quantitatively, not just procedurally. 

In Phase 3, Linda drew five blocks and used “a” to represent the given amount of 

water. She said each block would have one-fifth of all the water, which she wrote as “1/5 

of a.” When I asked her for a division expression, she deliberated between 5÷a and a÷5, 

eventually settling on the latter, writing “a÷5 = whole container.” She explained that the 
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first expression (5÷a) was wrong because it was “asking how many copies of a can I pull 

out of five, when it should be if I have five containers, how much a is in each of those 

containers.” When I asked her for the meaning of the expression that she preferred (a÷5) 

she said, “How many copies of a make five?” This is troubling for the following three 

reasons: (1) it is quotitive language in a partitive situation, (2) the divisor and dividend 

are interchanged in her speech, and (3) it contradicts what she said a few seconds prior. 

She seemed perturbed, and eventually asked if a÷5 should be interpreted as, “Five copies 

of what equal a?" She repeated this question to herself several times and said, “I don't 

know which flavor this is.” I then asked her to repeat the two “flavors” of a÷5, to which 

she said, “how many copies of five make a” and “five copies of what equal a.” I asked 

her which of the two questions seemed relevant to the task and she said something new, 

“Five copies of what will give you one container?” Ultimately, she never did resolve her 

confusion and she said, “I don't know why this is hard.” 

Task 16: 13 Gallons Fill 5 Containers 

In Phase 1, Linda distributed the gallons, two gallons per container, leaving three 

gallons undistributed. Then she split each of the remaining three gallons into 5 equal 

parts (each part 1/5 of a gallon), distributed the parts among the containers one gallon at a 

time, and concluded that 2 and 3/5 gallons were in each container. I asked her to 

procedurally calculate an answer and she wrote 13÷5, indicating that she recognized this 

as a division task. She then wrote 13∙1/5 and confirmed her answer through a procedural 

calculation. Her work is shown in Figure 54. In this image, the five rectangles were a tool 

to help her distribute the extra three gallons, one gallon (one row) at a time. 
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Figure 54. Linda’s work on Task 16 in Phase 1. 

It was encouraging that she considered 13÷5 and 13 ∙ <
M
 as equivalent, but I could not 

determine from the data whether she realized that these expressions are quantitatively 

equivalent or whether she was vacuously employing the invert-and-multiply algorithm. 

Also, I could not determine from the data whether she imagined the containers full and 

was describing each container’s capacity, or whether she was not imagining the 

containers full was describing each container’s contents. 

In Phase 3, Linda said “one-fifth” is the capacity of each container, to which I had 

to ask “one-fifth of what?” She had no problem responding, “one-fifth of 13 gallons.” I 

asked for another operation that would yield the answer, and she wrote 13÷5. I prompted 

her to identify the appropriate “flavor of division,” and she laughed and said “I don’t 

know, I confuse the two.” But then she tried and said the following sequences of 

statements. 

Excerpt 13 

1 

2 

3 

4 

5 

Linda: How many gallons fill five containers? 

How many copies of five make…(trails off) 

How many…(trails off again) 

It would be the other one. 

Five copies of what make 13? 



 

226 
 

She settled on this last expression and explained her choice in a sensible way by 

saying, “five copies of each container make a total of 13 gallons.” I interpreted her 

language as “five copies of one container make a total of 13 gallons” and not “five copies 

of all the containers make a total of 13 gallons.” This data reveals the non-trivial nature 

of phrasing a partitive division task as a missing factor problem, even when the divisor is 

a whole number. Also, this is an example of an advancement in her meanings for 

division. In Phase 1, she was able to phrase division questions that only elicited quotitive 

conceptualizations. 

Task 21: An Unknown Amount of Water Fills 9/4 Containers 

In Phase 1, I suspected that Linda would not be able to generalize a process to 

accomplish this task because she had used guess-and-check strategies on the previous two 

tasks that involved a known amount of water filling 9/4 containers. For this task, she 

drew a picture of the nine quarter containers and indicated that 𝑥 (which represented the 

unknown total amount of water) was contained in these containers. I asked what she 

would do with 𝑥 to answer the question and she said she would calculate x÷9/4, as 

depicted in Figure 55. 

 
Figure 55. Linda's work on Task 21 in Phase 1. 



 

227 
 

I asked what she would do to 𝑥 to find the amount of water in one quarter container, and 

she said she would multiply it by one-fourth. She said this because she could not 

coordinate multiple levels of units and so she was only able to imagine each row of a box 

as one-fourth. 

In Phase 3, Linda drew a representation of the containers, wrote “9 copies of 1/4 

container,” she wrote “a” to represent the given amount of water, but then she wrote “9/4 

copies of a” to answer the task. On one hand, she said “a” is the given amount of water, 

but her expression “9/4 copies of a” implies that “a” was one container, or the water in 

one container. She did not seem perturbed by this contradiction. I asked her to explain her 

expression “9/4 copies of a”, and she redrew the containers side-by-side, as depicted in 

Figure 56. Drawing A is her first drawing, and Drawing B is her second drawing. 

 
Figure 56. Linda's work on Task 21 in Phase 3. 

Linda said “two and one-quarter containers is the answer… nine-fourths copies of the 

water I have.” She temporarily lost sight of the goal and was trying to describe how much 

water she started with. We then engaged in the following dialogue. 
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Excerpt 14 

1 MW: What does “a” represent for you again? 

2 Linda: The amount of water I used. 

3 MW: And where in this picture is “a” (pointing to Drawing B)? 

4 Linda: Um…there (circling the nine shaded portions in Drawing B). 

5 MW: And what’s our objective, to find, in this? 

6 

7 

8 

Linda: The capacity of one container. So, one container would fill nine-

fourths of that…of a (finger circles the nine shaded portions in 

Drawing B). 

9 MW: Why nine-fourths? 

10 

11 

12 

Linda: Because that’s how much I filled each container with? (she reads 

the prompt aloud) “Describe the capacity of one whole container.” 

Four copies of one-fourth. 

13 MW: One-fourth of what? 

14 Linda: Of a. So four copies of one-fourth of a. 

In this conversation, the meaning for “a” toggled from the given amount of water 

to the water in one container. She did not reveal any indication that her work was 

perturbing to her. I think she was not bothered by her words and inscriptions because she 

could only imagine “a” as nine-fourths containers, so describing one container as “9/4 of 

a” was the only fractional comparison that was available to her. But when she re-read the 

prompt, she changed her focus to one container and said “four copies of one-fourth of a,” 

but this is just “a” again. She seemed unsatisfied because either she knew “a” could not 

be the amount of water in one container and in all the containers, or because she sensed 

that I was bothered by her statements. She decided to use a specific value by choosing 

“a” to be 16 gallons. She calculated 9/4×16 and obtained 36 gallons, which caused her to 

pause. I asked her to identify the 16 gallons in Drawing B, and she said that the 16 
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gallons constituted all the shaded portions in Drawing B. One explanation for the 

incorrect multiplier is that she did not have a quantitative image of what it means to 

multiply by nine-fourths. This is likely, since she was not able to model a fractional 

multiplier in Task 6. She then had an epiphany realizing that she was trying to find the 

amount in one container, which led her to realize that 36 gallons was unreasonable since 

she only had 16 gallons to begin with. She then thought each quarter container should be 

one-fourth of 16 gallons, giving 4 gallons per quarter container, which added again to a 

total of 36 gallons. She remained perturbed and asked, “But how can I end with more 

gallons than I started with?” The data suggests that she held steady in her thinking that 16 

gallons was the amount in all the shaded portions in Drawing B, despite her statements 

that implied 16 gallons was the amount in one container. She could only think to find 

one-fourth of the 16 gallons to find the amount in one quarter-container – the fraction 1/4 

was too engrained in her thinking and she could not summon the necessary 1/9. 

At this point, I considered the post-assessment on this task to be completed, and 

so I decided to intervene. I prompted her to shift her focus back to Drawing A and I asked 

her to use the symbol “?” to identify the capacity of one container. I thought it would be 

helpful for Linda to look at the vertically stacked containers because she could more 

easily compare a vertical stack to the strip exercises. I asked her to think of “a” as the red 

strip and “?” as the green strip. This began a chain reaction of thinking for Linda that 

ultimately led her to confidently conclude that “4/9 of a” would yield the correct answer. 

We briefly discussed that one-fourth of a container was the same amount as one-ninth of 

the given water, similar to the ideas we had discussed in the strips tasks. She said, “It 

wasn't until you said the green and red strips. That made sense to me.” I believe the strip 
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activity was helpful because it allowed Linda to realize that the water in one container 

and the given amount of water could be perceived as two distinct quantities that could be 

the unit-of-measure.  

Task 20: 3 Gallons Fill 9/4 Containers 

In Phase 1, Linda drew the nine quarter containers used a guess-and-check 

process to find the amount in each quarter. She tried one half gallon, but this resulted in 

too much water. She then tried one quarter gallon, but this resulted in not enough water. 

She then tried one third of a gallon in each quarter container, which was just the right 

amount, and she concluded that 4/3 gallons were in each whole container, as depicted in 

Figure 57. 

 
Figure 57. Linda’s work on Task 20 in Phase 1. 

Linda did not divide the amount of water by nine to get the amount in a quarter container. 

I prompted her to consider an operation that would answer the question and she suggested 

3÷9/4. When I asked her to explain her choice she hesitated and then switched to 9/4÷3. 

She calculated both and then settled on her first operation, which she indicated was 

reasonable because she was “dividing the three gallons into nine-fourths containers.” 
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In Phase 3, Linda modeled this task well, due to my intervention during the 

previous task. She concluded that 4/3 gallons of water was the capacity of one whole 

container. Her work is illustrated in Figure 58. 

 
Figure 58. Linda's work on Task 20 in Phase 3.  

I asked Linda to describe the meaning of the “3/9” in the second line of her work and she 

said “3/9 of a gallon.” But she then errantly suggested that this value corresponded to 

three out of the nine shaded portions in her drawing and said “I have three copies of one-

ninth.” It is important to note that she did not mention a unit for the one-ninth, a common 

type of omission by her. As a result, I asked her to confirm whether four copies of what 

she just described would give a whole container as expected. She was perturbed when she 

iterated this amount only three times which reconstituted all the shaded portions in her 

drawing. These data seemed to suggest that she thought she should be reconstituting the 

given amount of water, and not the capacity of one container. This is an interesting task 

because the same amount of water can be measured with three relevant unit fractions; 

one-third of a gallon, one-fourth of a container, or one-ninth of the given amount of 

water. This is a coordination of three units, which may have been the source of her 

confusion. Also, her picture did not explicitly reveal what one gallon is, so she did not 
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have a frame of reference to think about one-third of something. From her drawing alone, 

she was stuck with either one-fourth or one-ninth. She gained confidence in her answer of 

“4/3 of a gallon” by calculating two and one-fourth copies of four-thirds gallons to 

confirm that the total amount was three gallons. Thus, I returned to focusing on the 

meaning of the 3/9 in her middle step. After several moments of silent thinking, she said 

the 3/9 would be “just one of these (pointing at a single piece),” and wrote that one piece 

(a quarter container) is “1/9 of 3 gallons.” I suggested to her that there were three ways to 

measure this amount, as if there were three different strips. She then correctly identified 

one piece (a quarter container) as one-third of a gallon, one-fourth of a container, and 

one-ninth of the given amount of water. She then laughed and said, “Why do they gotta 

make it so complicated?” 

Task 24: An Unknown Amount of Water Fills 2/3 container 

In Phase 1, Linda demonstrated a conceptual understanding of what to do, to 

divide the amount of water by two and then combine three copies of this amount. 

However, her symbolic representations were not correct – she wrote the amount of water 

in each third of the container was x÷2/3. In Phase 3, Linda again had no trouble 

modeling this. She had a quantitative scheme, and her notation was accurate. I compare 

her work from both phases for this task in Figure 59. 
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Figure 59. Linda's work on Task 24 in Phases 1 and 3. 

Task 23: 7/4 Gallons Fill 2/3 Container 

In Phase 1, Linda had no trouble with this task. In Phase 3, she had no trouble 

with language, symbols, or conceptual operations on this task. She recognized that she 

should find one-half of the given amount of water, and then triple this amount. There was 

a brief moment of confusion for her when she labeled each third of a container as “1/2” 

and I asked her “one-half of what?” She said “container,” then changed to “gallon,” and 

then settled on “1/2 of 7/4 gallons.” This demonstrated a flexibility to re-unitize, even 

with a non-standard unit. I suggested that she could use the general language of “one-half 

of the given water.” I asked her what one-step calculation would give the answer instead, 

and she wrote 3/2(7/4). I asked for another operation that would give the result, to which 

she said “I guess division” and wrote 7/4÷2/3. I asked her to identify which meaning for 

division was appropriate and she wrote “2/3 copies of what is 7/4 g.” She gave a good 
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quantitative explanation for this question, expressing it as a missing multiplicand 

statement “2/3(x) = 7/4.” Her work on this task is highlighted in Figure 60. 

 
Figure 60. Linda's work on Task 23 in Phase 3. 

Task 25: Explain the Invert-and-Multiply Algorithm 

 In Phase 1, Linda was unable to provide a meaningful justification for the 

algorithm, as discussed in Chapter 6 in response to RQ1.5. In summary, she began by 

unsuccessfully attempting to connect the variables in the general statement of the 

algorithm to the water-container quantities. However, since she could not generalize for 

known numbers of containers in the prior tasks, I did not expect her to generalize for an 

unknown number of containers in this task. When I asked her what division meant, she 

gave a quotitive explanation, at which point her efforts concluded. 
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In Phase 3, Linda spent much more time grappling with this task. She chose 

specific numbers (𝑎 = 10, 𝑏 = 20, and 𝑐 = 4), but said she was not thinking of a 

context, just numbers. She wrote, “20/4 copies of what is 10?” which is a partitive 

conceptualization. She rewrote this as 5𝑥 = 10, and then solved by dividing by 5 to get 

2. She, then showed that the multiplication also gave 2, while acknowledging that she did 

not demonstrate why this works. She said, “I proved it. Now I gotta justify it.” She then 

tried to rephrase “b/c copies of what is a?” by writing “a copies of what is b/c?” We then 

had the following dialogue. 

Excerpt 15 

1 Linda: Yeah, that works. 

2 MW: What do you mean? 

3 

4 

5 

6 

Linda: So a copies of what is b c, but it’s not explaining the question. I just 

rewrote it a different way, but it’s not the way you have it (pointing 

at the algorithm in the prompt). (Pause) It’s everything we’ve been 

doing but it’s in the abstract (said with frustration)! 

Linda’s comments suggest she thought the question, “a copies of what is b/c?” 

was not appropriate for the symbolic division statement in the prompt. Linda then turned 

the page over, rewrote the algorithm from the prompt, and started over with a context. 

She wrote “a = 4 containers” and “b/c = 3/4 gallons,” and then wrote, “How many 3/4 

gallons fill 4 containers?” She drew four containers, divided each in four pieces, and 

paused. She redrew four containers, but divided each in three pieces, and stopped again. 

She concluded, “I'm not asking the right question, that's why.” However, she did not 

attempt to ask a different question and she could not progress further. 
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At this point, I concluded that she would not be able to provide a justification of 

the algorithm. However, I decided to determine what she could do, if I guided her 

slightly. We had the following dialogue. 

Excerpt 16 

1 MW: What is the result of doing containers divided by gallons? 

2 

3 

Linda: You can’t, because you’re doing two different units. Don’t I need 

gallons to gallons? 

4 

5 

MW: I guess it sort of depends on which question for division you are 

asking. 

I encouraged her to model a÷b with whole numbers and she chose a = 4 

containers and b = 5 gallons. But then she then modeled 5÷4 instead of 4÷5. I suggested 

to her that something was wrong and she recognized that 5/4 is not the result of 4÷5. We 

discussed how water divided by containers gives water-per-container, and I told her to 

return to the algorithm, but to imagine the dividend as the amount of water and the 

divisor as the number of containers. She tried again and wrote a = 4 gallons and b/c = 3/4 

containers, and made a model of the situation, as depicted in Figure 61. 

 
Figure 61. Linda's work on Task 25 in Phase 3. 
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She labeled each shaded piece as 1/3 and acknowledged that the whole container is four 

of those. I asked “1/3 of what?” and she said “one-third of three-fourths of a container” 

and “one-third of four,” but she settled on the former. In the latter statement Linda did not 

put a unit on the four, so I could not determine if she was referring to gallons or pieces of 

the container. Since Linda chose an example where 4 is the number of pieces that make 

of the container and the number of gallons in three of those pieces, she set herself up for 

conflation of the two quantities, which became apparent as she continued through the 

task. She then said, “One-third of three-fourths of the container equals x,” which was not 

consistent with her drawing. Adding to the confusion, she then wrote the statement 

<
8
;8
L
𝑥= = 4. Her utterances and inscriptions continually contradicted each other. In one 

moment, she implied the x was the water in the whole container, and in another moment, 

she implied the x was the water in one-fourth of a container. Also, in one moment, she 

implied the four was the amount of water in three-fourths of the container, and in another 

moment, she implied the four was the amount of water in one-fourth of the container. 

This type of inconsistency happened for several more minutes as we had a dialogue about 

what she was trying to do, what is one-third of what, and what the fours are. Eventually, I 

asked her to switch her label of 3/4 (in Figure 61) to 4 gallons and we had the following 

dialogue. 

Excerpt 17 

1 MW: What do you do to four gallons to reconstitute the entire container? 

2 Linda: I times it by one-third. 

3 MW: And that gives you the whole container? 

4 

5 

Linda: Yes, because I have four one-third copies (pointing at the four 

pieces of the container one at a time). 
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6 

7 

MW: So, is this four (pointing at the label 4g next to three-fourths of the 

container) the same thing as the number of copies that are there? 

8 Linda: No, this is four gallons (pointing at the label 4g). 

9 

10 

MW: So what do you do to four gallons to reconstitute the whole 

container? 

11 

12 

Linda: I times it by three-fourths, no one-fourth because there’s four 

copies of one-third. 

13 MW: One-third of what? 

14 Linda: Of three-fourths of the container. 

15 MW: Think in terms of gallons and not containers. 

Linda then wrote 4 ^<
8
;8
L
=_, calculated the result 1, and said, “This doesn’t work.” 

After some more moments of unproductive thinking, I asked her to think of the shaded 

portion as the green strip, the whole container as the red strip, what she would do the 

green strip to make the red strip. We then had the following dialogue. 

Excerpt 18 

1 Linda: I break the green up into thirds and I have four of those one-thirds. 

2 MW: And how many gallons is the green strip? 

3 Linda: (repeats my question to herself twice) Would be four gallons. 

4 

5 

MW: Okay, so what do you do to four gallons to make the amount of 

gallons in the red strip? 

6 Linda: Times it by four-thirds! 

7 MW: Why does that make sense? 

8 Linda: Because I have four copies of one-third. 

9 MW: One-third of what? 

10 Linda: Of four gallons. 

11 MW: And how would you write that symbolically? 
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Linda then produced the image in Figure 62. She then said that had shown that the 

algorithm works because she noticed that Expressions A and B were the same. However, 

the fours in Expression A have the reverse quantitative meaning as the fours in 

Expression B. Linda did not catch this, and we discussed this issue together, and 

concluded the task. 

 
Figure 62. Linda's concluding work on Task 25 in Phase 3. 

 

RQ2.2: Characterizing Linda’s Advancements 

Linda’s data from Phase 3 revealed some changes in behavior as compared to 

Phase 1. In this section, I address RQ2.2, which is, “What advancements to the teachers’ 

schemes are evident and what challenges remain?” I begin by focusing on Linda’s three 

areas of weakness that I identified from the data in Phase 1: fractional multipliers, re-

unitization, and meanings for division. I then discuss other obstacles that the data from 

Phase 3 revealed. 

Fractional Multipliers 

 Linda demonstrated some advancements in meanings for fractional multipliers, 

but not at a robust level. For example, consider Task 6 (explain your meanings for 



 

240 
 

5/3×2). In Phase 1, Linda could not provide a meaning for 5/3 copies, and she could only 

make sense of the product imagining two as the multiplier. In Phase 3, Linda 

circumvented demonstrating a meaning for 5/3 as a multiplier through a multiplier-

switch, by interpreting 5/3 copies of 2, as 5/3 copied twice. In other words, she 

assimilated a task with a fractional multiplier to a scheme for a whole-number multiplier. 

While working on Task 21 in Phase 3, Linda indicated that contracting an amount by a 

factor of 1/9, and then expanding this new amount by a factor of 4, was the same thing as 

scaling the original amount by a factor of 4/9. These data suggest that Linda had made an 

advancement since Phase 1, while the data from Task 6 in Phase 3 suggest that her 

improved schemes were not robust enough to facilitate assimilation of all fractional 

multiplier tasks. In both phases, Linda struggled with multiplicative tasks of the form: 

(known non-unit fractional amount) × (known amount) = (unknown amount) 

This structure (involving a non-unit fractional multiplier) is the same structure that 

caused her problems, but in the context of division. In other words, she struggled with 

quotitive models of the form: 

(unknown non-unit fractional amount) × (known amount) = (known amount) 

She also struggled with partitive models of the form: 

(known non-unit fractional amount) × (unknown amount) = (known amount) 

Otherwise stated, Linda struggled with every quotitive division task that yielded 

fractional quotients (e.g., 4÷3 in Task 9), and she struggled with every partitive division 

task with fractional divisors (e.g., 3÷9/4 in Task 20). However, she was successful at 

every quotitive task that yielded whole-valued quotients, and she was successful at every 

partitive task with whole-valued divisors. For Linda, the presence of fractional 
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multipliers was a perfect predictor of perturbations regarding division. Her weak 

meanings for fractional multipliers were suffocating her meanings for division. This 

suggests that robust schemes for fractional multipliers is crucial to the development of 

robust meanings for both partitive and quotitive division. 

Multiple-Unit Coordination 

Linda demonstrated some advancements in re-unitizing, but there were several 

instances during Phase 3 where I observed persistent problems regarding multiple levels 

of units. In the next three paragraphs, I summarize the following: (1) the data from Phase 

1 that supported my claim that Linda’s challenges were caused by a lack of re-unitization, 

(2) the data from Phase 3 that provided evidence of advancement in her schemes, and (3) 

the data from Phase 3 that suggested that Linda continued to struggle with unitizing. 

 In Phase 1, several instances provided evidence that Linda struggled with re-

unitizing. In Task 3 (comparing the red and green strips), Linda could not switch from the 

green strip as the unit-of-measure to the red strip. Once she imagined one-fourth of the 

green as one-fourth of the green, she could not re-imagine this length in terms of the red. 

This may be because she only folded the green and held a mental image that the 

contracted amount was green, and she did not recognize that relative length did not 

depend on the color of the contracted amount. In Task 9 (explain your meanings for 

4÷3), Linda was trying to show that 1 and 1/3 is the result of answering, “How many 

copies of 3 are in 4?” She drew four squares and circled three of them. The data indicated 

that Linda thought of the circled copy of three squares as one, not one group of three 

wholes, so each square became one-third, and one-third only. In Task 13 (6 copies of 

what amount make 15?), it was difficult for Linda to look at one piece out of five 
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contiguous pieces and think something other than one-fifth, even though she was 

counting these one-fifths in pairs. In Task 19 (27 gallons fill 9/4 containers), Linda did 

not think to divide 27 by nine, perhaps because she could imagine one-fourth of a 

container as one-fourth, and not as one-ninth. 

In Phase 3, the data suggested that Linda had made some advancements. In Task 3 

(comparing the red and green strips), she described that one-third of the green strip could 

also be expressed as one-eighth of the red strip. However, during Task 21 (some amount 

of water fills 9/4 containers), Linda was not successful initially at seeing one-fourth of a 

container as one-ninth of the given amount of water. Yet, when I prompted her to think 

about the red and green strips, she was able to recognize both values for the one quantity, 

saying that thinking about the strips helped her to make sense of the solution. Similarly, 

in Task 25 (justify the invert-and-multiply algorithm), Linda credited the strips for 

helping her realize how to appropriately scale the water in three-fourths of a container to 

reconstitute the whole container. These data suggest that Linda did not reflectively 

abstract her nascent strip-comparison schemes to the point of facilitating assimilation for 

other kinds of analogous tasks. During Tasks 21 and 25, she still required minimal 

guidance from me to help trigger her newly formed schemes. 

 The data in Phase 3 also revealed that Linda continued to struggle with re-

unitizing. In Task 8 (explain your meanings for a÷b), Linda was trying to partitively 

model 10÷5 when she drew five separate boxes, each cut in half. She was perturbed 

because she labeled each semi-box as one-half, yet she knew that each whole box should 

represent two. In Task 9 (explain your meanings for 4÷3), Linda had the same re-

unitizing issue she demonstrated in Phase 1, in that she could not recognize a piece of a 
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block as both one and as one-third. In Task 20, one amount of water could be measured 

with three relevant unit fractions; one-third of a gallon, one-fourth of a container, or one-

ninth of the given amount of water. Linda could imagine the one-fourth and the one-

ninth, but was perturbed by the one-third. This is because her picture did not explicitly 

reveal a representation of one gallon, so her picture supported only imagining one-fourth 

or one-ninth. 

As the data suggest, the teaching experiment did not adequately help Linda 

develop robust schemes related to re-unitizing. Linda had difficulty in cases where she 

had to coordinate two values of one quantity, where neither value was one, such as 1/4 of 

the green strip is 1/7 of the red strip. She did not have trouble when one of the values was 

1, such as 1 group is the same as 10/3 of something. In these latter cases, re-unitizing 

amounts to a counting exercise, and Linda had no difficulty when the count was a whole 

number, such as discovering that 12 is the number of copies of 1/3 that make 4. These 

data suggest that counting a whole number of things is not at the same level of cognition 

as consciously coordinating multiple units. 

Linda’s difficulties with re-unitizing were mitigated by using more specific 

contexts. For example, recall that while working on Task 9 in Phase 3, Linda struggled 

with quotitively modeling 4÷3. I suggested that three peanut butter cups came in a 

package. When she had concrete things to imagine, and the words to describe them, she 

did not struggle to give accurate measurements when I toggled between packages and 

peanut butter cups as the units-of-measure. Additionally, it was beneficial to Linda to 

compare novel tasks to the red and green strip activities. The strips also provided 

concrete things to imagine, and the words to describe them. 
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Dual Meanings for Division 

Due to the teaching experiment, Linda gained an awareness that there are two 

meanings for division, and she acquired reasonable language to describe them. Consider 

Task 8 (explain your meanings for 𝑎 ÷ 𝑏). In Phase 1, Linda described division only with 

a quotitive conceptualization. However, in Phase 3, Linda expressed both meanings for 

division by writing “how many b copies are in a?” and “b copies of what = a?” This was 

also true for Task 9 (explain your meanings for 4÷3) and Task 10 (explain your 

meanings for 4÷1/3). However, Linda’s awareness, and her abilities with language, did 

not ensure success at producing meaningful models for each question, as evidenced in 

Tasks 9 and 10 from Phase 3, where Linda was not successful at quotitively modeling 

4÷3, nor at partitively modeling 4÷1/3. Additionally, she experienced quotitive-

modeling interference during Task 8 in Phase 3, and partitive-to-quotitive assimilation in 

Task 10 of Phase 3. However, she recognized the partitive-to-quotitive assimilation and 

attempted, although unsuccessfully, to return to a partitive conceptualization. The fact 

that she caught herself using the wrong conceptualization is an advancement because it 

would not have been possible for her to do this in Phase 1 with an awareness of only one 

meaning for division. Recall that I consider a person to have partitive-quotitive 

awareness if that person (1) is aware of the two quantitative conceptualizations for 

division, and (2) can operate under one conceptualization without interference from the 

other, while maintaining an awareness of the conceptualization with which they are 

operating. Linda’s quotitive-modeling interference and the momentary partitive-to-

quotitive assimilation demonstrated that she was not able to operate under one 

conceptualization without interference from the other. In summary, the data from Phase 3 



 

245 
 

revealed that Linda had advanced significantly regarding condition 1, but that she still did 

not meet condition 2. Consequently, I do not characterize her has having acquired 

partitive-quotitive awareness, despite her advancements. 

Other Cognitive Obstacles 

 My analysis of the data revealed another cognitive obstacle related to meanings 

for division that my study did not focus on. This obstacle concerns the realization that the 

amount in one group when some amount a is split (divided, partitioned, distributed) into 

b groups, is the same amount that is the answer to the question, “b copies of what amount 

make a?” In other words, does a person realize that typical partitive language related to 

“fair-sharing” is connected to the characterization of partitive division as a missing 

multiplicand task? The data in my study suggest that such a realization is non-trivial. 

Linda demonstrated a weakness in being able to identify a division task as a missing 

multiplicand task on several occasions, even when reasoning about a whole number of 

groups. In Task 18 (some amount of water fills 5 containers) from Phase 3, recall that 

Linda identified that a÷5 represented the amount of water in one container, but she could 

not summon the correct language to characterize this as a missing multiplicand task. 

 Another cognitive obstacle that Linda demonstrated is related to the quantitative 

structure of a division statement. For Task 20 (3 gallons fill 9/4 containers) in Phase 1, 

after Linda used a guess-and-check strategy to determine that there were 4/3 gallons per 

container, she did not know whether 3÷9/4 or 9/4÷3 was the correct operation. She 

procedurally calculated both expressions as a basis for her decision. For Task 18 (some 

amount of water fills 5 containers) in Phase 3, Linda could not initially decide between 

a÷5 and 5÷a. For Task 25 (justify the invert-and-multiply algorithm) in Phase 3, Linda 
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was trying to connect the statement a÷b/c to the water-container tasks. She wrote “a = 4 

containers” and “b/c = 3/4 gallons,” and then wrote, “How many 3/4 gallons fill 4 

containers?” Later in the task she attempted to model 4÷5 by distributing 5 gallons 

among 4 containers. These data seem to suggest that she was unaware of the significance 

of the quantities for the dividend and divisor. 

Another cognitive obstacle for Linda regarded with her language. Often, when she 

said (wrote) a fraction, she did not say (write) a referent. I constantly had to ask, “of 

what?” This issue was endemic throughout all phases. For example, in Phase 3, it 

occurred – as reported in the data in this chapter – during Tasks 3, 9, 16, 21, 23, and 25. 

Linda also used vague language when describing quantities, which made it difficult at 

times for me to model her thinking. For example, for Task 10 (explain your meanings for 

4÷1/3) in Phase 1, Linda said, “How many 1/3 copies make 4?” which is not as clear as, 

“How many copies of 1/3 make 4?” For Task 16 (13 gallons fill 5 containers) in Phase 3, 

Linda said, “Five copies of each container make a total of 13 gallons.” This language 

could mean, “Five copies of one container make a total of 13 gallons,” or “Five copies of 

all the containers make a total of 13 gallons.” For Task 25 (justify the invert-and-

multiply algorithm) in Phase 1, Linda said “part of it is,” but she was not clear about the 

“it” in her sentence. She also said, “add the amount of parts,” which can be referring to 

the quantity, number of parts, or to the quantity, amounts of stuff contained in those 

parts. As an example of another language issue, Linda sometimes used the phrase “divide 

into,” which is a chameleon expression that can be used to describe two different 

quantitative operations. For example, does “two divided into six” mean 2÷6 partitively or 

6÷2 quotitively? Alternatively, Linda may have been using the phrase to mean a 
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numerical operation, devoid of quantitative meaning. These are just a few examples of 

the many instances where her communication was vague. Clark, Moore, and Carlson 

(2008) discussed the importance of clear mathematical communication, and they said it 

perfectly when they said, speak with meaning. 
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CHAPTER 9 

CONCLUSION 

The findings from this study testify of the difficulties that professional 

development providers face when helping practitioners acquire productive mathematical 

meanings. This study shed light on some of the cognitive obstacles that hinder 

mathematical development, but there is still much to learn. In this chapter, I share the 

following: 

(1) Summary of the background of this study 

(2) Summary of my findings 

(3) Emergence of a framework for characterizing robust meanings for division 

(4) Limitations of the study 

(5) Implications for curriculum and instruction 

(6) Directions for future research 

Summary of the Background of this Study 

Researchers have described two fundamental conceptualizations for division, 

known as partitive and quotitive division. Several researchers have also identified many 

cognitive obstacles that have inhibited the development of robust meanings for division 

involving non-whole values, while other researchers have commented on the challenges 

related to such development. Regarding division with fractions, much research has been 

devoted to quotitive conceptualizations of division, or on symbolic manipulation of 

variables. Research and curricular activities have largely avoided the study and 

development of partitive conceptualizations involving fractions, as well as their 

connection to the invert-and-multiply algorithm. 
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I designed this dissertation study to focus on the advancement of teachers’ 

partitive meanings to enable them to productively assimilate fractional divisors. This 

study was motivated for the following reasons: (1) partitive division over the positive 

rational numbers is detrimentally underemphasized in contemporary curriculum and 

standards for teaching mathematics, (2) partitive meanings form a conceptual foundation 

for other mathematical meanings, such as rates and proportional correspondence, and for 

the invert-and-multiply algorithm, and (3) limited research is available on this topic. I 

investigated six middle school mathematics teachers’ meanings related to partitive 

conceptualizations of division over the positive rational numbers. I also investigated the 

impact of a teaching experiment that I designed with the intent of advancing one of these 

teachers’ meanings. 

Summary of Findings 

 I designed the methodology and analysis of the data in an effort to answer two 

primary research questions, which encompassed eight secondary research questions. In 

this section, I summarize my findings with regards to these research questions. I analyzed 

the data from Phases 1 and 2 to answer my first primary research question: What 

meanings, with their affordances and limitations, do in-service middle school 

mathematics teachers possess relative to partitive conceptualizations of division with 

non-whole divisors? The data from Phase 1 corresponded to secondary research questions 

RQ1.1-RQ1.5 and the data from Phase 2 corresponded to secondary research question 

RQ1.6. 
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RQ1.1: Fractions as Reciprocal Measures of Relative Size 

I analyzed Phase 1 data to answer RQ1.1: What meanings do teachers reveal 

when they engage in tasks that I designed to elicit meanings for fractions as measures of 

relative size, with a focus on fractions as reciprocal measures of relative size? I used 

reversible scheme to refer to a dual-scheme that constitutes schemata for enacting and 

reversing a process, such that the reverse scheme is instantly accessible as a companion 

to the forward scheme. I borrowed from Thompson and Saldanha (2003) by 

characterizing the scheme for fractions as reciprocal measures of relative size as a 

reversible scheme specific to comparing the magnitudes of two quantities – in both 

directions – through means of imagining reciprocal fractions. The data from this study 

revealed that imagining the reciprocal of one comparison to determine the reverse 

comparison was not self-evident for any of the teachers, which suggested that none of the 

teachers possessed the scheme for fractions as reciprocal measures of relative size. The 

data revealed that for some teachers, the use of mixed numbers was a severe hindrance to 

imagining the reciprocal fraction. Ultimately, five of the six teachers were ultimately able 

to compare the red and green strips to each other in Task 3 of Phase 1 imagining 

reciprocal fractions, but only two teachers were able to provide a quantitative 

justification. 

RQ1.2: Decontextualized Multiplication 

I analyzed Phase 1 data to answer RQ1.2: What meanings do teachers reveal 

when they describe and model symbolic (decontextualized) statements of multiplication, 

both general and specific, with a focus on fractional multipliers? No teacher experienced 

difficulty modeling multiplication with a whole-valued multiplier. However, for Task 6 
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(5/3×2) in Phase 1, one teacher had no meaning for 5/3 as the multiplier, and the 

remaining five teachers thought of 5/3 as a mixed number in order to model the product. 

None of the teachers contracted 2 by a factor of 1/3, followed by expanding this amount 

by a factor of 5. This was significant to me because the mixed number obscured the 

elegance of the dual-scheme of contraction followed by expansion. As such, the mixed 

number can be a cognitive obstacle to reversing the effects of a fractional multiplier by 

imagining the reciprocal fraction. During this same task, one teacher demonstrated a 

multiplier-switch, which I defined to be the phenomenon when a person imagines one 

factor as the multiplier, but then – during the process of modeling – the person instead 

views the model (with or without awareness) as a justification for the other factor as the 

multiplier. In cases where the multiplicand is a whole number, a multiplier-switch can be 

an impediment to formulating a productive meaning for a fractional multiplier because it 

provides a sensible way to circumvent the formulation of such a meaning. 

The data also revealed the teachers’ difficulties with fractional multipliers caused 

by inattention to re-unitization. During Task 6, one teacher experienced repeated 

perturbations due to conflating 1/3 of 2 with 2/6. Such issues were widespread throughout 

the study – all teachers encountered perturbations at some point because of issues related 

to re-unitization. The data also suggested that the lack of a specific context contributed 

significantly to the teachers’ inabilities to maintain multiple levels of units. 

RQ1.3: Decontextualized Division 

I analyzed Phase 1 data to answer RQ1.3: What meanings do teachers reveal 

when they describe and model symbolic (decontextualized) statements of division, both 

general and specific, with a focus on fractional divisors? In this study, I observed that 
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some teachers could operate with both conceptualizations, yet they did not seem to 

realize that their ways of operating were inconsistent. These teachers became perturbed 

when I asked questions that alluded to their inconsistency. Another teacher was aware of 

the dual meanings, but conflated the meanings while trying to model division tasks, 

which led to cognitive dissonance. Other teachers did not seem to have any awareness of 

multiple conceptualizations for division. Concerning the dual meanings for division, no 

teacher demonstrated partitive-quotitive awareness, which is when a person possesses 

the following two characteristics: (1) awareness of the two quantitative 

conceptualizations for division, and (2) ability to operate under one conceptualization 

without interference from the other, while maintaining an awareness of the 

conceptualization with which they are operating. Concerning the second condition, I 

identified two types of partitive-quotitive interference. The first type was partitive-to-

quotitive assimilation, which I defined to occur when a person assimilates partitively-

framed division tasks to quotitive schemata. Four of the teachers exhibited these mis-

assimilations at some point during Phase 1, and it occurred when the division tasks were 

abstract and when the divisors were not whole. For Task 11 (1/2÷3/4) in Phase 1, three 

of the teachers created models for multiplication instead of division, a phenomenon 

reported by other researchers (e.g., Jansen & Hohensee, 2016; Simon, 1993). 

RQ1.4: Partitive Scenarios 

I analyzed Phase 1 data to answer RQ1.4: What meanings do teachers reveal 

when they engage in tasks that I designed to elicit partitive conceptualizations of division, 

with varying degrees of abstraction, and with a focus on fractional divisors? The data 

from the tasks corresponding to RQ1.4 revealed more instances of partitive-to-quotitive 
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assimilation, which was the first type of partitive-quotitive interference. Additionally, I 

identified a second type, which I called quotitive-modeling interference, to refer to any 

difficulties in modeling partitive division that are caused by inappropriately applying 

meanings or strategies that are typically associated with quotitive division models. The 

data suggested that three teachers were impaired because of quotitive-modeling 

interference. This cognitive obstacle manifest itself in three different ways: (1) 

deliberately creating a quotitive model to cope with confusion during an attempt to model 

partitively, (2) confusion due to beginning a partitive model with a representation of the 

dividend (commonly done for quotitive modeling), and (3) modeling the dividend and 

divisor using a common unit (required for quotitive models, but errant for partitive 

models). During the water-container tasks, no teacher demonstrated partitive-quotitive 

interference, due to the specificity of the contexts. The primary cognitive obstacles for 

these tasks were related to mixed-number interference, re-unitization, and fractions as 

reciprocal measures of relative size. 

RQ1.5: Invert-and-Multiply Algorithm 

I analyzed Phase 1 data to answer RQ1.5: What justifications do the teachers 

provide for the invert-and-multiply algorithm after working through the (water-

container) tasks? Leading up to Task 25 (explain the algorithm), all six teachers had the 

opportunity to generalize with two different fractional divisors in the water-container 

tasks; Task 21 (some amount of water fills 9/4 containers) and Task 24 (some amount of 

water fills 2/3 container). The data revealed that successful generalization in Tasks 21 

and 24 did not guarantee a meaningful explanation for Task 25. Mindi, Mel, Uma, and 

Ursa were able to generalize both Task 21 and 24, but only Mindi and Mel were able to 
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use the same water-container context to generalize even further to explain Task 25. Uma 

was also technically successful although she believed she was not because she 

unfortunately said that a×c/b implied that multiplication by c should precede division by 

b, which was not the order she wanted. Ursa did not connect Task 25 to Tasks 21 and 24 

and she tried unsuccessfully to resolve Task 25 using a quotitive conceptualization. Mark 

was not successful at generalizing in either water-container task, and consequently he 

could not generalize for Task 25. Linda generalized successfully only for Task 24, but 

she unsuccessfully attempted a quotitive explanation for Task 25. In summary, two 

teachers used the water-container tasks (partitive conceptualizations) to justify the 

algorithm, two teachers unsuccessfully attempted a quotitive explanation, and two 

teachers unsuccessfully attempted a partitive explanation. Additionally, three of the 

unsuccessful teachers exhibited partitive-quotitive interference during their attempts at 

Task 25. 

RQ1.6: Additional Cognitive Obstacles 

I analyzed Phase 2 data to answer RQ1.6: What cognitive obstacles do teachers 

further reveal as I actively attempt to promote the development of their meanings that are 

foundational to partitive division over the rational numbers? My findings reported in this 

dissertation only refer to Linda’s schemes. Phase 1 revealed that she had weak meanings 

regarding re-unitization, that she could not operate with fractional multipliers, and that 

did possess partitive-quotitive awareness. As I engaged her in activities that I designed to 

strengthen these schemes, I was able to discern additional cognitive obstacles for Linda. 

When she tried to model products with fractional multipliers and whole-valued 

multiplicands, she repeatedly experienced multiplier-switches. This happened even in 
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cases where she was deliberately trying to avoid it. Linda also revealed issues with not 

only re-unitizing, but with unitizing. By this I mean that she could not conjure appropriate 

units for the fractions she was trying to operate with, which suggested a disengagement 

from quantitative reasoning. Also, given one value and its unit, she could not conjure a 

new unit for a second value, which was detrimental to her success at a partitive model for 

3÷1/4. Furthermore, she struggled to give a quantitative description of a general 

multiplicative statement, using language to describe the product that was effectively the 

same as the language she used to describe the multiplier. Consequently, she struggled 

with providing consistent quantitative meanings for division, including confusion about 

the correct ordering of the dividend and divisor. Additionally, Linda revealed weakness 

with language. She was vague when she described quantities and operations, and she 

nearly always omitted units when saying and writing values. She also struggled with 

interpreting the correct direction for a multiplicative comparison from written text. 

Lastly, she revealed an inability to retain information and ways of thinking, which raised 

questions about what is required to establish permanence for schemes. 

I now move on to summarize my findings for RQ2.1 and RQ2.2, which 

corresponded to Phase 3 of my study. These findings addressed my second primary 

research question: How do these teachers’ meanings change as a consequence of an 

instructional sequence that emphasized quantitative reasoning to aid in the advancement 

of these meanings? 

RQ2.1: Comparative Analysis of Phases 1 and 3 

I analyzed Phase 3 data to answer RQ2.1: How do the teachers’ post-intervention 

meanings compare to their pre-intervention meanings? I compared Linda’s work in 
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Phase 3 to her work on the same tasks in Phase 1. Behaviorally, there were several 

differences as show in Table 15, which indicated changes to the underlying schemes. The 

most obvious changes related to fractions as reciprocal measures of relative size and 

partitive-quotitive awareness. I elaborate on these changes in response to my final 

secondary research question, summarized in the following subsection. 

RQ2.2: Characterizing Linda’s Advancements 

I analyzed Phase 3 data to answer RQ2.2: What advancements to the teachers’ 

schemes are evident and what challenges remain? I focused my analysis on Linda’s 

schemes for fractional multipliers, re-unitization, and meanings for division. In Phase 1, 

Linda said she did not know how to think about a fractional multiplier, but in Phase 3 she 

described partitioning then iterating, which was an advancement. However, she exhibited 

a multiplier-switch while modeling 5/3×2, while believing that she had accurately 

modeled the fractional multiplier. My analysis of Linda’s data from all phases revealed 

that the number type of the multiplier was a perfect predictor for whether she could 

meaningfully operate using multiplication and both meanings of division. She was always 

successful at producing a model when the multiplier was a whole number, and she always 

struggled at producing a model when the multiplier was not a whole number. 

Regarding re-unitization, Linda demonstrated difficulties during Phase 1. The 

data from Phase 3 revealed some advancements, but some persistent struggles as well. In 

Phase 1, she struggled recognizing one magnitude as two different values depending on 

the unit-of-measure. Once she had a unit in mind, she was virtually unable to transition to 

another unit. In Phase 3, she was able to re-unitize for the strip-comparison task by 

recognizing that 1/3 of the green strip was the same length as 1/8 of the red strip. 
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However, her nascent reciprocal-comparison scheme was not reflectively abstracted to 

the point of applying to analogous situations in the water-container tasks. For example, 

she could not recognize on her own that 1/4 of a container was 1/9 of the given amount of 

water, which prevented her from being able to reason productively through the task. 

Concerning division, the data revealed that Linda had advanced significantly 

regarding the first condition of partitive-quotitive awareness. In Phase 1, she could only 

operate under a quotitive conceptualization, but in Phase 3, she expressed both meanings 

for division by writing “how many b copies are in a?” and “b copies of what = a?” 

However, Linda’s awareness, and her abilities with language, did not ensure success at 

producing meaningful models for each question, as evidenced in Tasks 9 and 10 from 

Phase 3, where Linda was not successful at quotitively modeling 4÷3, nor at partitively 

modeling 4÷1/3. Also, during Phase 3, there were instances of quotitive-modeling 

interference, and partitive-to-quotitive assimilation. Thus, Linda’s schemes were not 

advanced enough to satisfy the second condition of partitive-quotitive awareness. 

Emergence of a Framework for Robust Meanings for Division 

Prior to this study, I considered a person to have robust meanings for division if 

that person 

1) Operated meaningfully with both partitive and quotitive conceptualizations 

over the positive rational numbers. 

2) Possessed an awareness of the distinctions between partitive and quotitive 

conceptualizations regardless of number type. 

3) Recognized and/or invented situations that elicited both partitive and quotitive 

conceptualizations involving any kind of positive rational values. 
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As a consequence of my findings in this study, I have created a more extensive 

framework for characterizing robust meanings for division, which is shown in Figure 63. 

 
Figure 63. Framework for robust meanings for division. 

Even though this framework focuses primarily on division, the development of 

other mathematical meanings (e.g., multiplication, relative size, re-unitization) is 

essential for a person to have all the abilities I described above. For example, in this 

study, several teachers could not productively think about fractions as reciprocal 

measures of relative size. This issue is related to issues with re-unitizing, which plagued 
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several teachers throughout the entire study. Also, teachers with weak or no meanings for 

fractional multipliers have little chance at developing partitive meanings with fractional 

divisors. This framework is founded on four underlying principles, which I discuss in the 

paragraphs that follow. 

 Principle 1: The operation of division must be a quantitative operation, not just a 

numerical operation. If the operation is not already connected to some sort of context, and 

is presented symbolically, then a person should be able to conjure a quantity-based 

scenario that would elicit the relevant operation. The quantities in this scenario can be 

abstract (e.g., the number of groups) or specific (e.g., the number of cookie packages). 

The more specific the quantities, the less likely that a person will conflate units. For 

example, instead of thinking about a group of cookies, a person should think about a 

package of cookies. In this example, a package provides the thinker with something more 

concrete to imagine, as well as the language to describe the re-unitized collection of 

cookies. As another example, to add specificity to a scenario, I used colored strips in my 

tasks and activities to allow easy communication about which strip was the object of my 

focus. The data from this study revealed that unitizing issues tended to occur when 

teachers imagined quantities that were vague or abstract. 

 Principle 2: Division must be appropriately connected to a non-commutative, 

quantitative model for multiplication. Numerical commutativity for multiplication was a 

hindrance to my efforts in this study to help teachers build meaningful operations with 

fractional values. For example, it allowed some teachers to circumvent the meaning of a 

fractional multiplier, which is crippling to the development of division schemes. It is not 

adequate for a person to think that division only solves a missing factor problem, without 
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regard to which factor. That person must construe division as either solving a missing 

multiplicand problem, or as solving a missing multiplier problem, and recognize that 

these objectives are not the same. Without distinct meanings for the factors in 

multiplication, a dual-meaning for division is not possible. 

 Principle 3: Robust meanings for division require an elevated awareness of the 

quantitative distinctions between the two conceptualizations, which is what I call 

partitive-quotitive awareness. The data revealed that a lack of partitive-quotitive 

awareness was a leading source of the teachers’ dissonance and invalid reasoning. As 

such, robust meanings for division are dependent on reflectively abstracted schemes to 

the point of possessing a categorization of the two conceptualizations. A person should be 

able to operate with one conceptualization without interference from schemes related to 

the other conceptualization, while maintaining a realization of the conceptualization with 

which they are operating. 

Principle 4: Meaningful division must be accompanied by meaningful language. 

A person with weak meanings is more likely to use unclear, inconsistent language. And 

conversely, unclear language may cause mis-assimilations. For example, partitive 

language such as “split four into three groups” is very clear because the number of groups 

is a whole number. However, during this study, I witnessed partitive-to-quotitive 

assimilation by some teachers when I repeated this partitive language, but with a 

fractional divisor. For example, some teachers interpreted “split four into one-third 

groups” as “split four into groups of size one-third.” This demonstrated that language, 

that was meaningful with one type of number for a divisor, caused perturbations and mis-

assimilations when that same language was used with a different type of number for the 
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divisor. A person should also have meaningful language to describe the two 

conceptualizations themselves. They do not necessarily need to use the words quotitive 

and partitive, but they should be able to say something that is sensible for any rational 

dividend and divisor. As such, I recommend avoiding common labels, such as fair-

sharing and repeated-subtraction, which are only sensible in certain situations. Since I 

consider it important to maintain a connection to non-commutative multiplication, I 

recommend characterizing the two conceptualizations as “how-many-copies-division” 

and “how-much-in-each-copy-division.” 

Limitations of the Study 

There were several aspects of this study that I would improve were I to repeat the 

study. There were several instances where I strayed from my protocol and neglected to 

ask certain questions. Some examples of this include me forgetting to ask teachers to 

provide quotitive models for tasks they had only attempted with a partitive 

conceptualization, and forgetting to ask some teachers to connect contexts with symbolic 

operations. In particular, I would have liked to know what division operation the teachers 

connected with the water-container tasks (especially for 2/3 container) so that I could 

better ascertain whether the teachers connected these tasks to the invert-and-multiply 

algorithm. For Task 3 (comparing the red and green strips) in Phase 1, I asked for both 

comparisons at the same time, but I should have asked for each comparison separately to 

determine how the teachers interpreted the prompts. Concerning the teaching experiment, 

I wonder what would have resulted if I had given the teachers take-home activities, so 

that they had extra opportunities to reflect on their newly formed ways of thinking. Or, I 

could have planned for more time with the teachers during the teaching experiment to let 



 

262 
 

them engage in repeated reasoning in hopes of establishing permanence for their recently 

developed schemes. Also, the data was replete with examples of procedural 

contamination, which was unavoidable working with in-service practitioners. Procedural 

contamination casts a faint shadow on the quality of the data in this study, and in any 

similar studies with practitioners. I say this because the use of procedures to guide (or to 

replace) quantitative reasoning offered the teachers an alternative approach to resolve 

tasks, which impacted (or circumvented) their efforts at quantitative reasoning. 

Implications for Curriculum and Instruction 

Robust quantitative reasoning is essential to meaningful mathematics. The 

findings of this study affirm the importance of grounding mathematics in quantity-based 

contexts. I support contemporary efforts, such as the CCSSM (National Governors 

Association Center, 2010) and NCTM (2014), to focus mathematics curriculum on 

meaning-making. If possible, all mathematical ideas should be introduced, discussed, and 

fleshed out by reasoning about specific quantities that are relatively easy to describe and 

imagine. 

Concerning re-unitization, as soon as possible in the cognitive development of the 

students, educators should frequently implement activities that require multiple units-of-

measure. For example, educators could engage their students in activities such as the 

following. 

Activity 1: Describe the size of different collections of squares of a 3-by-4 array 

in units of row, column, and array. 



 

263 
 

Activity 2: Describe the length of a strip of paper in units of several differently 

colored strips of paper with different lengths. These colored unit-strips could also be 

combined to form new units of measure. 

Activity 3: Describe different amounts of packages and cupcakes, in units of 

cupcake, package, and crate of packages. 

With regards to multiplication, educators should introduce children to 

multiplication only in contexts with specific quantities. When a context suggests 

multiplication, reversing the order of multiplication is not a sensible action. Thus, the 

notion of numerical commutativity of multiplication should be delayed until after robust 

quantitative meanings for the multiplier and multiplicand are well established. 

Furthermore, a convention should be adopted to establish a consistent position for the 

multiplier. 

To build robust meanings for fractional multipliers, curriculum should focus on 

contraction (partitioning) followed by expansion (iterating) of unit quantities. For 

example, an educator could require students to find fractional multiples of one strip of 

paper with an emphasize on length, of one piece of paper with an emphasis on area, or of 

one block of clay with an emphasis on weight or volume. Subsequent activities could 

include the values of these quantities as measured in some other unit. For example, an 

educator would first require students to find 5/3 of a strip of paper, then reveal the length 

of the paper as nine inches, and then ask for the length of the scaled paper in inches. 

Additionally, curriculum should emphasize immediately reversing the effect of scaling an 

amount by a fractional multiplier. Repetition with appropriate activities, such as the red- 

and green-strip activities, can be conducive to the development of fractions as reciprocal 
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measures of relative size. When appropriate and often, these reciprocal-comparison 

activities should be revisited in other contexts, such as comparisons of volumes, areas, or 

counts of people. 

With regards to division, I believe there is much room for improvement in K-12 

education, post-secondary pre-service programs, and professional development efforts. I 

acknowledge that division may be most accessible to a young child in terms of fair-

sharing or repeated-subtraction. However, at the appropriate moment in the cognitive 

development of the students, educators should only connect division to multiplication by 

characterizing division as either a missing-multiplier or a missing-multiplicand task. It 

would be advisable to connect these new characterizations of division to the extant 

notions of fair-sharing and repeated-subtraction, but I recommend that educators then 

permanently abandon these early notions. Furthermore, I contend that partitive and 

quotitive division should be equally emphasized by educators, even for fractional 

divisors. Educators could use the water-container activities discussed in this paper, using 

actual containers as manipulatives. In such contexts, partitive and quotitive meanings for 

division could be developed for whole- and non-whole-valued divisors. I feel strongly 

that implementing such changes over the course of a student’s K-12 education would 

yield powerful results. 

Directions for Future Research 

The framework for robust meanings of division that I presented in the previous 

section provides several opportunities for future research. Some such research has already 

been conducted by Jansen and Hohensee (2016), who used the construct connected 

conception to discuss whether a person could connect symbolic statements with partitive 
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contexts, and connect partitive division with finding a unit rate. This is related to 

conditions 3 through 5 (specific to partitive conceptualizations) in the framework I 

presented above. Jansen and Hohensee also used the construct flexible conception to 

discuss whether a person could appropriately partition and/or iterate a dividend to 

produce accurate quotients, which is related to condition 6 in the framework. Other 

research opportunities include investigating a person’s ability to connect notions of fair-

sharing, or notions of finding a unit rate, with missing-multiplicand tasks. The data in this 

dissertation study revealed that it was not trivial for some teachers to connect the thought 

of splitting a into b groups with the thought b copies of what amount make a. Additional 

research is required to investigate these types of connections (which relate to conditions 1 

and 2 in the framework), and especially for cases of division involving fractional 

divisors. This dissertation study revealed several findings regarding partitive-quotitive 

awareness (condition 7), but more research is required to investigate overcoming 

partitive-quotitive interference. For example, Ursa was aware of the two meanings, but 

she exhibited many instances of partitive-quotitive interference. However, Ursa did not 

participate in the teaching experiment and so I was unable to investigate attempts to 

elevate her partitive-quotitive awareness. As another research opportunity, during this 

dissertation study I lightly investigated how water-container tasks contributed to the 

teachers forming a meaningful, partitive foundation for the invert-and-multiply algorithm 

(condition 8). However, connecting the water-container tasks to this algorithm was not a 

primary objective of the teaching experiment. Thus, additional research is required to 

more fully investigate partitive conceptions and the invert-and-multiply algorithm. 

Furthermore, I did not research, nor have I found any research that has specifically 
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investigated how partitive conceptualizations can form a meaningful foundation for the 

long-division algorithm. 

Other questions surfaced during this study for which I did not have adequate data 

to address. During Phase 1, no teacher in this study revealed an existing scheme for 

fractions as reciprocal measures of relative size. Concerning the development of such a 

scheme, Thompson and Saldanha (2003) said, “The fact that this understanding happens 

so rarely among U.S. students makes it quite hard to research its development. But the 

fact that these understandings of fractions exist so rarely is a significant problem for U.S. 

mathematics education (p.33).” During the teaching experiment, I used the red- and 

green-strip activities to help Linda develop such a reversible scheme. During Phase 3, she 

was successful with the strip-comparison task, but her newly formed schemes were not 

abstracted enough to allow assimilation for analogous tasks that did not involve strips of 

paper. As such, more research is required to investigate how to facilitate the abstraction 

of schemes for fractions as reciprocal measures of relative size. 

The data in this study also revealed that newly formed schemes were often 

ephemeral for Linda. Frequently, she would practice some way of thinking, but then 

forget or conflate it later during the teaching experiment. She noticed this about herself 

when she said, “I started breaking through last time. Why can’t it come back?” This 

raises questions about what it takes to establish permanence of schemes, for which more 

research is required, especially concerning schemes related to partitive meanings for 

division with fractional divisors. 

 Linda was successful with every multiplication and division task that involved 

whole-valued multipliers, but she struggled with every multiplication and division task 
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that involved non-whole-valued multipliers. For her, the type of number for the multiplier 

was a perfect predictor of success for both multiplication and division. More research is 

required to determine if these findings extend to the general population, and to further 

investigate cognitive advancement in this regard. 

During this study I attributed some of the teachers’ difficulties creating partitive 

models of division to quotitive-modeling interference. However, this was conjecture, as 

supported by the data. More research is required to establish whether quotitive modeling 

schemes truly interfere with attempts at partitive modeling. 

Finally, I would be interested in conducting components of the teaching 

experiment that I described in this paper, with young students, who have not yet been 

exposed to the procedures for operating with fractions. This would eradicate the concerns 

I have expressed concerning procedural contamination. Such a study would certainly 

yield interesting and illuminating findings. 
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APPENDIX A 

COMMON CORE STANDARDS REGARDING DIVISION 
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Below I list the standards regarding meanings for division as found on the 

CCSSM placements for grades K-8 (2010). 

 3.OA.A.2 

Interpret whole number quotients of whole numbers (e.g., interpret 56 ÷ 8 as the number 

of objects in each group when 56 objects are partitioned equally into 8 groups, or as a 

number of groups when 56 objects are partitioned into equal groups of 8 objects each).  

 

 3.OA.A.3 

Use multiplication and division within 100 to solve word problems in situations involving 

equal groups, arrays, and measurement quantities. 

 

 3.OA.B.6 

Understand division as an unknown-factor problem (e.g., find 32 ÷ 8 by finding the 

number that makes 32 when multiplied by 8). 

 

 5.NF.B. 7  

Apply and extend previous understandings of division to divide unit fractions by whole 

numbers and whole numbers by unit fractions. (Note: Students able to multiply fractions 

in general can develop strategies to divide fractions in general, by reasoning about the 

relationship between multiplication and division.) 

a. Interpret division of a unit fraction by a non-zero whole number, and compute 

such quotients. For example, create a story context for FQ ÷ 4, and use a visual fraction 

model to show the quotient. Use the relationship between multiplication and division to 

explain that FQ ÷ 4 =
F
FT because FFT × 4 =

F
Q. 

b. Interpret division of a whole number by a unit fraction, and compute such 

quotients. For example, create a story context for 4 ÷ F
`, and use a visual fraction model to 

show the quotient. Use the relationship between multiplication and division to explain 

that 4 ÷ F
` = 20 because 20 × F

` = 4. 
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c. Solve real world problems involving division of unit fractions by non-zero 

whole numbers and division of whole numbers by unit fractions, e.g., by using visual 

fraction models and equations to represent the problem. For example, how much 

chocolate will each person get if 3 people share ½ pound of chocolate equally? How 

many ⅓-cup servings are in 2 cups of raisins? 

 6.NS.A.1  

Interpret and compute quotients of fractions, and solve word problems involving division 

of fractions by fractions, e.g., by using visual fraction models and equations to represent 

the problem. For example, create a story context for TQ ÷
Q
R and use a visual fraction model 

to show the quotient; use the relationship between multiplication and division to explain 

that TQ ÷
Q
R =

a
S because QR of aS is TQ. In general, +, ÷

B
b =

+b
,B. How much chocolate will each 

person get if 3 people share ½ pound of chocolate equally? How many ¾ cup servings are 

in ⅔ of a cup of yogurt? How wide is a rectangular strip of land with length ¾ mile and 

area ½ square mile?  
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APPENDIX B 

PHASE 1 TASKS 
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Task 1: Explain your meanings for the expression:  3
4
 

Task 2: Do the following and justify your answers. 

This line has a length that is 
8/5 of a unit. 

→  

Draw a line here that is 1 
unit long. 

→  

Task 3: Given these two strips of paper, how long is the red strip compared to the green 

strip? How long is the green strip compared to the red strip? 

 
Task 4: Explain your meanings for the expression:    𝑎	 × 	𝑏 

Task 5: Explain your meanings for the expression:    5	 ×	L
8
 

Task 6: Explain your meanings for the expression:    M
8
	× 	2 

Task 7: Explain your meanings for the expression:    7
M
	× 	L

8
 

Task 8: Explain your meanings for the expression:    𝑎 ÷ 𝑏 

Task 9: Explain your meanings for the expression:    4 ÷ 3 

Task 10: Explain your meanings for the expression:    4 ÷ <
8
 

Task 11: Explain your meanings for the expression:    <
7
÷ 8

L
 

Task 12: 10/3 copies of what amount combine to make the amount 15? 

Task 13: 6 copies of what amount combine to make the amount 15? 

Task 14: How much is in one group if 15 of something is split into 10/3 groups? 

Task 15: How much is in one group if 15 of something is split into 6 groups? 

Task 16: Suppose 13 gallons of water fill 5 equal containers. Describe the capacity of 

one whole container. 

Task 17: Suppose 3/4 gallon of water fills 5 identical containers. Describe the capacity of 

one whole container. 
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Task 18: Suppose a certain amount of water fills 5 identical containers. Describe the 

capacity of one whole container. 

Task 19: Suppose 27 gallons of water fill 9/4 identical containers. Describe the capacity 

of one whole container. 

Task 20: Suppose 3 gallons of water fill 9/4 identical containers. Describe the capacity of 

one whole container. 

Task 21: Suppose a certain amount of water fills 9/4 identical containers. Describe the 

capacity of one whole container. 

Task 22: Suppose 5 gallons of water fill 2/3 of a container. Describe the capacity of one 

whole container. 

Task 23: Suppose 7/4 gallons of water fill 2/3 of a container. Describe the capacity of 

one whole container. 

Task 24: Suppose a certain amount of water fills 2/3 of a container. Describe the capacity 

of one whole container. 

Task 25: Explain why it is that when you divide by a fraction, you can multiply by the 

reciprocal of the fraction instead. In other words, explain the following: 

𝑎 ÷
𝑏
𝑐 = 𝑎	 ×	

𝑐
𝑏 
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APPENDIX C 

PHASE 2 ACTIVITIES FOR LINDA 
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Activity 1: Given the pink strip of paper, draw a strip of paper that is a times as long. 

(For 𝑎 = 3, <
M
, 8
M
, ?
M
, 2 <

8
, 1.7) 

Activity 2: Describe your meanings for the expressions: 4 × 5, 4 × M
8
, L
8
× 5 

Activity 3: The green strip is how many times as long as the red strip? The red strip is 

how many times as long as the green strip? 

 

Activity 4: Describe your meanings for the expressions: 𝑎 × 𝑏, W
X
× 𝑏 

Activity 5: The yellow strip is how many times as long as the blue strip? The blue strip is 

how many times as long as the yellow strip? 

 

Activity 6: Describe your meanings for the expressions: 𝑎 ÷ 4, 𝑎 ÷ <
L
 

Activity 7: How much water is in one container when 20 gallons fill 4 identical 

containers? How many containers are needed to hold 20 gallons of water if each 

container can hold 4 gallons? 

Activity 8: Suppose some amount of water fills 5 containers. Describe how much water 

would fill a whole container. 

Activity 9: Suppose some amount of water fills the blue-rimmed (1.75) containers. 

Describe how much of the given amount of water would fill a whole container? 

Activity 10: Suppose some given amount of water fills 2 and 7
8
 containers. Describe how 

much of the given amount of water would fill a whole container. 

Activity 11: Suppose some given amount of water fills 8
M
 containers. Describe how much 

of the given amount of water would fill a whole container. 

Activity 12: Describe your meanings for the expressions: 𝑎 ÷ Y
M
, 𝑎 ÷ 8

?
, 𝑎 ÷ <

8
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APPENDIX D 

PHASE 3 TASKS 
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The numbering below is the numbering from Phase 1. In Phase 3, I presented the tasks in 
the same order as they are presented below. 

Task 3: Given these two strips of paper, how long is the red strip compared to the green 
strip? How long is the green strip compared to the red strip? 

 

Task 6: Explain your meanings for the expression:    M
8
	× 	2 

Task 8: Explain your meanings for the expression:    𝑎 ÷ 𝑏 

Task 9: Explain your meanings for the expression:    4 ÷ 3 

Task 10: Explain your meanings for the expression:    4 ÷ <
8
 

Task 18: Suppose a certain amount of water fills 5 identical containers. Describe the 
capacity of one whole container. 

Task 16: Suppose 13 gallons of water fill 5 equal containers. Describe the capacity of 
one whole container. 

Task 21: Suppose a certain amount of water fills SR identical containers. Describe the 
capacity of one whole container. 

Task 20: Suppose 3 gallons of water fill SR identical containers. Describe the capacity of 
one whole container. 

Task 24: Suppose a certain amount of water fills TQ of a container. Describe the capacity 
of one whole container. 

Task 23: Suppose UR gallons of water fill TQ of a container. Describe the capacity of one 
whole container. 

Task 25: Explain why it is that when you divide by a fraction, you can multiply by the 
reciprocal of the fraction instead. In other words, explain the following: 

𝑎 ÷
𝑏
𝑐 = 𝑎		 × 	

𝑐
𝑏 
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APPENDIX E 

LETTER OF CONSENT 
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The following is one example of the letter of consent I used for each meeting with 

each teacher. 

Meeting 1 
AMP Research Team 

 
 
Thank you for participating in this interview. I am collecting data 
as part of a research project for the Arizona Mathematics 
Partnership (AMP) to better understand how individuals reason 
mathematically. I will use the data for research purposes only. 
 
As we progress through the interview, I ask that you verbalize all 
your thoughts so that I can gather information about your thinking 
on various tasks. Additionally, I ask that you express your thoughts 
on paper by showing all your work and by drawing pictures which 
convey what you may be visualizing. 
 
The interview is expected to last no more than 90 minutes and you 
will be compensated at the rate of $25 per hour. If at any time you 
wish to stop the interview, please let me know. I want you to be as 
comfortable as possible. 
 
 

Teacher’s Name: 
 

Teacher’s Signature: 
(giving consent) 

 

Interviewer: Matthew Weber 

Interview Date: 
 

 
 


