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ABSTRACT 

 The concept of distribution is one of the core ideas of probability theory 

and inferential statistics, if not the core idea.  Many introductory statistics textbooks pay 

lip service to stochastic/random processes but how do students think about these 

processes?  This study sought to explore what understandings of stochastic process 

students develop as they work through materials intended to support them in constructing 

the long-run behavior meaning for distribution.   

I collected data in three phases.  First, I conducted a set of task-based clinical 

interviews that allowed me to build initial models for the students’ meanings for 

randomness and probability.  Second, I worked with Bonnie in an exploratory teaching 

setting through three sets of activities to see what meanings she would develop for 

randomness and stochastic process.  The final phase consisted of me working with 

Danielle as she worked through the same activities as Bonnie but this time in teaching 

experiment setting where I used a series of interventions to test out how Danielle was 

thinking about stochastic processes. 

My analysis shows that students can be aware that the word “random” lives in two 

worlds, thereby having conflicting meanings.  Bonnie’s meaning for randomness evolved 

over the course of the study from an unproductive meaning centered on the emotions of 

the characters in the context to a meaning that randomness is the lack of a pattern.  

Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of 

stochastic/processes, leading her to engage in pattern-hunting behavior every time she 

needed to classify a process as stochastic or not.  Danielle’s image of a stochastic process 

was grounded in whether she saw the repetition as being reproducible (process can be 
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repeated, and outcomes are identical to prior time through the process) or replicable 

(process can be repeated but the outcomes aren’t in the same order as before).  Danielle 

employed a strategy of carrying out several trials of the process, resetting the applet, and 

then carrying out the process again, making replicability central to her thinking. 
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Chapter 1: Introduction 

This dissertation describes an investigation into how students understand the 

concept of a random variable’s distribution.  Serving as the bridge connecting the fields 

of Probability and Statistics, distribution is one of the most important ideas in Statistics.  

Without this concept, statistical inference would not exist in the form we know, if at all.  

Both parametric and non-parametric methods of inference rely on the idea of distribution.  

However, for such a critical concept, students’ meanings for distribution have received 

little attention.   

Statement of the Problem 

Statistics courses have had increasing enrollments at both tertiary and high school 

levels.  Multiple sets of standards have called for increased focus on statistics including 

the NCTM Standards (National Council of Teachers of Mathematics, 2000), the 

Guidelines for Assessment and Instruction in Statistics Education (GAISE) reports 

(Aliaga et al., 2005; Franklin et al., 2007), and the Common Core State Standards for 

Mathematics (CCSS-M) (National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010).  While these standards documents have 

pushed statistical education forward, they treat “distribution” as a primitive/undefined 

term.  The GAISE report for preK–12 stresses that “students understand the idea of a 

distribution” (Franklin et al., 2007, p. 23) but does not explain or exemplify what might 

constitute an understanding.  Similarly, the GAISE college report notes that “students 

should understand the basic ideas of statistical inference including the concept of a 

sampling distribution” (Aliaga et al., 2005, p. 12).  The CCSS-M states that students 

should “develop a probability distribution for a random variable” but stops short of 
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suggesting how students should think about distributions or understand what it means to 

make one (see CCSS.Math.Content.HSS.MD.A.1–4). 

The notion of distribution of a random variable entails the coordination of 

multiple ideas that are each complex in its own right.  Students must bring together their 

images of randomness, random variable, random process, accumulation, and probability 

to build a coherent meaning for distribution.  This coordination provides a basis upon 

which students can build and reason with sampling distributions for statistical inference.  

This is important for what Saldanha and Thompson (2014) refer to as the inner logic of 

statistical inference.  Regardless of using replication, simulation (permutation, 

bootstrapping, or Monte Carlo), or asymptotic shortcut methods (traditional parametric or 

non-parametric), dealing with a distribution is inescapable for creating an inference.  

While much research exists on students’ understandings of probability (e.g., Doerr, 2000; 

Konold, 1989; Saldanha & Liu, 2014), randomness (e.g., Falk & Konold, 1994; 

Kahneman & Tversky, 1982; Liu & Thompson, 2002; Metz, 1998), sample statistics such 

as the sample arithmetic mean (e.g., Clark, Kraut, Mathews, & Wimbish, 2007; Faradj, 

2004; Mathews & Clark, 2007), little work has focused on how people think about 

distributions.  Existing inquiry into students’ meanings of distribution might be classified 

better as either 1) describing pictures of distributions (e.g., Arnold & Pfannkuch, 2012, 

2014) or 2) using sampling distributions for inference (e.g., Jacob & Doerr, 2014; Lipson, 

2003; Saldanha & Thompson, 2014).  Given the centrality of the notation of distribution, 

investigating how students understand the distribution of random variable, beyond their 

ability to reason about graphs/images, as well as outside of inference is necessary.  To 
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help develop a statistically literate populace, we must understand how students 

understand distribution so that statistics education may start from what students 

understand in supporting their construction of more powerful understandings.  This 

investigation aims to examine students’ understandings of distribution of a random 

variable and difficulties they have in creating more powerful understandings.  One of the 

most central aspects of the distribution concept is that of stochastic process.  The 

meanings that students have for this idea will invariable shape their conception of 

distribution. 

Research Questions 

The notion of distribution is vast (see Chapter 4).  To make this study more 

reasonable, I’m electing to use the distribution concept as a backdrop and focus in on 

stochastic processes.  Thus, this study investigates students’ meanings for stochastic 

process while they develop a conception of a random variable’s distribution. The primary 

research question driving this study is: 

• What meanings for stochastic process do students develop during an 

instructional sequence based upon a hypothetical learning progression for 

thinking of distribution describing the complete behavior of a stochastic 

process? 

Secondary research questions that derive from the theoretical foundation and design of 

the study includes: 
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• What impact do students’ meanings for randomness, random variable, and 

probability have on the development of their meaning for stochastic 

process during the instructional sequence? 

• What images of accumulation do students develop during the instructional 

sequence? 

Motivation for the Study 

My personal experiences both as a statistician and as a statistics educator 

influenced this study.  The concept of distribution in the courses I’ve taken was either 

unarticulated or was used as a label for a graph/table in the back of the textbook.  As a 

student, I was content to have this notation be ill defined. Not having a productive 

meaning did not prevent me from succeeding in my courses.  However, when I began 

teaching statistics, I ran into a problem.  I struggled with how to help students understand 

the first two moments (expected value and variance) of a distribution in a way that was 

true to Thompson’s theory of quantitative reasoning (Thompson, 1993, 2011).  This is to 

say, that I wanted to help students understand that the first two moments measured an 

aspect of the distribution and have a sense of what a measurement value meant.  After 

several discussions with a fellow statistics graduate student1, I reached a point where I 

felt that I had something I could work with, but was still dissatisfied.  I shared what I had 

done with Dr. Pat Thompson.  His feedback helped me to see that my lingering 

dissatisfaction stemmed from the issue that the object whose attributes the moments 

                                                
1 I’m indebted to Sarah Burke for the countless hours she gave as a sounding board and 
the helpful feedback she gave me on my “wild” ideas for statistics education. 
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measured was not fully specified.  The object was the distribution of a random variable.  

Upon this realization, the question became how to conceptualize the distribution of a 

random variable.  Thus, began my investigation into how students understand the 

distribution of a random variable. 

Chapter 2 provides a literature review for distribution along with ideas that it 

entails: ideas of randomness, random process and trial, random variable, and probability.  

Chapter 3 details the theoretical perspective that I used for the investigations.  A 

conceptual analysis of the idea of distribution (of a random variable) along with progress 

variables and a hypothetical learning progression make up Chapter 4.  I provide details 

and methods for my inquiry in the fifth chapter.  Chapter 6 is the first of my result 

chapters, focusing on three students’ conveyed meanings for randomness.  I then describe 

one student’s (Bonnie) meanings for stochastic process as Chapter 7.  Chapter 8 looks at 

a second student (Danielle) and the meanings for stochastic process she developed.  I 

conclude in Chapter 9 with a discussion of my results. 
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Chapter 2: Literature Review 

Given that distribution entails the coordination of multiple ideas, I present the 

literature review in three sections.  First, I will summarize the current literature on the 

concept of distribution.  Then I’ll present relevant literature on the ideas of randomness 

and random process.  The final section will discuss individuals’ understandings of 

probability. 

Distribution 

Existing research on students’ understandings of distribution tends to fall into 

three focus areas: understanding distribution, describing [images of] distributions, and 

dealing with distributions in the service of another concept such as variation2 or statistical 

inference.  In an examination of 46 statistics texts, there are five categories for how the 

authors define the concept of distribution.  Nine texts described distribution as some form 

of visual arrangement (e.g., a dot plot, histogram, or table) that shows the possible values 

along with the frequency of such a value.  The most populous set of texts (18 texts) 

define distribution as being a pairing of the values of a random variable and either the 

frequency, relative frequency, or the probability for each value.  While this category is 

similar to the first, there is no specific connection to data visualizations in this second set 

of texts.  The third category (eight texts) focused on cumulative probability functions 

(distribution functions) and presented either an integral or the probability notation 

P[X ≤ x] without any discussion of what these symbols mean.  Another eight texts make 

                                                
2 The concept of “variation” is nebulous and is often left undefined by authors, allowing 
each reader to impose whatever meaning they wish.  When I use the word “variation” I 
mean noticed changes in the value of an attribute (see the discussion of random variable 
in Chapter 4).  I will denote what I believe various authors to mean by “variation”. 
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up the fourth category where the authors use the word “distribution” but do not say what 

they mean by this word.  Finally, there are three texts that do not fit in any other 

categories; one equates distribution with a collection of data values and the other treats 

distribution as a synonym for frequency.  The last text defines distribution in the 

following way:  “The probability distribution of a random variable x, which we will 

denote by F, is any complete description of the probabilistic behavior of x” (Efron & 

Tibshirani, 1993, p. 22).  The first two of these categories (i.e., visual arrangement and 

pairing of values) mimic what statistics education researchers seem to take as the 

meaning of distribution when they look at how students understand the distribution 

concept.  The visual arrangement comes for viewing distribution as an arrangement while 

the pairing of values appears to stem for viewing distribution as a lens to examine an 

arrangement. 

Distribution as arrangement.  Leavy (2006) defined distribution as “the 

arrangement of values of a variable along a scale of measurement resulting in a 

representation of the observed or theoretical frequency of an event” (p. 90).  Leavy 

investigated pre-service elementary teachers’ understanding of distribution over a fifteen-

week course.  Leavy used the measures and representations that the teachers used to 

compare distributions as the teachers’ understanding of distribution.  At the onset of the 

course, the teachers did not appear to make use of distributional features (i.e., shape, 

center, variability [i.e. not all values being the same]/spread) when comparing data.  

While some teachers only made use of descriptive statistics such as the sample arithmetic 

mean, other teachers made use of graphical representations.  Leavy noted that the 
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graphics the teachers used at the beginning tended to illustrate various descriptive 

statistics rather than distributional features.  At the end of the course, Leavy (2006) found 

that the teachers used graphical representations much more often and selected certain 

graphical representations (e.g. histograms, stem-and-leaf plots, parallel box plots) to 

highlight certain distributional features.  Leavy took this shift as evidence that the 

teachers were now attending to global patterns in the data distributions.  Leavy 

characterized the shift as the pre-service teachers changing their focus from summarizing 

to exploring.   

Reading and Canada (2011) modified Leavy’s statement by introducing 

probability in place of theoretical frequency.  Reading and Canada (2011) go a step 

further and identify nine concepts upon which the notion of distribution depends: “center, 

variability [i.e., not the same], shape, density, skewness, relative frequency, probability, 

proportionality and causality” (p. 225).  They argue that the first seven concepts are 

features of the distribution and that “center, variability (spread), and shape are commonly 

agreed (see, e.g., Bakker, 2004; Leavy, 2006; Pfannkuch & Reading, 2006; Shaughnessy, 

2007; Garfield & Ben-Zvi, 2008) to be core concepts” (Reading & Canada, 2011, p. 225).  

These features of distribution appear to make up the concepts of empirical and theoretical 

distributions.  The distinction between empirical and theoretical distributions lies in the 

use of density, skewness, and relative frequency for empirical and using probability for 

theoretical.  The last two concepts (proportionality and causality) play a role in dealing 

with different sample sizes and making a connection between empirical and theoretical 

distributions.   
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Bakker and Gravemeijer (2004) expand on the notion of distribution as an 

arrangement with Figure 1.  They argue that students typically start at the base of the 

structure (i.e., with individual data values) and move upwards.  Experts combine both a 

downwards (i.e. starting with distribution) and upwards perspective.  Bakker and 

Gravemeijer propose a three-stage framework for characterizing students’ understandings 

of distribution.  Their first stage is where students view a distribution as a set of data 

values.  When students begin grouping data values together (e.g., creating bins for 

histograms or dot pots) and identifying modal clumps, Bakker and Gravemeijer say that 

the students are at the second stage.  The final stage is when students begin to reason with 

modal clumps and majorities rather than individual values.   

 
Figure 1. The structure of data and distribution (Bakker & Gravemeijer, 2004, p. 
148). 

In their closing remarks Garfield and Ben-Zvi (2004) define distribution as “a 

representation of quantitative data that can be examined and described in terms of shape, 

center, and spread, as well as unique features such as gaps clusters, outliers, and so on” 

(p. 400).  This definition is consistent with Leavy’s (2006) definition centering on an 

arrangement of values.  Garfield and Ben-Zvi make explicit a focus on a 

graphical/imagistic representation that Leavy implies.  The notion of distribution as an 
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arrangement (or representation) of values appears to support instruction that places focus 

on attributes of distributions, in particular measures of center, spread, and shape.  In turn 

these attributes of distribution become the very things that the distribution relies upon 

thus creating a circular relationship between the underlying object (the distribution) and 

the attributes of the object (center, spread, shape).   

Viewing distribution as an arrangement or representation of values is not unique 

to statistics education research.  Researchers focusing in judgment and decision-making 

and other fields also use this meaning of distribution.  Goldstein and Rothschild (2014) 

used the Amazon Mechanical Turk labor market to survey 619 adults in an attempt to 

investigate the common adult’s understanding of distribution.  Goldstein and Rothschild 

focused how accurate an individual was in making forecasts about numeric information 

of a distribution.  Participants watched a screen that displayed a sequence of one hundred 

numbered balls (numbered one to ten), one at a time, for 600 milliseconds each.  

Following this, the participants then used one of five methods to generate the distribution 

of numbers when they imagined resampling all 100 balls.  The five methods Goldstein 

and Rothschild asked participants to use were a graphical method (drag and drop virtual 

balls into numbered bins), giving quantiles, estimating the arithmetic mean (formula 

given), estimating the “average” (no formula or definition of “average” given to 

participants), and to build a 90% confidence interval for the value of the first ball drawn 

when resampling.  The last four methods Goldstein and Rothschild collapsed together 

under the title “standard method” to contrast with the graphical method.  They found that 

at both the individual and aggregate levels, the graphical method resulted in more 
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accurate responses.  Goldstein and Rothschild (2014) suggest that these results support 

two hypotheses for what might be going on: 1) the individuals’ mental representations of 

distribution are accurate (for the situation) but the standard methods cause the individuals 

to lose track of their representations, or 2) that the individuals’ mental representations are 

inconsistent with the situation and the graphical method helps the individuals correct any 

heuristics/biases the individual used in the constructions of the mental representation.  A 

second example is the work of Sheats and Pankratz (2002).  The authors espouse two 

meanings for distribution.  The first meaning is that distribution is the arrangement of 

data values into a graphical representation.  The second meaning extends the first to 

equate “distribution” with “pattern”.  In both Goldstein and Rothschild (2014) and Sheats 

and Pankratz (2002), the authors take understanding distribution to mean identifying 

features of the arrangement or pattern of values. 

Distribution as a lens.  The second common meaning for distribution was put 

forth by Wild (2006).  Written as the personal exploration of a statistician, Wild 

attempted to tackle what teachers and statistics education researchers want students to 

learn about the idea of distribution.  He argued that at the core of the idea, distribution is 

“the pattern of variation in a variable” and that statisticians examine variation using 

distribution as a lens (Wild, 2006, p. 11).   

Wild uses “pattern” to imply looking for and potentially removing regularities or 

trends in the data at hand.  If a statistician removes all regularities in the data, then what 

is left is unexplained variation or noise (Wild, 2006).  The regularities or trends (i.e., 
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patterns) that a statistician removes, he attributes to what he understands about the way 

he generated the data and to particular sources/causes.   

The issue of “variation” is much trickier; Wild (2006) wrote “In the beginning 

was variation. Variation is an observed reality detectable in all systems and entities. It is, 

in a word, omnipresent” (p. 10).  Wild does not ever say what he means by “variation” in 

this article.  Wild and Pfannkuch (1999) describe that “variation” can be real (part of the 

system a statistician studies) or induced (variation added via data collection, e.g. 

measuring, sampling, accidents).  They convey that variation is the reason that “no two 

manufactured items are identical, no two organisms are identical or react in the identical 

ways…it is variation that makes the results of actions unpredictable, that makes questions 

of cause and effect difficult to resolve, that makes it hard to uncover mechanisms” (Wild 

& Pfannkuch, 1999, pp. 235–236).  In essence, “variation” is what makes two (or more) 

things different and causes unpredictability.   

While Wild never states what exactly he means by “lens”, his use of the term 

conveys that a “lens” is a way of thinking about something we’re examining.  By drawing 

on Wild and Pfannkuch’s (1999) elucidation of “variation” [i.e., lack of sameness] and 

Wild’s (2006) meaning for “pattern”, I believe that the best sense of what Wild means by 

his definition of distribution (i.e., “distribution is [a lens by which we examine] the 

pattern of variation in a variable”) is that distribution is a way of thinking about data to 

see the regularity in what makes things different in a variable.  This approach to defining 

the concept of distribution as a lens speaks directly to the use of distribution but falls 

short of saying anything about what makes up this concept.  Treating distribution as a 
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lens supports viewing statements such as “the random variable is Normally distributed 

zero, one” as a commitment to assumptions about the underlying random processes.  

However, for a student first starting out, he or she might not have the necessary schemes 

to support imbuing such a statement with a meaning consistent with a statistician does.  

Magalhães (2014) reported on issues with how people understand the concept of  

distribution.  While Magalhães (2014) does not give a preferred way of thinking about 

“distribution”, the author shared three problematic ways of thinking that pre-service 

mathematics teachers commonly had.  The first two ways of thinking Magalhães 

described is where the students thought that random variables are completely 

unpredictable.  Magalhães (2014) argued that students associate “random” with the idea 

of being uncontrolled or wild.  This is not surprising, and I’ll return to this in the section 

on randomness.  While this way of thinking is essentially about random variables, Wild 

and Pfannkuck’s (1999) notion of variation [i.e., the lack of sameness] includes viewing 

variation as the cause of unpredictability.  If we take Wild’s (2006) notion of distribution, 

then thinking that random variables are unpredictable seems like a logical conclusion to 

viewing variables through a lens that is the “trend of the cause of unpredictability in a 

variable”.  The second way of thinking that Magalhães (2014) described is that students 

believe that every value of the random variable has the same probability.  Essentially, the 

students view every random variable as having a uniform probability distribution without 

consideration of the underlying random processes.  The last way of thinking described is 

that students do not make a distinction between theoretical and empirical distributions.  

Students appeared to treat the empirical (frequency) distribution of the variable as being a 



 

14 

copy of the theoretical distribution.  One approach to addressing this way of thinking 

according to Magalhães was to have the students encounter a situation where values of 

the variable in the theoretical distribution were missing from the empirical data.  Wild 

(2006) also mentions this distinction; he argues that the distinction lies in that we see the 

variation in the data (empirical) versus us imagining a potential model for the process that 

causes the variation (theoretical).   

Prodromou (2012) tackles the distinction that Wild and Magalhães see between 

empirical and theoretical distributions in an alternative way.  Prodromou described two 

epistemological perspectives for distribution; the first perspective is data-centric while 

the second centers on modeling and entails sample spaces and probability.  Using a 

basketball simulation to serve as a bridge between the two perspectives, Prodromou 

(2012) described what connections two pairs of students made.  The simulation consisted 

of a player who shoots a basketball at hoop.  The students are able to set the values of 

various parameters (e.g., angle of the shot, and distance from the basket) and whether 

there is any random noise in the parameters.  Once the students have set the parameter 

values, they can then have the player shoot the ball and the system will record whether 

the player makes the shot or not.  For the following discussion, I focus on Prodromou’s 

third task: two pairs of students were presented with a distribution of values for one of the 

variables (e.g., the distance between the player and the basket) that the computer would 

randomly select from.  The students could manipulate the distribution by moving a slider 

(for the expected value) and arrows (for variance).  The computer would then run the 
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simulation and the students could observe the changes in the histogram on shots 

made/missed. 

Neither pair of students suggested a random process underlying the third task.  

This is unsurprising as the students merely set the frequency for the 10 pre-set bins of the 

histogram representing the modeling perspective (i.e., the theoretical distribution).  One 

pair (Anna and James) viewed the modeling distribution as the intended outcome and the 

empirical distribution as what actually happened.  However, there are two interpretations 

for “intention” here: “a) the intention is simply an expression of the pre-programmed 

deterministic nature of the computer—at least in their experience, or b) intentions are 

reflected in the actions of a model builder” (Prodromou, 2012, p. 295).  The other pair of 

students (Sarah and Nick) appeared to imbue the computer with human desire to shoot 

the ball from preferred locations.  The level of preference stemmed from the frequencies 

the students programmed in the modeling distribution, but Sarah and Nick acknowledged 

that the computer could and would choose to shoot from places other than those most 

preferred.  Prodromou (2012) called this view, when taken together with the view that the 

modeling distribution drives the data-centric distribution,  “stochastic intentionality”.  

When the intervention moved from the data-centric to the modeling perspective, 

Prodromou found that both pairs viewed the modeling distribution as the “target” of the 

data-centric distribution.  In particular, the modeling distribution is “the ‘future’ outcome 

and the data-centric distribution displays the results of the present mechanism at play” 

(Prodromou, 2012, p. 296).  Prodromou noted that as students continued to negotiate the 

two perspectives, that they encountered obstacles to their use of deterministic 
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mechanisms.  Prodromou argued that the students needed to develop quasi-causal 

explanations to account for the random mechanisms that underlie the player’s shots.  This 

was evidenced by Sarah and Nick’s acknowledgement that the player (the computer) 

could and would choose to shoot from various distances from the hoop. 

Bridging the arrangement and lens views of distribution.  The Oxford English 

Dictionary (2015) entry for distribution includes notions such as spreading out, sharing, 

and dispersal.  Watson (2009) highlighted that the meaning of “distribution” changes 

depending both on the inclusion of adjectives and the usage.  Watson noted that  

Moore and McCabe (1993) progress to describe distribution in terms of variation, 

which they treat as an undefined term, and variable, which is ‘any characteristic 

of a person or thing that can be expressed as a number’ (p. 2): ‘The pattern of 

variation of a variable is called its distribution. The distribution records the 

numerical values of the variable and how often each value occurs’ (p. 6).  

(Watson, 2009, p. 32) 

The Moore textbook has changed very little:  “the distribution of a variable tells us what 

values it takes and how often it takes these values” (D. S. Moore, McCabe, & Craig, 

2012, p. 2, 2015, p. 3).  Neither Watson nor Moore state what they mean by the phrase 

“pattern of variation”.  Moore’s meaning for distribution appears to blend both 

“distribution as arrangement” (values taken on and how often) with “distribution as a 

lens” and is heart of the largest category of how 45 statistics texts defined distribution.  

Watson (2009), studying students’ (primary through grade nine) inclusion of variation 

[i.e., lack of sameness] and expectation in generating graphical representations, noted that 
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many students think about distribution as referring to a collection of data values that can 

be displayed graphically; consistent with Bakker and Gravemeijer’s (2004) first stage.  

Watson also found that students at all levels tended to give some indication of variation 

within their representations, with older students tending to give clearer indications of 

variation than younger students. For example, a Grade 3 student drew the picture on the 

left of (Figure 2) while a Grade 7 student drew the graph on the right when asked to draw 

a graph of the average daily maximum temperature for a year.  Importantly, Watson did 

not use the term “distribution” with the students.  Watson prompted the students during 

the interviews to either arrange physical cards, draw their own graphs, or comment on 

graphs made by other (research-created_ “students”.  Students’ meanings distribution in 

Watson’s study are therefore unclear.  However, their choice of graphical representations 

and their accompanying remarks still provide insight into their meaning for variation in  

 
Figure 2. Two students graphs of the average daily maximum temperature for a 
year (Watson, 2009, pp. 42, 44). 

the situations that Watson used.  Watson (2009) hoped that encouraging students to a 

conception of variation, and to focus on it rather than focusing on measures of center, 

would lay a foundation upon which students could build an understanding of distribution. 
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Describing images of distributions.  A second body of literature dealing with 

distribution focuses on students’ thinking about describing visual aspects of dot plots, bar 

charts, or histograms.  Authors often referred to these three types of visual display as 

“distributions”.  In many cases, the authors in this group referred to at least one of the 

authors in the prior section.  In many introductory statistics textbooks there is an 

emphasis on the shape aspect of dot plots, bar charts, and histograms (Arnold & 

Pfannkuch, 2012).  Arnold and Pfannkuck (2012) attempted to get 29 Year 10 students to 

describe dot plots and histograms (which Arnold and Pfannkuck continually refer to as 

“distributions”) using the “language of shape”.  Students drew and organized the graphs 

under the headings “symmetrical”, “sloped to the left”, “sloped to the right”, and “flat 

top”.  Eventually, the instructors introduced the conventional names of symmetric, right 

skewed, left skewed, and uniform.  Graphs’ shapes were taken as more than perceptual 

cues, meaning that students did not connect the shape of the graphs to any underlying 

process.   

The language of shape that Arnold and Pfannkuck (2012) used encouraged 

students to engage in is what K. C. Moore and Thompson (2015) call static shape 

thinking.  Drawing on perceptual cues, a student engages in static shape thinking when 

she views the graph as an object, much like a piece of wire bent into a particular shape 

and placed onto the plane.  Figure 3 shows a set of what Arnold and Pfannkuck called 

“distributions”, which they asked students to classify.  Figure 3 comes from Lesson 3 in 

Arnold and Pfannkuck’s study where the students “were given 15 contexts without 

graphs and asked to sketch the shape for these contexts with some possible values” 
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(Arnold & Pfannkuch, 2012, p. 5).  They do not provide any examples nor say what these 

contexts consisted of.  The students’ sketches appear on the right side of each pair of 

images in Figure 3.  After discussion on the students’ sketches, the instructor provided 

the actual dot plots of the contexts (left side of each pair).  None of the student-generated 

drawings have any axes or labels; their sketches literally look like wires in the plane.  

Arnold and Pfannkuck (2012) were not clear about what exactly the students thought 

their sketches represented; however Arnold and Prannkuck refer to the students’ 

drawings as graphs as distributions.   

 
Figure 3. Collection of shapes which Arnold & Pfannkuck (2012) take as 
distributions (p. 5). 

Arnold and Pfannkuck (2014) continued their prior work and wrote that 

“distribution is most often realized in a display such as a graph” and that students need to 

bring together ideas of center, spread, and shape (p. 1).  They introduce their distribution 

framework, Figure 4, for analyzing students’ descriptions of distributions.  The italicized 

text indicates aspects of the distribution framework that are additions from the older 
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“describing distributions framework” (Arnold & Pfannkuch, 2012, 2014).  With the 

exception of specific features #1-3 and #6, the features are all perceptual ones.  Using the 

distribution framework both to guide teachers in instruction and assessing students 

(Arnold & Pfannkuch, 2014), one possible messaged conveyed to students is that 

perceptual features are all that is important; that there is no need to attend to the 

underlying processes or quirks of the graphical system.  Again, the idea of static shape 

thinking comes to bear as a possible result of Arnold and Pfannkuch’s intervention.   

 
Figure 4. Distribution framework (Arnold & Pfannkuch, 2014, p. 2). 
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Distribution in service to another concept.  Part of the research on individuals’ 

understanding of distribution focuses not so much on distribution but rather another 

concept and how distribution plays a role.  The most common examples include the 

concepts of variation and hypothesis testing.  In the case of variation, there is a common 

mentality that “distributions are used to describe and model variability” (Peck, Gould, & 

Miller, 2013, p. 24).  This approach is consistent with Wild’s framing of distribution as a 

lens to explain variation.  Lehrer and Schauble present a sequence of studies centered on 

students’ reasoning about naturally occurring variation.  In the first study, they framed 

distribution as an accounting of both the “true” measure and measurement error for some 

attribute (Lehrer & Schauble, 2002). Working with mostly the same students a year later, 

they aimed to have the students extend their understanding of distribution to include 

interpreting changes in the distributions and see distribution as structured variation 

(Lehrer & Schauble, 2004).  Lehrer and Schauble (2002) got fourth grade students to 

begin thinking about variation in the context of measurement error by first having them 

each measure the height of a flagpole and then reason about the measures with displays 

of their own invention.  Using the displays, the teacher guided the students into 

discussions about more and less trustworthy measurements and where the flagpole’s true 

height was.  Most students reasoned that the more measurements in the same bin there 

were indicated that those measures were trustworthy and that the true height would be 

more likely a member of that bin.  Other students reasoned that measures in the middle 

region (including the most frequent bins) of their displays could be better trusted.  These 

students put forth an argument that this region was a result of the measuring process.  As 
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class discussion progressed, students grappled with issues of precision and attributing 

error to various causes.  In later follow up interviews, the researchers asked the student to 

construct the distributions for the measurements made by an imagined group of students 

of a statue’s height using a more and a less precise tool.  The interviewed students 

generated (roughly) symmetric displays in both cases, but tended to have the display for 

the less precise tool have a larger spread of values than the more precise tool.   

The Lehrer and Schauble sequence of studies points to an aspect of variation that 

is difficult for students to distinguish: sources of variation.  In the case of the rockets, the 

nose cone being rounded or pointed provided a natural source of differences in the launch 

heights of the rockets.  The measurement tool used acted as a different source of variation 

in the values.  Identifying different sources of variation can help students start to think 

about different types of variation:  variation in the value of a single object’s/living 

being’s attribute over time, variation in the value of attribute as we shift our attention 

between different objects/living beings, and variation in the value of an attribute as we 

shift our attention from one collection to another (what Lehrer and Schauble (2004) refer 

to as sample-to-sample variability). 

Conducting a hypothesis test requires using a distribution, particularly a sampling 

distribution.  Saldanha and Thompson (2003, 2007) describe a multiplicative conception 

of sampling as entail imagery that includes viewing a sample as quasi-proportional to the 

parent population and the anticipation that when repeating the sampling process (i.e., the 

random process) there will be some variation in the results.  Hatfield (2013) extended this 

multiplicative conception of sampling with his APOS-Sampling/Sampling Distribution 
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framework.  At the process level, Hatfield theorizes that as students repeat the sampling 

process, they will lump values of the statistic of interest together to generate what 

Saldanha and Thompson call a proto-distribution.  The imagery involved here entails the 

student imagining the accumulation of outcomes from a random process.  While in this 

case the distribution is a sampling distribution, (i.e., the distribution of a statistic for 

random samples of size n), the imagery is nearly the same as that of my target meaning 

for the distribution of a random variable.   

Technical usages of distribution.  Throughout much of the history of probability 

and statistics, the term “distribution” is synonymous with “probability distribution”.  

While many mathematicians, statisticians, and logicians have tackled the issue of 

probability distribution, I will focus on the work of two men, R. von Mises and A. N. 

Kolmogorov.  I choose to focus on these men for two reasons: 1) their work considerably 

impacted the development of statistics and probability both then and now, and 2) both 

describe what he meant by the phrase “distribution”.   

Von Mises, a champion of the frequentist perspective, viewed probability as the 

applied mathematics of mass phenomena (Weisberg, 2014).  For von Mises, the 

distribution of a random variable refers to relative frequency (probability) for each value 

of the attribute within the collective (von Mises, 1981).  He makes a distinction that for 

discrete random variables, there are a finite number of fractions representing probability 

values but in the continuous case, the fractions represent the probability density per unit 

length.  He makes use of the following metaphor to introduce his notion of distribution:  

Imagine that you are tasked with doling out one kilogram of mass in a straight line, one 
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meter in length.  If you put the same amount of mass at every place along the line, you 

essentially have a rod of uniform thickness; if you make amounts uneven along the line, 

making thinner and thicker spots, you have a rod of variable thickness.  In any case, you 

made tangible the distribution of mass along the line.  That is to say that you can give a 

measure of the mass or the mass density (per unit length) at each and every point along 

the line (von Mises, 1981).  The metaphors of mass and density carry though today when 

we talk about distributions; probability mass functions are for discrete random variables 

and probability density functions are for continuous random variables.  Describing a 

distribution requires that a person coordinate his/her location along the line (value of the 

random variable) along with the measure of the mass/mass density at that location 

(probability/probability density).  This last statement is similar to how Leavy defined 

distribution; “the arrangement of values of a variable along a scale of measurement 

resulting in a representation of the observed or theoretical frequency of an event” (2006, 

p. 90).  However, there are a couple of important distinctions.  Leavy’s statement defines 

the concept of distribution while von Mises’s metaphor centers on describing a 

distribution, not defining one.  A second distinction is von Mises’s mantra “first the 

collective, then the probability” that highlights the centrality of two central concepts for 

distribution: collective and mass phenomena (von Mises, 1981, p. 24; Weisberg, 2014, p. 

233).  For von Mises, mass phenomena are any events/processes that we can imagine 

being repeated an unlimited number of times while anticipating that each repetition will 

not be necessarily identical.  If you were to carry out a mass phenomenon (in practice or 

imagination), and record the results, you construct what von Mises calls a collective (von 
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Mises, 1981).  Thus, when defining distribution, we cannot leave out the role of the 

random process as the collective’s generator.  While Leavy’s definition echoes von 

Mises’s metaphor, the role of a random process is absent. 

Kolmogorov (2013) laid out his own axiomatic foundation for probability based 

on Lebesque’s theories of measure.  For Kolmogorov, distribution related most strongly 

with the notion of a cumulative density function.  In his treatise, he defined the 

distribution function of a random variable, x, as .  This is 

the say that the output of the distribution function for the random variable x at the value a 

is the output of the probability function, P(x), for the set (–∞, a).  Kolmogorov defines 

P(A) as the summation of all pi, the probability value given to element ξi, where ξi 

belongs to the set A (Kolmogorov, 2013).  More clearly put, the distribution function of a 

random variable gives the cumulative probability of observing values of the random 

variable less than the input value a.  This differs from modern definitions of the 

cumulative density function in that the later provides the cumulative probability of 

observing values less than or equal to a.  Much like von Mises, Kolmogorov’s approach 

to distribution contains the joining of two features: the value of the random variable and 

the cumulative probability of the random variable up to the given value.  While Reading 

and Canada’s (2011) refinement of Leavy’s definition includes probability, their 

definition of distribution stops short of what Kolmogorov meant.  Their notion of 

distribution pairs the variable’s value with the probability of being at that value.  

Kolmogorov explicitly linked the value of the variable with the accumulation of 

probability, making distribution a more dynamic idea. 

  
F ( x ) (a) = P( x ) −∞,a( ) = P{x < a}
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Comparing different meanings for distribution.  Reading and Canada (2011) 

point out that many statistics education researchers believe that understanding 

distribution depends upon understanding features of distributions.  However, this way of 

understanding distributions is rife with incoherence when we step back and reason 

quantitatively.  Reading and Canada’s list of what distribution depends upon serves as a 

list of attributes.  Thus, students must first understand measures of center, spread, and 

shape in order to understand distribution.  This is logically equivalent to saying that 

students need to first understand a person’s height before they can understand/imagine a 

person.  If random variables’ distributions do depend on the a priori existence of the 

measure of these attributes, then what understanding can students develop for 

distributions that do not have the “standard” attributes students believe are necessary for 

distributions to exist?  For example, how should students come to develop the idea of 

distribution for categorical stochastic variables that do not possess numerical values with 

which the students can calculate the value of the sample arithmetic mean?  Further, how 

should students define the Cauchy distribution when this distribution does not possess the 

attributes that they have come to believe are the foundation of the distribution concept? 

As I’ve already written, there are distinctions between how von Mises and 

Kolmogorov defined distribution and how statistics education researchers explain the 

concept.  The “distribution as arrangement” view leaves the random process out of the 

formation of a distribution and makes the concept static.  This view of distribution 

supports two images; distributions are pictures (i.e., histograms, probability density 

curves) and distributions are data collections.  These two images are rather 
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complimentary especially when the picture is a histogram or dot plot.  In most cases, the 

treatment of distribution as data collection is implicit, but some authors make this 

explicit.  Peck, Gould, and Miller (2013) write “research suggests that making the 

transition from talking about individual values to considering properties of the entire 

collection—the distribution—is a key conceptual leap” (p. 25).  In many works (e.g., see 

Arnold & Pfannkuch, 2012, 2014; Ben-Zvi, 2004; Leavy, 2006; Lehrer & Schauble, 

2002) replacing “distribution” with “collection” preserves the author’s message and 

potentially makes the message clearer.  I do not know what Peck, Gould, and Miller mean 

by “collection”; however, their usage appears consistent with considering a collection of 

data values.  When I use the word “collection”, I do not mean a set of numbers that I look 

at. Rather I mean that I have a set of observed values (numerical or not) for one or more 

attributes for each object/living being who is a member of some population and the set 

has 1) structure, 2) properties based upon the members of the set, and 3) has context.  

Students thinking about and reasoning with collections is important for data analysis as 

such thinking undergirds exploratory data analysis and lays the foundation for 

confirmatory data analysis.  Treating distribution as synonymous with (data) collection 

underpins Bakker and Gravemeijer’s (2004) three-stage framework.  Thus, if all that 

statistics education researchers mean by “distribution” is “collection”, then why introduce 

a new term?  The concept of distribution did more work for both von Mises and 

Kolmogorov than what thinking of distribution as an arrangement/distribution as a 

collection allows.  For von Mises, the notion of the collective is better parallel to what 

today’s statistics education researchers refer to as distribution.  
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Thinking about distribution as telling us not only how often a random variable 

takes on a particular value but also what values the variable represents highlights a 

confounding of the notions of distribution and domain.  The domain of any variable tells 

us what values are admissible for that variable; no need to invoke the distribution 

concept.  I suspect that the confounding has roots in modern statistical language, 

particularly phrases such as “discrete distribution”, “continuous distribution”, “joint 

distribution”, and “empirical distribution”.  The adjectives “discrete” and “continuous” 

do not operate in the same manner as the adjectives “joint”, “marginal”, and 

“conditional”, nor like the adjective “empirical” or noun “sampling”.  “Continuous” and 

“discrete” (which includes the adjective “finite”) do not modify the distribution concept, 

rather they are modifying the domain of the random variable.  This stands in contrast to 

the terms “joint”, “marginal”, and “conditional” which indicate which specific type of 

behavior is being described.  The adjective “empirical” appears to stand-alone and is 

most often a reference to examining the empirical distribution function for kernel 

estimation and testing the goodness-of-fit of proposed distributions.  The term “sampling 

distribution” is a shorthand way of invoking an extension of the distribution concept:  the 

distribution of [some statistic] for samples of size n”.  The subtly of the differences 

between domain modifiers (i.e., “discrete”, “finite”, and “continuous”) and behavior 

modifiers (i.e., “joint”, “marginal”, and “conditional”) as well as “empirical” is not well 

covered in any statistics text.  Any investigation into how people think about the 

distribution concept must take these subtle distinctions into account.  
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Distribution as an arrangement of values also appears in the literature through 

examination of probability density curves.  However, as mentioned previously, students 

focus on perceptual features of these graphs and could be conflating the graph (a 

representation) with the distribution (that which the graph represents).  In their 

development of distribution, neither von Mises nor Kolmogorov used a graph of a 

distribution function; the imagery they used centered more on the building up of the 

collective (von Mises) and the accumulation of probability (Kolmogorov).  Overemphasis 

and reliance on graphs of probability density functions poses some hazards to students 

understanding of distribution.  For example, consider the two probability density 

functions whose graphs appear in Figure 5.   

 
Figure 5. The graphs of two PDFs. 

Using Arnold and Pfannkuch’s (2014) framework, we could propose what a high 

level descriptions of the two graph might consist of:  For some population of people (e.g., 

New Zealand year 5-10 students) both random variables seem to have all real numbers as 

values, both are symmetric (no skew), with a majority of the values in one central modal 

clump.  There are no gaps or outliers.  Both graphs appear to be centered at zero thus the 

values of the median and the sample arithmetic mean are zero.  The graph on the right has 
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less variation around zero (smaller interquartile range) than the left graph, but the left 

graph has less variation over all compared to the right graph (the left graph “hits” zero at 

± 4 as opposed the right graph which does not).  We could offer up many refinements to 

these descriptions, but I want to highlight a couple of features.  First, only when I started 

writing about variation did the descriptions become specific to one graph verses the other.  

Second, in using the aforementioned framework, I was able to hit every category without 

ever talking about probability or a random process.  This approach brings a question to 

my mind:  if a student taught to think of distributions using this framework and who has 

learned some named distributions (e.g., Normal, Binomial, etc.) examines these two 

graphs, would he/she classify the distributions as being the same up to value of 

parameters or completely different?   

However, these two graphs are not of the same distribution; the graph on the left 

is that of a standard normal distribution while the graph on the right is of a Cauchy 

distribution (which has no moments higher than the zeroth moment).  Distribution as 

arrangement appears to hide essential aspects of the distribution concept from students; 

specifically, the role that a random process plays in the distribution. 

Treating distribution as a lens by which we look at variation is also at odds with 

the notion as conceived by von Mises and Kolmogorov.  Bakker and Gravemeijer (2004) 

wrote “without variation, there is no distribution” (p. 149) while Watson (2009) claimed 

“variation in data create distributions” (p. 34).  Both of these statements echo Wild’s 

(2006) definition that a variable’s distribution is “the pattern of variation in a variable” 

(p. 11) but create a stronger relationship between variation and distribution.  Consider an 
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attribute for which every member of the population has the same value of, for example, 

the “humanness” of humans.  No matter which member of population you examine, every 

member has the value “human” for this attribute.  There is no variation in this attribute, 

thus, according to Bakker and Gravemeijer as well as Watson, there can be no 

distribution for this variable.  At least Wild’s statement allows for a constant pattern of 

the sameness.  Kolmogorov’s and von Mises’s concepts of distribution do not depend on 

there being any variation in the value of the random variable.  

None of the statistics education articles listed in the prior sections referenced 

either von Mises or Kolmogorov, nor any other treatise on the development of statistics; 

the closest that any author gets is a reference to some edition of the D. S. Moore 

Introduction to the Practice of Statistics textbook.  While I do not believe that citing 

original statistical treatises should be a requirement of statistics education articles, the 

lack of such citing might explain the apparent schism between the meaning of 

distribution laid out by statistics education researchers and the meanings developed by 

two forebears of Statistics.  Viewing distribution as a static arrangement of values or “the 

pattern of variation in a variable” (Wild, 2006, p. 11) stand in contrast to both von 

Mises’s and Kolmogorov’s notions of distribution.  While von Mises’s usage of 

distribution appears similar to distribution as arrangement, there are critical distinctions.  

Von Mises’s usage depends upon thinking about a random process and the construction 

of a collective from that process before the naming of probability values.  Both 

distribution as arrangement and distribution as lens appear to leave an underlying random 

process out of the conception of distribution.  While Kolmogorov did not stress the 
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random process as much as von Mises, he did make central the notion of accumulation 

that statistics education researchers leave out altogether.  The role of imagery is also 

different.  While von Mises uses a visual metaphor, the notion of arranging values is 

more in line with coordinating two aspects than placement in a pictorial way, typical of 

the statistics education research cited.  Statistics education researchers jump straight to 

graphical representations (e.g., histograms, graphs of probability density functions) and 

appear to emphasize that these representations are distributions.  Von Mises’s usage of 

imagery focused on metaphors to convey connections between key ideas for distribution.  

Kolmogorov’s meaning for distribution does not rely on imagery; he presents his 

development of distribution in the language of algebra, metric spaces, and calculus.  

Thus, I propose with this dissertation study to investigate the meanings for distribution 

that students develop when instruction seeks to support a new meaning for distribution.  I 

seek to promote thinking about a random variable’s distribution as the accumulation of a 

random process’ outcomes with respect to the random variable’s value.  The mental 

imagery underlying this way of thinking entails imagining that as we move through 

sequentially through the values of the random value, we continually add on more 

outcomes until we reach the point where we have obtained all possible outcomes.  This 

meaning for distribution keeps Kolmogorov’s notion of accumulation and von Mises’ 

emphasis on random processes central while dispensing with focusing exclusively on 

graphical arrangements.  I provide a conceptual analysis of this way of thinking in 

Chapter 4. 

Randomness and Random Process 
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One of the foundational ideas of distribution is the notion of randomness.  

However, “randomness” resists definition and most authors tend to use the term as an 

adjective, focusing instead on what “random” modifies (Batanero, Green, & Serrano, 

1998).  This being said, researchers in psychology, decision-making, as well as 

mathematics and statistics education have investigated individuals’ conceptions of 

randomness since the 1950s.  Given that the focus of this dissertation is the concept of 

distribution, I will not attempt to convey the entirety of this body of research.  One 

feature that makes randomness difficult is that “random” lives in two worlds: the 

technical and the everyday.  This dual life gives “random” lexical ambiguity (Kaplan, 

Fisher, & Rogness, 2009; Kaplan, Rogness, & Fisher, 2014).  Investigating “randomness” 

lexical ambiguity Kaplan et al. (2009) found that twenty-nine of sixty-one students 

defined “randomness” along the lines of “haphazard” and “unplanned”.  Another twenty-

seven students treated “random” as being about selecting without criteria, (a known) 

order/pattern, or bias.  The authors juxtapose these students’ definitions with that of the 

normative definition of random event; an event “for which no one outcome can be 

predicted, but there is knowledge of the long-term distribution of the outcomes” (Kaplan 

et al., 2009, p. 13).  In a subsequent study, Kaplan et al. (2014) replicated their activity 

with another set of students.  However, in this second study, they collected students’ 

definitions after intervention as part of the course final as opposed to before the students 

had any instruction.  Kaplan et al. (2014) used six coding categories for students 

responses; incorrect (e.g., “unknown”), by chance, without order/reason, 

unexpected/unpredictable, without bias, and equally likely.  The ordering of the 
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categories reflects the authors’ view of category being closer to the statistically sound 

meaning for randomness.  While in the first study, 47.5% of the students defined random 

as haphazard, unsurprisingly only 6% of the students in the second study did so.  Most of 

the students in the second study, 40%, gave a definition consistent with viewing 

randomness as equally likely (the authors’ highest category).  This category equates 

“randomness” with equi-probability (chance), which is a common historical perspective 

(Bennett, 1993).  However, this meaning muddles the distinctions between randomness 

and probability, creating unnecessary lexical ambiguity. 

Batanero and Serrano (1999) found that secondary students use a mixture of 

arguments to justify whether or not something is random.  Their categories include the 

students noticing 1) a regular pattern, 2) the absence of a regular pattern, 3) result 

frequencies are similar, 4) result frequencies are dissimilar, 5) there are runs, 6) there no 

runs, and 7) un-predictability.  With the exception of the last category, the categories 

come in polar opposites.  These categories are similar to those of Kaplan et al. (2014) 

with (1) and (2) linking with “without order/reason”, (3) with “equally likely”, and (7) 

with “unexpected/unpredictable”.  The lack of a pattern links to the notion of complexity 

described by Falk and Konold (1994) and championed by Kolmogorov.  Here, an 

individual’s difficulty in condensing a sequence is a measure of how random the 

individual believes the sequence to be; the easier time she has compressing the sequence, 

the less random she believes the sequence to be.  This notion of perceived randomness 

has roots in the heuristics that individuals use in making judgments (Kahneman & 

Tversky, 1974).  Examining result frequencies harkens back to von Mises’s adherence of 
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the impossibility of a gambling system (von Mises, 1981).  Here, the individual would 

attempt to find a system by which the relative frequencies of each result can be altered 

(e.g., picking every third result).  The presence/absence of runs highlights students not 

viewing individual results as independent of other results. 

Defining “random” is a difficult and complex task (Falk & Konold, 1994, 1997).  

As such, some authors argue that instead of worrying about how to define randomness, 

we instead focus on random processes.  Wagenaar (1991) argues that viewing 

randomness as a property of a sequence instead of the underlying generative process is 

problematic given people’s reliance on heuristics.  Falk (1991) argues that this approach 

is preferable as “random process” has a more agreed upon and stable definition than 

randomness.  Both Wagenaar and Falk point out three characteristics of random 

processes: 1) there is a fixed outcome space, 2) there is a selection process that is 

unbiased, and 3) all iterations of the process are pairwise independent (i.e., the outcome 

of any trial bears no impact on the outcome of any other trial—except when sampling 

without replacement). 

Konold, Harradine, and Kazak (2007) report an investigation to help students 

understand that the most frequently occurring values of a random variable are the result 

of there being more ways to get those values.  As part of their study, the authors asked 

students to create a “data factory” in TinkerPlots.  In doing this, students needed to 

conceive of objects and living beings as having attributes that we can classify and 

measure in order to create data.  The students needed to pick a type of object/being and 

then select some attributes to use in their data factories.  After this point, students need to 
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come up with possible values; in essence, they needed to fix the outcome space.  Students 

used these values for each attribute and used a built-in tool such as a spinner to create a 

selection method.  In constructing their tools, students had the option of adjusting the 

underlying distribution.  For example, they could make a spinner have equal sized 

wedges for each value (uniform) or they could make different values have different sized 

wedges.  Students could run their factories, examine the data generated and then revise 

their factory’s elements.  This data factory approach to random processes seems in line 

with Liu and Thompson’s (2002) push to focus on the mental imagery and operations that 

would enable a student to construct a coherent understanding of stochastic situations.  

They argue against focusing on the ontology of randomness, random sequence, and 

random process and instead focus on what is meant.  One set of imagery is that of a 

process that does not have well-defined inputs but still generates data while being 

simultaneously predictable in the long run and unpredictable in the short run. 

I must address a discrepancy between the description of random processes 

described thus far and how a sizeable number of statisticians think about the phrase.  The 

random processes described thus far are also called “stochastic processes” and are most 

often juxtaposed with deterministic processes.  When I use the phrases “random process” 

or “stochastic process” I mean a process an individual envisions as taking loosely defined 

inputs, and through a fuzzy rule (ill-defined) returns a datum; the individual sees the 

process as infinitely repeatable but the results of individual trials are not the always the 

same (nor always different) and cannot be correctly anticipated with any regularity (i.e., 

the processes is replicable but not reproducible).  My meaning is in line with what von 
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Mises described as constituting “mass phenomena” (von Mises, 1981).  Kolmogorov 

(2013) drew on von Mises’s work when he described the generation of data to provide a 

pragmatic grounding for his theory of probability:  

1) There is assumed a complex of conditions, , which allows any number of 

repetitions.  2) We study a definite set of events which could take place as a result 

of the establishment of the conditions . In individual cases where the 

conditions are realized, the events occur, generally, in different ways. 

(Kolmogorov, 2013, p. 3) 

Kolmogorov’s  refers to the loosely defined inputs that Liu and Thompson (2002) and 

I refer to in our meanings for stochastic (random) process.  The realization of those 

conditions is the fuzzy rule of the process.   

This usage of stochastic process stands in contrast with the more common 

definition:  a stochastic process {X(t), t ∈ T} is a collection of random variables with 

parameter space T (see Beichelt & Fatti, 2002; Ross, 2010).  Where many statistics texts 

go from this definition is to treat “stochastic process” as a synonym with “time series”.  

This usage, while useful in certain contexts, overly narrows the notion of a stochastic 

process to only admit processes that look at the value of a single attribute for a single 

object; for example, the number of pizzas sold by a particular store each Friday or the 

diameter along a specific length of wire.  My meaning for stochastic process certainly 

admits these examples; however, consider the case of the height of individuals 20 years 

or older, living in the United States.  In this case, we have one attribute (height) but 

multiple objects; a time series is built to embrace and use the dependency between 
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consecutive states (i.e., X(t1), X(t2), X(t3), etc.) which does not necessarily exist in the 

heights example.  Given that students’ exposure to Statistics does not begin with time 

series analysis, using a meaning for stochastic process that encompasses more 

phenomenon that statisticians deal with will help these students generate better models 

for where data come from. 

Related to the present discussion of stochastic process is the concept of a “second-

order stochastic process”.  Typically, this phrase refers to a time series where we assume 

the existence of second moments.  When I use the phrase “second-order stochastic 

process” I will mean a stochastic process (my meaning, not time series) that involves one 

or more stochastic processes as sub-components.  For example, we may think about 

getting the height of a woman who is 20 years or older, living in the United States, as the 

realization of some [first-order] stochastic process.  If we repeat this process for a total of 

30 measures and then use a second first-order stochastic process to get 30 heights of men, 

we can then find the value of a difference statistic; say the difference in values of the 

sample arithmetic mean for the two groups.  The value of the difference statistic is one 

realization of the second-order stochastic process.  To get a second realization, we must 

carry out each of the first-order stochastic processes again (30 times each) and then 

calculate the value of the difference statistic.  In my framing, a first-order stochastic 

process leads to describing the distribution of an attribute shared by many objects/living 

beings while a second-order stochastic process leads to describing the sampling 

distribution of some statistic/estimator. 
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Saldanha (2016) discusses students’ difficulties in conceptualizing “stochastic 

experiments” (i.e., what I would call stochastic processes).  Students were asked to 

decide whether or not a movie ticket-taker seeing at least two people he knows is an 

unusual event given the ticket-taker knows 300 of 30,000 people and the theatre holds 

250 people.  Saldanha found that students stumbled in their conceptualization of 

stochastic processes as they wrestled with choosing which assumptions they needed to 

make, envisioning the population and the sample, and what constitutes a trial (a single 

run of the stochastic process).  Introducing yet another name from stochastic process, 

Kuzmak (2016) proposes what a mature schema for understanding common random 

phenomena consists of:  a mechanism and a way to repeat activating that mechanism, 

outcome sequences, and predictability (Figure 6).  The schema has three main categories 

(numbered) with several characteristics in each category (lettered).  Kuzmak reports on 

24 college students’ interactions with a machine that shakes a tray holding equal numbers 

of red, yellow, and blue marbles.  The students predict which marble falls out of the tray, 

keeping track of the color and whether or not they correctly guessed for 12 trials.  Of the 

24 undergraduates, only four gave responses that Kuzmak classified as fitting the mature 

schema for random phenomenon.  Specifically, Kuzmak argues that these four students 

discussed that the expected number of successes out of 12 trials was 4, this number was 

what others should expect even though the subjects had higher success, that strategies for 

prediction don’t matter, and that marble shaking machine phenomena was random. 
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Figure 6. A mature schema for random phenomenon (Kuzmak, 2016, p. 182). 

While Kuzmak’s work is a step in the right direction, I must point out the 

shortcomings within this schema.  First, the given schema entangles not only the ideas of 

a first-order stochastic process, but also second-order stochastic process, the prediction 

concept, as well as the idea of a sampling distribution for the number of correct guesses 

out of 12 (i.e., a binomial distribution of prediction success).   

Second, the first category (physical mechanism) is the first-order stochastic 

process but makes the mistake that equiprobability of outcomes is a necessary condition 
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for mature understandings.  As von Mises and even Laplace noted, the notion that all 

outcomes have the same probability of occurring should be the first thing abandoned 

when an individual works with probabilistic notions in the real world.  Kuzmak grounds 

the process in some physical mechanism that produces independent trials.  While there 

are stochastic processes that produce independent trials, there are also those that do not; 

time series being an important example.  Kuzmak’s mature schema disavows for time 

series to be consider random phenomena.  The outcome sequences that Kuzmak proposes 

as the second category of her mature schema of random phenomena is better described as 

a schema for students’ understanding of a binomial situation; that is, a second-order 

stochastic process where a first-order stochastic process is repeated a certain number of 

times and the number of “successes” in that number of trials is the outcome of interest.  

Students must be able to coordinate the outcome of the first-order process (the falling of a 

marble and observing the color), predicting the color of the falling marble, and the 

outcome of the second-order process (the number of successful predictions out of 12 

attempts).  The mature schema as described only works in specific binomial contexts.  I 

suspect that if we were to take these same students and present them with different trays 

that have different numbers of each color of marble (l red, m blue, and n yellow where 

l ≠ m ≠ n), only a few of their answers would change.  If we were to change the context 

completely, say to predict the heights of people, their answers could change more 

dramatically.  In either case, this mature schema would be of little use to the students.  

Kuzmak’s third category focuses on the role that prediction plays in stochastic processes; 

primarily that prediction success is not guaranteed.  Again, the equal probability bias is a 
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central component of this category appearing in characteristics 3b and 3c.  Sadly, while 

the experimenter asked three of the four the students showing the mature schema what 

“random” meant to them (as well as the other 20 students), Kuzmak (2016) does not 

share any student’s response to this question.  Instead, Kuzmak shares students’ answers 

to the question of whether or not they believe that the phenomenon is random.  Table 1 

shows the responses of eight students to this question as reported by Kuzmak.  Students 

A, B, and D are purported to have a mature schema for random phenomenon while the 

other students have various immature understandings.  In terms of a stochastic process, 

Kuzmak coded Students A, B, D, and G as seeing the marble shaking trays as being 

random while Students N, R, and V do not.  For these three students Kuzmak contends 

that they “fail to show knowledge that prediction strategy has no influence on prediction 

success for random phenomena because each outcomes is equally likely” (Kuzmak, 2016, 

p. 192).  Student W is coded as having abandoned or expressing doubt about whether the 

marble shaking experiment is random.   

The responses of Students A, B, D, and G focus almost exclusively on the 

uniformity of the marbles; only Student D mentions the tray.  The other students all 

mentioned aspects beyond just the marbles.  Of particular note is Student W’s response.  I 

would characterize W’s response as expressing the fuzzy rule nature of the phenomenon.  

Student W does not make a claim about the randomness of the phenomenon but rather 

notes that he/she is missing information and wants to do more experimentation. 
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Table 1. Students' Responses to Whether the Marble Trays Are Random 

A: They [the trays/phenomena] all of have the same amount of marbles, and all the 
marbles are the same.  Then they’re random. (p. 187) 
B: On the basis of the fact that the trays seemed to be shaped identically, but more 
important, that they seem to contain the same number of evenly shaped, evenly weighted 
marbles, yes, I’d say they’re random. (p. 187) 
D: Not totally…pretty random. If they’re the same number of marbles, and if they’re the 
same size and weight, if the trays aren’t tilted…I don’t know if the numbers are large 
enough, but they appear to be pretty random. (p. 187) 
G: I would say so. Assuming all the balls are the same amount. They’re all weighted the 
same also. (p. 190)  
N: Yes, I would say so. 
Exptr: In other words, so in what sense are they [trays] random then? 
N: That the balls could come down any way given an infinite number of tests you did…” 
(p. 191) 
R: Well, in the sense that it’s too difficult to figure out which marble’s gonna drop 
through, then it’s random. But in the sense that, if you repeated the experiment the exact 
same way with the marbles sort of like distributed before you started, and the machine 
happened to work in the same way, again, then you’d get the same marble, so that 
wouldn’t be random. But since it’s beyond, you know, it is beyond possibility for repeating 
exactly, then you could call it random. (pp. 191-192) 
Exptr: Could you describe these trays here as random? 
V: The trays with marbles in them? 
Exptr: Right. 
V: Yeah, I think so. Although, actually all the colors are—tend to bunch together a little 
bit. See? But, I think, yeah, they’re probably random. The reds and the blues are much 
more than the yellows, bunching together… 
Exptr: OK. So, would you say that it was random the way the marbles came out of the 
hole? 
V: Not really sure. (laugh) I’m really not sure. They do tend to come out in pairs. 
Exptr: OK. Uh, and why would they come out in pairs? 
V: Because the colors tend to be bunched together. (p. 192) 
Exptr: What do you mean by the distribution within the tray? 
W: Well, I mean, I would, I mean I don’t know too much about physics (laugh). But I 
would think that if, if we had a lot of yellow marbles maybe bunched up together or 
something, closer to the center, that might influence the results… 
Exptr: [Later] Could you say that these trays here were random? 
W: Not conclusively. 
Exptr: And what do you mean by that? 
W: (pause) I haven’t been allowed to have; I don’t know all the properties of at work. I 
mean, I haven’t had, I don’t have enough trials with any of the trays to say anything. Nor 
do I know if the marbles are of equal weight or equal anything (laugh). Or if the trays are 
the same. (pp. 192-193) 
All quotations come from Kuzmak (2016) with page numbers given. 
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There are two issues at hand with these responses.  First, the meanings these 

students have for “random” within the marble shaking experiment context are highly 

problematic.  Even the students identified as having mature schemas based their 

judgment of randomness on features of the marbles rather than the stochastic process.  

Student R’s response is interesting in that he/she appears to invoke that there are two 

stochastic processes at hand: the dropping of a single marble and a full set of 12 Bernoulli 

Trials.  In both cases, R appears to equate “random” with “unpredictability”.  The second 

issue at hand is much more problematic:  the students were not actually asked whether 

the phenomenon was random, rather the experimenter asked whether the trays were 

random.  Student F (not shown) directly asked the experimenter if the question was about 

the trays or the methods, while Student V asked for confirmation.  The experimenter’s 

question could be why students focused so much on the marbles rather than on the 

stochastic process.   

Probability 

Probability is the engine that makes inferential statistics run.  In particular, probability 

is the result of centuries of work towards one goal:  the quantification of uncertainty.  

Since before the 1600s mathematicians, philosophers, logicians, and statisticians have 

attempted to resolve questions where uncertain outcomes dominate (Weisberg, 2014).  

Over the course of history, many scholars have engaged in what Thompson (2011) calls 

quantitative reasoning and quantification.  In settling what a measure of uncertainty 

means (along with how to get a measure and what is meant by measuring uncertainty), 

scholars have taken different paths and arrived at their own meanings for the same 

notion, probability.  Laplace considered the ratio of the number of desired outcomes to 
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the number of all possible outcomes under the assumption of “equally likely” outcomes 

(Weisberg, 2014).  Von Mises (1981) considered repeating some process indefinitely to 

build a collective and that the limit of the relative frequency of an event of interest was 

the probability of that event.  Kolmogorov’s (2013) axiomatic, measure-theoretic 

approach has become the gold standard for probability theory.  De Finetti (1974) and 

Savage (1972) regarded probability as dealing with measuring the amount of belief that 

an individual had for a particular outcome’s occurrence that they called “subjective” or 

“personalistic” probability.   

Few practitioners of statistics will disagree with the analogy that probability is an 

engine.  Regardless of which school of probability you ask (i.e., Frequentist, Bayesian, 

Conditional Frequentist, etc.) each acknowledges that the central ideas of probability 

allow us to move beyond merely describing a data set to using the data set as evidence for 

supporting or refuting claims.  The members of these schools of thought have already 

carried out the quantification of uncertainty, something that students have yet to 

undertake.  How practitioners think is often vastly different from how students think 

before, during, and after instruction.   

Kahneman and Tversky (1974, 1982) described how individuals will use different 

heuristics when making judgments under uncertainty.  For example, how representative 

an event (sample) is to the parent process (population) can influence a person’s estimate 

of the probability of the event.  Another heuristic that they found that people use to 

measure uncertainty centers on the ease (or lack of) with which a person can imagine the 

event occurring; the more “available” an event is for the person to imagine, the larger the 
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probability (the less uncertainty) there is for that event.  Konold (1989) found that for 

some individuals, their way of thinking about probability did not match the use of 

heuristics nor was their thinking consistent with the schools of probability.  Rather, these 

individuals appeared to view the goal of uncertainty to be the prediction of the next 

result; Konold referred to this way of thinking as the outcome approach to probability.  

Students also have a tendency to view events as equally probable when they do not 

perceive the many ways a compound event might occur (Lecoutre, Durand, & Cordier, 

1990). Lecoutre et al. found that students and adults view the event of getting a five and a 

six as having the same probability as getting two sixes when rolling two dice.  They 

hypothesized that not recognizing that event of (5, 6) is comprised of two smaller events. 

This way of thinking across multiple events is what they referred to as the equiprobability 

bias.  Fielding-Wells (2014) found that when trying to pick the best card for playing 

addition-bingo, Year 3 students (7-8 years old) operated as though all of the sums of the 

numbers 1 to 10 were equally probable.  Hatfield (2016a) found that 89 out of 114 

undergraduate students (78%) conveyed a circular meaning for probability when asked to 

explain probability.  Students would say that probability was the “chance” or “likelihood” 

of some event occurring.  This finding is in line with Kaplan et al.’s (2009) findings 

regarding lexical ambiguity; students appear to use colloquial meanings as their dominant 

meaning for the technical term probability.  What is perhaps most disturbing is that 

Hatfield collected the data after the students had received instruction and been tested on 

probability in their introductory statistics course.  This suggests that 1) students’ 
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colloquial meanings are resistant to change, or 2) instruction did not challenge the 

students’ colloquial meanings or make those meanings problematic.   

Saldanha and Liu (2014) reviewed much of the literature on students’ understandings 

of probability and proposed that a key conceptual scheme for understanding the 

measurement of uncertainty is a stochastic conception.  They define a stochastic 

conception as “a conception of probability that is built on the concepts of random process 

and distribution” (p. 393).  They argue that in the quest to support students developing 

coherent probabilistic reasoning, instructors need to conceive of probability as ways of 

thinking rather than skills and design curriculum that supports this.  Fielding-Wells 

(2014) had students play addition-bingo and track results, thereby allowing students the 

opportunity confront their equiprobability bias.  Getting students to think about a random 

process can emerge from having students construct data factories (Konold et al., 2007) as 

well as using a simulation approach.  Students need to be able to view a trial as an 

iteration of the random process, that the observed value(s) of this trial make up the 

outcome (Horvath & Lehrer, 1998).  Individuals of all ages and backgrounds struggle just 

as mathematicians, statisticians have to construct a meaning for probability.  Liu and 

Thompson (2007) investigated eight in-service teachers’ understanding of probability.  

They generated a set of models for the teachers’ meanings for probability shown in 

Figure 7. 
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Figure 7. Meanings for Probability (Liu & Thompson, 2007, p. 124) 

The three questions at the top of Figure 7 reflect a way of thinking that underpins 

conceiving a situation stochastically.  The lower seven bubbles each reflect seven 

different meanings for probability based upon answering the three questions.  Liu and 

Thompson only classify viewing probability as relative frequency (from a distribution; 

#10) as being a stochastic conception of probability.  While teachers mostly started out 

with a non-stochastic conception of probability, during the course of the seminar, the 

teachers began to conceive of more situations stochastically and in several instances, 

recognize that the same situation could be conceived both stochastically and non-

stochastically.  For probability to do the work necessary for distribution (and statistical 

inference), individuals need to be able to conceive of situations stochastically.   

Cobb and D. S. Moore (1997) argued that “first courses in statistics should contain 

essentially no formal probability theory” (p. 820).  Since they originally took this stance, 

the American Statistical Association through their Guidelines for Assessment and 

Instruction in Statistics Education (GAISE) have endorsed the notion of reducing 

probability’s role in introductory statistics classes (Aliaga et al., 2005).  A recent draft of 

GAISE 2016 lists probability as a topic that can be omitted and that “at most, this course 
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needs basic definitions, the addition and multiplication rules, and the basic concept of 

conditional probability” (Carver et al., 2016, p. 12).  This new call goes against Cobb and 

Moore’s position.  Cobb and Moore’s position was that there should be little to no 

emphasis on formal rules of calculating probabilities (e.g., what to do for all types of 

cases for  or ).  They believe that discussing probability is still 

important for statistical inference.  Cobb (2015) reiterated this call by urging statistics 

educators to strip away formulas so that central ideas can become accessible to students.  

Liu and Thompson (2002) make an excellent argument that trying to debate the question 

of “What is probability?” is a fruitless endeavor in a first course.  Rather, in a first course 

on statistics and probability, our focus should be on what we (our students and us) shall 

mean by the term “probability”.   

Students do not learn and instructors do not teach in a vacuum with only each 

other’s company.  Course materials such as textbooks play a role in student learning.  A 

quick perusal of four introductory statistics texts indicates that these texts cover 

probability in the exact way that Cobb and Moore urged against; i.e., each focuses almost 

entirely on how to calculate rather than how to think about (what do we mean by) 

probability.  I chose these four texts for different reasons.  The Samuels (2015) text is the 

textbook for the course I plan to use as a research site; the Moore (2012) text is one of the 

most popular introductory texts at the undergraduate level.  As we are seeing a surge in 

number of open access textbooks across all disciplines, I also looked at two such texts 

(Diez, Barr, & Çetinkaya-Rundel, 2016; Illowsky, Dean, & OpenStax College, 2013).  

My intent here is to not conduct a full-scale text analysis, but rather just to get a sense of 

  P[A∪ B]   P[A∩ B]
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how textbooks treat probability.  Worth pointing out is that all four of these texts have 

publishing dates after the Cobb and Moore article and after the release/adoption of first 

GAISE report.  The introductory text Statistics for the Life Sciences, 5th edition (Samuels, 

2015) devotes ~20 pages to probability.  However, there are only three sentences related 

to how to think about probability. Out of the 18 exercises provided for the students to use 

for homework, no question asks students to interpret/make use of a way of thinking about 

probability; the questions all focus on calculating probability values.  Likewise, 

Introduction to the Practice of Statistics, 7th edition (D. S. Moore et al., 2012) devotes 18 

pages to probability and randomness.  Of these pages, only 3 sentences focus on how to 

think about probability.  There are only two questions of the 45 that focus on something 

other than a calculation of probabilities or judgment of independence; one asks whether 

or not a probability value is applicable to a larger set of colleges, and the other asks 

students to explain what a probability value means.  In addition to these two traditional 

textbooks, I examined two open source texts; Introductory Statistics (Illowsky et al., 

2013) and OpenIntro Statistics, 3rd edition (Diez et al., 2016).  There are 51 pages 

devoted to the topic of probability in Introductory Statistics, while the OpenIntro gives 

40 pages to the “special topic” of probability.  There is only one sentence in each that 

focuses on how to think about probability.  For the 128 homework questions in 

Introductory Statistics, only three ask for something other than a calculation of a 

probability value.  Those three questions ask students to state what an expression such as 

P[A OR B] means in words.  None of OpenIntro’s 44 questions ask students to interpret a 
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probability value.  In all four cases, the students’ major takeaway is that probability is a 

calculation.   
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Chapter 3: Theoretical Perspective 

In this chapter I present my theoretical perspective that undergirds this sequence 

of studies.  As a radical constructivist, I believe that individuals build their knowledge 

based on their experiences.  The process of knowledge construction is an active endeavor 

on the part of the individual and the individual is motivated by a need to maintain 

equilibrium between their knowledge and their experiences.  An individual’s knowledge 

is not a picture of the world; rather knowledge consists of thoughts, images, words, 

deeds, anticipations, and emotions that organize her experiences as well as being 

organized by experiences.  The primary perspective I use is a theory of meanings.  

Thompson (2016) presents a theory of meaning based in the traditions of constructivism 

(Piaget) and radical constructivism (von Glasersfeld).  I first present four perspectives on 

scheme before detailing a theory of meanings.  I then propose my particular take on the 

theory. 

Four Perspectives on Schemes 

Researchers of cognition often use the notion of “scheme” in their work.  

However, what these researchers intend to describe and/or convey to readers through 

their usage of the term “scheme” is not always clear.  Here I will focus on four 

researchers and their usage of the concept of scheme as they looked at students’ 

understandings of mathematical topics.  While these four researchers adhere to the 

(radical) constructivist tradition, there are other schools of thought on schemes.  I’ll not 

review these other perspectives but Derry (1996) offers details how the different schools 

of cognitive science treat the idea of scheme.  I will begin by briefly reporting on what 

each researcher has written as to his meaning of “scheme”, followed by highlighting 
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commonalities and differences among them.  Finally, I will describe the work that 

scheme can do for a researcher in understanding, learning, and teaching. 

The biologist turned genetic epistemologist Jean Piaget made extensive use of the 

concept of “scheme” throughout his career.  In Montangero and Maurice-Naville’s (1997) 

work, they give multiple quotations for Piaget’s extensive works that I find particularly 

useful.  I present three of these quotations below (dates in square brackets are of the 

original French publications): 

2. “A scheme is the structure or the organization of actions which is transferred or 

generalized when this action is repeated in similar or analogous circumstances.” 

(The Psychology of the Child, [1966] 1969, p. 11)  

4. “The system [i.e., scheme], composed of determined and completed 

movements and perceptions, reveals the dual character of being structured (hence 

of itself structuring the field of perception or comprehension) and of constituting 

itself from the outset inasmuch as it is a totality.” [my addition] (The Origins of 

Intelligence in Children, [1936] 1977, p. 417)  

6. “The scheme of an action is neither perceptible (one perceives a particular 

action, but not its scheme) nor directly introspectible, and we do not become 

conscious of its implications except by repeating the action and comparing its 

successive results.” (Mathematical Epistemology and Psychology, [1961] 1966, p. 

235) (Montangero & Maurice-Naville, 1997, p. 155) 

Piaget viewed schemes as aspects of an individual’s cognition that served as an 

unconscious means for the individual to organize and make sense of his/her experiential 
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reality.  Schemes for Piaget were not necessarily ready-made recipes an individual 

followed step-by-step.  Rather, schemes served as a general pattern of actions that 

account for a number of circumstances and could be triggered in multiple ways.  For 

instance, consider the notion of baking.  Rather than my wanting to bake always resulting 

in me making coffee cake, the same set of actions for “baking” can be used to make any 

number of baked goods such as cheesecake or pie.  Additionally, my sense of baking 

does not necessarily require that a successful (or rarely, unsuccessful) physical product 

result from my actions; rather, I could imagine what the result might be were I to 

physically act.   

Within the baking example, there is a subtlety highlighted by the third quotation 

of Piaget (number six).  My scheme for baking is not directly observable.  While other 

people might watch me read a recipe, mix together ingredients, put things in the oven, 

and even consume the end product of my work, but not once can any person say “I see 

Neil’s baking scheme.”  I cannot even say that I see my baking scheme.  Rather, the best 

anyone could say is “Here is a possible structure that coordinates Neil’s actions across 

multiple instances of baking.”  Similarly, the best that I can say is that I do certain things 

because I’ve compared different experiences I’ve had when baking.   

Item four in the quotation I’ve provided focuses on the dual nature of schemes 

and highlights just how central the concept of scheme is to the cognizing individual.  We 

constantly process sensorimotor data; some we focus on, most gets shunted off to the 

periphery.  This sensorimotor data does not remain neurochemical impulses; we make 

sense of these impulses as we strive to make sense of our environment (physical 
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surroundings and/or mental re-presentations).  Yet, in order to make sense of these 

impulses, there must be something that organizes them.  Physically, the brain (central 

nervous system, more generally) serves this role; however, cognitively, schemes fulfilled 

this role in Piaget’s work.  While schemes organize our perceptions, our perceptions, in 

turn, lead to the evolution of schemes.  Through comparing successive results, we may 

note differences amongst the results and pick up on aspects of the actions that we did not 

view as being important.  These aspects may lead to a change in the current scheme or 

may even lead to the development of an entirely new scheme.  Thus, schemes are not 

static things, but rather dynamic, evolving things.  This aspect should feel as a given as 

our own experience tell us that how we perceive and make sense of the world around us 

changes as we grow and have new experiences. 

Von Glasersfeld (1995, 2001) drew upon Piaget’s works as well as the biological 

basis Piaget grounded his work in for his written description of the concept of scheme.  

For von Glasersfeld, a sensorimotor or action scheme consisted of three components as a 

single cognitive structure.  First, the individual must have some recognition of the current 

sensorimotor data as being that of a certain situation.  Second, there must be some 

specific activity linked with the certain situation that the individual just recognized.  

Finally, the individual expects that this activity will result in a certain outcome that 

he/she has previously experienced.  Assimilation (another term Piaget used from biology) 

provides the first component for von Glasersfeld.  Von Glasersfeld (1995) described 

assimilation as the individual viewing new sensorimotor data “as an instance of 

something known” (p. 62).  Assimilation also occurs due to the individual carrying out 
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the second component.  The individual attempts to assimilate the actual result of activity 

to the expectation of the third component of a scheme.  If the assimilation is successful, 

that is, the produced product is consistent with what the individual expects, then the 

status quo remains.  However, if the individual perceives an inconsistency, then an 

accommodation to the scheme may develop over time.  Accommodations include tweaks 

to the scheme such as attending to new aspects of the original data, revisal of the 

expected result of activity, and/or the generation of a new scheme.  However, such 

changes do not occur spontaneously or instantly.   

Drawing upon the works of both Piaget and von Glasersfeld, Steffe also used the 

concept of scheme to refer to an organizing structure of the subject’s mind.  “Scheme” 

provided him with a way to describe abstract patterns of behavior of an individual across 

several tasks (Steffe, 1992).  Steffe (1983) made use of the idea of an “operative scheme” 

as a scheme involving mental operations.  Here, Steffe used Piaget’s concept of mental 

operations as cognitive primitives.  Additionally, Steffe (1983) wrote that mental 

operations have the attribute of being actions carried out in thought that lead to a result 

and have content.  He uses a counting scheme to further explain the concept of an 

operative scheme.  “Counting as activity has been defined as the coordination of two 

productive activities. ‘Counting is a production of a sequence of number words, such that 

each number word is accompanied by the production of a unit item (Steffe et al., 1982, p. 

83)’” (Steffe, 1983, p. 111).  The actual counting activity links nicely with von 

Glasersfeld’s second component of a scheme (i.e., specific activity).  What makes this 

counting scheme operative lies in the second activity.  The production of a unit item 
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occurs through the uniting of different aspects into a singular whole in thought; Steffe 

(1983) refers to this mental operation as “integration”.  Additionally, the individual has a 

sense of anticipation of what will be the result should she actually count. 

As a student of Steffe, having worked with von Glasersfeld, and extensively read 

Piaget, Thompson’s usage of scheme is an amalgamation the prior three researchers’ 

usage.  Thompson (1994, 1996) highlighted the role that imagery plays in a scheme.  He 

noted that Piaget made distinctions between three kinds of imagery. A first kind of image 

deals with creation of objects (Thompson, 1994, 1996).  For instance, imagine a ball; the 

mental image that you conjured belongs to this kind of imagery.  A second form of 

imagery involves images of the first type with images of actions on the object.  

Thompson (1996) asserts that in this second form, that “if by actions we include 

ascription of meaning or significance, then we can speak of images as contributing to the 

building of understanding” (p. 3).  With the ball that you imagined, you can also imagine 

holding the ball, rotating the ball to see if there is a logo, and tossing the ball.  These 

images are of the second type.  Another example of this second type of imagery would 

involve you ascribing that the imagined ball held a special meaning such as one signed by 

your favorite athlete.  The final type of imagery is that when the individual constructs a 

dynamic image at a certain moment and that construction is shaped by the mental 

operations the individual uses.  At the same time that these mental operations lead to the 

construction of the image, the operations are also tested for consistency with the scheme 

that organizes the operations (Thompson, 1994, 1996).  Thus, the development and 

refinement of schemes occurs over time and with repeated employment.  Most recently 
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Thompson gave a definition of scheme as an attempt to elevate von Glasersfeld’s notion 

to be more encompassing; a scheme is “an organization of actions, operations, images, or 

[other] schemes—which can have many entry points that trigger action—and 

anticipations of outcomes of the organization’s activity” (Thompson, Carlson, Byerley, & 

Hatfield, 2014).  

A Theory of Meanings 

In building a theory of meanings, a number of issue arise.  Chief amongst these 

issues are what the term “meaning” means, how does a person come to have a meaning, 

and how one individual communicates his meaning for some object to another person.  

Each of these issues entails many additional ideas and relationships to the others.  I’ll first 

present what constitutes a meaning by drawing on the prior section’s discussion of 

schemes.  Second, I’ll describe how I think that an individual develops a meaning by 

examining how an individual constructs objects through the perspectives of radical 

constructivism and symbolic interactionism.  Symbolic interactionism and the 

constructivist paradigm (in particular decentering) play a critical role in how an 

individual might convey a meaning to another individual.  I’ll conclude this section by 

discussing ways to classify meanings in terms of productiveness and usefulness. 

A central tenet of radical constructivism is the belief that every individual builds 

his/her own knowledge through repeated experiences.  Through repeatedly reasoning 

about a set of similar experiences, the individual builds a scheme, which organizes the 

actions3 that arose during the repeated experiences.  Piaget wrote “A scheme is the 

                                                
3 An action is any thought, word, deed, or emotion that fulfills a need, (Piaget & Elkind, 
1968). 
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structure or the organization of actions which is transferred or generalized when this 

action is repeated in similar or analogous circumstances” (Piaget, [1966-French] 1969 in 

Montangero & Maurice-Naville, 1997, p. 155).  Thus, an individual’s schemes enable 

him/her to make sense of experiences.  During an experience, the individual strives to 

make sense and does so by assimilating the experience to one (or more) of her schemes.  

When this assimilation occurs, that individual enters a cognitive state in which the 

individual may now reason about the experience.  Thompson and Harel devised a 

framework that call this state the individual’s understanding of the experience 

(Thompson et al., 2014).  Piaget also wrote that schemes are “organized totalities whose 

internal elements are mutually implied” (Piaget, [1936-French] 1977 in Montangero & 

Maurice-Naville, 1997, p. 155).  Thus, when an individual understands an experience, 

any actions, images, and schemes associated with the scheme the individual assimilated 

the experience to can be easily brought to mind by the individual.  This is the inference 

that accompanies assimilation (Jonckheere, Mandelbrot, & Piaget, 1958).  I view the 

inference as a set of implications resulting from the individual’s understanding of the 

experience.  In the aforementioned framework by Thompson and Harel, this set of 

implications is the meaning that the individual gives to experience based upon his/her 

understanding (Thompson et al., 2014).  Given the prior writing about schemes, the 

meaning the individual has for an experience is the scheme to which the individual 

assimilated the experience.  This view of meaning is also in line with “meanings is a 

statement of the relation between the characteristics in a sensuous stimulation and the 

responses which they call out” (Mead, 1910, p. 402).  I take Mead’s “characteristics” to 
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be the aspects of the situation that an individual assimilates to form an understanding and 

his “responses” to be the set of associated actions, images, and schemes.  

Meanings develop in the same way as schemes; as an individual interacts with his 

world, he organizes his experiences according to his schemes, and as his schemes 

develop, he organizes his experiences differently.  When experiences fit his existing 

schemes, those schemes are re-enforced; when experiences do not fit his schemes, he 

experiences perturbation.  To resolve the negative feedback loop that is perturbation, the 

individual accommodates his schemes, thereby altering the meaning(s) he originally gave 

to the experience.  In this description, the statement “interacts with his world” entails 

much more than the individual physically experiencing his immediate environment.  “His 

world” consists of objects that he has constructed for himself.   

Writing about how a child constructs her reality, Piaget described an object as an 

individual’s construction consisting of “a system of perceptual images endowed with a 

constant spatial form throughout its sequential displacements and constituting an item 

which can be isolated in the causal series unfolding in time” (Piaget, 1995, p. 270).  Von 

Glasersfeld (1995) explains that there are two phases to the development of objects: 

recognizing an object when the individual has sensorimotor data available and re-

presentation of the object when sensorimotor data is not available.  Mead (1912) viewed 

physical objects as things a person constructs out of sensorimotor data and his past 

experiences.  Blumer (1986) explained Mead’s view of object as “objects are human 

constructs and not self-existing entities…[objects are] anything that can be designated or 

referred to” (p. 68).  All four of these scholars do not take the objects that comprise an 
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individual’s world as a priori givens.  Rather they view objects as idiosyncratic to the 

individual.  As an individual builds a conception for a new object, she generates images 

that eventually allow for the coordination of schemes and the development of her 

meaning for the object.  Von Glasersfeld points out that in order for an individual to 

construct permanent objects, she must develop a sense of identicalness.  In essence, the 

individual must think of an object as being the same object at different moments.  

Between the moments, she imbues the object a continual endurance, even when the 

object is not at the fore of her experience.  

When an individual has awareness of what she is doing, thinking, feeling, she has 

the additional awareness that there is a “she” that is doing, thinking, or feeling.  This 

“she” is her image of self.  As von Glasersfeld (1995) noted, the “self” does not need to 

the product of intense or complicated thought; she will build her model of “self” over 

time so that her model is viable with her experiences.  Mead viewed the self (the “me”) as 

the individual’s response to her communication.  Keeping in mind that “gesture” includes 

more than physical motions, Mead (1912) took “any gesture by which the individual can 

himself be affected as others are affected, and which therefore tends to call out in him a 

response as it would call it out in another” as a way that the individual builds her “self” 

(p. 405).  Both von Glasersfeld and Mead viewed the “self” as an object that the 

individual continually revises.  While the quotation by Mead conveys sense of what von 

Glasersfeld referred to as the “social self”, Blumer (1986) points out that the “self” is also 

a mechanism of self-interaction.  This encompasses not only the social self, but also the 

perceived self.  Mead’s quotation brings in a new issue:  the “others”.  In writing about 
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the social self, von Glasersfeld (1995) said “if it is others from whose reactions I derive 

some indication as to the properties I can ascribe to myself, and if my knowledge of these 

others is a result of my own construction, there is an inherent circularity” (p. 127).  There 

is not circularity to this statement, as von Glasersfeld argues, when you examine what 

constitutes the “others”.  The “others” are nothing more than objects, models, that we 

create out of our experiences for people that we believe can behave in predicable ways.  

Our initial model for the “other” rises out of our model of “self”; however, we adapt the 

model to allow autonomy in how they react (i.e., the “others” do not necessarily have to 

respond exactly as the “self” would).  As the individual has more experiences, she 

continues to revise her models of them, always seeking out a viable model.  However, as 

she does this, this also receives feedback as to the viability of her model of herself.  This 

enables her to adapt the “self” so that she can maintain equilibrium between model and 

experience.  

What does the present discussion about objects, self, and others have to do with 

meaning?  When an individual constructs an object, she is creating an element of her 

experiential world in which she imbues certain meanings.  Mead, Piaget, Blumer, and 

von Glasersfeld would all surely agree that an individual constructs objects through 

interaction.  Blumer (1986) emphasizes that object construction occurs though social 

interaction (including interactions involving only the “I” and “me”).  Defending Piaget’s 

work from the criticism that constructivism ignores the social element, von Glasersfeld 

(1995) argues that a rich source of perturbations, and therefore opportunities for learning, 

stems from the individual’s experiential world containing other people.  Blumer draws 
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upon Mead’s work to answer how a person’s meaning for any object develops or is 

refined through social interaction with his notion of symbolic interaction.  Symbolic 

interaction is the portion of social interaction where an individual acts based upon his 

interpretation of another person’s actions.  There are two components to symbolic 

interaction: interpretation, ascribing meaning to another’s actions, and definition, the 

indication of meaning to another person so that she might act.  Through social interaction, 

an individual can enter a state of perturbation, which he would resolve with the 

modification of existing meanings or the development of new meanings.  The individual 

must make an interpretation of the actions of the other person to give those actions 

meanings.  In other words, the individual must assimilate those actions to his existing 

schemes.  Through this assimilation, he is now positioned to make decisions about his 

own actions, which are now based upon the meanings he imbued the other person’s 

action with. The individual’s actions contain definition of what he wants the other person 

to understand.  However, she must now assimilate his actions to her schemes.  However, 

what happens when she does not act in a way that is consistent with how he imagined?  

He must now resolve the perturbation that her unexpected (to him) behavior caused with 

his model of her.  Symbolic interaction provides us a start to process of building 

objects/meanings, but radical constructivism allows us to go further.  Interpretation is 

essentially assimilation.  However, there is much more going on with defining.  Here the 

individual must make use his model of the other person with the goal that she will 

interpret his actions in the way he intended.  If he assimilates her actions in a way that 

supports him in believing that she understood what he intended, then he has evidence to 
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support the viability of his model of her.  At the same time, she is doing the same.  This 

state where each participant believes that the other have interpreted his/her actions as 

he/she intended is what von Glasersfeld referred to as intersubjectivity.  There is an 

important word in this last sentence:  believes.  Neither individual needs to have a perfect 

model, nor do they have to have consistent models for intersubjectivity.  As long as their 

models of the other person are viable with their experiences, then they are in a state of 

intersubjectivity.   

Given that an individual develops her meanings through social interaction, the 

two acts of symbolic interaction serve as means of explaining how a person conveys her 

meanings to another person.  In particular, the act of defining is how she would attempt to 

communicate her meaning for an object.  For the person receiving this communication to 

have the same meaning as the sender, he must interpret her indication in the way she 

intended.  There is no guarantee that he will interpret her actions in the way she intended 

and thereby, no guarantee that she has communicated her definition.  This brings us to 

important question in mathematics and statistics education research:  If meanings are 

intensely personal constructions and people involved in symbolic interactions can be in a 

state of intersubjectivity without having the same meanings, then how can a person learn 

from someone else?  This is a question that Thompson (2013) tackled.  Thompson found 

an answer by turning to the notion of intersubjectivity and Pask’s conversation theory.  

Intersubjectivity hinges on an individual having a mental image of another person that is 

free to think like and not like the individual (von Glasersfeld, 1995).  From Pask’s theory, 

Thompson (2013) highlights that a conversation is more than just a verbal exchanges; 
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conversation also includes all of the participants’ “attempts to convey and discern 

meaning” (p. 63).  He uses the following figure to highlight the blending of 

intersubjectivity and conversation theory: 

 
Figure 8. A “meaningful” conversation (Thompson, 2013, p. 64). 

As ‘A’ and ‘B’ talk to each other, they must each keep in mind not only what they 

wish to communicate but also how the other person might interpret his/her words/actions.  

Both ‘A’ and ‘B’ build a model of the other person.  Thompson’s work provides an 

answer for how the conveyance of meaning from one individual to another might occur.  

Suppose that ‘A’ wants to communicate something specific to ‘B’.  When ‘B’ assimilates 

the experience to his schemes, he imbues that experience with a meaning that stems from 

two sources.  The first source is his own meanings; the second is what he knows about 

‘A’.  The meaning that ‘B’ gives to ‘A’s utterance or action is what Thompson referred to 

as the conveyed meaning.  A conveyed meaning is the set of implications that a receiver 

attributes to the sender’s message constrained by 1) the receiver’s de-centering and 2) the 

receiver’s belief that the sender made an honest effort to convey his/her thinking.  These 

constraints lay the groundwork for intersubjectivity and keep both participants in the 

picture.  While ‘A’s conveyed meaning might not be a perfect reflection of ‘A’s actual 
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meaning, this is how ‘B’ understood ‘A’ and is the basis for which ‘B’ to now respond.  

The notion of conveyed meaning is useful in education in several ways.  First, we can use 

this notion in research to attempt to discern what meanings our students have constructed 

for various topics.  Second, we can use this notion in the planning of lessons.  By trying 

to answer the question of “what have I conveyed to my students?” we can engage in de-

centering and design meaningful conversations.  This second use is easily extended to a 

third focused on the generation of curriculum materials such as activities and textbooks.  

With textbooks, we can imagine to types of conveyed meaning; the first being what the 

authors conveyed to us and the second being what the authors conveyed to our students.   

By examining students’ responses, we can characterize those responses by the 

meaning conveyed.  However, to compare categories of conveyed meanings there must 

be an aspect of the theory that deals with productiveness of the meanings.  As Thompson 

(2016) notes, if researchers seek to design diagnostic assessments to get at the meanings 

that individuals have, then the researchers must explicate a productive-nonproductive 

continuum for those meanings and why one meanings is more or less productive than 

another.  I view productive meanings as those meanings that provide coherence to ideas 

that individuals have as well as affording students a frame to support future learning 

(Thompson, 2016).  Additionally, productive meanings are clear, widely applicable 

(within reason) across a number of contexts, and rely only on assumptions that the 

individual can readily express.  Alternatively, a nonproductive meaning is a meaning that 

is almost exclusively tied to the context of the experience and does not support (and 
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perhaps inhibit) future learning.  Take for example the following triad of meanings for 

the sine function: 

1. Sine is what you get when you take the Opposite over the Hypotenuse of a 

right triangle. 

2. Sine gives you the vertical displacement from a horizontal diameter of a 

circle for a given angle measure. 

3. Sine describes the co-variation of the proportion/direction of the amplitude 

(displacement from rest) with respect to the percentage of a period 

completed (expressed as an angle measure). 

The most unproductive of these meanings would be the first one; this meaning hinges on 

the presence of a triangle and treats sine as the result of what you do with the sides of the 

triangle.  The second meaning is more productive than the first but is still tied to the 

presence of a circle.  While this meaning treats sine more as a function, the students with 

this meaning can only operate within the context of circular motion.  The third meaning is 

the most productive of the three.  This meaning places sine in the broad context of 

describing periodic co-variation and would enable students to use sine not only in circular 

contexts (like the second meaning would) but would also allow students to use sine in 

contexts where there is not a circle such as human physiology (e.g., hip flexion/extension, 

blood pressure), energy, and tides.  Students whose meanings for sine are completely tied 

to triangles or circles or see the output of sine as being only a vertical displacement will 

have great trouble reasoning in these contexts.  Further, only the third meaning enables 

students to see that cosine is nothing more than the complement’s sine.  The meaning for 
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cosine that goes along with the second meaning for sine (i.e., a horizontal displacement 

from a vertical diameter) creates a schism between the two functions that inhibits 

students from understanding why you can use either function to develop a model for 

same periodic co-variation.   

Dewey (1910) wrote “Vagueness disguises the unconscious mixing together of 

different meanings, and facilitates the substitution of one meaning for another, and covers 

up the failure to have any precise meaning at all” (p. 130).  Vagueness serves as an 

indicator of a nonproductive meaning.  I must point out that the present productive-

nonproductive continuum focuses on more long-term aspects of meanings.  A student 

whose meaning I would classify as nonproductive along this continuum may be highly 

“productive” for the student in light of short-term goals such as finishing a homework 

assignment.  Productive meanings are clear, widely applicable (within reason), and entail 

an awareness of and need to explicate any assumptions.  As such, productive meanings 

are not only identified by the researcher but the judgment of “productive/non-productive” 

comes from the researcher positioning the particular meaning along a continuum of 

meanings for that concept.  I take a useful-in-the-moment meaning to be any meaning that 

allows a student to meet her immediate performance or learning goal.  Consider the 

following meanings for the associative property:  

A. Move parentheses.  

B. The choice of which of two structures to impose (e.g., [a+b]+c or a+[b+c]) 

does not change the result.  
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Meaning A is useful-in-the-moment; students can get correct answers.  However, this 

meaning does not necessarily help students when there are more than three terms.  

However, meaning B is a productive meaning and useful.  The label of “useful-in-the-

moment meaning” while also applied by the researcher, is much more focused on the 

here-and-now for the student than that of “productive meanings”.  

I close with summary of the most important constructs.  A meaning is the space of 

implications (i.e., the scheme) that an individual assimilates an experience to when he 

generates an understanding of that experience.  A conveyed meaning is the meaning that 

a receiver construes through her understanding of the sender’s actions by de-centering 

and believing that the sender made an honest effort to communicate his meanings.  A 

productive meaning is a meaning that provides coherence to the individual’s current ideas 

as well as serving future learning, is clear (not vague), applicable across multiple similar 

contexts, and relies on assumptions that the individual can explicate.  A useful meaning is 

any meaning that an individual uses to achieve some goal. 
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Chapter 4: Conceptual Analysis of Distribution of a Random Variable and a 
Hypothetical Learning Progression 

This chapter contains the conceptual analysis for thinking of the distribution of a 

random variable as the accumulation of random process outcomes with respect to the 

value of the random variable.  This particular way of thinking about distribution is the 

target of the hypothesized learning progression that I will use to guide the three studies.  

As part of the learning progression, I will present progress variables based on upon both 

the extant research and my conceptual analysis that serve as ways to evaluate students’ 

understandings and place students within the progression.   

Conceptual Analysis, The Tool 

Before presenting my conceptual analysis, I will first discuss the tool that is 

conceptual analysis.  The phrase “conceptual analysis” refers to an approach for distilling 

what an individual understands into basic components of the individual’s mental actions.  

While von Glasersfeld (1995) describes his approach, he drew upon the works of Jeremy 

Bentham and Giambattista Vico as well as his time working with Silvio Ceccato’s group.  

Ceccato’s group, “The Italian Operationist School”, focused on reducing all words, in 

any language, not to other words, but rather to the mental operations associated with 

those words (von Glasersfeld, 1995, p. 6).  Von Glasersfeld used the term “concept” to 

refer to dynamic mental re-presentations that had “been honed by repetition, standardized 

by interaction, and associated with a specific word” (von Glasersfeld, 1987, p. 219).  

Through Piaget we can form a link between von Glasersfeld’s usage of the term 

“concept” and Ceccato’s group’s aim.  Montangero and Maurice-Naville (1997) share the 

following for Piaget’s meaning for mental operation: 
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5. An operation as such is a creation of the subject, since it is an action he exerts 

on things.  Action, this being the earliest form of operation, adds new elements to 

reality… 

6. A system of intellectual operations has two aspects psychologically speaking: 

externally, it is a coordination of actions (effective or mental actions), whereas 

internally, that is to say, from the point of view of consciousness, it is a system of 

relations where each relation implies the others… 

10. Unlike most actions, operations always involve a possibility of exchange, of 

interpersonal as well as personal coordination, and this cooperative aspect 

constitutes an indispensable condition for the objectivity, internal coherence (that 

is, their ‘equilibrium’), and universality of these operatory structures… 

11. An operation is not a representation of an act—strictly speaking, it is still an 

action since it produces new constructions, but it is a “signifying” and not a 

physical action in that the connections it uses are implicative, not causal (pp. 137-

138). 

I provided the long quotation of Montangero and Maurice-Naville to convey that mental 

operations are 1) central to the thinking of an individual, 2) bounded by the individual’s 

experiences, and 3) inter-related.  Von Glasersfeld used “concept” to refer to what an 

individual could mentally re-create for him/herself in the absence of physical stimulus.  

This fits nicely with Piaget’s intent of mental operations, particularly in the sense of 

coordination of actions and acting as a signifier for the individual.  Additionally, von 
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Glasersfeld’s conditions (i.e. honed by repetition, etc.) firmly tie into the exchange aspect 

of mental operations.   

A central premise to conceptual analysis is that the analyst seeks to answer the 

question “what mental operations must be carried out to see the presented situation in the 

particular way one is seeing it?” (von Glasersfeld, 1995, p. 78).  Given this question and 

that a researcher may only infer the mental operations of a subject based on the subject’s 

observed behavior, conceptual analysis is a method of modeling building.  Thompson 

(2000) describes three usages of conceptual analysis:  1) to build second-order models for 

how another person might understand a particular idea, 2) generate a model for meanings 

that should an individual have these meanings, then that individual is in a beneficial 

position for future learning and 3) generate a model of meanings that might inhibit the 

individual in generating an understanding of new situations and/or prevent the 

construction new, more productive meanings.  Thompson (2008) added an additional 

usage of conceptual analysis; describing the “coherence of various ways of understanding 

a body of ideas” (p. 45).  These four uses of conceptual analysis tie to the goals of 

conceptual analysis as well.  Steffe (1996) identified that conceptual analysis highlights 

the mathematical reality of a student (that differs from our own) as a valid and authentic 

construction, identifies the aspects of the student’s mathematical reality that function 

effectively, and suggest what “accommodations of those schemes induced by whatever 

constraints the student may encounter” (pp. 202-203).  The following conceptual analysis 

of a random variable’s distribution involves five additional conceptual analyses dealing 

with randomness, random variable, random process, accumulation, and probability.  As a 
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totality, I (and other researchers) have used all four forms of conceptual analysis in 

building this conceptual analysis. 

Hypothetical Learning Progressions and Progress Variables 

Conceptual analyses provide a way to orient a researcher to models of how an 

individual might think about a particular concept.  The conceptual analysis also provides 

an occasion for the researcher to conjecture as to how the individual comes to have his 

particular meanings for the concept.  Hypothetical learning progressions are models that 

researchers hypothesize as explaining how a student might learning a particular idea (in a 

particular way) over time (Duschl, Maeng, & Sezen, 2011).  Hypothetical learning 

progressions are science education’s name for the hypothetical learning trajectories of 

mathematics education.  Simon (1995) describes hypothetical learning trajectories as 

consisting of a learning goal, learning activities, and a hypothesis of how learning will 

unfold.  For learning progressions, there are five elements: identified learning targets, 

identification of progress variables, the mapping out of progress in stages, operational 

definitions of learning progress to generate observable learning performances, and 

assessments to track progress (Corcoran, Mosher, & Rogat, 2009).  There are links 

between the two frameworks.  Simon’s learning goals are Corcoran et al.’s learning 

targets.  The hypothetical learning trajectory’s activities and hypothesis encompass the 

remaining four elements of learning progression.  Common to both trajectories and 

progressions is that they are empirically testable and contain the natural analogy of 

following a path.  Lehrer (2013) makes a case that learning progressions/trajectories can 

also be thought of a trading zone.  Here, the progression is an opportunity for different 

constituencies (e.g., mathematics educators, statistics educators, curriculum developers, 
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software design, psychometrics) to share their strengths with each other over the 

(hopefully) long lifespan of the progression.   

Part of a learning progression is the identification of a learning goal.  For this 

sequence of studies, the learning goal will be the understanding of a random variable’s 

distribution as the accumulation of a random process’s outcomes organized by the 

random variable’s value.  Additionally, the research must identify progress variables.  A 

progress variable represents “(a) the developmental structures underlying a metric for 

measuring student achievement and growth, (b) a criterion-reference context for 

diagnosing student needs, and (c) a common basis for interpretation of student responses 

to assessment tasks” (Kennedy & Wilson, 2007, pp. 3–4).  The following conceptual 

analysis of the learning goal will serve as the basis for the identification of progress 

variables and stages of progression. 

Conceptual Analysis of Distribution 

To understand the concept of distribution the individual views the distribution of a 

random variable as the accumulation of a random process’s outcomes organized by the 

value of the random variable.  This way of thinking is in line with both von Mises’ and 

Kolmogorov’s usages of “distribution”.  Thinking about a random variable’s distribution 

as the accumulation of random process outcomes with respect variable’s value supports 

individuals in thinking about a function that relates a value of the random variable to a 

cumulative probability.  In other words, this way of thinking about distribution is a way 

of thinking about cumulative density functions (CDFs).   

This target meaning for distribution hints at five concepts that students must 

develop meanings for and coordinate in order to come to understand distribution in this 
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way.  Figure 9 shows these five concepts and the concept of distribution.  The gradation 

of colors supports viewing each of the five concepts as interrelated and that the idea of 

distribution is the amalgamation of these concepts much like white light is composed of 

full color spectrum. 

 
Figure 9. The core concepts for understanding the idea of distribution4. 

The target meaning in this study is to imagine that a random variable’s 

distribution is the accumulation of a random process’s outcomes organized by the value 

of the random variable.  Here the student would need to first imagine that there is some 

process that she can repeat ad nauseam with each trial providing her the value an object’s 

attribute she’s interested in.  She anticipates that each trial does not always yield the same 

value as any of the previous trials and that she cannot predict what value any one trial 

                                                
4 My thanks to Caren Bergemeister for her assistance creating this figure. 
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will yield.  As she repeats the process, she keeps track of each trial’s outcome by building 

a sequence or list that she adds to with each new trial.  While her sequence follows the 

ordering of her iterations of the process, she imagines that she can re-order the sequence 

however she wants; she anticipates that the process could have just as easily yield the 

sequence in any order she imagines.  The idea that she could shuffle the sequence into 

any ordering stems from her imagining that the process is not overtly influenced by 

factors that she could use to predict the process’s outcomes.  As she continues to repeat 

the process and get more values, she begins to anticipate that she can predict how often 

the process yields different values.  By ordering the sequence by the value of the 

attribute, she can put like values together to make counting easier and so that she can 

better compare the frequency of individual values.  She also imagines that a friend could 

start carrying out the same process at a different moment and build a sequence in the 

same way.  This would allow her and her friend to compare how often different values 

occur, relative now to how long they have each been repeating the process.  She 

anticipates that this comparison will allow her to make better predictions for how often 

the process produces different values.  The student encounters an issue in that in order to 

count or develop a relative frequency, she has to stop or pause the process, otherwise the 

process continues to generate more values that she puts into her ordered sequence.  She 

imagines that she can use the relative frequencies from an extremely large number of 

trials to estimate what percent of the infinitely many trials would be for different values.  

She partners this imagery with the idea that if she starts at the beginning of her ordered 

sequence (i.e., with the smallest value) and continues through the whole sequence, she’ll 
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accumulate an increase percentage of the infinite outcomes.  She can continue moving 

through the sequence, examining larger and larger values, until when she reaches the 

point where she has accumulated 100% of the outcomes from her infinitely repeated 

process. 

The preceding description unpacks the target meaning and highlights how the five 

core concepts (random process, random variable, accumulation, randomness, and 

probability) interplay with one another.  In order for a student to think about distribution 

as described, she would need to have particular meanings for each of these concepts.  In 

the following sections, I’ll detail the way of thinking about each concept that I believe is 

key for understanding distribution as the accumulation of outcomes of a random process 

organized by the random variable’s value. 

Random process.  One often-overlooked question in introductory statistics 

courses, is where do data come from?  In many of these courses, the teacher provides 

students with sanitized data collections that nicely exemplify the current topic of 

instruction and have little to do with real statistical inquiry.  However, even in these cases 

the question of where the data come from is still pertinent for students to wrestle with.  

The answer to this question is not a data warehouse; rather the answer is the random 

(stochastic5) process.   

The student imagines that a stochastic process is a method for obtaining data 

values that he can use to answer some question about the behavior of a stochastic 

                                                
5 I use “random” and “stochastic” interchangeably when discussing processes and 
variables. 
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variable(s).  In constructing this method, the student needs to first conceive of a 

stochastic variable that he wants to know something about; for example, the height of 

people living in the United States who are at least 20 years old.  Next, the student 

imagines the population (20+ years olds living in the USA) and imagines a way of 

selecting individuals.  The student could imagine assigning a unique ID to each person 

who is at least 20 years old and living in the USA and then placing those IDs into a 

container.  To select an individual the student imagines reaching into container and 

drawing out an ID; student imagines that he is running a lottery.  Once the student has 

removed the ID, he imagines going the associated individual and measuring (and 

recording) that individual’s height.  The student at this point might imagine returning the 

ID to the container or putting the ID to the side. Whichever option the student chooses, 

the student anticipates that he could reach into the contain a draw out another ID and 

measure that associated person’s height which the student anticipates as being potentially 

different from the prior observation(s).  The student imagines that this repeatable action is 

repeatable for an essentially infinite number of trials.  That is to say that the student 

believes that he could carry out this method of collecting heights forever.  Each time he 

carries out the method (a trial), he records the outcome (the observed value of the 

stochastic variable) as the newest term of the sequence.  To describe the above more 

succinctly, the student thinks about a stochastic process as infinitely repeatable process 

where each trial yields an observed value of a stochastic variable (the trial’s outcome) 

with the anticipation that the outcomes vary with each trial and the resulting sequence 

appear random.   
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There are two types of stochastic processes worth discussing.  The first type 

matches previous example for investigating the height of 20+ year olds living the USA.  

Stochastic processes of this type help students answer simple questions that revolve 

around singular stochastic variables and do not necessitate the use of any statistics.  I 

refer to these processes as first-order stochastic processes.  First-order processes are 

sufficient for thinking about the distribution of random variables.  However, if the 

random variable is actually a statistic, then a second-order stochastic process is needed.  

A second-order stochastic process is a stochastic process that involves carrying out one or 

more other stochastic processes as a necessary step in carrying out this larger process.  

As a first example of conceiving a second-order stochastic process, I turn to Liu 

and Thompson’s (2007) work on teachers’ understanding of probability.  They provide 

descriptions of the conceptual operations an individual needs to view a process as 

[second-order] stochastic.  First, the student must imagine that a process exists by which 

he may find the answer to a question he is dealing with.  For example, Liu and Thompson 

(2007) use the following prompt: “Suppose that 30 people are selected at random and are 

asked, ‘Which do you prefer, Coke or Pepsi?’ What is the probability that 18 out of 30 

people favor Pepsi over Coca Cola?” (p. 122).  While the question deals with finding the 

value of the probability of 18 out of 30 people favoring Pepsi, the student must first 

imagine that there is a method by which 30 people may be randomly selected from some 

population and asked which pop they favor of the two choices.  Embedded within this 

imagined method, the student must also conceive of the existence of a specific population 

from which 30 people can be asked for their responses.  Additionally, the student must 
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anticipate that these 30 people won’t necessarily give the same answers as each other nor 

the same answer the student himself would give.  In essence, the student must bring the 

notion of variation to the foreground in his thinking about the random variable that is cola 

preference.  (This is a first-order stochastic process.) Once he has collected the 30 

preferences, the student can find the proportion of people who prefer Pepsi; he finds the 

value of a statistic that acts as the outcome of the second-order process. 

Once the student coordinates a target population, a selection method, and his 

anticipation of varied responses, he must imagine that he could carry out this same (first-

order) process again and again in nearly identically settings; second, given the settings 

and carrying out the process repeatedly, he must assume that the value of the statistic (the 

proportion of people who prefer Pepsi) won’t necessarily be the same as the prior 

instances (Liu & Thompson, 2007).  This second assumption serves as the basis for a 

critical anticipation the individual must make.  The individual must imagine that just 

because the first time of randomly selected 30 people from the target population and 

finding that 14 of the 30 prefer Pepsi, that this does not mean the next time he carries out 

the process he will also find 14 out of 30 people prefer Pepsi.  Additionally, the 

individual must imagine that since the first instance of process resulted in 14 out of 30 

people preferring Pepsi, that this does not preclude any other subsequent instance from 

also resulting in 14 out of 30 people preferring Pepsi.  This anticipation is an extension of 

thinking about variation between individuals; now the variation is between collections.  

Rather than just thinking that the selected people won’t all give the same answer, the 
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individual must also now imagine that result of each instance of the process (i.e., the 

proportion of people who prefer Pepsi) may vary much like each person’s response.   

Just as the student records individual’s heights or cola preference to form a 

sequence, the student can record the outcomes of the second-order stochastic process.  

The terms of this sequence are the values of the statistic that student used.  This record 

keeping is the final bit of imagery that the individual must incorporate with his view of 

the two processes (Liu & Thompson, 2007).  The individual views the record of results as 

fulfilling a need so that he may answer the question at hand (e.g., the probability that 18 

out of 30 people favor Pepsi).  The individual imagines this record as a collection of 

outcomes stemming from the imagined random process.  Acts of generating and adding 

to this record joined with viewing the record as a collection of outcomes provides the 

individual with the means to look for patterns that may emerge when carrying out the 

process a large number of iterations.   

Random variable.  When the student imagines a random process as the method 

of by which he gets data, he must already be thinking about what he wants to examine 

and treat as data.  In particular, the student must already have an image of what attribute 

speaks directly to his research question and have an idea of how to observe/measure that 

attribute.  The student already anticipates that each time he carries out his random 

process, he’ll observe a value of this attribute.  The student can begin to think about 

representing all of these possible values with a random variable.  In thinking about the 

random variable as all possible values for the attribute he’s interested in, the student is 

poised to begin considering the long-run behavior of this attribute. 



 

82 

To begin with, the student must imagine that there is an attribute about an 

object/living being that he would like to know more about.  This starting point is very 

much in line with what Thompson (1993, 2011) referred to as an individual conceiving of 

a quantity.  The differences between a quantity as defined by Thompson and a random 

variable come in two areas; 1) the student must view the random variable as not being 

intricately bound to any one object/being, but rather a class of objects/person, and 2) the 

student must view the random variable as being inextricably linked to the notation of 

variation.   

First, while multiple objects/living beings can have the same attributes, the 

individual’s image for a particular quantity includes a specific object/person.  For the 

random variable, the student’s focus does not necessarily reside on linking the value of 

the attribute to a specific object/person; rather the attribute’s value is of a generalized 

object.  For example, the student might reason that since Sally’s height is 64 inches, she 

is two inches taller than Pamela.  Now, suppose the student thinks of a height of some 

person that is 64 inches.  The student’s focus is no longer coordinating a specific person 

with that height.  Rather, this height (64 inches) belongs to an amorphous person who 

might not be Sally; the student’s mental image could be of any other person, man or 

woman, who he/she feels fulfills the 64 inches tall requirement.   

Second, the individual must imagine that random variables are inherently linked 

with the notation of variation.  Students must view variation as changes in the value of 

some attribute.  However, the way students think about “changes” is different for random 

variables than quantitative variables.  For a quantitative variable, the student might think 
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of a change in the value being the difference between the attribute’s measure at two 

different point in time.  For example, the height of a rock tossed into the air after 0.5 

seconds from release and 2.5 seconds after release.  For a random variable, the student 

needs to also think about changes in the value of the attribute as being the result not of 

the passage of time but the student looking at different object/living being.  For example, 

the student might see that a person has an A+ blood type and an age of 32 years.  The 

student then looks at different person and sees that this person has a blood type of B+ and 

an age of 29 years.  The student must realize the “changes” in the values of blood type 

and age (since birth) did not result from the passage of time as in the case of the rock.  

This form of variation is what I refer to as “variation between individual objects/beings in 

a collection”.  I refer to the variation in the tossed rock situation as “variation within an 

individual object/being”.  These two phrases help to highlight the major distinction 

between quantitative variables and random variables; random variables deal with many 

objects and living beings while quantitative variables deal with a single object or being.  

The student’s anticipation of variation in the values of the random variable feed back into 

the notion of randomness.  The variation prevents prediction in the short-term but not in 

the long-run.   

So far, I’ve not made a distinction between stochastic variables that are 

categorical or numeric in nature.  I do not use the term “value” to refer to solely numeric 

measures.  The above way of thinking about random variable works for both numeric and 

non-numeric attributes.  The student need only anticipate what values he/she could 

observe for the random variable of interest to deal successfully negotiate the differences 
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between the two cases.  In a similar fashion, there is a distinction between discrete and 

continuous random variables.  If the student conceives of the random variable in such a 

way that he imagines that the numeric values tell him the count of something (e.g. the 

number of viable eggs, number of people who prefer Pepsi to Coke) and that there are 

gaps between successive (adjacent) values, then he is imagining a discrete random 

variable.  However, if the student imagines that the values tell him the amount of 

something (e.g. a person’s height or weight) as well as imagining that values lie along a 

continuum that he anticipates constantly zooming in upon to find more values between 

what appeared to be adjacent values, then the individual has conceived of a continuous 

random variable.  This anticipation of possible values brings the student’s understanding 

of the attribute and situation to mind, enabling him to think about what values are 

possible and make sense.  An adult elephant weighing in at 3 kg makes as much sense as 

a blood type of polka or π.  In all three cases (non-numeric, discrete, and continuous), the 

student must coordinate an imagined generic object/being, variation, and admissible 

values to truly conceive a random variable.   

Accumulation.  Stochastic processes provide the way of getting values of a 

stochastic variable and terms of our sequences.  Act of recording these values is an act of 

accumulating outcomes of the stochastic process.  Thompson and Silverman (2008) 

pointed out that the idea of accumulation is both easy and difficult for students to 

conceptualize.  While they focused on the conceptions of accumulation in the context of 

calculus, their work serves just as well in context of the distribution of a random variable.  

In fact, both the trivial and difficult aspects of accumulation as laid out by Thompson and 
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Silverman (2008) are necessary ways of thinking for the individual to develop and 

coordinate.  

Thompson and Silverman (2008) wrote that trivial conception centered on the 

image that a student “accumulate[s] a quantity by getting more of it” (p. 1).  This image 

is rather intuitive for students.  This conception of accumulation participates in the 

random process scheme; particularly in the construction of a collection of outcomes of 

the process.  As the student imagines repeatedly carrying out the process and keeping 

track of the results, he essentially imagines the outcomes accumulating.  Based on my 

experiences teaching, students tend to use a list to keep track of the accumulating 

outcomes for a random process.  With each new trial, the student adds a newly observed 

value of the random variable to his list.  This dynamic image of accumulation of 

outcomes of random process changes for the student as he envisions the results of new 

iterations of the random process.  The student anticipates that the value he imagines 

adding to the list each time could be smaller, larger, or the same as the previously added 

value.  Thus, the student imagines the accumulation unfolding in a haphazard way.  

Depending on the nature of the instruction and the availability of tools, students can be 

prompted to convert their list into any of a number of data visualizations such as dot plots 

and histograms.  Even in these visualizations, the students can still see the haphazard 

accumulation of outcomes.  Figure 10 provides a series of three images that correspond 

with haphazard accumulation.   
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Figure 10. Haphazard image of accumulation of outcomes of a random process. 
Dark green denotes the 10 new instances of the process added to the previous 
collection. 

The upper left panel shows an initial set of eleven outcomes for the number of 

people (out of 30) who prefer Pepsi to Coke.  The upper right panel gives an image of the 

collection when the student has imagined running the second-order random process 

another ten times.  The dark green coloring denotes the ten newly observed outcomes.  

Notice that the dark green bars appear in multiple locations; there were two new 

outcomes for the values of 4-5 people, three for 8-10 people, and 20-22 people and one 

new outcome for each of the intervals 14-16, 16-18, and 28-30 people.  The final panel 

shows an additional 10 trials of the second-order random process.  The dark green 

highlights these new ten outcomes (the prior new cases are now part of the light green).  

Notice that the location of the new outcomes is not the same as in the upper right panel; 

the accumulation of outcomes followed the flow of stochastic processes.  While this 
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intuitive view of accumulation has a place in conceiving the distribution of a random 

variable, a second conceptualization of accumulation is also needed.  

Thompson and Silverman (2008) note that the difficult side of accumulation 

occurs when students “cannot conceptualize the ‘bits’ that accumulate” (p. 1).  They go 

on to write that when students coordinate the values of x, f, and total bounded area from 

an initial value of x to the current value of x, then the student has conceived of an 

accumulation function (Thompson & Silverman, 2008).  This coordination is dynamic for 

the student; as the student imagines the value of x changing through the domain, the value 

of f changes accordingly, and the value of the total accumulated quantity changes 

simultaneously.  The imagery involved here in terms of the distribution of random 

variable requires the student to make several jumps.  First, the individual must imagine 

the repeatedly carrying out of the random process a large number of times as having 

already happened.  Returning to the Pepsi vs. Coke example, the student must imagine a 

large collection of outcomes as existing even if the individual has not actually 

constructed/simulated a large collection.  Second, the student must coordinate the value 

of the random variable with the accumulated collection of outcomes.  In the haphazard 

accumulation image, the value of the random variable functions more as “binning” 

classifier; that is, the way to construct the bars for bar charts (non-numeric values) or 

histograms (numeric values).  Once the student places an outcome in the proper bin, the 

value of the random variable does not serve much more purpose.  In this new image, the 

outcomes already exist, and the accumulation of outcomes occurs as the individual 

imagines running through the values of the random variable sequentially (with respect to 
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the variable and not the order of trials).  Figure 11, while an image a cumulative density 

curve, serves as good image of the second form of accumulation a student needs to 

conceive of for the distribution of a random variable.  Connecting back to Thompson and 

Silverman (2008), the domain of the random variable consists of the student’s 

anticipation of 

 
Figure 11. Accumulation of outcomes of a random process with respect to the value 
of the random variable. 

admissible values for the random variable.  The student imagines moving through these 

values in an ordered way.  For non-numeric values the student will need to impose some 

order; for numeric values, the student can use the natural ordering of smallest to largest.  

As the student moves through the domain of the random variable, the student can now 

imagine tracking the accumulation of outcomes that are at most as large as the current 

value of the random variable.  Using Figure 11, when the student moves to the value of 2, 

the student still has the all of the outcomes that he accumulated when he considered the 

value of 1.  This image of accumulation is much more structured than the haphazard view 
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and ties strongly to the stochastic variable.  The student begins to form the anticipation 

that after a certain value of the random variable, he will have accumulated all of the 

outcomes. 

Randomness.  At this point in time, the student wants to answer some question 

about the long-run behavior a random variable and imagines using a random process to 

get accumulate a list of observed values.  To have confidence that his trials will actually 

allow him to answer his question, the student must have confidence that his list allows for 

long-run predictions and does not misrepresent the actual behavior of the random 

variable.  This is where the concept of randomness comes into play.  In order to think 

about distributions in a way consistent with the target meaning, students need to have a 

meaning for randomness that supports the students in viewing randomness as something 

that they can control and as necessary.  If students think of randomness as being 

“unpredictable”, then anything built on this idea automatically inherits this lack of 

control.  A useful way to think about randomness is for the student to think of 

randomness as an attribute of their list of that 1) minimizes sources of bias and 2) enables 

the student to make claims about the long-run behavior of the random variable.  The 

minimization of bias supports the student in view the random process as not being 

influenced by outside forces.  In this way, the student views randomness as a way to strip 

away causal/deterministic effects that would control the variation in the random variable.  

The second aspect of this way of thinking about randomness runs counter to common 

meaning for randomness as being unpredictable.  While the student acknowledges that 

short-term prediction, such as the outcome of the next trial (i.e., the next term in the list) 
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are impossible to do with complete accuracy, he anticipates that he can predict the how 

often the random variable takes on certain values over a large number of trials.  Thinking 

about randomness as a way to retain some control over random variable, that is, they can 

predict what percent of the time certain values occur, supports students in having 

confidence that their list can actually help them answer their research question. 

In viewing randomness as a desirable attribute of a list of values built from 

carrying out a random process, students must wrestle with how to check for whether or 

not a list has this attribute.  Students can check a sequence for randomness by examining 

sequence in three ways.  First, the student may look for a pattern that describes the 

sequence.  This approach is natural one for students.  If the student can come up with a 

pattern, then the student declares that the sequence is not appear random.  The patterns 

that students look for in this method are based on the position of each term in the list.  

However, there are often much more complex patterns that are not detected by just 

looking at sequence of values in the list.  This is where the methods generated by 

Kolmogorov (sequence complexity) and von Mises (principle of the impossibility of a 

gambling system) come into play.  These other two methods require appear to require 

significant instruction for students to incorporate into their thinking about randomness.  

The second way a student can check a list hinges on Kolmogorov’s notion of complexity 

and is in line with notions that Falk and Konold (1994, 1997) put forth.  Here the student 

would need to come up with the shortest description of the list that another person could 

use to perfectly recreate the list.  The more complex that description is, the more the 

student should accept that the list appears to be random.  Interesting to note is that when 
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first introducing the notion of list complexity in the Fall 2016, a group of students came 

up with idea to time how long it would take someone to come up with his/her description; 

the more time the person needed to write the description, then the “more random” the 

students judged the list to be.  Descriptions that are insufficiently complex often point to 

patterns that drive the sequence.  The third way to check for randomness stems from von 

Mises’(1981) Principle of the Impossibility of a Gambling System.  If the student can 

impose a way of picking/discarding terms in a list of fixed length leads to changes in the 

relative frequencies of values, then that student states that the sequence is not random.  

Probability.  Imagining the accumulation of something brings to mind notions of 

how to measure that accumulation.  There are four ways (Figure 12) that a student could 

imagine measuring the accumulation of the outcomes of a random process.  Each of these 

ways requires the student imagine the accumulation as having already happened and 

ordered by the value of the random variable.  In terms of the accumulation of random 

process outcomes, the most natural way to measure the accumulation is to simply count 

the number of outcomes for each value of the  

 
Figure 12.  Four ways to measure the accumulation of random process outcomes. 
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random variable.  This is the absolute frequency box of Figure 12.  However, if the 

student wishes to make comparisons with another students, then absolute frequency is not 

the best choice, especially if the two students did not conduct the same number of trials.  

Adjusting for the number of trials leads the student to measure the accumulation with 

relative frequencies.  Both the absolute and relative frequencies require a fixed number of 

trials of the stochastic process; this supports the students in constructing an empirical 

distribution of the random variable.   

If the student imagines the stochastic process running indefinitely, he can then 

form an anticipation of the percent of the time that stochastic process produces a 

particular outcome.  This percentage of the time or the long-run relative frequency the 

student thinks about the probability of an outcome occurring, given his assumptions 

about the stochastic process.  When the student makes the jump to using probability to 

measure the accumulation of outcomes, the student has moved into the realm of 

theoretical distributions of random variables.  Usage of probability is one that is 

cumulative; thus, the student begins to develop an image for distribution that is consistent 

with the notion of a cumulative density function.   

The fourth way of measuring accumulation moves beyond the cumulative density 

function notion and towards the ideas of rate of change, as denoted by the dashed arrow 

in Figure 12.  Thompson and Silverman (2008) point out that whenever “something 

accumulates, it accumulates at some rate” (p. 11).  Accumulation and rate of change are 

different sides of the same coin.  Thus, if a student conceives of the distribution of a 

random variable as the accumulation of outcomes of a random process with respect to the 
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value of the random variable, then the student should also be able to conceive of the rate 

of change of accumulation of outcomes of a random process with respect to the value of 

the random variable.  Probability mass and probability density can serve this role.  In 

conceiving probability mass/density as the rate of change of accumulation of outcomes of 

a random process with respect to the value of the random variable, the student must 

“coordinate images of respective accumulations of accruals in relation to total 

accumulations” (Thompson, 1994, p. 6).  Probability mass and probability density 

functions describe how the accumulation of outcomes increases as the value of the 

stochastic variable increases.  The value of the random variable accrues leading to a total 

accumulation of values of the random variable in tandem the accumulation of outcomes 

of the random process linked with accruals of outcomes.  When the student deals with a 

continuous random variable, he needs to think about the changes in the random variable 

value as happening in little bits (as he would need to in calculus) so that the accumulation 

of probability is essentially linear with respect to the random variable.  The rate of change 

for these small intervals is a value of probability density.  The student anticipates that the 

accumulation happens in a smooth, continuous way.  In the discrete case, the student 

acknowledges that smallest change in the value of the stochastic variable is fixed to the 

size of one step.  There are no values between two adjacent values.  Thus, the student 

anticipates the accumulation of outcomes in halting chunks.  The rate of change here is 

probability mass at each particular value of the random variable.  

Progress Variables and the Hypothesized Learning Progression 

From the conceptual analysis, I propose the following progress variables, 

presented as construct maps (Wilson, 2005, 2009, 2012): randomness, random variable 
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(including variation), random process, accumulation, and probability.  The levels within 

each construct maps form the base components of the proposed learning progression.  For 

each of these construct maps, the most desirable way of thinking about the concept 

appears at the top of the table with each following level being viewed as a less productive 

meaning. 

Random process.  The construct map for random process (Table 2) has at the 

very bottom the case where a student rejects the notion that the behavior of random 

variables and statistics can be modeled.  More generally, this way of thinking would 

support the rejection of building any models in any context.  While located directly above 

this way of thinking is the Deterministic Model meaning, I cannot stress enough that the 

distance between these two ways of thinking in terms of productivity is vast; one hundred 

blank pages between these two levels would still not be enough to convey the differences 

in productivity.  In terms of the development of the concept of distribution, the meanings 

of first- and second-order models are sufficient for thinking of distribution as the 

accumulation of random process outcomes.  To a certain extent, the chance model could 

also be sufficient.  However, the chance model runs the risk of supporting the student in 

clinging to the “Principle of Ignorance” (Weisberg, 2014) in assuming that every 

outcomes is equal chances of occurring.  Additionally, if the student does think about 

random processes as chance models, the student feels no need to imagine carrying out the 

process any number of times, let alone imagining the process running indefinitely.  

However, chance models are not deterministic models.  While the student does not feel 

the need to carry out the random process, he envisions for the chance model, he 
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anticipates that he would observe variation in the outcomes just as he would if he were to 

think about a first-order random model. 

Table 2. Random Process Construct Map 

Second-Order Random Models 
The student imagines a method of generating values of a statistic of interest to answer a research 
question about a population.  In generating the values of the statistics, the student envisions a first-order 
random model to get data values necessary for the generation of the value the statistic. The student 
anticipates being able to repeat this larger process of generating values of the statistic indefinitely and 
that the values will not always be the same.  Adapted from (Liu & Thompson, 2002).  

First-Order Random Model 
The student imagines a method of generating values of a random variable of interest to answer a 
question about that random variable in some population.  The student’s image includes the carrying out 
the method infinitely many times and expecting variation in outcomes of each trial of the method.  The 
outcomes are values of the random variable and form the sequence that the student checks for 
randomness.  Adapted from (von Mises, 1981). 

Chance Model 
The student imagines a method of generating values of the random variable, while the student could 
carry out an infinite number of times, the student does not feel the need to carry out any trials of the 
method in order to answer questions about the random variable.  The student is able to completely 
specify each and every outcome without running trials and the student assumes that each outcome has 
the same chance of occurring as every other outcome. Adapted from (von Mises, 1981; Weisberg, 2014). 

Deterministic Model 
The student imagines a process where he/she anticipates what the result will be before carrying out the 
process.  Further, the student anticipates that if he/she carries out the process under identical conditions 
again and again, the result will be essentially the same each time.  

Null Model 
The student believes that there is no way to model the behavior of a random variable or statistic. 

 
Random variable.  Table 3 shows the construct map for random variables and 

variation.  Rather than forcing a separation of the notion of variable and the notion of 

variation, I find keeping the two ideas together more useful.  The construct map in Table 

3 is applicable to variables in multiple mathematical contexts such as (school) algebra 

and calculus.  As I mentioned earlier, the major differences between two is that the 

stochastic variable is not tied to any one particular object and the dominant image of 

variation is between individual objects/beings rather than within an individual object.  



 

96 

The first difference is a result of the second different; in order to imagine variation 

between objects, the student must think of the random variable as connected to many 

different objects at the same time.  While Between Object variation is the primary image 

of variation, this does not mean that we do not want students to exclude Within Object 

variation from random variables.  In fact, the coordination of the two is critical for 

longitudinal studies.  The mathematical (quantitative) variable the student will envision 

the systematic (Within Object) variation and a deterministic process for thinking as the 

mathematical variable as a function. The bold headings of Table 3 are the levels of the 

construct map; the italicized headings indicate an image of variation that can occur at that 

level, except where otherwise indicated.  For the target meaning of distribution of a 

random variable, student need only think of random variables at the Variables Vary level 

with an image of Between Object Variation.  However, however thinking of the random 

variable as a function of a random process can help strengthen the student’s 

understanding of distribution.  Thinking of a random variable as a function is necessary 

for the student to conceive of the distribution of a statistic; the statistic (a function of 

data) now plays the role that the random variable did.  The value of the statistic is the 

result of a second-order random process. 

Accumulation.  The accumulation construct map appears in Table 4.  While both 

meanings are useful for the student to develop the idea of distribution, the haphazard 

image of accumulation is insufficient for viewing distribution as the accumulation of 

random process outcomes with respect to the value of the random variable.  The students 

need to make the jump from in-progress accumulation to completed accumulation.   
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Table 3. (Random) Variable Construct Map 

Variables as Functions 
The student views the variable as result of applying a function to the value of another variable. The 
student envisions a set(s) of possible values that the variable(s) may equal.  
Deterministic Process 
The student anticipates that the function uniquely 
determines the value of the variable given the 
value of the second variable. 

Random Process 
The student anticipates that the function is the 
application of random processes.  

Longitudinal Variation (Special Case of Variables as Functions, not a subtype) 
The student views the variable as a composition of functions such that there is a coordination of 
Between Object Variation and Within Object Variation. 

Variables Vary 
The student views the variable in the Measure sense as well as anticipating that the value of the variable 
changes. 
Between Object Variation (Element-wise Variation) 
The student envisions that the variable’s value may/will change as the individual shifts his/her attention 
from element-to-element of a set of similar objects all possessing the same attribute. 
Within Object Variation—Systematic  
The student envisions that the variable’s value 
changes with uniform motion such that the 
individual views each value as representing the 
measure of the quantity of the same object at 
different moments in time.  

Within Object Variation—Haphazard  
The individual envisions that the variable’s value 
changes at whim through the jumps/drops in 
values.  

Measure 
The student views the variable as representing the measure of some object’s attribute.  

Fixed Number 
The student views a variable as some fixed known/unknown number. If known that number is known, 
this leads the student to plug-and-chug calculations; if the number is unknown, this student attempts to 
solve for the value that satisfies presented conditions. 

 
Table 4. Accumulation Construct Map 

Finished (Ordered/Systematic) Accumulation 
The student imagines the infinite accumulation as already have happened and imagines describing the 
accumulation of outcomes by moving through the all possible values of the stochastic variable in an 
ordered and systematic way. 

Haphazard Accumulation 
The student imagines the accumulation of outcomes unfolding as he/she imagines carrying out the 
random process.  The values are added to a list that is organized by trial rather than by value of the 
stochastic variable.   

Other 
The student’s image of accumulation does not fit the other levels. 
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Randomness.  The construct map for randomness appears in Table 5.  The most 

desirable way of thinking about randomness is that of viewing randomness as an attribute 

of a process.  This way of thinking extends the sequence complexity conception through 

the inclusion of the usages of randomness. 

Table 5. Construct Map for Randomness. 

Attribute 
The student thinks of “randomness” as a property of a list/sequence/process that entails an image of 
unpredictability in short-run, while anticipating the predictability in the long-run and minimizes sources 
of bias.  A random sequence has no discernable pattern, has a sufficiently complex description, and 
adheres to the Principle of the Impossibility of a Gambling System.  Adapted from (Kolmogorov, 2013; 
Liu & Thompson, 2002; von Mises, 1981). 

Sequence Complexity 
The student thinks that a list/sequence as being “random” if the individual’s attempt to describe the 
list/sequence is to essentially repeat the sequence as given.  The individual cannot condense/reduce the 
list/sequence to a pattern or set of rules that is less complex than the sequence as given.  Drawn from 
(Falk & Konold, 1994). 

Left-field 
The student thinks that events such as sudden switches in conversation topic, unanticipated question, and 
unexpected images as being “random”.  Inspired by (Liu & Thompson, 2002). 

Unknown/Unpredictable 
The student thinks that a “random” event is equivalent to not knowing or being unable to predict the 
result.  For example, upon hearing knocking on a closed door, a student with this way of thinking will 
say that some “random” person is at the door since he does not who is at the door.  Drawn from 
(Saldanha & Thompson, 2014). 

Ordained  
The student thinks that “random” events are the 
result of a chain of events that are meant to occur.  
Thus, the student believes that nothing is random 

Chaos 
The student thinks that all events are random and 
that whatever happens is the result of 
happenstance. 

 
Probability.  Table 6 shows the construct map for probability and has appeared in 

other work (e.g., see N. J. Hatfield, 2016a, 2016b).  For the present meaning for 

distribution, a student needs to think about probability as the long-run relative frequency 

at minimum.  If the student makes the jump to probability mass/density, then student still 

has the necessary meanings to construct the target meaning for distribution.  The 

occurrence of the Circular meaning grew out of prior research where ~78% of students 
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(and two university instructors) made statements that conveyed the circularity of terms 

after the students had already received instruction on probability (N. J. Hatfield, 2016b).  

While additional research is needed to verify the presence and scope of Circular 

meanings; this result is not surprising given that everyday language treats the terms 

“probability”, “likelihood”, “chance”, and “odds” as synonyms and some introductory 

texts explicitly do the same.  However, statisticians do not use these three terms 

interchangeably (and especially not “odds”).  “Likelihood” inverts the relationship 

between data and assumptions that is present in probability.  Probability is the long-run 

relative frequency of data given assumptions, while likelihood is the long-run relative 

frequency of our assumptions being true, given the data we have on hand.  The 

distinction between probability and chance is one of value generation.  Chance grows out 

of chance models and adheres to the Principle of Ignorance.  Von Mises (1981) spends 

several pages highlighting the distinction between probability values generated via 

infinite runs of a random process and values generated under set theory axioms.  Rather 

than using “probability” for both set theory based values and long-run relative 

frequencies, I argue that using two different words (“chance” for set theory and 

“probability” for long-run relative frequency) is better for helping students develop 

productive meanings for both ideas (N. J. Hatfield, 2016a). 
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Table 6. Probability Construct Map 

Probability Mass/Density 
The student views a probability mass value as both the long-run relative frequency and an amount of 
accumulation with respect to the value of the random variable. 
The student views a probability density value as the rate of change of outcome accumulation with 
respect to the value of the random variable. 

Long-run Relative Frequency 
The student views a probability value as the percent of the time he/she expects to see some event when 
carrying out a random process an infinite number of times.  This value is the long-run relative frequency 
of that event given the student’s assumptions about the situation (including the random process). 
Adapted from (Kolmogorov, 2013; von Mises, 1981) 

Relative Frequency 
The student views a probability value as being the number of times an event occurs relative the number 
of times the associated random processes has run. 

Classical (Laplacian/Chance) 
The student views a probability value (particularly when displayed as a fraction) as consisting of two 
number, the first number telling how many ways there are to observe the event out of a total (fixed) 
number ways to see all outcomes (the second number).  Adapted from (von Mises, 1981; Weisberg, 
2014). 

Prediction 
The student views a probability value as an assessment of whether the event will occur on the next 
iteration of the random process (Konold, 1989) and/or the value is a long-run prediction of an 
unspecified thing. 

Fixed Observations 
The student views the probability value (particularly when displayed as a fraction) as consisting of two 
numbers.  The first number represents the exact frequency of the event while the second number is the 
fixed number of times the random process has run.  The student anticipates that the random process 
could be run more times, but in sets the size of the denominator.  For example, a student would interpret 

 as “every time we roll two dice 36 times, we will get a product of 4 exactly 3 times. If we roll the 

dice another 36 times, we’ll see 3 more products of 4.” 
Circular 

The student views probability as a “measure of likelihood/chance” where “likelihood” and “chance” lead 
to each other and/or back to “probability”.  The student essentially views probability as a set of word 
substitutions that can include “chance”, “likelihood”, “probability”, and “odds” among other words and 
phrases. 

Other 
The student’s understanding of probability does not fit any of the other levels. 

 
Hypothesize learning progression.  Drawing upon the levels of the concept 

maps for the five progress variables leads to my hypothesized learning progression for 

the concept of distribution as shown in Figure 13.  I’ve represented each progress 
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variable (and distribution) with a different shape (mid-right).  In the upper-right, the 

lowest levels of progress variables appear with few hypothesized links between these 

meanings.  Students with these meanings will have little success in building a meaning 

for distribution that entails the accumulation of random process outcomes with respect to 

the value of the random variable.  On the left side of Figure 13, we see many more levels 

of the progress variables and the hypothesized links between those meanings.  Meanings 

with a single star are those meanings that I’ve identified through the conceptual analysis 

of distribution as being necessary for a student to come to think of distribution in the way 

described.  Meanings with the double star are meanings that go above and beyond the 

necessary meanings.  These meanings would support the students in construction a 

meaning for the sampling distribution of a statistic.  The solid arrows indicate that I 

hypothesize that meaning at the start of the arrow supports the student in constructing the 

meaning at end of the arrow for another concept.  The dashed arrow shows a similar 

hypothesized connection but between meanings for the same concept.  For example, I 

hypothesize that a student needs to have a meaning of relative frequency before he/she 

can development the long-run relative frequency meaning for probability.  The dashed 

line with semi-circle ends indicates a hypothesize impediment for the student developing 

a more productive meaning.  I hypothesize that student whose meaning for probability is 

in the Classical (“Chance”) category will struggle to come to think about probability as a 

single value (rather than two numbers joined by a bar) that represents a long-run relative 

frequency.  Through this dissertation I aim to refine the levels of the progress variables 

and the hypothesized learning progression.  To go along with the learning progression 
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(Figure 13), I propose an initial progress variable/construct map for the concept of 

distribution in   

Table 7.  The top two levels of this construct map coincide with the two “clouds” that 

appear in Figure 13.  The lower four levels reflect the usages of “distribution” in the 

extant statistics education literature (see Chapter 2).  This construct map is a starting 

place for how people might think about distribution.  I believe that what instruction a 

student receives has a direct impact on what meaning she constructs for distribution.  

Several of the levels I suspect are purely byproducts of instruction and do not reflect 

meanings that students would build through their experiences in any other setting (e.g., 

the Features level).  My intent here is to give myself a sacrificial progress variable that I 

can improve through this dissertation study.  

Table 7. Distribution Construct Map 

Sampling Distributions 
The student views a distribution as being the accumulation of a second-order stochastic process’s 
outcomes with respect to the value of a statistic. The student sees that the values used in calculating each 
value of the statistic as being the outcomes of a first-order stochastic process for a random variable.  

Distribution 
The student views a random variable’s distribution as the accumulation of outcomes from a first-order 
stochastic process with respect to the value of the random variable. 

Collection 
The student views a distribution as being a collection of values with no/limited image of an underlying 
process. 

Shape 
The student views a distribution as the shape that they see in a data visualization.   

Arrangement 
The student views a distribution as a particular arrangement of data values along a number line.   

Features 
The student views a distribution as consisting of only measures of central tendency, spread, and shape. 

Other 
The student’s understanding of distribution does not fit any of the other levels. 
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Figure 13. Hypothesize learning progression for distribution. 
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Coherence and Fit 

The proposed meaning for distribution provides a level of coherence that other 

treatments of distribution do not.  The proposed meaning for distribution brings several 

key ideas together in a unifying way.  Should a student develop this way of thinking 

about distribution, then the notions of randomness, random variable, random process, 

accumulation, and probability come together as cohesive whole.  Treating distribution as 

an arrangement of values leaves randomness, random process, and accumulation out in 

the cold.  The proposed meaning for distribution is consist with both von Mises’s and 

Kolmogorov’s usages of the term “distribution” and supports students in constructing 

cumulative density functions as an almost immediate extension.  By having students 

develop the notion of CDF out of the target meaning for distribution, the students stand a 

better chance for engaging in emergent shape thinking rather than static shape thinking 

(K. C. Moore & Thompson, 2015). By leaving the random process out of the 

development of distribution, and focusing solely on static graphs, students run the risk of 

confusing the graph of the CDF (and PDF) with the actual distribution.  This could lead 

students to produce similar statements for the following two graphs: 

 
Figure 14.  Two graphs of probability density functions. 
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The student might claim that in both cases, distribution has an expected value (mean) of 

zero.  However, this is a category error.  The graph on the left is the graph of a 

probability density function for a random variable that has a Standard Normal 

distribution.  The graph on the right is of the probability density function for a random 

variable with a Cauchy distribution; a distribution that has an undefined expected value.  

Providing students with opportunities to learn about increasingly sophisticated stochastic 

processes and supporting the students in keeping those processes in mind when 

developing distributions can help students keep from making such mistakes.  My target 

meaning for distribution could, as part of a larger sequence, help students develop an 

arsenal reference situations that Tukey (1975) viewed as being a key starting point for 

statistical investigations.  Further, this way of thinking about distribution lays a natural 

extension via second-order stochastic processes into dealing with sampling distributions 

and statistical inference. 

Similar to the aforementioned, the target meaning for distribution affords students 

the opportunity to 1) conceive of a new object that has attributes, and 2) see where p-

values come from.  When students have a notion of distribution that is not based on 

visual aspects (e.g., center, spread, skew), the students can, with support, come to think 

about distributions as entities that have characteristics that we can measure.  Thus, 

students have the opportunity to engage in the act of quantification (Thompson, 2011) of 

these characteristics.  Often, p-values are introduced to students as “the probability that 

we get the value we got or one more extreme” and p-values are “areas under the curve”.  

This approach makes p-values something the student finds from a graph and hinges on a 
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quirk of the Cartesian coordinate system rather than allowing the student to make the 

connection between a p-value and the output of the cumulative density function.   

 
Figure 15. Shortcoming of p-value as "area under the curve". 

Suppose that we have a stochastic variable that is cyclical (such entities do exist; see 

Dwass, 1962).  If students operate using standard shapes and approaches, the student will 

attempt to find area under the curve in the graph (of the PDF) to the left.  However, if the 

student embraces the cyclical nature of the random variable, she will produce the graph 

(of the PDF) on the right.  The notion that a p-value as the “area under the curve” breaks 

down.  (The black dot identifies the point on the PDF that corresponds with the mode of 

the distribution; both graphs are of the same PDF.)  Providing students with the 

opportunity to connect p-values with outputs of cumulative density functions (a small 

extension from my proposed target meaning for distribution) with a potentially stronger 

basis for them to build powerful ways of thinking about hypothesis testing (parametric 

and non-parameter) that underpins all of inferential statistics.   
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Chapter 5: Methodology 

This dissertation study seeks to address the following research question: “What 

meanings for stochastic process do students develop during an instructional sequence 

based upon a hypothetical learning progression for conceiving of distribution as 

describing the complete behavior of a stochastic process?”  Looking at students’ 

meanings for related fundamental concepts including randomness, random variable, and 

probability supports this central research question.  The purpose of this research is to 

develop a working theory for students’ understanding of one of the core concepts of 

statistics.  This purpose is in line with the goal of design experiments (P. Cobb, Confrey, 

Lehrer, & Schauble, 2003).  Cobb, Jackson, & Dunlap (2016) identify five feature of 

design studies: 1) a focus on generating theories for how students’ learn, 2) an 

interventionist nature, 3) a theoretical and pragmatic orientation, 4) iterative design, and 

5) generalizability.   

For this study, I propose to recruit students who completed an introductory 

statistics course for the life sciences during the Fall 2016/Spring2017 semesters.  I chose 

this course for several reasons.  First, most students taking introductory statistics courses 

are non-math/stat majors, so I wanted to work with a non-majors population.  Second, 

I’ve taught this course several times, each time refining the activities that underpin this 

study.  This allows me to draw on the iterative design feature of design studies and now 

more closely examine what understanding students have from the sequence of activities 

that I used in Fall 2016.  Several activities have roots in the Fall 2016 course and have 

been refined during the Spring 2017 semester in another statistics course intended not 

only for mathematics/statistics majors but also for non-mathematics graduate students 
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needing an introductory course.  Third, this course allows me the opportunity to draw 

potential students from several sections that did not focus on trying to support students in 

constructing the target meaning of distribution and stochastic process.  This will allow me 

the opportunity to see what meanings these students have at the end the course and what 

struggles they might have in developing the target meaning when working through the 

sequence of activities.  As Tufte (2006) notes comparisons are a fundamental act in 

statistical reasoning.  By comparing students who went through early versions of the 

activities in the class to students who did not, I’ll be able to get a better idea of the 

various meanings that students might have for the concept of distribution.  For students 

willing to participate, there are two distinct phases; a clinical interview and the 

instructional sequence spanning three activities.   

Phase One 

In the first phase, students will participate in clinical interviews (Goldin, 2000).  These 

interviews serve as a way to characterize the meanings that each student currently has for 

randomness, random/stochastic variable, random/stochastic process, probability, and 

distribution.  Examples of these questions appear in the Appendix A.  These many of 

these questions come from the existing research, allowing me to place students amongst 

those described in the related literature.  This affords me a strong theoretical and 

pragmatic link between my research and previous research as well as laying the 

foundations of generalizing my research.  The clinical interviews will enable me to not 

only characterize individual students but to create matched groups of students for the 

second phase. 

Phase Two-Light Switch Activity 
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The second phase of the study is the primary intervention phase.  As Cobb et al. 

(2003) note design research can be done at several levels from one-on-one settings to 

entire classrooms.  After the clinical interviews, I’ll explore what meanings students 

develop and the difficulties have while working through an instructional sequence.  In 

particular, I will use a one-on-one teaching experiment (Steffe & Thompson, 2000) to 

build models for how the students are thinking.  Students will work through an 

instructional sequence (described below) based upon the conceptual analysis from 

Chapter 4.  I will form hypothesis as to each student’s meanings to build testable models 

for how the students are thinking.  These hypotheses will allow me to revise any 

construct maps, the learning activities, and the learning progression.  At the onset, I’ll use 

the following sequence of tasks to support students in developing a meaning for 

distribution as the accumulation of stochastic process outcomes with respect to the value 

of the stochastic variable.  These tasks are the results of several design/testing/revision 

phases that began with a course project6 and continued through four semesters of 

teaching.  The students who worked through were predominately majoring in the life 

sciences and were taking an introductory course in statistics.   

During this phase, students within each matched group will be assigned to one of 

the two versions of the Light Switch Activity sequence.  These two versions will enable 

me to look for affordances and hindrances of the instructional sequence on student 

learning.  The questions/tasks posed to the student will be the same in both versions.  The 

difference will be the sequence in which students work.  In version A, students will see 

                                                
6 My thanks to Gabriel Tarr for his assistance during the initial development. 
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all four rooms to the activity and move from deterministic switches with increasing 

variation to a fully stochastic switch.  In version B, students will see one room at a time 

and start with the fully stochastic switch.  Should a student in version B struggle, they 

will be shown other rooms in the reverse order of version A.  A description of version A 

follows. 

Light Switch Activity-Version A.  The first activity focuses on helping the 

student make a distinction between a deterministic process and a stochastic process.  

Figure 16 shows the user interface for the Light Switch applet7 that serves an object for 

discussing processes.  The interface consists of a screen with two grey lines sectioning 

out four “rooms” as well as five buttons.  The “Setup/Reset” button is for the researcher 

to activate the app.  The student will be asked to work with the other four buttons, all 

labeled as “Switch”.  These four buttons are what the student will interact with in the 

applet as he/she works through the activity. 

 
Figure 16. Light Switch applet interface. 

                                                
7 A web version is available: https://mathpost.asu.edu/~neil/dissertation/FourRooms.html. 
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At the start of the activity, students are asked what is the first thing they do when 

entering a dark room.  This question primes them exploring the behavior of light 

switches.  Room One’s button/switch is a deterministic process with two levels; the room 

turns white when the switch is “on” and black when the switch is “off”.  (All rooms start 

with the light out.)  Room Two’s button/switch is also deterministic but acts like a 

dimmer switch; the first five clicks move through lightening shades of grey until the 

room is fully lit (white) on the fifth click.  Starting with the sixth click, the room darkens 

until the reaching full black on the tenth click.  The grey colors used in turning on the 

light and turning off the light are the same.  The intent behind Room Two is to start 

introducing more variation in the results of the deterministic process and see what 

students make of this variation.   

Room Three plays off of the increased variation in Room Two but in a different 

way.  While the switch here is also deterministic, the light in the room cycles through the 

colors red, orange, yellow, green, blue, indigo, purple, magenta, pink, and white with 

black (“off”) occurring between each color.  There is more variation to this process than 

in the previous two not only in number of colors but also in the inclusion of non-grey 

scale colors.  Room Three’s switch follows a fixed pattern to the colors (they occur in the 

order I listed), making the process deterministic. 

This brings the student to Room Four.  The switch in this room is a stochastic 

process where the color that appears starting with the first press of the button follows a 

heavily modified continuous uniform distribution.  Unlike Room Three where there is a 

defined “off” between each color, the light in Room Four does not necessarily turn off 
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with every even numbered click; rather the room’s light will only go out if one of the 

color codes for black return.  Making use of uniform distributions is a common practice 

in research literature for multiple reasons.  From a technical standpoint, stochastic 

processes with uniform distributions are the easiest to program.  From a pragmatic side, 

students have experiences with uniform distributions thus they have a better chance 

developing an understanding of the process that he/she can explicate.  However, I must 

stress my usage of the phrase “heavily modified”.  The colors that appear do not actually 

follow a continuous uniform distribution.  Rather, the applet will generate a number from 

a continuous uniform distribution on the interval [0, 140).  The applet then rounds this 

value to one decimal place and then looks up the color associated with the rounded value.  

The color palette within the applet system maps 14 unique values to the color black as 

well as 14 other unique values to the color white; there are an additional 28 unique color 

codes that map to near-black (as well as near white) that are visual indistinguishable from 

black or white.  Taken together, the rounding and the color palette ensure that stochastic 

process between Room Four’s button/switch truly stochastic with limited knowledge of 

the actual distribution.  Figure 17 shows examples of the lit rooms in the applet.   
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Figure 17. Light Switch applet states for Version A. 

Light Switch Activity-Version B.  As previously mentioned, Version B of the 

Light Switch Activity presents one room at a time (see Figure 18).  Students start with a 

room whose switch is identical to that in Room Four of Version A.  When a student has 

problems answering questions about the current room, I will close out the room and open 

up a new room in a new window of the program.  This new room will be equivalent to the 

Room Three in Version A.  Each time the student runs into problems, I will back up 

another room.  If a student resolves his/her difficulties, we’ll return to the previous room 

and see if the student can now answer the question(s) he/she originally struggled with. 
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Figure 18. Light Switch applet, Version B 

Questions for the Light Switch Applets.  Both versions of the Light Switch 

activity will involve the following questions: 

• Press the button/switch for the room. What happened? 

• Press the button/switch for the room again. What happened? 

• What do you think will happen when you press the button/switch again? 

Twice?  How certain are you?  What makes you certain? 

• What is happening when you press the button/switch? 

• [From the current state of the room, I press the button to change the state] 

Do you think that it is possible to return the room to state it was just in? 

What would a person need to do?  Would that method always work? 

• Suppose that current switch broke, and you needed to make a new one.  

Describe the rules that you make for the new switch so that room 

continues to function. 
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• Are there any similarities between the rooms? Any differences? (Only in 

Version B if the students see more than one room) 

These questions serve several goals.  The first questions help the student to 

familiarize themselves with the room’s switch. The middle questions seek to transition 

the student from talking about the outcome of the process to the underlying process, 

culminating in the student needing to generate his/her version of the process.  The last 

question is meant to get the student to think about all of the rooms build comparisons that 

he/she can use to decide whether new processes are deterministic or stochastic (or 

whatever labels he/she generates). 

Phase Two-More Processes Activity 

The second activity of the second phase is the More Processes activity.  

Regardless of which version of the Light Switch activity the student saw, all of the 

students will see the same things during this stage.  The intent in this phase is to see what 

the students carry with them from the previous stage.  The More Processes activity 

presents the student with five new processes for the student to reason about; see Figure 

19.  Unlike the processes involved in the Light Switch activity, the student does not 

necessarily have an interface with which to carry out these processes.  The student must 

now imagine carrying out the processes.  The sole exception is the Neil’s shoes; this 

process can be carried out by the student but only in limited form.  The processes that 

appear in this activity reflect a mix of deterministic and stochastic processes as well as 

process that  
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Suppose that 20g of baking soda (C2H4O2) are combined with 30.2g of vinegar 
(NaHCO2) at room temperature (70°F). [Creates 4g of water (H2O), 9.77g of carbon 
dioxide (CO2) and 36.43g of sodium acetate (NaC2H3O2)] 

Suppose that everyone in a class writes his/her name on separate, identical Ping-
Pong balls and then places his/her ball into a bag.  Once everyone has, the teacher shakes 
the bag and reaches into the bag and removes one ball to see what student wins $10.  

Suppose that we place $1000 into a savings account with Barclays at an APY of 
1.00%.  We do not deposit any more money, nor do we withdraw any.  We check the 
account balance once a year, every year. 

Suppose that we stand at the intersection of Rural Road and Apache Boulevard 
from 2:00pm to 4:00pm every Monday and record the total number of red vehicles that 
go through the intersection.  

You look at Neil’s shoes and record the most prominent color. 
Figure 19. The new processes in the More Processes activity 

could go either way (Neil’s shoes).  For the stochastic processes, there is a first-order 

processes (lottery) and a second-order/time series process (counting red cars).  While the 

lottery is a familiar process for most students, this stochastic process is similar to that in 

the Light Switch activity.  The counting of red cars is a type of process that the student 

may not have much familiarity with.  The Neil’s shoes process sits in an interesting 

position.  As posed to the students, there are sufficient details missing that students could 

view the process deterministically or stochastically.  Given the student’s initial 

classification, I intend to probe the student to see the image of the process he/she has 

constructed for this process.  However, at a certain point, I’ll ask to student how he/she 

might re-conceive this process so that it would fit the other category.  This line of 

questioning should help me to further characterize what the student sees as the 

distinctions between deterministic and stochastic processes.  Once the student is 

comfortable with the new processes, I will ask him/her to group these processes into as 

many categories as he/she feels is necessary, probing what each category represents and 
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why each process is in that category.  I will then ask the student where he/she will add in 

the room(s) from the Light Switch activity to his/her categories.   

If a student struggles to form categories during this activity, I will enact a second 

intervention.  This second intervention stems from an activity I conducted in the Spring 

2017 iteration after the students reached an impasse in which of their two categories of 

processes the counting of red cars belonged to.  The nature of their comments revealed 

that the arguments revolved around their images of outcomes, repetition, and the 

rules/details of the processes.  I’ll draw the student’s attention to these features with 

discussion of what these features consist of and how each feature varies. Figure 20 shows 

an organizational table that can be used with the students during this intervention. 
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Figure 20. Second intervention organizational table for students 

Phase Two-Sequences Activity 

 
Figure 21. User interface for the Sequence applet; showing Process One’s full 
sequence. 
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The final activity in Phase Two is the Sequences Activity8.  The activity still asks 

the student to classify a given process as either deterministic or stochastic.  However, 

unlike the previous activities, the processes are hidden from the student and he/she only 

has access to the results of carrying out each process a total of 40 times.  This activity 

simulates the standard practice of using a sequence of outcomes to classify the generating 

process as being deterministic or stochastic.  This activity’s constraints help to reveal the 

features of a student’s meaning for stochastic process that he/she places a premium on.  

Figure 21 shows the Sequence applet interface used for this activity.  In total, I’ve 

programed fourteen sequences into the applet.  The first sequence (“Process Zero”) is a 

simple deterministic process of adding one so that the student can get used to the 

interface.  There are eight fully deterministic processes, four fully stochastic processes, 

and two processes that are open to interpretation (Processes Two and Seven) as listed in 

Table 8.   

Process Two is such that a student could view the sequence as coming from either 

a deterministic or a stochastic process, but the two images are distinct.  For example, if 

the student imagines that Process Two is a listing of nucleotides of a single person’s 

DNA, then the sequence is deterministic.  However, if the student instead imagines that 

the sequence is the listing of the first nucleotide in separate individuals’ DNA, then the 

process is stochastic.  Process Seven has deterministic and stochastic elements.  Using 

von Mises’s Principle of the Impossibility of a Gambling System would make this 

process non-stochastic.  However, how a student thinks about such a process is unclear.  

                                                
8 A web version is available: https://mathpost.asu.edu/~neil/dissertation/Sequences.html.  
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Process Thirteen is a stochastic process that is a stationary time series.  This provides a 

similar process to the counting of red vehicles from the More Processes activity. 

Table 8. The Fourteen Processes in the Sequence Applet 

Process Rule, (let n represent trial number) 
Zero n 
One Each integer listed in increasing order starting with 1 but each prime 

integer is repeated the same number of times as that prime’s value. 
Two One of “A”, “G”, “C”, or “T” using  
Three 2n + 1 
Four n2/100 
Five A value from , rounded to two decimals 
Six Return a value from  
Seven 2 if n ≡ 0 mod 3 

A value from  on the set {1, 3, 4, 5, 6} otherwise  
Eight n – sin (45), rounded to two decimals 
Nine – 6 
Ten Fibonacci’s Sequence, rearranged in blocks of four 
Eleven A value from , rounded to two decimals 
Twelve –1/n, rounded to five decimals 
Thirteen X(n) = X(n – 1) + err(n), where  

 
As the student works through each sequence, I will ask him/her for what she 

thinks is going on and to develop a description of the process similar to what he/she did 

with the light switches and saw with the More Processes activity.  I will then ask him/her 

to classify that process into one of his/her existing categories.  This activity will help me 

further characterize each student’s meaning for stochastic processes. 

This sequence of activities and interventions should allow me to describe the 

meanings that students have and develop for stochastic processes.  The stochastic 

processes embedded in the activities cover not just familiar ones (e.g., uniform processes) 

but also non-uniform first-order stochastic and second-order stochastic processes.  This 

  DU (4)

  
N 0,1( )

  DU (6)

  
DU 5( )

   
Exp 2( )

   err(n) ~ N (0,25)
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variety helps to ensure that the meanings that I characterize aren’t necessarily biased by 

my sole usage of stochastic processes of a single type.  If students routinely fall back on 

heuristics such as equiprobability, then this provides useful information regarding 

elements of their meanings.   



 

122 

Chapter 6: Students’ Meanings for Randomness 

To understand stochastic processes is a necessary condition for understanding and 

using any type of statistical distribution.  In thinking of distribution as the accumulation 

of outcomes from a stochastic process, an individual must imagine a process that 

generates these outcomes.  However, the way that the individual conceives of the process 

must entail her imagining that the process has unpredictability in short-run, predictable in 

the long-run, and having few sources of bias.  In other words, she must view the process 

as being random; that is, her imagined process must by a stochastic (or random) process.  

In trying to look at how an individual might think about stochastic processes, looking at 

her meanings for “randomness” become vital.  In this chapter, I will describe the main 

questions of the clinical interviews intended to get at students’ meanings for randomness, 

describe how three students appear to think about randomness, and discuss the 

implications of these results. 

Clinical Interview Questions on Randomness 

As part of the clinical interview, students were asked to respond to two primary 

questions dealing with randomness.  The first question (Figure 22) asked students to 

select which of eight situations/statements matched his/her meaning for randomness.  The 

second question asked students how they would explain the idea of randomness.   

The first question’s situations/statements correspond to different levels of the 

construct map for randomness (see Table 5); situation G corresponds to the Sequence 

Attribute (the highest) level, with situation F corresponding to the second highest level in 

the map (Sequence Complexity).  Situation A links to the Left-field level while situation 

B to the Unknown/Unpredictable level.  Situation C can go to either the Left-field or 
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Unknown levels, depending on how the student interprets the situation.  Situations D and 

E link to the lowest levels of Ordained and Chaos, respectively.  These situations provide 

opportunities to explore how students are conceiving the situation and their images for 

randomness.  Later in the interview, students were asked how they would explain the 

concept of randomness.   

Select all of the following situations that you believe match your meaning for 
"random". 

A) Tom and Harry are in the break room discussing what they thought about Star 
Wars: The Force Awakens. While describing what he liked about the movie, Tom 
said "Oh, did you know that Linda (a co-worker) is Lutheran?" Harry replied, 
"That's random." [Left-field] 

B) You're at home, someone knocks on your door and you don't know who it is. 
[Unknown/Unpredictable] 

C) You and your two closest friends are trying to resolve who gets to choose what 
movie to see. One friend doesn't care but the other one and you both want to go 
see different movies. The neutral friend picks a number at random and the closest 
of the other two friends wins. [Left-field, Unknown/Unpredictable] 

D) Nothing is ever random; there is always a reason that things occur. [Ordained] 
E) Everything is random. [Chaos] 
F) A sequence is random when you can't find a pattern to it; like the number pi. 

[Sequence Complexity] 
G) A sequence is random when you can't find a pattern, but you can use it predict 

something in the long-run. [Sequence Attribute] 
H) None of these match my meaning for "random". 

Figure 22. First clinical interview question dealing with randomness 

Descriptions of the Three Students 

For this chapter, I’ll discuss three students, Bonnie, Colin, and Danielle; all three 

students took an introductory statistics course geared towards students majoring in 

biological sciences in the Fall 2016 semester (one year prior to interviews).  Bonnie 

switched her major to elementary education while Colin focused on genetics, cell and 

developmental biology, and Danielle majored in conservation biology and ecology.  In 

addition to the introductory statistics course, Bonnie had taken pre-calculus in high 
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school, a college mathematics course in Spring 2017, and was currently enrolled in a 

mathematics for elementary teachers course.  Danielle had taken intermediate and college 

algebra as well as an online precalculus course in addition to her introductory statistics 

class.  Colin differed from Bonnie and Danielle in his mathematics course work.  Colin 

had completed a full sequence of calculus (three courses) as well as a differential 

equations course; he took his introductory statistics course while enrolled in these 

courses.  During the Fall 2017 semester (when the interview took place), Colin was 

enrolled in an introductory proof course as well as a second introductory statistics course 

designed for mathematics and computer science majors.  He cited his enjoyment of his 

first introductory statistics course as a reason for considering adding a Statistics minor.   

Bonnie and Danielle also differed from Colin in another way; both of them took 

the introductory course from instructors who followed a procedural and traditional 

approach to introductory statistics.  Colin, on the other hand, had a reformed approach 

from this author that focused on helping students build productive meanings for statistical 

concepts.  While Colin was exposed to pre-cursors of the activities in this study, the 

activities used here are far removed from what he saw then.  However, Colin’s second 

introductory statistics class did mark a return to procedural statistics.  Bonnie received a 

B+, Colin an A, and Danielle a B in their first introductory statistics courses. 

Bonnie’s Meaning for Randomness 

From the start of the interview questions dealing with randomness, Bonnie 

brought up a connection to one thing having an impact (or lack thereof) on the 

outcome/result of some event.  This is evidenced by Bonnie’s description of what first 
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came to her mind after reading the first question dealing with randomness as evidenced in 

line 1 of Excerpt 1:   

Excerpt 1. Bonnie’s response to “random” situations 

1 Bonnie I think that if something is random, it doesn’t affect the outcome. 
2 [edited] [~1.5 minutes later] 
3 Bonnie So, when I first read these I started recalling "randomness" from 

Statistics and I know that something's random, I don't know if I 
have it switched around but, if it is or isn't, it does or does not 
affect the outcome, I forgot which one or which way, but...actually, 
any of this shouldn't affect any outcome unless, hmmm...okay, I 
think it is not random because it, by saying that oh, this person is 
Lutheran and it could affect of, it could affect someone's opinion 
about them. I'm not sure (laughs) 

4 Neil And why did you pick B (Unknown/Unpredictable) as being 
something that matched your meaning for randomness? 

5 Bonnie Umm,...I picked B (Unknown/Unpredictable) as random because 
unlike A (Left-field) you're not in a situa-, you're not in a 
conversation talking about a specific item, it is just something that 
happened with no pattern, no sequence, or anything 

6 Neil So the idea is this sort of an out-of-the-blue [Bonnie: Yeah] type 
things. Umm, you talked, you talked a little a bit about random as 
either effecting an outcome or not effecting an outcome [Bonnie: 
mmm-hmm (agreement)], would that apply here in B 
(Unknown/Unpredictable)? 

7 Bonnie Yes, it actually would. Depending on who the person is. 
8 Neil The person...? 
9 Bonnie That's knocking on the door. 
10 Neil But we don't know who [Bonnie: Yeah] Does that make you 

question yourself on whether or not you think that B matches your 
sense of randomness? 

11 Bonnie Yeah it does (laughs) Umm, ... so, ... I don't know if it is random 
any more since it will affect the outcome cause you don't know 
who it is, it might be someone that's delivery mail, it could be 
someone that's trying to kill you, I don't know, (laughs) but I think 
it could affect...the person who is sitting at home...just a random 
person knocking on the door...(softly) I think...(laughs) 

Bonnie’s initial recollection of randomness as being tied to affecting the outcome 

could be potentially grounded in the traditional presentation of using randomization to 

minimize sources of bias and other confounding factors on the results of a study (line 1).  
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The traditional approach of presenting randomization as a way to minimize sources of 

bias provides a route for students to connect to the idea of the independence of events.  

However, Bonnie is unsure of whether randomness indicates that there should or should 

not be an effect on the outcome (lines 3, 7, and 11).  I asked her to clarify which she 

thought in line 6; Bonnie started shifting away from being uncertain towards that 

randomness should impact the situation.  This is further evidenced in Excerpt 2: 

Excerpt 2. Bonnie solidifies her meaning for “randomness” 

1 Neil You seem a little hesitant now [Bonnie: Umm-hmm (agreement)] 
So you, are you hesitant about your meaning for randomness? 

2 Bonnie Yes (laughs) 
3 Neil Umm, cause we can keep going down the list with this same idea, 

umm, cause...Have you come to a decision: randomness should not 
affect outcome or randomness should affect outcome? 

4 Bonnie Umm, let me think for just second, so I'm thinking that if 
something's random so if I just, as an example, I'm randomly 
picking a nail polish color will that, that could affect the outcome, 
or someone randomly picks a name from a hat that could affect an 
outcome of, I don't know, if you are presenting so I think that 
randomness does affect almost everything. 

5 Neil So, how do you feel about C [left-field] now? You initially said 
was not random. 

6 Bonnie Umm,...,so I think it is random now. Because whichever number 
you choose the person who is closest to that, they’re going to have 
a completely different outcome if they choose a scary movie 
compared to the other friend who wanted to choose a funny movie 
[Neil: Okay] So then two different outcomes. 

Bonnie’s second example (drawing names) is a common example used in 

introductory statistics classes.  In line 4 of Excerpt 2, Bonnie once again mentions how 

randomness “affects almost everything”.  The notion of randomness impacting or 

affecting something is a reoccurring theme for Bonnie.  The following excerpt (Excerpt 

3) entails how Bonnie would explain the idea of randomness: 
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Excerpt 3. Bonnie’s response to explaining “randomness” 

1 Neil How would you, so earlier I had you sort of look this list and pick 
the ones that you thought matched your meaning for randomness 
[Bonnie: umm-hmm (agreement)]. How would you explain the 
idea of randomness? 

2 Bonnie Okay. So, for randomness...(long pause) I want to go back to the 
term "everything is random" but in reality, it's not I want to say 
but...for example, it wasn't just for me to be in this research study 
wasn't random, you had to look through if I was in a specific class 
or not and maybe I just happened to respond to you compared to 
other people or students that took statistics, so random by that. 
Ummm, umm, so...random is, I...I believe it would be the outcome, 
err, how something would affect a long-term run almost, of a 
situation. 

3 Neil So what do you mean by a "long-term run of a situation"? 
4 Bonnie Umm, just how randomness can affect on a situation. Going back 

to the example of the movies where by picking a random number, 
whoever is closest to it, well that can affect the long-run if they 
want to see a scary or a funny movie. One person could be sitting 
there being all sad and upset the whole time while the other person 
enjoying the movie...So, (laughs) this is hard... 

5 Neil So what are you thinking about right now? 
6 Bonnie I'm thinking about...not the actual definition of randomness, but 

how it affects everything in the situation 
7 Neil How randomness or the definition? 
8 Bonnie How randomness can affect a lot of things in a situation. But I'm 

trying to think of a definition but...(laughs) 

Bonnie mentions randomness affecting things in lines 2, 4, and 6.  For her, what is 

being impacted lies beyond the immediate result of the process (e.g. the result of the coin 

flip).  When she mentions that “situation” and “long-run”, Bonnie describes how she 

imagines the described movie situation playing out after a choice is made.  The friends go 

to a movie and the friend who lost being sad and upset (Line 4).  Bonnie’s introduction of 

the emotional states of the individuals in the movie situation (situation C) helps her see 

how individuals are affected by things that are random.  The “randomness” of the 

situation is impacting the people in the situation and that is what Bonnie appears to focus 
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on rather than whether or not whoever was closest (the actual result of the process) was 

impacted. 

While Bonnie sees the potential for various outcomes in situations A-C, she is 

does settle on the notion that randomness should impact the situation via the different 

outcome that occurred.  I then asked her about applying her meaning to situations D 

(nothing is random), E (everything is random) along with situation F (sequence with no 

pattern, like π).   

Excerpt 4. Bonnie’s view of nothing/everything being random and sequences 

1 Bonnie [after reading statement G-sequence attribute] Umm…I don’t think 
that G is random. If you’re going to predict something that will 
affect another item in the long run, then it shouldn’t be random. 

2 [edited] [~4.5 minutes later; see Excerpt 1 and Excerpt 2] 
3 Neil So how about D? 
4 Bonnie ...So, I...I think that...there is always a reason, right (sigh), okay, 

I'm confusing it with E right now. 
5 Neil So, if ignore everything else, just look at statements D [ordained] 

and E [chaos]  [Bonnie: mmm-hmm (agreement)], what's the 
relationship between the two of them? 

6 Bonnie Umm, well, if you're saying that nothing is every random and that 
there's always a reason that things occur for D and E is saying that 
every is random and from my understanding, whatever you, if 
something is random there's still going to be an effect or reasoning 
[Neil: umm-hmm] behind that, so I that the reasoning will come 
after the randomness and that, for why it occurs to begin with 

7 Neil Okay  
8 Bonnie Umm,...,(laughs) 
9 Neil Do you still disagree with both statements? 
10 Bonnie Umm...I...agree with E...,[long pause]..., and then for 

D...I...disagree with D, but I agree with E 
11 Neil Okay. And then you said that F was also a match for your meaning 

for randomness, is that still true? 
12 Bonnie I believe that it is. 

Bonnie initially struggled with what situation D and E were asking (lines 4 and 6 

of Excerpt 4).  Given that Bonnie seems to think about randomness as how the result of 
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some action will impact the situation (e.g., friends’ emotional states, color of nails, etc.), 

her agreement with the statements of “Everything is random” fits within that model.   

While Bonnie appears to view randomness as whether something impacts a 

situation, she separates out the reasoning behind that impact into pre-event knowing and 

post-event knowing.  I hypothesize that Bonnie’s shift from her initial view of 

randomness as not impacting outcomes was shifted by her trying to reconcile her 

decisions about situations A-C and F as all matching her image of randomness.  We can 

glean insight into Bonnie’s response to statement G (line 1 of Excerpt 4) by looking at 

line 6.  For Bonnie, knowing the reason behind the event before the event occurs is 

grounds for the lack of randomness.  Bonnie might view a prediction as being predicated 

on know why something occurs and therefore affecting the outcome in a different way 

than her imagery about randomness affecting the situation.  I believe that Bonnie was 

struggling to separate two distinct aspects of what the process was affecting. She thought 

of an immediate result of the described process (of which she could generate several 

examples) and how that result would play out in the given situation with the imaginary 

individuals.  This is to say, she imagined sample spaces for the processes and emotional 

reactions to each member of those space.  This can be found when Bonnie brought up the 

idea of randomness during a different interview question about picking a machine to 

model the flipping of a fair coin (Excerpt 5).  In line 5, Bonnie indicates that the effect of 

the randomness is what you do to record the result of a single trial. 

Excerpt 5. Bonnie’s brings up randomness when discussing coin flipping machines 

1 Bonnie When you do toss a coin [Neil: umm-hmm],..., I'd believe that 
Machine 3 is correct, cause it gives you all of the possible 
outcomes. 
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2 Neil So is that the only machine that is correct? 
3 Bonnie Umm,...,umm,...,I mean I guess that they could all be correct. 

cause it just happens by randomness I guess... 
4 Neil So what do you mean by that statement? 
5 Bonnie Umm, if you're flipping a coin, it's random but the outcome will 

still affect...what you...put down in the sequence, hmm...I still, uh, 
I think that they are all correct but I think that Machine 3 is the 
best model to have. 

6 Neil Okay...So if you had to pick any one to flip coins for you, you'd 
pick Machine 3? 

7 Bonnie (softly) I think so. 

Bonnie agrees that unplanned, her “cluster of craziness”, would be a synonym for 

randomness to close out Excerpt 6 (lines 2-4). 

Excerpt 6. Bonnie’s synonyms for randomness 

1 Neil So, with the last question, you gave synonym [Bonnie: umm-hmm 
(agreement)] for "chance", what might be synonyms that you 
would use with randomness? 

2 Bonnie Ummm, (long pause), I...I think of antonyms which would be 
[Neil: okay] "chosen" or...hmmm,..."recommended", a 
recommendation,...or "specific". [Neil: Okay] So I really hold 
these words are pertaining to something specific you're looking for 
rather than randomness is...when I think of randomness, I just think 
of a cluster of craziness and you'll never know what you pick 
out...(long pause) 

3 Neil Would you say that the word "unplanned" [Bonnie: yeah] would 
work as a synonym? 

4 Bonnie Yes, I would say that or so, somewhat spontaneous... 
5 Neil Okay...Any other thoughts with randomness? 
6 Bonnie Umm, (shakes head and laughs) [Neil: Okay] 

As a whole, Bonnie’s conveyed meaning for randomness deals with whether the 

result of a single trial will impact the larger situation.  While she initially invoked the 

idea that randomness should not affect the outcome, Bonnie’s focus shifted from the 

outcome (the result of a trial) to the situation she imagined as continuing forward.  For 

her, randomness should impact what would then happen in the hypothetical situations.  

The possibility of branching points along with not knowing a reason pre-event appear to 
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be hallmarks for Bonnie to declare whether something is random or not.  Her conveyed 

meaning becomes a driving force for her in a later question about her meaning for a 

random variable and her giving an example of one (Excerpt 7).  Her example (line 4) 

appears to stem from her conveyed meaning of many possibilities that impact the larger 

situation. 

Excerpt 7. Bonnie’s example of a random variable 

1 Neil Could you give me an example of a random variable?  
2 Bonnie Hmmm, (long pause), I'm trying to think right now and I can't  
3 Neil It's okay; remember there are no wrong answers  
4 Bonnie Yeah. So earlier I defined random as something that most of the 

time will always have an effect on the outcome...so if you picked 
out of a hat and...you picked either one, two, three, or four, or five 
and whatever number you got was the order you went to present. 
Well, if I got a three that's a random variable but its gonna have an 
effect on how I'm gonna, how nervous I'll be to present or how 
calm you'll be to see [Neil: Okay] So, yeah, I think that's my 
answer. 

Colin’s Meanings for Randomness 

Early on in talking about the concept of randomness, Colin brought up a 

distinction between what he saw as two separate meanings for “random”; one that is 

colloquial and one that is technical (Excerpt 8, lines 2 and 3). 

Excerpt 8. Colin’s initial response to “random” situations 

1 Neil Here's a whole list of situations and I'd for you to read them each 
aloud, in turn, and share me, with me, your thoughts about each 
one, and whether or not you believe that situation demonstrates 
your meaning for randomness. 

2 Colin Okay, So, Tom and Harry are in the break room discussing what 
they thought about "Spiderman: Homecoming". While 
describing...while describing what he, uhh, liked about the movie, 
Tom said "Oh, did you know about, did you know that, uh, Linda, 
a co-worker, is Lutheran?" Harry replied, "That's random". 

3 Colin Umm, so, because of a prev- previous Statistics classes, I don't 
think "random" as a, uhh, I don't think of "random" in the way of 
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"oh that doesn't follow the continued line of thought", I think of 
random as a, more kind of mathematical side where you cannot 
find a pattern or you cannot, ahh, predict what in a sequence what 
the next value will be. That's what I consider as random. So, in this 
case, umm, I would say, that that doesn't fit my, uhh, definition of 
something being random. 

4 Colin Now I do know, before I took Statistics classes I would use 
"random" in kind of the context they did there where it's like "oh, 
that doesn't follow the line of thought; that doesn't make sense" 
kind of thing, so you would say that's random, but anymore 
because of Statistics class-my Statistics classes, uhh, I don't think 
in, I don't connect random with that process anymore. 

Colin’s non-mathematical meaning is consistent with what I called “Left-field” 

randomness (see Table 5).  His mathematical meaning initially appears to be consistent 

with my “Unknown/Unpredictable” category however, he quickly adds on the stipulation 

that there must be a sequence of occasions rather than a single instance in Excerpt 9.   

Excerpt 9. Colin’s mathematical meaning for “randomness” 

1 Colin So in B [unknown/unpredictable], You're at home, someone 
knocks on your door and you don't know who it is. 

2 Colin Umm...the following that are random...umm. Yes, in the way that 
you can't predict who is gonna, who the next, I guess, person in 
that series is going to be. But the thing is no previous series, so 
umm, I don't know if you could establish something as being 
random and that, using a kind of a mathematical approach. Umm... 

3 Neil So it sounds like B is sort of "iffy". 
4 Colin Kind of "iffy" but I'm still leaning on the "no" side because you're 

only looking at one, uhhmm, one instance there and you can't 
really say that something is random with an observance of one. 
[Neil: Okay] Ummm… 

5 Colin So, C [left-field], you and your two closest friends are trying to 
resolve who gets to choose what movie to see. One friend doesn't 
care but the other picks, ahh, one doesn't care but the other 
one...ahh, 

6 Neil The other one and you … 
7 Colin so, yeah, oh! because it is two friends, kay yeah. One friend doesn't 

care but the other one and you both want to see different movies. 
The neutral friend picks a number at random and the closest person 
wins. Okay, so that, that one is a little closer to what I would 
define as "random" than the other two examples, ahh-umm, 
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because the two people choosing numbers, they don't know what 
number that has been, what number is next in the sequence and 
their, ah-umm...it's closer, but the only thing is probably still, like, 
if they say a number between 1 and 10, you are still limited to ten 
possible outcomes there. Ahh-umm, so...(to self) would that be 
random? I would say that's...iffy but border side "yes". Uhh, that 
would be a more, more considered, what I would consider random.  

In line 4 of Excerpt 9, Colin dismisses the event of not knowing who is knocking 

on the door as being random as there is only a single instance.  When he moves into the 

three friends situation, he conveys that he’s thinking of a sequence of numbers.  One 

possibility that could explain why Colin envisioned a sequence of numbers but not a 

sequence of people:  in his experiences, he might have worked with a random number 

generator and/or a table of random numbers.  Additionally, he might have drawn upon his 

own experiences in such a number-guessing game.  In both of these cases, Colin’s 

imagery allowed him to more readily envision the described process repeating.  For the 

person knocking at the door, Colin’s imagery is grounded in a non-repeating event.  We 

can see how his image of a sequence interacts with his meaning for randomness by 

looking at how he explains whether nothing or everything is random in Excerpt 10: 

Excerpt 10. Colin explains whether nothing or everything is random 

1 Colin D [Ordained]. Nothing is ever random; there is always a reason 
that things occur. Philosophical there. Ummm, well, I mean, there 
are random things like for example, the motion of like atoms can 
be considered to be highly random, but they are influenced by 
some outside force. So, is that considered random? Umm,  I guess 
for me it just kind of looks on how, how deep would you be 
looking into it. Umm, kind of like if you were to, I guess on a 
higher, like on a higher level, it would, yeah, they would look 
random, but if you then started looking at like the interactions 
between the atoms or whatever, you would start saying well maybe 
they aren't, they not so random.  

2 Colin So I guess I would compare that to if you were looking at a 
sequence and once you see a large enough sequence, you have a 
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large enough, uh, sequence or array of data, then you can start 
pulling out patterns if they are and then you can say "oh that's not 
random" but if you still can't see any pattern then you can say that 
it's not random [misspeak?]. Unless, of course, if you keep 
zooming out, or you keep drawing a larger and larger, uhh, set of 
data, at that frame of reference, and maybe see a pattern or you 
may not. So, that, depending on that, kind of how would you, that's 
I would kind of declare if something is random or not. 

3 Colin E [chaos]. Everything is random. Umm, I'm going to disagree with 
that statement. Umm...ahh, there's...yeah, I trying to find an 
example where something is not random and umm, I guess any 
time you make a decision, it's not really random because there's 
factors that are influencing it or if you, if you can predict 
something and umm, you're able to observe that, then that's not 
really random because there's a pattern that you're able to see. 

Colin appears to use “pattern” in two different ways in Line 2: to reference a 

term-based pattern in a sequence and to refer to the amassing of outcomes in clumps.  In 

both cases, Colin wants to get a sufficiently large enough collection of values.  Colin’s 

view of looking at a sufficiently large enough sequence to see if there is a pattern is 

certainly consistent with what I refer to as a first-order random/stochastic model (see 

Table 2) and lays the groundwork for a productive view of distribution (see Table 7).  

However, Colin remains focused on using the absence/presence of a term-based pattern 

to state whether something is random (Line 3).  This is most consistent with viewing 

randomness as a form of sequence complexity (Table 5).  Colin continues to refer to this 

meaning for randomness. 

Excerpt 11. Colin's sequence meaning for randomness 

1 Colin F [sequence complexity]. A sequence is random when you can't 
find a pattern, okay. A sequence is random when you can't find a 
pattern to it like the number π. Okay, ummm, I actually didn't read 
that before I answered, so I'd like to claim that. Umm...yeah, I 
would, uhhh, given that you have a large enough sequence, ummm, 
yeah, I would, [that] would closely fit what I would declare 
something to be random. 
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2 Neil How about the next one? 
3 Colin [Statement G-sequence attribute] A sequence is random when you 

can't find a pattern, but you can use it to predict something in the 
long-run. Ooooh, ahhh, is that long-term relative frequency? 
Ummm...(long pause) you can't find a pattern, but you can use it to 
predict something in the long run...yeah, let's declare that as 
random because you...hmmm 

4 Neil What are you mulling over? 
5 Colin Well, if you can't find a pattern, then how can you predict 

something over the long-term run? So, I'm trying to, how would 
that relationship would kind of connect. [Neil: okay] So, I'm, the 
first part "if you can't find a pattern" well, that's, you know kind of 
fits what I would think be, what declares random. But "you can use 
it predict something in the long-run" well, then at that point you're 
able predict future values for that, for example if it is a sequence, 
umm, so if you can predict future values for that sequence, then is 
that considered finding a pattern? Umm...so that's kind of what I'm 
mulling over. (To self) a sequence is random if you can't find a 
pattern, but you can use it to predict something in the long run.  

6 Colin Mostly I say, it's random. Uhhh, cause if you can't find a pattern 
then you, you can't, yeah, then next value in that sequence you 
can't predict what that value will be but you can, on the large scale 
though, in the long-run, you can predict what the values will 
gravitate towards. So, I would say that's random.  

7 Colin And then H, none of these match my meaning for random. Ummm, 
I think that F [sequence complexity] does and after kind of 
chewing on it, G [sequence attribute] does as well. 

8 Neil You were iffy about C [left-field]. 
9 Colin C. Yeah. Umm, I was iffy about that just because, I mean it 

depends on how many, like if the neutral friend picks a number. 
Well, what bounds are we putting on that? I mean if they choose 
from negative infinity to infinity, well, I would consider that as 
random. But if they say choose, you know one and two, ummm, I 
don't think that's a large enough sequence to be able to declare if 
something is random or not. umm...I guess that would be, I guess it 
is too small of a sequence to declare that it is random. [Neil: Okay] 
Because in order to declare that something is random you have to 
have enough values in your sequence to confidently say that there's 
not a long-term pattern. 

Colin endorses the idea that statement F matches his meaning for randomness.  

His responses leading up to this point indicate that he holds a sequence complexity view 

of randomness and statement F [sequence complexity] is meant to be interpreted as being 
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indicative of that level in the randomness construct map.  However, Statement G 

[sequence attribute] pushes Colin in that he must wrestle with an explicit lack of a term-

based pattern paired with the ability to predict.  In line 5, he re-affirms that no pattern in a 

sequence indicates randomness.  However, in line 6, Colin makes a critical jump in his 

thinking:  he brings up predicting a measure of center.  While other researchers would 

view his bringing up what the values “gravitate towards” as being key (e.g., Arnold & 

Pfannkuch, 2014; Bakker & Gravemeijer, 2004; Reading & Canada, 2011), the more 

important aspect is that Colin made a distinction between predicting the next term in the 

sequence and predicting something about the long-run behavior.  This distinction 

provides a fertile ground for Colin to move from viewing randomness as sequence 

complexity to an attribute.  This distinction also highlights that when Colin is typically 

looking for a pattern in a sequence, he is looking for a term-based pattern.  However, he 

is open to idea that there may be larger patterns that aren’t term-based that can be 

discussed; for example, what value sequence tends to produce.   

In line 9 of Excerpt 11, Colin applies his sequence meaning for randomness to the 

situation involving three friends.  However, he confounds the domain of the stochastic 

variable with the idea of sequence.  While the size of the domain does not impact whether 

a process is random (except, perhaps a size of one), Colin is consistent in his want of 

large sequences in order to investigate whether or not something is random.  To ensure 

that I understood what he meant by the terms, I asked him to explain what he meant by 

the words “sequence” and “prediction (Excerpt 12).  



 

137 

Excerpt 12. Colin explains “sequence” and “prediction” 

1 Neil Okay. So, you've used two terms quite a bit [Colin: umm-hmm 
(agreeing)] in the last conversation. And the first one is 
"sequence". What do you mean by "sequence"? 

2 Colin A sequence, ummm, so a, in this case it would be, kind of like 
a...when you have like a set, so it would be the, a sequence can be 
either numbers...yeah, a sequence would be numbers in a set, 
ummm, and depending on what the sequence is generated from, for 
example, uhh, that can be either like an ordered set, it can be, uhh, 
something that doesn't have an ordinal, nominal, uhh, so I would 
consider a sequence is just a set of data in that case.  

3 Neil So you said that ahhh, what the sequence is generated from. So, 
what's generating the sequence? 

4 Colin Ummm, so, for example if you go, well, that depends on, 
(unintelligible), so that could be the people's answers, so they are 
the ones generating, so each individual answer when complied 
would generate the data. 

5 Neil So what would that mean for what a term in a sequence represents?  
6 Colin A term would represent one person's answer. Umm, so I guess 

each, each sequence, well maybe it's each term in that sequence 
would be one iteration of whatever uhh, process that you're using 
to gather the data. 

7 Neil Okay. The other word that you used quite a bit was the word 
"predict" [Colin: umm-hmmm (agreement)]. What do you mean by 
"predict"? 

8 Colin Predict. Umm...so this is where...like…if you were, if you were 
looking at a series and you're to predict what the next value is, 
what I would, (sigh) umm, if you can make, I guess, predict an 
educated guess, in that sense, umm you can declare what the next 
number in that sequence would be, you're predicting what that 
number would be, you're umm 

9 Neil So if I gave you a sequence and you guess "5" as the next term… 
10 Colin I would be predicting that the next, ahh, term in that sequence is 

five so 
11 Neil Do you have to be right for that to be a prediction? 
12 Colin No. Cause it's, ahhh, I'm...I'm predicting, so I'm, so whatever 

process I used to come to that number that's what I'm declaring as 
being, that's what I'm using to find that number, so if that process 
is wrong I'm still predicting that number, it's just that I'm not 
predicting the right number. [Neil: okay] Term or, yeah.  

Colin views sequences as the stringing together of multiple trials from some 

process.  Each term in the sequence reflects that datum associated with a person (or 
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object) gotten by carrying out this process.  Colin’s view of prediction is like that of an 

educated guess, but he includes the anticipation of not being correct with his guess and 

that being acceptable.  

Colin’s conveyed meaning for randomness entails the absence of a term-based 

pattern in a sufficiently long sequence as well as a separate everyday meaning for the 

term. Later on, he brought up the two meanings again when he was asked to explain the 

concept of randomness. 

Excerpt 13. Colin explains “Randomness” 

1 Neil How would you explain the idea of "randomness" to another 
person?  

2 Colin Ahhh, man, ummm  
3 Neil I never claimed these were easy questions.  
4 Colin No, they're not (both laugh). I feel they could be; I feel like it 

would be easier to explain the idea to a math major then to a 
random per-oooo-to some person ummm  

5 Neil So why did you go "oooo"?  
6 Colin Well, just because, like when I said "a random person", right, well, 

that's where there's two kind of uses of "random" that happens in 
my brain; one is the math and other one is, I guess, some un...I 
guess, there's, kind of an unconnected, I guess, ahh  

7 Neil A non-math?  
8 Colin Yeah, I guess, well, yeah, a non-math kind of, everyday kind of 

use that people use, that people, that you use every day in society 
versus a math kind of actual definition of it [Neil: Okay] Umm…  

9 Colin So how would you explain the idea of randomness to a person? I 
would try to probably explain the math definition that exists in my 
head. Ummm, basically I would say...if you, whatever you're 
observing and you observe this an infinite number of times, if you 
cannot guess what the, well, if you...if you can't...if you can't guess 
with some educated guess what, I guess if you can't observe, yeah, 
if you can't observe a pattern, if you would see this event and then 
you don't see a pattern occurring within an infinite number that 
occurs, then, is, that's random.  

10 Neil Okay. How would you explain, ahh, the everyday usage?  
11 Colin Uhh, well, I think people, when people use, at least the everyday 

usage of "well that's random" what they mean is kind of a 
shorthand of "that didn't continue with my line of thought" or "that 
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seems out of sequence" like a non-se, like a non sequitur kind of 
thing.  

12 Neil Okay. 

In lines 4 and 6, Colin catches himself using the word “random” in a manner that 

wasn’t consistent with his “mathematical” meaning for the term. For his mathematical 

meaning, Colin conveys once again having infinitely many observations to look for some 

pattern; if there isn’t a pattern, then you have randomness (line 9). Colin re-iterates his 

everyday meaning for randomness as instances that do not appear to follow the listener’s 

current flow of thought (line 11).  

Excerpt 14. Colin’s View of a Random Variable 

1 Neil What do you think a random variable is?  
2 Colin A stochastic variable.  
3 Neil So what is a stochastic variable?  
4 Colin A random variable. Umm, so a random variable is...a 

umm...yes...(sighs)  
5 Neil So what are you thinking?  
6 Colin Umm...so you have a variable and I guess as long there's no 

outside...fac-that's not really...a random variable is...a random 
variable is a variable that...(long pause) any, so any value or att-
any value of an attribute that that variable represents umm, is 
going, for example if the variable is one out 100, umm, each one of 
those values has a...equally likely--no, that, that's not, that's not 
really, if you were to look at that variable and of all, yeah, if you 
were to look at that variable long-term, like to the infinity, you will 
(won't?)  be able to discern some pattern from that variable.  

7 Neil You won't?  
8 Colin You won't be able to discern, umm, a pattern, yeah, so.  
9 Neil Okay.  

Colin’s conveyed mathematical meaning for randomness returns and appears to 

drive his meaning for a random [stochastic] variable in that if you were to look at the 

variable in the long-run, you wouldn’t be able to find a pattern (Excerpt 14). He does 

briefly struggle with whether equi-probability plays a role in a random variable. 
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Ultimately, he rejects this idea for looking at the variable in the long-term.  I suspect that 

he’s imagining a process to get data (such as he described in Excerpt 12) to get form a 

sequence of values.  However, Colin’s meaning for a random variable foreshadows the 

potential for his meaning for randomness to limit his development of the distribution 

concept. Ultimately, a distribution is a pattern of long-run behavior, albeit a non-term-

based pattern.  Whether Colin would recognize such a pattern as being able to exist 

without destroying randomness is unclear. 

Danielle’s Meanings for Randomness 

Danielle initially read through the situations and viewed Situation C (you and two 

friends) and Statement F (sequence is random when no pattern) as being her top two 

contenders.  She settled on Statement F as being closest to her meaning for randomness. 

In discussing her answers, Danielle brought up that she felt that her meaning for 

randomness had evolved over time (line 2 of Excerpt 15). 

Excerpt 15. Danielle explains her two meanings for “random” 

1 Neil Okay. So, let's come back to A [left-field]. [Danielle: Okay] So 
why not A? 

2 Danielle That whole, that whole thing is random. Umm, so, when I think of 
randomness, umm, if you were to ask me like back in maybe high 
school [Neil: mmhmm] -ish, umm, to pick something randomness, 
maybe A would have been a qualifier. But now, especially like as 
far as I got in college, I tend to go away from the superficial 
meaning of randomness and towards an actual like quantifiable 
meaning of randomness.  

3 Neil So what do you mean by a superficial... 
4 Danielle Ummm...useless (laughs) 
5 Neil Let me rephrase: so, what, what do you mean by a superficial 

meaning for the word "randomness"?  
6 Danielle Oh, okay, ummm, so we're given a context of this, ahh, to Harry 

Tom's response is random, but to Tom, it isn't. [Neil: Okay] 
There's a reason Tom said it, there's a connection there somewhere. 
Umm, so, to say "that's random" in a conversation to me is very 
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superficial cause it's obvious not random, there's something that 
had to lead to that point. 

7 Neil Okay. And then you, you juxtaposed that to a quantifiable meaning 
for randomness. (Danielle laughs) So what do you mean by that?  

8 Danielle Well, I mean, the essence of random isn't exactly, you know, umm, 
quantifiable, but as opposed to like "that's random" in response to 
Tom, we can find a pattern by asking Tom, ummm, which means 
therefore it's not random. Umm, if it was truly randomized, we 
wouldn't be able to see the pattern or at least not yet. 

Danielle’s two meanings for “random” share a common link.  While her 

“superficial” meaning focuses on knowing why something happens, her “quantifiable” 

meaning focuses on knowing a pattern.  However, in both meanings there is a strong 

sense of keeping track of from whose perspective we’re making the determination.  As 

Danielle points out, to Tom, his statement of Linda’s religion is not superficially random 

but to Harry, the statement is superficially random.  She ties the knowing perspective to 

her “quantifiable” through the idea of looking for a pattern.  This perspective-based view 

continues to hold in Situation B (someone knocking on your door) as well as Statements 

D (nothing is random) and E (everything is random): 

Excerpt 16. Danielle’s response to situations B, D and E 

1 Neil So what about B [unknown/unpredictable]. 
2 Danielle Similar reasoning. [Neil: as…?] Umm, someone knocks on your 

door, err my door, and I don't know who it is, I don't who it is, so 
the event is probably random for my day, but whoever knocked on 
my door it's not. 

3 Neil Ahh, and D [ordained], you, you immediately disqualified D. 
(Danielle laughs) So why's that?  

4 Danielle I've seen like, I mean there's, there are things in this world that I'm 
assuming like the number π, I don't know if there is a pattern to the 
number π, umm, there are bound to things that are randomized to 
different people whether we can explain to them now or if we can 
explain them later. So, it is not so much that, you know, nothing is 
ever random, or everything is random, there are things that are 
random and things that aren't. 

5 Neil Okay. So that would explain E [chaos] as well. 
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6 Danielle Yeah (laughs) 

In line 2, Danielle explicitly draws the matter of perspective into the situation but 

noting that only for her the event is random but not so for person knocking on her door.  

She brings this matter up again when discussing why not everything is either random or 

not (line 4).  However, Danielle’s two perspective-based meanings appear to fail her 

when she encounters Statement G (Excerpt 17). 

Excerpt 17. Danielle struggles with statement G 

1 Neil Umm, what about G [sequence attribute]? 
2 Danielle That one kind of confused me, ummm, a sequence is random when 

you can't find a pattern, but you can use it to predict something in 
the long-run...umm...I don't know, that one's a little harder than the 
rest of them to answer. 

3 Neil So what do you think that statement is trying to convey? 
4 Danielle Probably, like, π is used to link different formulas...umm, so like, 

to me π is just a random bunch of numbers strung together but you 
technically can use it to predict things accurately. [Neil: Okay] 
Umm, (softly) I'm not really sure about that... 

5 Neil Okay. And you settled on F [sequence complexity] or C [left-
field]? 

6 Danielle Ahhh, F, yeah, F. [Neil: F?] Yeah, F. 
7 Neil That was your best match? 
8 Danielle Yeah. [Neil: Okay] C was okay, but there's bound, you're bound to 

find a pattern with people. So,… 
9 Neil So, like your neutral friend might have a favorite number. 

[Danielle: yeah] Okay. Alright. 

I believe that Danielle’s struggle with Statement G [sequence attribute] stems 

from her meanings.  Recall that in Excerpt 15 Danielle described two meanings for the 

word random:  one that she labeled as being a superficial usage of the term such as when 

two co-workers discuss a third’s religion and one she labelled as being more 

quantifiable—to indicate that not knowing why the event occurred .  She cannot apply the 

superficial meaning to Statement G as she does not know why each term is generated and 
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she takes the statement’s explicit reference to her not being able to find a pattern but still 

being able to make predictions conflicts with not knowing.  This highlights that finding a 

pattern is the key to making predictions for her.  However, she attempts to resolve her 

struggle by referencing the use of π in mathematical equations.  (Recall that Statement F 

references π as a sequence without a pattern.)  Danielle uses her experiences in using π in 

formulas to get values as the way to understand “predict something in the long-run”. 

Danielle brought up the idea of randomness unexpectedly during the portion of 

the interview focused on the concept of chance.  In particular, Danielle appears to view 

“chance” and “randomness” as referencing the same thing.   

Excerpt 18. Danielle explains “Chance” and “Randomness” 

1 Danielle Umm, how would you chance to another person? Chance...(laughs) 
alright, chance is probably closest to...like randomization. So, in 
my head, if something were to happen by chance, like the 
likelihood of it happening would be randomized. 

2 Neil What do you mean by randomized? 
3 Danielle Umm, no discernible pattern to the instance. 
4 Neil Okay. Anything else? 
5 Danielle I don't so [Neil: okay] (laughs) 
6 Danielle (Danielle scoffs, Neil laughs as screen changes) That's why you 

asked. Alright, umm, how would you explain the idea of 
randomness to another person? No discernible pattern. (laughs) 
[Neil: okay] So, whatever happened or whatever's going on, there's 
no discernible pattern to whatever it is. 

7 Neil Okay. What if there is a pattern but you just don't see the pattern? 
Would that still be something that's random? 

8 Danielle Yes, until someone can tell me the pattern [Neil: okay]. Until I see 
the pattern, it would be random. So, random acts probably, could 
probably have a pattern, but until the pattern is revealed, I would 
consider it random. 

9 Neil So let's turn back to earlier, umm, somehow I managed to get two 
pages in between, ahh, we were talking about Tom and Harry 
[Danielle: Yeah], that match pattern [Danielle: Yeah] umm, you 
had sort of talked about, ahh, particular with the door knocking, for 
you that seemed, that would be random but for whoever was at the 
door that wasn't random. [Danielle: Yeah] So what, ummm, would 
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it be accurate to say that for you, randomness deals with who's 
doing the looking? 

10 Danielle Yeah, that would be pretty accurate. [Neil: Okay] I guess whose 
ever description of random is... 

11 Neil So that if we had a sequence and I knew, I saw a pattern, but you 
didn't... 

12 Danielle Yeah, yeah, until you told me the pattern I would consider it 
random. 

13 Neil Okay. 

In Excerpt 18, as Danielle explains chance, she makes use of her perspective-

based “quantifiable” meaning for randomness (no discernable pattern).  Immediately 

following the question about explaining “chance” was a question to explain 

“randomness”; hence, Danielle’s reaction in line 6.  She gave her “quantifiable” meaning 

for randomness as the lack of a pattern.  I wanted to test her perspective-based meaning 

by asking her whether her not seeing a pattern would change the status of being random.  

I referenced Situation B (someone knocking on your door) and as well as sequence.  She 

remains firm in her perspective-based meaning; until she knows the pattern, the sequence 

is random even if someone else sees the pattern (lines 8-12).   

Towards the end of the interview, Danielle faced a task where she was presented 

with a variety of situations/statements to choose from that matched her meaning for 

“chance”, similar to the one for “randomness”.  As shown in Excerpt 19, Danielle again 

presented that her meaning for “chance” was the same as her meaning for “random”.  Her 

view that “chance” was the more colloquial term for “random” makes me suspect that if 

prompted, she should use “chance” as the label for her “superficial” meaning for 

randomness.   
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Excerpt 19. Danielle’s meaning for “chance” 

1 Danielle Which one of the following most closely matches your meaning 
for chance. Oh, another one of these. Alright, ummm… 

2 Danielle Chance is the ratio of how many ways you can get a particular 
outcome compared to the total number of outcomes. (pauses) 
Chance is the long-run relative of frequency, err, long-run relative 
frequency of observing some event. Chance is how often you see 
some event occur in a set of observations. Chance is the likelihood 
that you have for observing some event. Chance is the probability 
that you have for observing some event. 

3 Danielle So, chance and random are nestled pretty close together. I would 
probably use them interchangeably in common, just 
conversationally. 

4 Neil So chance and random you would use interchangeably [Danielle: 
Yeah] Okay. 

5 Danielle Umm, if I were, I think turning in an assignment I would use 
random over chance just because chance is more like a colloquial 
term, I guess. 

6 Neil Okay. So, would you say that none of these match your meaning? 
7 Danielle Ummm...(long pause) yeah, I don't think any of these would be 

something that I would choose if I had, if I didn't have to. 
8 Neil I, I won't force you (Danielle laughs) to choose one of them. 

Implications 

These three students generated five meanings for randomness (Table 9).  Both 

Colin and Danielle came up with two distinct meanings for the “random” while Bonnie 

made no such distinction.  In addition, Colin and Danielle also brought up the notion of 

looking for a pattern.  While Colin’s responses give us insight into the fact he was 

looking for a term-based pattern, Danielle was not as clear, and I did not probe.  

However, given her responses, I feel confident that she also was looking for a term-based 

pattern.  
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Table 9. The Students’ Conveyed Meanings for Random. 

Student Meaning for Randomness 
Bonnie A random event is one where the outcome will impact the larger 

situation. 
Colin A random event is anything that is non sequitur; something that does not 

fit a person’s anticipated flow of a situation.  
Colin A random sequence is one that does not have a term-based pattern when 

looking at a sufficiently large enough number of terms. 
Danielle A random event is where you don’t know why the event happened; 

something that happens by “chance”. 
Danielle A random event is one where you cannot discern a pattern. 

 
Colin’s second meaning stands apart from the rest of the student conveyed 

meanings in that this is the only meaning which makes an explicit reference to needing a 

sequence with a large number of terms.  While Bonnie could imagine many possible 

outcomes, she judged whether the outcome would impact the larger situation she 

imagined; Danielle made no reference to needing many terms in order to determine a 

pattern.  These similarities and differences provide for several implications including 

revising the construct map for randomness and the teaching of randomness. 

Revised construct map.  The conveyed meanings that the students gave in the 

clinical interviews do not line up nicely with my initial construct map for randomness 

(Table 5).  However, these students’ responses afford me the opportunity to revise the 

construct map to clarify existing categories and create needed additions (Table 10).   

One of the changes I made in the revised construct map is separating out what the 

student sees as being “unknown”; the outcome or the reason.  This distinction affords the 

opportunity to split out those students who focus more on the why behind the outcome.  

The student’s focus on the reason can serve as a basis for getting the student to start 

thinking about a generating process as opposed to staying focused on the end result of the 
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process.  I made a similar distinction between discerning a pattern and attending to the 

absence of a long-run pattern.  In both cases, the student focuses on searching for a term-

based pattern; what Batanero and Serrano (1999) refer to as a regular pattern or Kaplan et 

al. (2014) view as without order or reason.  However, in the former case the student does 

not express any need or desire to have as many terms as possible in the sequence under 

study.  Additionally, the discernment (or lack thereof) a pattern meaning affords a student 

the ability to say that the same sequence can simultaneously be random and not random.  

This incorporates the perspective-dependent element of Danielle’s two meanings.   

The new Random as Unknown Reason level also shares this aspect.  While also 

focusing on the lack of a term-based pattern, the Absence of Long-run Pattern entails the 

student wanting to have as many terms as possible to ensure that she cannot find a term-

based pattern.  This level is distinguished from Sequence Complexity by the fact that in 

the later the student does not only look for a term-based pattern that could expressed as a 

mathematical formula.  Rather the student is also predisposed to looking for other 

descriptions that would simplify the sequence.  

I added a new level, Randomness as Chance, to capture the view of randomness 

where randomness is inexplicably tied with imagining outcomes that are equiprobable 

such as those described by Bennett (1993), Kaplan et al. (2014), and Kuzmak (2016).  

While Danielle made an explicit reference to “chance” and “randomness” referring to the 

same concept, she did so in a way that is not consistent with what the previously 

mentioned researchers found.  Rather than making “random” alternate to the idea of 

Laplacian/Classical probability (a.k.a. “chance”), she made “chance” a subservient to her  



 

148 

Table 10. Revised Construct Map for Randomness. 

Attribute of a Process 
The student conveys of “randomness” as a property of a process that entails an image of unpredictability 
in short-run, while anticipating the predictability in the long-run and minimizes sources of bias.  A 
random process will produce a sequence that has 1) no term-based pattern, 2) a sufficiently complex 
description, and 3) adheres to the Principle of the Impossibility of a Gambling System.  Adapted from 
(Kolmogorov, 2013; Liu & Thompson, 2002; von Mises, 1981). 

Sequence Complexity 
The student conveys that a list/sequence is “random” if the individual’s attempt to describe the 
list/sequence is to essentially repeat the sequence as given.  The individual cannot condense/reduce the 
list/sequence to a term-based pattern or set of rules that is less complex than the sequence as given.  
Drawn from (Falk & Konold, 1994). 

Absence of Long-run Pattern 
The student conveys that a sequence is random provided that you have a sufficiently large enough 
number of trials from the generating process to ensure that there is no term-based pattern to the 
sequence. 

Lack of Discernable Pattern 
The student conveys that “random events” have a lack of a discernable pattern.  Until the pattern 
becomes clear to the student, she will view the events as random even while acknowledging that to 
someone who sees that pattern, the events are not random. 

Randomness as Chance 
The student conveys that a “random event” is an outcome that occurs out of a collection of other 
possible outcomes, each of which is equiprobable. Drawn from (Bennett, 1993; Kaplan et al., 2014; 
Kuzmak, 2016) 

Left-field or Non Sequitur  
The student conveys that events such as sudden switches in conversation topic, unanticipated question, 
and unexpected images as being “random”.  Inspired by (Liu & Thompson, 2002). 

Random as Unknown Reason 
The student conveys that a “random event” is one that happens but the student does not know why.  For 
example, upon hearing unexpected knocking on a closed door, a student with this way of thinking would 
say that the event is random to her because she does not know why someone is knocking on the door.  
However, to the person knocking, the event is not random.   

Random as Unknown Result 
The student conveys that a “random” event is equivalent to not knowing the outcome.  For example, 
upon hearing knocking on a closed door, a student with this way of thinking will say that some 
“random” person is at the door since he does not who is at the door.  Drawn from (Saldanha & 
Thompson, 2014). 

Impacting the Situation 
The student conveys that a “random” outcome impacts a situation in a way that an alternative outcome 
would not.  The student imagines that situation as continuing on from what is presented and can 
incorporate affective consequences in her determination of whether the outcome impacts the situation. 

Ordained  
The student conveys that “random” events result 
from a chain of events meant to occur.  Thus, the 
student believes that nothing is random. 

Chaos 
The student conveys that all events are random and 
that whatever happens is the result of 
happenstance. 

Other 
The student’s conveyed meaning for randomness does not fit any of the other levels. 

 
concept of randomness (a lack of a pattern).  Even though none of the students in the 

present study gave any indication of thinking in this, I felt that I needed to explicitly 
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include this level to help position existing research in the construct map.  I must also 

stress that even though this is the five highest level in my construct map, I believe that 

there is a great distance between this meaning and the more productive meanings. 

An important change I’ve made the construct map centers on what the student 

modifies through her usage of the word “random”.  In the lower levels (Randomness as 

Chance and down), the student uses “random” to modify the outcome of a process.  The 

Lack of a Discernable Pattern level serves as a transition point to where a sequence of 

outcomes becomes the “random” object.  The sequence remains the object of focus until 

the highest level where the student gives the underlying generative process the attribute 

of randomness.  My adjustment brings the construct map in tighter alignment with the 

arguments made by Wagenaar (1991), Falk (1991), and Liu and Thompson (2002) about 

the need to help students focus on the underlying process.  Further, the students in the 

present study only ever referenced either the outcome or the sequence as being random, 

not the underlying process.  Even when Colin and Danielle brought up some type of 

underlying mechanism, they did not go so far as to apply the label of “random”. 

Teaching randomness.  There are several implications to the teaching of 

randomness that bear discussion at this point.  Perhaps the most important implication 

this study has for teaching is the clarion call that we as educators pay careful attention to 

our language.  As Kaplan et al. (2009) found and was seen here, students are aware of 

“random” being used in multiple ways.  Making students aware of technical and non-

technical usages is important to get students to build a coherent and productive meaning 

for randomness that can then be leveraged by later concepts in Statistics.  However, this 
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means that educators must be on constant guard to ensure that they do not use a non-

technical usage in front of students or in course materials.  As Hatfield (2016a) noted, a 

teacher’s conveyed meanings can act as a limiting factor for students’ meaning 

development.  This also places an impetus on educators and researchers to critically 

examine what meanings for randomness are being taught.  The top-tier meanings 

espoused by the extant literature (e.g., Kaplan et al., 2014; Kuzmak, 2016) need to give 

way to those meanings which are much more productive (e.g., Falk, 1991; Falk & 

Konold, 1994; Kolmogorov, 2013; Liu & Thompson, 2002; Saldanha, 2016; von Mises, 

1981; Wagenaar, 1991).   

Further, instructors need to take steps to problematize those meanings that are in 

middling levels of Table 10; in particular, levels Random as Unknown Result through 

Absence of Long-run Pattern.  These meanings function as useful in the moment 

meanings for students who hold them.  Students who have constructed these meaning are 

rarely, if ever, challenged in curricula to wrestle with identifying whether or not 

something is random, let alone judging a process to be random.  Most curricula introduce 

randomness as a necessary tool and then cover randomization procedures.  In homework, 

students are at most asked to describe and/or carry out a randomization procedure (i.e., 

using a random number table).  Carrying out such a procedure does not require a student 

to have to face the implications of her meaning for randomness.  Rather, we need to ask 

students to describe what is meant by the term “random” and ask students to classify 

whether or not different processes are random.  The Sequences applet I’ve built provides 

a fertile site for students to repeatedly engage in activities to help them productive 
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meanings.  Other questions that students could wrestle with could include presenting 

students with a sequence and asking them to explain why they believe the sequence came 

from a stochastic/random process (or not).  

 
Figure 23. Slide introducing randomness (D. S. Moore, McCabe, & Craig, 2017b) 

Such activities do hold potential to help students develop higher order meanings 

in the construct map.  Recall that Colin’s introductory Statistics course for bioscience 

majors was a reformed, conceptual approach.  Within that course, there were multiple 

discussions on the various meanings for randomness as well as question like those 

described above.  Partnered with the discussions on randomness, there was also an 

emphasis on looking at the long-run when discussing ideas of distribution and moments.  

While Colin did not convey a meaning consistent with the meanings espoused by the 

course (Attribute of a Process and Sequence Complexity), his conveyed meanings still 

carry hallmarks of that course; a focus on sequences and the long-run (i.e., infinitely 
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many trials).  His fall back to searching for a term-based pattern could be indicative of 

the traditional Statistics course he was enrolled in during the study.  Figure 23 shows a 

publisher made slide meant to accompany the ninth and newest edition of Moore, 

McCabe, and Craig’s (2017b) Introduction to the Practice of Statistics text.  This serves 

an example of what most traditional introductory courses present randomness as 

randomness; Colin was working out of the eighth edition.  Such a slide presents 

randomness in such a way that students can continue to use their useful-in-the-moment, 

unproductive meanings without problem.  Notice that the slide even sets students up for 

the same chance-as-randomness meaning that Danielle gave; “chance behavior” becomes 

“random phenomenon”.  While the given meaning has hallmarks of the meaning that Liu 

and Thompson (2002) espouse for a stochastic process, D. S. Moore et al.’s presented 

meaning maintains a focus outcomes rather the underlying process.  As a reminder, the 

meaning needs to be read with the notion of distribution as the thing that tells us what 

values a stochastic variables takes and how often these values are taken.  Should an 

instructor follow the course flow recommended by the authors, students will be seeing 

this slide after already equating “randomness” with “no pattern” (Figure 24).  Such 

curricular materials could limit students to at best reaching the Absence of Long-run 

Pattern level of the construct map (Table 10). 
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Figure 24. Slide tying randomness to “no pattern” (D. S. Moore, McCabe, & Craig, 
2017a) 

The meanings for randomness that Bonnie, Colin, and Danielle gave in addition to 

the published research point out that there is still a need to for researchers and educators 

to critically reflect upon the idea of randomness.  Statistics education researchers need to 

focus in on the meaning for randomness that we want to support students in developing in 

relation to their development of other productive and coherent meanings in Statistics.  I 

believe that helping students develop a meaning for randomness that pins randomness as 

an attribute of a process is the most coherent conceptualization of this idea.  Building a 

curriculum that supports students in building this meaning presents an opportunity for 

future research.  
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Chapter 7: Exploring Bonnie’s Meaning for Stochastic Processes 

After her initial clinical interview, Bonnie came in for two additional sessions in 

the vein of exploratory teaching interviews.  In the first session, she worked through the 

Light Switch (Version A) and the More Processes Activities (see Chapter 5: 

Methodology).  The second session centered on the Sequences Activity.  The intent was 

to see what sense of stochastic processes she would develop through interacting with 

these applets.   

Bonnie’s First Session 

At the onset of the first exploratory teaching interview, I asked Bonnie if she had 

ever heard of the phrase “stochastic process” before and when she responded no, I asked 

her if she had heard the phrase “random process” before; has her reply: 

Excerpt 20. Bonnie’s initial explanation of random processes 

1 Bonnie Yes. 
2 Neil So where have you heard that phrase? 
3 Bonnie Umm, I’ve heard it in Statistics, in my class last year. Umm, 

during, I’m not sure exactly which unit, but I remember hearing it 
sometime during that semester. 

4 Neil Do, uhh, so what is a random process? 
5 Bonnie Umm, I think this relates back to random variables, or randomness, 

what we were talking about in our last session. [Neil: okay] I think 
it could mean, umm, all the variables in a situation and the 
outcome are all determined by randomness. 

While Bonnie hadn’t heard of a stochastic process, she did have exposure to the phrase 

random process, but her meanings for this phrase are vague.  Her meaning for random 

process appears to be driven entirely by the term “random” which she links back to both 

random variable and randomness in the clinical interview.  During the clinical interview, 

Bonnie had explained a random variable as being the outcome of a process that will 
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affect the individual(s) involved in the imagined situation (Excerpt 21).  Bonnie’s 

meaning for randomness is that the outcome of the process has to create some kind of 

effect in the situation; for example, being nervous about speaking (Line 6). 

Excerpt 21. Bonnie’s meaning for random variables 

1 Neil What do you think a random variable is? Do you recall hearing this 
phrase in Statistics class?  

2 Bonnie Oh yeah. Umm, I believe, so an example I'm thinking about right 
now is if you're picking out of a hat, let's say, but these variables 
won't have any affect on the outcome. [Neil: Okay] If they, 
and...umm...so say there's a word problem and ummm, (long 
pause) hmmm, (long pause),I just think it is something that does 
not...err, (sigh)  

3 Neil Could you give me an example of a random variable?  
4 Bonnie Hmmm, (long pause), I'm trying to think right now, and I can't  
5 Neil It's okay; remember there are no wrong answers  
6 Bonnie Yeah. So earlier I defined random as something that most of the 

time will always have an effect on the outcome...so if you picked 
out of a hat and...you picked either one, two, three, or four, or five 
and whatever number you got was the order you went to present. 
Well, if I got a three that's a random variable but its gonna have an 
effect on how I'm gonna, how nervous I'll be to present or how 
calm you'll be to see [Neil: Okay] So, yeah, I think that's my 
answer. 

Bonnie’s meaning for random process does not afford her a connection to data as shown 

in Excerpt 22.  For her, data appear and become fodder for data visualizations.  This is 

unsurprising given that many introductory textbooks do not place much emphasis on 

stochastic/random processes but jump to giving students data with which to make graphs 

and do calculations on. 

Excerpt 22. Bonnie’s view of the origin of data 

1 Neil Where do you think data come from? 
2 Bonnie I think…it comes from numbers of different categories and they 

bunch it all together in specific graphs or charts and it’s organized 
in a very specific order. 
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As Bonnie initially worked with Room One (deterministic, white and black), she 

quickly assimilated what was happening to her past experiences for turning the light in a 

room.  When asked to create a new switch/button, Bonnie struggled to understand the 

prompt.  However, once she understood that she needed to come up with the details 

behind the switch/button, she drew a switch and wrote her first rule in Figure 25.  Starting 

from a black room, Bonnie noted that pressing the button once would turn on the light.  

Her next rule was that double tapping the button would make the light go off (crossed out 

in the middle of Figure 25).  I asked her if we had needed to double tap the switch in the 

applet to make the light turn off and she corrected herself to say that every other tap 

would reverse the state of the room (third line).  As she went to write the third rule, she 

hesitated as she tried to come up with the wording.  In getting her to explain her thinking, 

I asked her if we reverse on every tap or every other tap.  She initially says every other 

tap, but in seeing the switch for Room One get pressed again (going from a white room to 

a black room), she amends her statement to every tap reversing the room. 

 
Figure 25. Bonnie's new button for room one 
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In Room Two (deterministic, grey scale), Bonnie made an unprompted move to 

draw out the various states of Room Two; she created the cycle diagram shown in Figure 

26.  Her original drawing had two separate pieces:  the upper set of boxes for starting 

from black and going to white and the lower set of boxes for the reverse.  Bonnie quickly 

realized that the boxes on the outer edges would be the same state (black on the left, 

white on the right).  She proceeded to use her diagram to tackle how to get back to a 

previous state of the room.   

 
Figure 26. Bonnie's cycle diagram for room two 

When asked how she would create a new switch for Room Two, Bonnie had this 

to say: 

Excerpt 23. Bonnie’s new button for room two 

1 Neil Suppose that the switch broke [Bonnie: mmm-hmm] How would 
you, sort of program a new switch, based upon all that you've now 
discovered about Room Two? 

2 Bonnie Hmmm...I would...(long pause)...it would the same concept that it 
already has since there's five different stages [Neil: hmm-mmm] or 
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states of the room, so by every click it will give you a different 
state for the room [Neil: okay] and then...vice versa so when you 
hit all five clicks [misspeak? states] it, and you want to back to the 
darkness, you have to it [the button] once again. 

3 Neil Just once? So, we got all of the way to white, we just hit once to 
get back to black? 

4 Bonnie No. Each of, you have to hit it five times. 
5 Neil To get back to black [Bonnie: Yes] So each time you press the 

button you sort of advance one through the cycle. [Bonnie: yeah]. 
So, we could write that as sort of a process, right? 

6 Bonnie Umm-hmm (Agreement) So, [writes "click switch 5 times, but 
once for each new state"] So I wrote click switch 5 times, but once 
for each new state. 

7 Neil And what would clicking the switch 5 times accomplish? 
8 Bonnie Umm, going from complete darkness to complete whiteness. [Neil: 

Okay] But by hitting it once, that goes to each different state [Neil: 
Okay]. So, rather than saying "you only hit it 5 times", well you, 
hit it five times, you're not gonna just go from the next state, you're 
going to go all the way to whiteness [Neil: Okay.] 

Bonnie’s cycle diagram afforded her the ability to think not only see the different 

colorings of the room but also gave her a way to see the action of pressing the 

button/switch as moving her forward through the cycle (Line 2).  This allows her to more 

readily address her initial error of one click back to black (Lines 2-3).  While Bonnie 

embedded the notion of clicking 5 times in her new switch’s rule (line 6 of Excerpt 23 

and Figure 27), I believe that she did so for two reasons:  she might have been focusing 

on the idea of going from a black (completely dark) room to a white (completely lit) 

room and/or she might have been trying to indicate that there were four intermediate 

states in order to get to the desired state of the lit (white) room.  Her response in Line 8 

supports this notion. 

 
Figure 27. Bonnie’s new switch for room two 
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Figure 28. Bonnie’s cycle for room three 

Room Three (deterministic, rainbow) introduced added complexity through the 

presence of colors outside of the typical experience of turning on the light in a room.  As 

Bonnie played around with Room Three, she recognized that the light in the room was 

moving through the color spectrum.  Unlike for Room Two, she did not write out a cycle; 

however, she was able to generate one when prompted (Excerpt 24). 

Excerpt 24. Bonnie’s building a cycle for room three 

1 Neil Do you think you could come up with a, uhh, a cycle pattern like 
you did in Room Two? [Bonnie: yes] Do you remember what color 
we started with? 

2 Bonnie Yes. Do you want me, like to write the first letters? 
3 Neil Sure. 
4 Bonnie So we started with black, (softer) went to red, then orange, yellow, 

green, let's see, a turquoise, and then...[stops talking, continues to 
write colors] 

5 Neil So, okay, how could you check your sequence? 
6 Bonnie So, I'll start with black [clicks]...wait! What?! 
7 Neil So you're expressing surprise. [Bonnie: laughs]. What, why are 

you surprised? [Bonnie: yes] 
8 Bonnie I didn't know that there's another black thrown in there. 
9 Neil Well, let's try. So here we are at black [Bonnie clicks; Bonnie: so 

then red] And then 
10 Bonnie Black, oh, okay. 
11 Neil So what are you noticing? 
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12 Bonnie After each color, it goes back to the state of darkness [Neil: okay] 
or black. So then between each color there's a blackness, black 
state. 

13 Neil Okay, so do you want to tweak your... 
14 Bonnie [Bonnie adds black states between her colors] 

She initially focused on the colors that showed up after the initial black of Room 

Three (Line 4).  She encountered a surprise when she went to check her cycle against the 

applet:  there is an instance of a completely dark room between each colored light.  When 

she started her check, Room Three was light pink and when she advanced the button, she 

got a black.  In her original cycle, that put her at the start (upper left of Figure 28) so 

when she clicked next she got white instead of the red she was anticipating.  This led her 

to revise her cycle adding in black states.  As she did in Room Two, Bonnie views her 

cycle diagram as a way to program a new button (Excerpt 25). 

Excerpt 25. Bonnie views the cycle as the button program for room three 

1 Neil So, do you have the whole sequence worked out? [Bonnie: umm-
hmm (agreement)] Do you think that you could use that sequence 
as sort of the program behind the switch? 

2 Bonnie Yeah. 

Room Four (stochastic) presents an interesting situation for Bonnie.  She initially 

guesses that the room will stay black when she presses the button.  When she presses the 

button the first time, the color of Room Four changes to dark green color.  She then 

guesses that the color will become easier to see if she presses again which results in a 

burgundy color. Bonnie then anticipates that the color will change but we’ll be able to see 

the color better (becomes grey).  She keeps guessing colors and clicking the 

button/switch to Room Four.  After her eighth click in Room Four, Bonnie proposes a 

pattern:  



 

161 

Excerpt 26. Bonnie’s first attempt at a pattern for room four 

1 Neil So what are you thinking about for Room Four? 
2 Bonnie Ummm, so when you started with black and you hit or you tap the 

switch button, it goes to a color and tap again it goes to another 
and then it goes to grey. 

3 Neil Okay. 
4 Bonnie And then after that, you're going to go through two more colors 

and you're going to hit grey again. And then two more colors and 
then grey again. 

5 Neil So, should the next one be grey or another color? 
6 Bonnie Umm, another color. 
7 Neil Alright. And so, the next one should be... 
8 Bonnie Grey. [Clicks] (softly) Oh no... 
9 Neil Why did you say "Oh no"? 
10 Bonnie Uhhh, I thought it was going to be grey, cause I, I thought that I 

could see a pattern occurring [Neil: okay] but now, it when through 
three colors, so maybe it will grey now. [Clicks] No. Okay. I don't, 
I don't know... 

11 Neil You don't know what? 
12 Bonnie If...there's a sequence or a specific pattern. 
13 Neil So, you're thinking about trying to come up with things like what 

you did from Rooms One through Three [Bonnie: yeah]. Having 
problems with this one? [Bonnie: umm-hmm (agreement)] 

The applet was designed to give a grey color tone as the fourth and seventh states.  

In her quest to find a pattern, she does appear to want to come up with a cycle diagram as 

she was able to in the previous three rooms.  Bonnie continues to play with Room Four, 

expressing surprise with each time that what she guesses does not hold up with the press 

of the button/switch.  At that point in time, we have the conversation in Excerpt 27.  

Excerpt 27. Bonnie introduces “randomness” for room four 

1 Neil So what, what are you feeling right now with Room Four? 
2 Bonnie Confused. 
3 Neil Confused about what? 
4 Bonnie Umm, if there is a certain or a specific pattern or not. [Neil: okay] 

It just seems...almost like it is just random. 
5 Neil What's random? 
6 Bonnie The...order the of the colors? 
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7 Neil The order of the colors? [Bonnie: and the pattern] The pattern. 
Would that be the order? 

8 Bonnie Ummm, no. [Neil: no] I think just the pattern is all. 
9 Neil Do you think there is a pattern? 
10 Bonnie Ummm...maybe. 
11 Neil Maybe? What would you need in order to find out whether or not 

there's a pattern? 
12 Bonnie I would have how we started with black, complete darkness, I'd 

have to go through one whole cycle and end up back there and then 
when I click again, try to remember if those were the same colors 
that came after 

13 Neil So, could we, could you do something like what you did with 
Rooms One through Three? [touches her cycle diagrams] 

14 Bonnie Yes. Even though I don't know if it is for sure a pattern. 
15 Neil So let me, I'll reset [Bonnie: okay] So we're at black for Room 

Four. 
16 Bonnie Okay. [writes B] So, last time it was [writes "dark"] 
17 Neil So how about we just build a new cycle? [Bonnie: okay] So we've 

got black and then...if you press the switch, what do we get? 
18 Bonnie A new color. So, I think it is random. 
19 Neil What's random? 
20 Bonnie The pattern...or there is no pattern! 
21 Neil There is no pattern? What if I told that there was a pattern? 
22 Bonnie Ummm, I don't think it follows any specific rules [Neil: umm-

hmm] 
23 Neil Do you think you could create....let's say the switch broke, 

[Bonnie: okay] do you think that you could program a new switch? 
24 Bonnie With a specific rule for the room... 
25 Neil So that Room Four functions exactly as Room Four is functioning  
26 Bonnie Okay. So, you would just have your switch button and you would 

start at black and every time you hit the switch, it would just go to 
a random color. 

27 Neil Just a color. [Bonnie: yeah]  No, no, no finer grain details than 
that? Like what you had in Rooms One through Three? 

28 Bonnie I think the first, after you hit the first switch, you'll get two random 
colors and then you'll to a grey stage. [Neil: okay] And then  

29 Neil So, let's test that. So, you have one, your first color. [Bonnie 
clicks] Second color [Bonnie clicks again] 

30 Bonnie So, no. I don't it follows any specific pattern with rules. [Neil: 
okay] It's just kind of thrown out there. 

Bonnie introduces the notion of randomness in Line 4.  The way that she is using 

the term random here is unlike how she used the term in the clinical interview.  There she 
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used the notation of randomness to indicate that the outcome of the described processes 

would have an effect on individuals in the given situation; here she uses random to mean 

without a pattern (Lines 5-10, 18-20).  When I suggest that there might be pattern, she 

states that there would not be any specific rules (Line 22).  She carries this through with 

how she would program a new button for Room Four.  We can see here that she brought 

back her two colors then grey pattern.  However, when that pattern breaks, she goes back 

to the lack of rules and no pattern (Lines 26-30).   

I asked Bonnie to create two categories for the four rooms and state which rooms 

were in which categories.  She immediately made a Pattern category with Rooms One 

through Three and a Random category with Room Four (Figure 29). 

 
Figure 29. Bonnie’s two categories 

Her initial descriptions of the categories (in black) match the experience she had 

in creating her cycle diagrams for the first three rooms for the Pattern group.  For the 

Random group, she wrote the first bullet point and I asked her what she meant by a 

random color, she wrote the “no rule or no sequence” line.   
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Having established her categories, I moved into the next activity (More Processes) 

where I presented here with five new processes and asked her to then use her two 

categories on five new processes.  The five new processes included: 

• Mixing fixed amounts of baking soda and vinegar together at room 

temperature (deterministic) 

• A teacher running a lottery with her students’ names on Ping Pong balls 

(stochastic) 

• Setting up a savings account at Barclays with 1% APY, an initial deposit 

of $1000 and no additional deposits or withdrawals (deterministic) 

• Looking at the color of Neil’s shoes and recording the most prominent 

color (deterministic; informed that I only wore black shoes) 

• Standing at an intersection every Monday, 2pm to 4pm, and counting the 

total number of red vehicles that went through the intersection (stochastic) 

Bonnie’s categorizations of each of these new processes appear in Figure 30. 

Mixing baking soda and vinegar 

 
Ping Pong ball lottery 

 
Savings account 

 
The color of Neil’s shoes 

 
Total number of red cars through an 
intersection  

Figure 30. Bonnie’s categorizations of five more processes 
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The first new process (baking soda and vinegar) was the most challenging of them 

as evidenced by her changing her classification.  Partly this was due to the fact that she 

did not have the experience of mixing baking soda and vinegar together.  She initially 

states that this process belongs in the Pattern category.  When I asked why, we had the 

following exchange: 

Excerpt 28. Bonnie revises her process categories 

1 Neil Why do you think that this is going to all into the pattern category? 
2 Bonnie Ummm...just, ummm, could you read the answers again? 
3 Neil So when you mix these two amounts together, you're going to get 4 

grams of water, [Bonnie: okay] 9.77 grams of carbon dioxide, and 
36.43 grams of sodium acetate. 

4 Bonnie Okay, so, ummm, I think that the more you have of both of these, 
the more that you're gonna create, and then the less you have of 
these, the less you're going to create, which kind of follows a 
specific pattern [Neil: hmm-mmm]. Umm...but it doesn't 
follow...actually I'll just stop there. 

5 Neil So why did you, what were you going to say? 
6 Bonnie That there's no, really specific number to add to or multiply to like 

how in the patterns (category) here we had by one tap you could 
get to a different state. And for example, in Room Three, we 
figured out "oh well from turquoise to go back to the black (just 
prior) it would take 19 taps to go back, which I don't think you 
could really identify a specific number. 

7 Neil Once we combine these two, can we uncombine? [Bonnie: no] Not 
really. [Bonnie: yeah] So, sort of like pattern [Bonnie: mm-hmm 
(agreement), but maybe we have to come back and adjust the 
hallmarks of a Pattern? 

8 Bonnie Yes. 
9 Neil I'm going ask you to use a different color. 
10 Bonnie Okay. 
11 Neil So, you had this like bright idea, light bulb moment, [Bonnie: yes] 

on your face when I asked you to change color. What were you 
thinking? 

12 Bonnie Another factor that plays a role in pattern would be that you have 
to be able to reverse. 

13 Neil You have to be able to reverse? [Bonnie: Yes] Okay. So, if we add 
that, will this be a pattern anymore? [Bonnie: no] So would this be 
random then? 

14 Bonnie Yes. I think so, Yes. [Updates her category description] 
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15 Neil So here in your random category, you had each tap changed 
different color, that was sort of specific to Room Four [Bonnie: 
umm-hmm (agreement) Yeah] But down here you have no rule or 
no sequence. What if I told that no matter how times you do this, 
as long as you add 20 g of baking soda to 30.2 grams of vinegar, 
you'll always get 4 grams of water, 9.77 grams of carbon dioxide, 
and the 36.43 grams of sodium acetate? 

16 Bonnie So then it would be...oh... 
17 Neil So would there be a rule? 
18 Bonnie Yes. 
19 Neil Okay. So, would that now fall in random? 
20 Bonnie (pauses) No. I...I...now I think it's pattern. 
21 Neil You think this is pattern again? [Bonnie: yeah] So why are you 

thinking this is pattern now? 
22 Bonnie From the explanation that you just gave... 
23 Neil That as long as you mix those two amounts you'll always going to 

get the same end products 
24 Bonnie Yes. Because if you look back to Room Four, uhh, whenever start 

with starting product, black, well you didn't always get turquoise, 
you gotten dark green, or pink rather than in these ones [gestures to 
Rooms One through Three], you always started again at the same 
spot and you would always move on to the same state, states. Like 
here, [points to Room Three] you'd hit the switch and it would go 
to red and it would always go to red during every cycle. [Neil: 
okay] So, I think it is pattern now. 

25 Neil You think this is pattern. So, let's go ahead and cross that out. 
What tweaks might you need to make to here [points to her 
category descriptions]? 

26 Bonnie Umm, I'm not sure how to word it 
27 Neil So, talk me through what you're thinking 
28 Bonnie So, kind of just how I explained to you; you're, you always start at 

the same base, kind of, even for all four of them, but then for 
Rooms One, Two, and Three, you're going to continue on the 
same, to the next level 

29 Neil So, from the same staring point [Bonnie: uh-huh (agreement)] we 
always know the next. [Bonnie: Yes.] And is that true in Room 
Four? [Bonnie: No] So how about we just write that? 

30 Bonnie So we always know the next step 
31 Neil And then would that work here then? Given that we start with 

these things being combined together? We know...[Bonnie: umm-
hmmm (agreement)] Okay. 

32 Bonnie So then this would be pattern. [Starts writing] 
33 Neil So what are you adding to random? 
34 Bonnie That we don't know the next step. [Neil: okay] 



 

167 

Bonnie first views the baking soda and vinegar process as an example of her 

pattern category, but as she explains why she believes so, she runs up against her inability 

to move beyond her intuitions about more reactants meaning more products (Line 4) to 

see a clear and specific way to get the end amounts (Line 6).  In the moment, I had asked 

her about reversibility and while she could use her cycle diagrams to get each of the first 

three rooms back to a previous state, she could not imagine how to undo the experiment.  

This sparked her to add on the notion of reversing to her description of what goes into her 

Pattern category (addition of the first line of red text on the left in Figure 29).  In Line 15, 

I mention that if we combine the two stated amounts together, we’ll always get the same 

end result.  This causes Bonnie to re-think placing this process in her Random category.  

What she ends up doing to noting that in her Pattern category we can state what the next 

time through the process will result in (Lines 24-30).  She extends this to add a new 

feature to her Random category that we do not know the next step (Line 34).  Her use of 

the phrase “next step” refers to the next time we click the button or mix baking soda and 

vinegar together.  At this point in time, her Random category encompasses the lack of a 

[clear] rule or sequence (i.e., a term-based pattern) but also the inability to state what 

we’ll get on the next time through the process.   

Excerpt 29. Bonnie’s view of the ping pong ball lottery 

1 Bonnie I think that the teacher, when she picks a ball, it is just going to be 
random 

2 Neil What's random? 
3 Bonnie The...uhh, the process of it. 
4 Neil Ahh, so the process of picking...the ball is random. [Bonnie: Yes] 

So does that make this like your pattern category or your random 
category? 

5 Bonnie Ummmm, well, at first you could say its pattern because we know 
we're going to pick out a Ping Pong ball from the bag and there's 
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going to be a name on it. But we don't know exactly what that 
name is going to be, or who it is going to be. It could be a boy or a 
girl. [Neil: Okay] So, it's something we don't know the next step 
of, so I think it would be random [Neil: Okay] 

6 Neil [Bonnie writes "random"] We know that, at least prior to the next 
step that she will have a ball [Bonnie: yeah] right, but we don't 
know anything about which ball [Bonnie: mmm-hmm 
(agreement)]. Okay. But, we could, could we imagine her doing 
this again and again? 

7 Bonnie Yes. [Neil: So, like every day she runs this lottery?] Yes.  
8 Neil Would we be able to repeat this process? 
9 Bonnie Yes, but not entirely the exact the same. 
10 Neil So what do you mean by that? 
11 Bonnie So, say she picks out, I don't know, a name "Ben" and then the 

next day she picks out another one, well that could, that name 
could be "Jennifer", so it's going to different. I mean it could be 
[the same] but it would be by chance. [Neil: okay] So I don't think 
that there's a pattern. 

The next four processes fairly straight forward for Bonnie.  When discussing the 

Ping Pong ball lottery, Bonnie uses her addition of knowing or not knowing the next step 

to help decide in which category this process belongs (Line 5 of Excerpt 29).  Here she 

also alludes to the notion of replication (repeating the process but not necessarily getting 

the same outcomes) in Line 11.  While the image of repeating the process is present 

throughout much of her discussions, she does not make the repetition of the outcomes an 

explicit part of her categories.  Stochastic processes have replication (repeatable process 

but the outcomes don’t occur in the same way) while deterministic processes have 

reproducibility (repeatable process and the same outcomes occur in the same way).  

Bonnie classifies the savings account and the color of Neil’s shoes as being patterns, 

citing that we could use a formula for the former and that Neil’s shoes are all have black 

as the predominate color as her justifications.  In Excerpt 30, Bonnie discusses why she 

thinks that the process of recording the total number of reds going through an intersection 
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belongs in her Random category.  She refers to the lack of patterns and rules as well as 

not knowing the next step (Lines 2, 4, and 12).  In Line 12, we can once again see Bonnie 

make reference to the idea of replication that we can repeat the process of going to the 

intersection and counting, but that the total number of red vehicles might not be the same 

from week to week. 

Excerpt 30. Bonnie’s view of the red cars through the intersection 

1 Neil Why do you think that this matches your random category? 
2 Bonnie  Umm, I think that it matches it because there's no sequence and 

rule for when for color cars go on which streets, [Neil: umm-hmm] 
and again, with the shoe example, I'm not going to turn around and 
look again and it's going to be the same red car, it could be a blue 
car or a green car. And, we're not going to know, like the next step 
of this. 

3 Neil So what would be the next step? 
4 Bonnie Umm, of what color car we're going to see next [Neil: okay] It 

could be a red one, could be a blue one. 
5 Neil So what are we trying to record [points to the process text] with 

this process? 
6 Bonnie The total number of red vehicles that go through the intersection. 
7 Neil So, if we imagine that as one iteration [Bonnie: umm-hmm] like 

one button click. [Bonnie: yeah] The next button click would be... 
8 Bonnie Just random, like Room Four.  
9 Neil Like Room Four. So, it would, we'd be looking at the next 

Monday's [Bonnie: Yes] Even though we're still looking at 
Mondays in the same time spot, will we always have the same total 
number of red cars go through that intersection? 

10 Bonnie Ummm, no. 
11 Neil No. Why not? 
12 Bonnie Ummm, just because it is the same time and same area doesn't 

necessarily mean that the same numbers are going to go through 
again. I think it, there's no rule or sequence [Neil: okay] So, 
someone that drove through yesterday at that time, might not drive 
through next Monday. Because they might be out of town or they 
might take a different [Neil: Okay] street. I just think it would be 
random. 

At this point in time Bonnie’s thinking appears to have found solid footing.  For 

her, a process belongs in the Pattern category when that process has a clear rule and more 
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importantly, that we can determine what will come next.  A process belongs in her 

Random category when there is no clear rule or pattern and we can’t state what will 

happen next.  I end the session by introducing Bonnie to the formal terms 

random/stochastic process and deterministic process (Excerpt 31). 

Excerpt 31. Bonnie learns the names of deterministic and stochastic 

1 Neil There are formal names for these categories. Any ideas what they 
might be? 

2 Bonnie One of them will be random processing 
3 Neil Or stochastic [Bonnie: Or stochastic]. Okay, stochastic processes 

and random processes, same idea. Do you know what this one, this 
Pattern one is called? [Bonnie: Ummm, nnnn] Deterministic 
[Bonnie: okay]. Why would this one be called "deterministic"? 

4 Bonnie Umm, I can see why because of the root word, you're able to 
determine what's going to happen next. 

5 Neil So what do you that might mean for the word random? 
6 Bonnie You're not able to determine what's going to happen next. You're 

unsure.  
7 Neil So we might not be able to determine what happens next. Does that 

mean that we can't investigate what might be happening over, let's 
say a decade for the Rural Road and Apache Boulevard? 

8 Bonnie Umm-hmm, no, you can still investigate, you just... 
9 Neil have to take the long view... 
10 Bonnie Yes; and then use that as your data. 
11 Neil So where do data come from? 
12 Bonnie Umm, random processes [Neil: very good] Wow! (laughs) That's 

crazy! 
13 Neil I feel like your mind has exploded. [Bonnie: yeah it is] So, why, 

why do think that is crazy? 
14 Bonnie Umm, to me personally, I like to link things together [Neil: mmm-

hmm] like in any situation, and when you take a step back and look 
at the overall picture to see it all connects, I think it's fascinating. 
(laughs) 

15 Neil Had you ever thought about where data come from before? 
16 Bonnie Umm, I mean, I just knew, you would go out, not out but collect 

data and actually, you do kind a use random numbers 
17 Neil Wouldn't this [points to red cars through intersection text] be going 

out and collecting data? [Bonnie: yes] So notice, every experiment 
[Bonnie: mmm-hmmm (agreement)], you design a process. 

18 Bonnie Yes. Yes. 
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Bonnie makes a connection between the root of “deterministic” and her pattern 

category and her primary hallmark for that category:  we know what will happen next 

(Line 4 of Excerpt 31).  She then extends this to her random category by positioning 

random processes as the opposite of deterministic processes.  Out of curiosity, I asked 

Bonnie we could still investigate what might be happening over an extended period of 

time (moving towards the notion of long-run behavior) even when we couldn’t say what 

would happen next (Line 7).  Bonnie replies that you can and brings up data.  The light 

bulbs began to flash for her as she made a connection that she hadn’t really thought of 

before:  that data come from random/stochastic processes.  This is quite different from 

her original answer that conveyed that data just appear (Excerpt 22).   

As a whole, three key things occurred in Bonnie’s thinking.  First, Bonnie’s 

meaning for randomness shifted away from the idea that the outcome of the process had 

to effect actors in the imagined situation (i.e., no more discussion of how the individuals 

feel as a result of the outcome).  Rather, her meaning for randomness shifted towards that 

of Lack of Discernable Pattern (Table 10).  Second, Bonnie’s image of stochastic process 

entailed the lack of a clear rule or pattern (driven by her now current meaning for 

randomness), the inability to state what will happen next.  Implicitly, her image of 

stochastic process contains the ideas of replicability, but she has yet to fully explicate 

those ideas for herself.  Finally, she was able to build a connection between 

random/stochastic processes and the idea of getting data that afforded her an opportunity 

to move beyond viewing data as fodder for producing data visualizations.  

Bonnie’s Second Session 
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During Bonnie’s second exploratory teaching session, I asked her to recap what 

she had done in the first session and then had her work through the activities of the 

Sequences Applet.  Bonnie did not revert to the independence-esque meaning for 

randomness she gave in her clinical interview.  Rather, she conveyed an image that 

randomness was about the lack of a pattern or rule (line 3 of Excerpt 32).  What stands 

out the most in Bonnie’s description of the previous session is her characterization of the 

process categories (line 7).  The distinction between the two categories of processes 

appears to be driven by her image of randomness.  Things that are driven by some rule 

and therefore aren’t random come from one type of process; when there is an absence of 

a rule (i.e., there is randomness), then there is a lack of control over such a process.   

Excerpt 32. Bonnie’s recap of the first exploratory session 

1 Bonnie Yes. So, the last time, well with the computer we had four different 
rooms and we were seeing basically if there's almost like a pattern 
within turning on the lights and we created a new light switch for 
each room and umm, the first room, the first question, or one of the 
first questions you asked me was "Where does data come from?" 
And then after we did all the examples of the four rooms, it kind of 
summed up how it's either just like super random or... 

2 Neil What's "super random"? 
3 Bonnie Umm, information, how it's, ummm, what's the word, how 

it's...when you go out to go get information or data. Some of it can 
be random, how...like we said if you went to go stand on the corner 
of Rural and Apache at the same time every Monday, well there's 
going to be random cars. Or how, ummm, when you have me turn 
away and look and if your shoe was still the same shoe there, it 
wasn't then random, it was like set by a rule. 

4 Neil Okay. (coughs) So we worked with the four rooms [Bonnie: mmm-
hmm (agreement)] and each of those four rooms had a button that 
you mentioned before, we sort of created a process so that you 
could create a new button [Bonnie: Yes], right? And then I gave 
you a few new processes [Bonnie: mmm-hmm] such as standing 
on Rural [Bonnie: yes] and counting red cars. [Bonnie: mmm-
hmm] You ended up making how many categorizations of 
processes? 
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5 Bonnie Ummm, I believe I made two. 
6 Neil Do you remember what those two were? 
7 Bonnie Ummm, one of them was categorized as there's like a set rule 

almost for it, how if you do one thing, it is going to affect the next, 
umm, factor. But then in the other category, it was just completely 
ummm, just random and wack out of control. 

The Sequences Applet consists of fourteen processes (eight are deterministic, six 

stochastic) where the user only has access to the end result of up to forty trials.  The 

intent behind this applet is to have the user try to distill which category the generating 

process belongs to when he/she only has access to the outcomes.  Process Zero is a 

training process to help the user get comfortable with the applet.  Bonnie quickly moved 

through this process, noting that Process Zero had a set rule (her name for deterministic) 

of adding one to the previous value, starting with one.  Following this, Bonnie moved on 

to Process One (Excerpt 33). 

Excerpt 33. Bonnie classifies the first process 

1 Neil We're going to do Process One. [Bonnie: okay] (Neil clicks) 
[Bonnie: it's a one] We got a one. Do you have enough to decide 
what's going on here? [Bonnie: nnn, not yet] (Neil clicks again) 

2 Bonnie (softly) okay, okay, umm, can you hit it again [Neil: mmm-hmmm 
(clicks)] Ooo! 

3 Neil So why ooo? 
4 Bonnie I was expecting a three. 
5 Neil You were expecting a three? [Bonnie: yes] Why were you 

expecting a three? 
6 Bonnie Umm, well my thought was that if it was on the process of one it 

should just continuously go by one but then that's how was the 
zero process was. So, ummm, I'm not sure why it's, there's, Oh! 
Can you hit it again actually? 

7 Neil What was your "oh"? I'll hit again after you've your oh. [Bonnie: 
So, okay] 

8 Bonnie Umm, I had a thought, if you do one and since there's two it would 
be like two two, I'll write it out [Neil: okay] I don't know if it's 
right, but...so you have just one, and then since there's two, two 
two, and then for three, there'd be three of them (writes 1, 2, 2, 3, 
3, 3,) [Neil: okay] So, I'm not sure if that sounds good, 
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9 Neil So I'll click once more for you. [Bonnie: (softly) alright] And again 
[Bonnie: (softly) yeah] 

10 Bonnie And one more time. Okay. 
11 Neil So should I click one more? 
12 Bonnie Yeah. Okay. Umm... 
13 Neil You seem very pleased with yourself. 
14 Bonnie Yes, I am. I think it should be categorized as a set rule process. 
15 Neil And why's that? 
16 Bonnie Ummm, well to me it makes sense if you one, then two well you're 

going to write two of them, and three, you're going to just keep 
increasing as the number increases [Neil: okay] to show the rule... 

While she originally thought that Process One was going to mirror Process Zero 

(lines 2–6), she quickly hit upon the idea that each number was getting listed the same 

number of times as the numbers value (lines 8–16).  Bonnie felt very confident with 

herself.  I had a single four showing in the applet’s window when I asked her how many 

fours she expected to see as in Excerpt 34.  With her confidence shaken in what she 

believed to be the rule of Process One, she persists in attempting to figure out the rule 

(line 7), but she brings up the possibility that Process One is random (line 9).   

Excerpt 34. Bonnie gets stumped by process one 

1 Neil So I have one four showing right now. How many fours should I 
have? 

2 Bonnie Four. 
3 Neil Four. So, if I click three more times, they should all be fours 

[Bonnie: yes] (Neil clicks) 
4 Bonnie Oh no! (sighs) Okay...can you click one more time? (Neil clicks) 

One more time (Neil clicks)  
5 Neil So are you still sure or not sure anymore? 
6 Bonnie Hmmmm, I'm not sure anymore. [Neil: Okay] Umm, can you hit it 

one more time [Neil: sure] mmmm, so what are you thinking? 
7 Bonnie I'm not sure...I'm either thinking that it could just be random or 

how, so for the, how the one was just grouped as one and the two 
is grouped as two, and three was grouped as three, but then the 
four went back to, went back down to just one four, and then we 
went to five and there's now four fives. So, then my next prediction 
would be that there would be five sixes and then one seven.  

8 Neil So five sixes. So, we, so the next click should start a six? 
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9 Bonnie Yes. (Neil clicks) Oh no. Okay...I don't know. [Neil: You don't 
know?] Ummm, I think it should be random then. [Neil: so, you're 
thinking random] Yeah. 

10 Neil What if we click again? [Bonnie: we can try] Do you have a guess? 
[Bonnie: I still think it is going to be six] (Neil clicks) 

11 Bonnie Now it is. One, two, three, four, five (counting the fives). Umm. 
So, okay, so you know how there's two twos, three threes, and then 
four, there's just a single four [Neil: mmm-hmm] but then it went, 
it counted out as five fives, so then if there's, there could be 
possibly six sixes and then it would just go back to one seven. So, 
it is kind of is repeating a pattern where it goes from one and then 
a sequence of, or like a section of two twos, and then a section of 
three threes, and then back down to just one number to represent 
four. 

12 Neil Okay. So, if I click "run processes once", what should I see? 
13 Bonnie A six. (Neil clicks) Oh no, okay I think it is random. 
14 Neil You think this is random? [Bonnie: yeah] 
15 Bonnie All of my like predictions have been turned down, (laughs), 

ummm, yeah I think that it's random. 

After Bonnie makes a several more guesses and tests out a few more potential 

rules (lines 11–15), Bonnie has consigned Process One to her category of random 

processes.  Given that her image of random consists of the lack of a rule/pattern, 

Bonnie’s behavior can be described as pattern hunting.  As she views more and more 

outcomes, she looks for any type of term-based pattern that would give her a set rule.  

When she cannot find such a rule, she concludes that the process must be random.  In 

Excerpt 35 I proved Bonnie with the first forty terms of Process One and prompt her if 

she notices any rules or patterns:   

Excerpt 35. Bonnie examines the full sequence for process one 

1 Neil Should we go ahead and fill the board? [Bonnie: yeah] so what do 
you notice? 

2 Bonnie Umm, there's a lot of elevens. 
3 Neil How many elevens? 
4 Bonnie (counts) Eleven. [Neil: eleven] 
5 Neil How many sevens are there? [Bonnie: seven] How many eights? 

[Bonnie: one] Nines? [Bonnie: one] Tens? [Bonnie: two, errr, one] 
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Twelves? [Bonnie: one] And for thirteens, we have [Bonnie: five] 
five, but we're out of terms [Bonnie: mmm-hmm]. Right, so there 
could be more [Bonnie: yes]. Do you notice any rules or patterns? 

6 Bonnie Ummm, let me look at it really fast. So you have [Neil: go ahead 
and talk out loud for me] Okay, so I'm just seeing if, again how it 
just starts with one and then goes two of them and then three of 
them and then it, for four it is just represented by the number four 
and then five is represented by five fives, but then six is just 
represented as one six and I was seeing if there's a correlation 
between like how many number in between these single numbers 
are almost like spread out, if that makes sense. And right now, I'm 
not seeing any rule, because between the one and the four, they’re 
like the single numbers, there's two numbers like spread out or 
expanded. But the five and the seven there's only one number. And 
then between the seven and the eleven there's three numbers. Hmm 

7 Neil So is there anything special about the numbers that aren't repeated?  
8 Bonnie That aren't repeated...hmmmm, I don't see anything. 
9 Neil You don't see anything? [Bonnie: nnnnhh, not yet, hmmm]  
10 Bonnie (softly) I don't...I don't see a pattern. [Neil: okay] So I think that it's 

random. 

Even given my prompt, Bonnie engages in pattern hunting behavior in line 6.  Her 

focus is one looking for some pattern to the spacing values:  how many non-repeated 

numbers appear between repeated numbers and how many repeated numbers (not terms) 

occur between non-repeated numbers.  I attempted to prompt Bonnie to look at the 

numbers that weren’t repeated and see if there was anything special about them.  She did 

not see anything and concluded that Process One was random. 

At the end of the session, I asked Bonnie to return to Process One.  I explicitly 

told Bonnie that the numbers that weren’t repeated all had something in common and all 

of the numbers that were repeated had something in common.  After writing down the 

two lists of numbers, Bonnie recognized that the list of repeated numbers contained the 

primes.  She was then able to use this information to change her classification of Process 

One from random to set rule.   



 

177 

Excerpt 36. Bonnie classifies process two 

1 Bonnie Alright, let's go for another. (Neil clicks) One more. Is that a G? 
[Neil: that is a G] Okay. Another one (laughs) G. One more. 
Hmmm 

2 Neil What's the hmmm? 
3 Bonnie Okay. So, you start with A, you skip B and you go straight to C, 

but then you skip a whole bunch of others (both laugh) for G, and 
there's two Gs in the process too. And now there's two Cs, so 
maybe there could be an A next? 

4 Neil Should we try? [Bonnie: yeah] (Neil clicks, gets an A) [Bonnie: 
okay] 

5 Bonnie So, what I’m thinking right now is that we started with A, then we 
skipped B, which I don't know why, but or may because it is 
Process Two, so you skip...but you'd only be skipping one though 

6 Neil So the process names don't have [Bonnie: okay] anything other 
than they are just [Bonnie: oh, okay, okay]. Yep. 

7 Bonnie So, okay, hit it again. (Neil clicks) A. Hit it one more time. (Neil 
clicks) And one more time. (Neil clicks, gets T) Hmm. 

8 Neil So what are you thinking? 
9 Bonnie Ummm, I thought it was going to be a pattern of A C G G C A, 

and then since there is another A, that it would be the same pattern 
again. Because another C came after but instead of G it's T. So, I'm 
not sure now. But I think that there will be another T after this. 

10 Neil Shall we try? [Bonnie: yes] (Neil clicks, gets A) 
11 Bonnie Oh no, okay. Umm, so the reason why I thought there would be 

another T is because in the first few of them, it went from A C G 
G, so then I thought it would be going A C T T, but instead it went 
A C T A. One more time. (Neil clicks) Back to C. Okay. Hmmm, I 
don't see a pattern.  

12 Bonnie Can we go one more time? (Neil clicks) Okay. Yeah, I don't know 
if it, I think that this is just a random proc--errr, just a random. 

13 Neil And why's that? 
14 Bonnie I don't really see any pattern or fixed rule, that the letters are 

following, it's kind of just being thrown in there, one after another, 
just randomly.  

15 Neil Should we fill the grid? [Bonnie: yes] 
16 Bonnie Hmmm, so I don't really see any same pattern as the first line. 
17 Neil So none of these other three lines don't mimic the very first line? 

Right? 
18 Bonnie No. Or, it doesn't really look like they mimic each other at all. Just 

kind of just all thrown out there. So, yeah, I think that that one's 
random. [Neil: okay] 
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Excerpt 36 shows Bonnie’s work with Process Two.  She was initially surprised 

by Process Two giving her letters, but she quickly moved past that and engaged in pattern 

hunting.  In line 3, Bonnie picks up on the potential for a palindrome in the outcomes 

(i.e., ACGGCA).  When I clicked the applet for the next term, the applet did give “A” to 

complete the palindrome.  On subsequent clicks, Bonnie continued to search for her 

palindrome pattern (lines 7–10).  However, her rule breaks in line 11 causing her to 

abandon her pattern hunt and classify process two as random.  Even after filling the grid 

(lines 15–18), Bonnie still searched for her palindrome pattern and then for any sign of a 

pattern.  Bonnie’s pattern hunting scheme in Processes Zero through Two is her only 

approach to deciding what type of process is at play.  However, her scheme is limited by 

what she can recognize as making up a pattern.  Her explorations with Process Five 

(Excerpt 37) highlight the types of patterns she looks for:  additive and positional.  In 

lines 5–9, Bonnie looks for an additive pattern by looking at the differences in successive 

terms.  When she does not find a pattern to these differences, she concludes that the 

process must be random (line 17). 

Excerpt 37. Bonnie classifies process five 

1 Bonnie That's a random number (referring to the –0.68 showing) (laughs) 
2 Neil Why do you think that's a random number? 
3 Bonnie Umm, I don't, who starts counting at 68, especially negative point 

68? (laughs) It's an even number. Alright [Neil: that is an even 
number] (laughs) 

4 Neil Shall we go for another one? [Bonnie: yes] (Neil clicks, gets -0.36) 
5 Bonnie Okay, I'm just seeing if there is any correlation here, or 

relationship, ummm...so far I don't see any except that it's even. 
[Neil: Okay (clicks again and gets 0.44)] And now it's positive but 
it's still even. Ummm, [Neil: ready?] yeah. (Neil clicks and gets 
0.79) Umm, I'm seeing, or I'm thinking if 44 plus, what would it 
be, 35 if that's the same amount it takes for 68 minus 35...but it's 
not. [Neil: okay] (Neil clicks again and gets 0.84) Hmmm, 
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6 Neil What's your hmmm? 
7 Bonnie So, we went from point 44 to point 79, which was a pretty decent 

amount, but then from point 79 to point 84 it's about 5, different, 
err an addition of 5. [Neil: okay] So, I'm not really sure if there's a 
pattern so far. 

8 Neil Shall we go again? 
9 Bonnie Yes. (Neil clicks and gets 0.61) Now it went back down. Yeah, so 

far I'm not seeing any rule. 
10 Neil Okay. Shall we go again? [Bonnie: mmm-hmm] (Neil clicks and 

gets –0.66) 
11 Bonnie Now it's negative. Okay. Can we go one more time? (Neil clicks;  

–0.4) Really negative. Okay 
12 Neil What do you mean by really negative? 
13 Bonnie I didn't mean really negative; (both laugh) I just read that wrong. 

Ummm, I don't see anything now, right. [Neil: nothings jumping 
out at you?] Hmm-mmm (negative). Except that we just went, we 
started at negative numbers, went to positive, and now we're back 
down to negative numbers. 

14 Neil Shall we go again? 
15 Bonnie Yes. (Neil clicks) Yeah, I don't know. [Neil: You don't know 

what?] If there is a rule. It seems, it's their just random numbers 
being thrown out. [Neil: okay (clicks again)] Yeah, I think it's 
random. (laughs) 

16 Neil So you think this is random. Why do you think this is random? 
17 Bonnie Umm, how it went from, from negative point 66 to negative point 

4 and then back down to negative point 85 and then really jumped 
to point, negative point zero seven, there's really just not a rule for 
that. It's just going like up and down [Neil: okay; shall I fill the 
grid?] Yes.  

18 Neil So what are you noticing? 
19 Bonnie Ummm, the first thing that caught my eye, I don't know if it is just 

a coincidence, but here's it's negative point 36 (points to second 
box of first row) and here's its negative 1 point 36 (points to 
second box of fourth row), uhh. [Neil: does that work anywhere 
else?] Well, here it's one point twelve (points to third box in fourth 
row) and uhh, that doesn't make sense, I was going to say that 
twelve times twelve is 144, but that's just zero point 44 (points to 
third box of first row). Umm, I don't see any patterns. Hmm 

20 Neil So the process that generated this sequence [Bonnie: mmm-hmm] 
how would you categorize this process? [Bonnie: random] 
Random? [Bonnie: yes] And why's that? 

21 Bonnie Ummm, I just don't see any set rule of going up or down a certain 
amount of times or multiplying or dividing a certain amount of 
times. 
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After filling the grid, Bonnie switches to her other pattern type:  positional.  Her 

last positional pattern would be the palindrome she saw in Process Two.  Here, she’s 

looking across the rows to find some type of pattern (line 19).  She attempts to make a 

connection between terms in the same position but different rows starting with a –0.36 

and a –1.36.  However, Bonnie gives up this approach and concludes that Process Five 

must be random since she cannot find a set rule (line 21).   

Process Seven provided Bonnie with an interesting experience.  Process Six had 

clued her into thinking about standard, six-sided dice, which she brought up in early on 

when working with Process Seven as in line 1 of Excerpt 38.  For her, the invocation of a 

die immediately indicated that the process was random.  In line 5, Bonnie used her 

positional pattern hunting scheme as she saw a sub-sequence (3-3-2-6) appearing again.  

However, when that particular pattern failed, I believe she switched to looking for an 

additive pattern (line 9) before switching back to searching for a positional pattern (lines 

11–15).   

Excerpt 38. Bonnie classifies process seven 

1 Bonnie A three again. (Neil clicks) Another 3. (Neil clicks) A two. [Neil: 
Again?] Yeah. (Neil clicks; 6) One more time. (Neil clicks, 1). One 
more time. (Neil clicks, 2) So now that you brought up the die, it 
seems like this could be random as well. 

2 Neil So what will we get next? 
3 Bonnie What was that? 
4 Neil What will we get next? 
5 Bonnie Oh, ummm, maybe a six. [Neil: you don't sound so sure] Umm-

mmm. (Neil clicks) Three. Okay. One more time.  (Neil clicks, 3) 
One more time. (Neil clicks, 2) And then there would be a six. 
(Neil clicks) Oh, one. Okay. Umm, so then after I thought I was 
starting to see some type of rule after, cause we started with a three 
and then we had a three and two, so then once we had another 
three and another three after that and then a two, I thought "oh it's 
going to be the same" rule, pattern, but then we got a one instead 
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of six. [Neil: okay] So, kind of threw it off almost. One more time, 
can you hit it? (Neil clicks, 1; 5) Yeah, I think that it is random. 

6 Neil So you think this is random? [Bonnie: yeah] Shall we go again? 
[Bonnie: Yes] (Neil clicks, 2) 

7 Bonnie One more time. (Neil clicks, 6) 
8 Neil So what are you thinking about? 
9 Bonnie Ummm, well, I was just thinking that the five and the three, err, 

two and the three is five, but I don't really see relationship with 
those numbers. Hmmm, yeah, I don't see anything. [Neil: okay. 
Shall we go again?] Yes. (Neil clicks, 1) The only thing is that in 
the first row we had a six and then a one; and we have another six 
and then a one. Oh, and a two in front of that six. 

10 Neil So what would come next? 
11 Bonnie A two. (Neil clicks, 2). One more time? (Neil clicks) A six. I was 

expecting a three. 
12 Neil Why were you expecting a three? 
13 Bonnie So in the first few, after we did two six one two, there was a three. 

But then now there's a six. 
14 Neil So what do you think will come next? 
15 Bonnie A six. (Neil clicks, 3) Oh, three. Okay. [Neil: so, what do you think 

will come next?] A three. (Neil clicks, 2) Oh no, a two. (laughs) 
Yeah, I don't see any rule or pattern here. 

16 Neil You see no rule or pattern. [Bonnie: mmm-nnn] 

Bonnie had yet to pick up and comment on the reoccurring twos, so I filled the 

entire applet’s gird (giving all forty terms).  Even with the filled grid, Bonnie still did not 

notice anything about the twos (line 2 of Excerpt 39).  I found this odd given her prior 

positional pattern hunting.  I sorted the outcomes and Bonnie then noticed all of the twos 

(lines 4–6).  With my heavy prompting, Bonnie was able to describe that a two would 

appear every third term (line 8). 

Excerpt 39. Bonnie notices a lot of twos 

1 Neil What if I go ahead and fill the board? [Bonnie: alright]  
2 Bonnie Hmmm. So far, I'm just seeing...this is still the same numbers one 

through six, umm, I'm seeing...hmmm...I just don't see any 
number, anything that catches my eye that could be really a rule or 
pattern. I think that this one is random. 

3 Neil I'm going to go ahead and sort this [Bonnie: okay] What do you 
notice?  
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4 Bonnie There's a lot of twos, like a lot. 
5 Neil A lot. [Bonnie: yeah] Like more than you would expect? [Bonnie: 

yeah] Why are there more than you would expect? 
6 Bonnie Umm, random that has so many twos. Cause when I first counted 

one, there's only four, so I was expecting well maybe there will be 
either four twos or five twos, but instead there's a whole group of 
them [Neil: 13 of them] Yeah. Thirteen doesn't seem like a 
relevant number in this situation. 

7 Neil Well, let's look back at the original ordering [Bonnie: okay] maybe 
there's something going on with the twos. 

8 Bonnie So after every two numbers, there's a two. So, [Neil: Always?] 
Yes. You start with these two (points to first two boxes), there's a 
two; these two, there's a two; these two, two; these two, two. It 
seems to be there's always a two following two numbers. Yeah. 

9 Neil So we ended on term 40 [Bonnie: mm-hmm]. If we go to 41, what 
would be the 42 term? 

10 Bonnie A two. [Neil: A two] mmm-hmmm [Neil: guaranteed?] Yeah. 
11 Neil So, is there a rule or is this a random? 
12 Bonnie Hmmm, oh goodness, okay, I'm going to, so, I think that over all 

the numbers are random, but how's there a two after every two 
numbers doesn't seem random to me. So, I don't know if that 
overrules the other randomness. I think that it would be under a set 
rule. 

13 Neil So you're thinking that there is a set rule? [Bonnie: yeah] So you 
would [Bonnie: just in a different way] So different from... 

14 Bonnie So, usually if there is a set rule, you know you would maybe have 
three threes and then like four twos and five sixes, like some, kind 
of like going up by the same amount, or going down by the 
amount, but then here we always know that after every two 
numbers, the number two will be there. So, it's like a reoccurring, 
umm, factor. 

15 Neil So rather than the set rule telling us every value [Bonnie: yeah] this 
will only tell us [Bonnie: every] every...third [Bonnie: third value] 
value. 

Bonnie struggled with classifying Process Seven (lines 12–15).  Given that she 

had a set rule for every third term but not the other terms, Bonnie ended up classifying 

Process Seven as both Set Rule and Random.  I designed Process Seven to violate von 

Mises’s Principle of the Impossibility of a Gambling System and thereby not qualifying 

the process as stochastic.  Strictly speaking, Process Seven cannot be a stochastic process 
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since the process lacks the appearance of randomness.  However, Process Seven does not 

fit cleanly within the notion of a deterministic process either.   

The last of processes from the Sequence Applet I’ll discuss in relation to Bonnie 

is Process Ten.  Process Ten involves the Fibonacci Sequence, rearranged so that the 

second half of each set of eight terms appears first, then the first half, then on to the next 

set of eight terms.  Bonnie immediately engaged her additive pattern hunting scheme by 

looking at successive differences (line 1 of Excerpt 40).   

Excerpt 40. Bonnie classifies process ten 

1 Bonnie (Neil clicks, 5) Okay (Neil clicks, 8) Okay. (Neil clicks, 13) So, 
from 5 to 8 we went up by three, and from 8 to 13 we went up by 
5, right? [Neil: mm-hmm (agreement)] Yeah. Can you hit it one 
more time? (Neil clicks, 21). So, we went from 3 to 5? [Neil: we 
went from 3 to 5?] So, from adding, so you 5 plus 3 is 8, 8 plus 5 is 
13, so we from 3 to 5. [Neil: okay] So, then, 13 to 21 would be 
eight, so then you went from 3 to 5...so from 3 to 5 you added two 
to that, and then from 5...I just lost my train of thought. Okay so 5 
plus 3 is 8, and 8 plus 5 is 13, oh, okay, 3 plus 2 would be 5, so 
you would go up by 2, then 5 plus 3 would be 8, and that's, how, 
what, the amount you went up by next. So then, like you're going 
to continuously one to the number you're adding by. So, the next 
you would add by...12. 

2 Neil So what would we get next? 
3 Bonnie (softly) (unintelligible) 5 plus...3 is 2...umm, I think you should 32. 
4 Neil Are you ready? [Bonnie: yeah] (Neil clicks, 1). 
5 Bonnie Oh no! (laughs) okay. Ahhh, can you hit one more time? (Neil 

clicks, 1) One more time. (Neil clicks, 2) Ahh, I don't, I, ehh, that's 
random. (laughs) 

6 Neil This is random? Why do you think random? 
7 Bonnie Umm, I don't see any relationship going from 21 back down to 1 

and then 1 again and then 2. 
8 Neil Shall we go again? 
9 Bonnie Yeah. (Neil clicks) And then 3. One more time? (Neil clicks, 233) 

(sighs) Hmmm, I don't know. I have no idea (laughs) [Neil: No 
idea what's going on?] mmm-hmmm, I don't think that there's any 
rule. (Neil clicks, 377) Hmmm, I mean so far the only numbers 
used are, well 2 and 3 are used a lot, there's a few ones in there. 
[Neil: shall we go again?] Yeah. (Neil clicks, 610) Hmmm...umm, 
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I'm not, I don't see anything so far. (Neil clicks, 987) Well, kind of. 
[Neil: What's kind of?] If you think about, if you're starting at, 
umm, 300 plus 300, essentially get 600. And then 600 plus another 
300 would essentially be 900. [Neil: mmm-hmm] But, I don't 
know where... 

10 Neil Shall we click again? 
11 Bonnie Yes. (Neil clicks, 34). Awww, we got...I think it's random. 
12 Neil You think this is random? [Bonnie: yeah (laughs)] Shall we fill the 

board? [Bonnie: yeah] 
13 Bonnie Oh yeah, I think that's random [Neil: you think this is random?] 

Yeah. [Neil: do you notice anything going on with the numbers?] 
Umm, they increase, then they go back down, then increase again, 
ummm,...(long pause)...umm, I don't know if this is a factor but 
they're kind of like in groups of four. So, this (points to the first 
four) is increasing when there's four numbers, and this one (second 
set of four) like you go back down but you're increasing like 
another four numbers, and then these four numbers (points to third 
set of four) are like increasing. And then these (points to fourth set 
of four) ones you go back down but you're still increasing. 

14 Neil So they might be in groups of four [Bonnie: yeah].  

Setting addition errors aside, Bonnie was able to detect an additive pattern to the 

differences of successive terms (lines 1, 3, and 9) and see was able to pick out the 

positional pattern of sets of four terms (lines 13 and 14) but she could not bring these two 

patterns together.  This suggests that for Bonnie, patterns are either one type or the other, 

without any blending.  Due to this issue, Bonnie concludes that Process Ten must be 

random.  In an attempt to get her to focus in on the Fibonacci sequence, I proposed using 

the applet’s sorting feature (Excerpt 41).  In the sorted form, Bonnie lost track of the prior 

additive pattern she had (line 2).  What is interesting here is that when I prompted her in 

line 3 for the classic Fibonacci sequence, she was able to see that pattern but made no 

connection back to her original additive pattern of successive differences (lines 4–6).  Her 

original additive pattern (Excerpt 40, line 1) focused on how the successive differences 

where increasing in a fixed way but she made no connection to the prior terms.  With my 
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prompt (line 3 of Excerpt 41) she was no longer thinking about successive differences but 

rather the addition of the prior two terms.  Now armed with an additive pattern to serve as 

a rule, Bonnie classified the sorted version of Process Ten as being a set rule (line 8).  I 

then brought back the positional pattern (line 9). 

Excerpt 41. Bonnie struggles to coordinate two types of patterns 

1 Neil Well, what if we sorted this list? So put everything in numeric 
order? (Neil sorts the list) Now do you notice anything? 

2 Bonnie Ummm...(long pause)...umm, I don't notice anything too crazy. 
[Neil: what do you mean by too crazy?] I don't notice any rules 
that stand out to me, except that there's two ones. [Neil: what 
comes after those two ones?] One two. [Neil: what comes after the 
two?] A three. And then a five. And then an eight. (long pause). 
Ahhh, I don't know [Neil: you don't know?] Hmm-mmm (in the 
negative) 

3 Neil What if I said, what's the relationship between the third term and 
the prior two? 

4 Bonnie Two plus one is three. [Neil: third term; prior two] Oh, one plus 
one is two. [Neil: what about the fourth term?] Two plus one is 
three. Ohhh! So, you, you start by taking, by looking at the third 
term and the two before that term you add those together to get that 
term. [Neil: does that pattern hold?] I think so. Yeah. 

5 Neil So now let's look at the original ordering. [Bonnie: okay] 
6 Bonnie So if you look at 13, 5 plus 8 is 13. 8 plus 13 is 21. Umm, but then 

once you get to the... (long pause) so then, I don't think it holds. 
[Neil: you don't think holds?] Mmm-mmm (negative) 

7 Neil So we had this sequence sorted [Bonnie: yeah] like we do now. 
What type of process would you say generated this? 

8 Bonnie Having a set rule. 
9 Neil Having a set rule. But if we look at the original order, now what 

would you say? 
10 Bonnie Well, it works for like the first few numbers, so, when we say by 

the third number, this is where I'm confusing myself. So, you know 
you look at 13, 5 plus 8 is 13, so then would you look at 21 and say 
8 plus 13 is 21? [Neil: yes]. Okay, so then if you look at one, well 
21 and 13 doesn't equal one. [Neil: okay] But then if you look at 2, 
1 plus 1 is 2. If you look at 3, 2 plus 1 is 3. But 2 and 3 do not 
equal 233 [Neil: Yeah, but what do 2 plus 3 equal?] Five. [Neil: is 
there a 5?] Umm, in the next number? [Neil: not, just is there a 5?] 
There's a 55. [Neil: there's a 55, isn't there a 5 back here?] Oh 
yeah. 
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11 Neil What's 13 and 21 added together? 
12 Bonnie Uhh, what is, 34. [Neil: is there a 34?] Yeah. And then there's 55, 

then 34, 89...so there is a rule, but it's not...it's like, [Neil: it's not 
the same] same order. It's a rule that's kind of scatter throughout 
the board but doesn't follow specifically a pattern. 

13 Neil Is the rule scattered? 
14 Bonnie Hmmm 
15 Neil So earlier you talked about how there's this group of four and 

there's this second group of four, and there's a third group of four 
[Bonnie: mmm-hmm (agreement)], and then there's a fourth group  
of four [Bonnie: yeah].  

16 Bonnie So, then if you look within those four-groups, then the pattern 
would work  I think. 

17 Neil And if you notice if you take the second group of four and then go 
to the first group of four [Bonnie: mmm-hmmm] and then you the 
third, the fourth group of four 

18 Neil [Bonnie: they still] and then go to the third group of four [Bonnie: 
yeah] and then you would have to the... 

19 Bonnie Sixth group and then back to the fifth. Okay. So, then there is a 
pattern. [Neil: there is a pattern, just not quite the same type of 
patterns we had before] Yes. 

20 Neil So would this be a random process? 
21 Bonnie No [Neil: why?] Umm, again, if we can go back and determine 

what we know with a specific pattern or rule, it's not going to be 
random. 

Bonnie struggles to coordinate both the additive pattern and the positional pattern 

to Process Ten (lines 10–14).  Bonnie sees the additive pattern working for the first three 

terms and breaking down with the fourth since 13 plus 21 does not equal 1 (the fifth 

term).  When I specifically point out the groups of four, Bonnie notices that the additive 

pattern holds.  I then gave Bonnie the rest of the positional pattern (lines 17 and 18), 

which she was then able to carry forward to additional sets of four (line 19).  This 

ultimately led Bonnie to declare Process Ten as not being a random process but as having 

a set rule.  However, I do not believe that Bonnie could have arrived at this decision 

without my explicit intervention of coordinating both the additive and positional patterns 

for her.   
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Table 11. Bonnie’s Classifications of the Processes in the Sequence’s Applet 

Process Bonnie’s Classification Actual Classification 
Zero Set Rule Deterministic (n) 
One Random, then Set Rule Deterministic (primes are listed their 

numeric value number of times; others 
once) 

Two Random Stochastic (DU(4); {A, G, C, T}) 
Three Set Rule Deterministic (2n + 1) 
Four Set Rule Deterministic (n2/100) 
Five Random Stochastic (N(0,1), rounded two decimals) 
Six Random Stochastic (DU(6); {1, 2, 3, 4, 5, 6}) 
Seven Random & Set Rule Non-stochastic (2 if n  ≡ 0 mod 3, 

otherwise DU(5), {1, 3, 4, 5, 6,}) 
Eight Set Rule Deterministic (n – sin(45), rounded two 

decimals) 
Nine Set Rule Deterministic (–6) 
Ten Random, then Set Rule Deterministic (Fibonacci’s Sequence, 

rearranged in blocks of four) 
Eleven Random Stochastic (Exp(2), rounded two decimals) 
Twelve Set Rule Deterministic (–1/n), rounded five 

decimals) 
Thirteen Random Stochastic X(n) = X(n – 1) + err(n) where 

err(n)~N(0,25)) 
Note: The names “set rule” and “random” are Bonnie’s names for the categories she 
created in the prior session using deterministic and stochastic processes, respectively. 

 
Table 11 shows Bonnie’s classification of the fourteen processes in the Sequence 

Applet as well as the actual classification.  For the most part, Bonnie’s pattern hunting 

scheme allowed her to make normatively correct classifications.  However, there are 

some notable exceptions:  Processes One and Ten.  During her initial time with Process 

One, Bonnie ended up classifying the deterministic process as being random.  I believe 

that given her pattern hunting scheme being focused on additive or positional patterns, 

she was not disposed to look for other kinds of relationships.  She was only able to make 

the normative classification after I prompted her to notice that the repeated numbers were 
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prime.  Process Ten held both additive and positional patterns; however, Bonnie 

struggled to coordinate the two.  Bonnie initially saw an additive pattern in the successive 

differences but could not carry that pattern into successive blocks of four terms.  

However, she did detect that there were blocks of terms.  Only after I supplied the 

coordination of the two patterns was Bonnie able to make the normative classification of 

Process Ten.   

Process Seven represents an interesting case.  In the prior sessions, I did not 

provide technical definitions for either deterministic or stochastic processes. Nor did I 

insist upon them in the present session, relying instead on her own classification system.  

However, the nature of Bonnie’s struggles with Process Seven speak to the issues she had 

with Process Ten.  Specifically, looking at the positional pattern of the twos.  Until I had 

sorted the outcomes, Bonnie did not notice that every third term was a two.  This suggests 

that her positional pattern hunting is limited in scope to looking for repeated sub-strings 

(more than one character) or looking for chunks such as palindromes.  In Process Ten, 

Bonnie noticed chunks of four terms, but could not see what to do with these chunks as 

they did not fit within repeated sub-strings nor were they palindromes.   

Bonnie’s pattern hunting scheme drove her work, in particular her additive pattern 

hunting.  She used the such a strategy with every process except Processes One, Two, and 

Nine.  For the most part, she looked at the differences of successive terms and built a rule 

centered on those differences; if I supplied her an alternative rule such as squaring or 

doubling, she would accept the proposal.  While I do not know her full mathematical 

background, a common aspect of many American students’ experiences with school 
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mathematics is that of looking for patterns in a sequence of numbers.  Often students are 

taught to look at the differences between successive terms and even between successive 

differences.  This is what Bonnie naturally did each time she hunted for an additive 

pattern.  Processes Three and Four both have multiplicative aspects (doubling and 

squaring, respectively), but she still worked additively.  Unfortunately, the Sequences 

Applet does not have a process that is multiplicative in nature and where additive 

strategies won’t work, for example, exp(x).  I suspect that Bonnie would struggle to 

classify such a process and would potentially call such a process random.   

Bonnie’s image of randomness as being without a pattern or rule served as the 

ultimate driver for her classification process and drove her to pattern hunt.  Her past 

experiences of looking for patterns limited her in what kinds of patterns she was pre-

disposed to look for.  
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Chapter 8: Danielle’s Meaning for Stochastic Process 

After her initial clinical interview, Danielle came in for two additional sessions of 

a teaching experiment.  In the first session, she worked through the Light Switch (Version 

A) and the More Processes Activities (see Chapter 5: Methodology).  At the conclusion 

of the More Processes activity, Danielle worked through the intervention shown in Figure 

20.  At the start of the second session of the teaching experiment, I provided Danielle 

with a similar sheet as what she filled out at the conclusion of the first teaching 

experiment session.  My intent was to provide Danielle with a tool that could help her 

explore the processes behind the Sequence Applet and solidify her meaning for stochastic 

process. 

Teaching Experiment Session One 

As with Bonnie, I asked Danielle if she had ever heard of a stochastic process 

before and where data comes from at the start of the session (Excerpt 42).  While she 

claims to have heard the phrase “stochastic process” before, she can’t recall what that 

refers to or where (Lines 2 and 4).  In contrast to Bonnie (data appears, and you make 

visualizations), Danielle’s initial answer to where data come from contains an explicit 

reference to going out to collect data and then manipulation coming later (Lines 6 and 8).   

Excerpt 42. Danielle’s initial view of stochastic process and the origin of data 

1 Neil Have you ever heard of the phrase "stochastic process" before? 
2 Danielle Yes, I've heard of it. But to tell you what it is, (I) wouldn't even 

begin to remember 
3 Neil Okay. Do you remember where you heard the phrase? 
4 Danielle Ummm, no.  Since we're here, I'm assuming that it's a statistical 

thing [Neil: laughs] but that's just me. 
5 Neil That's a good assumption, right. [Danielle: laughs] So another 

question I have for before we get started, or really started with the 
applet [Danielle: umm, kay]. Where do data come from? 
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6 Danielle Data? [Neil: mmm-hmm] Umm, numbers of people on the ground, 
crunch for whatever reason. 

7 Neil But where do they get those numbers to crunch? 
8 Danielle Well, in my case, we go out and we count plants. And then we tell 

our supervisor, this is how many plants we counted [Neil: laughs, 
okay] So...then he has to deal with the hundreds of plants we count 
by the end of the season. 

Danielle worked through Room One (deterministic, white and black) rather 

quickly.  When asked to create a new switch to replace the “broken” one for Room One, 

she creates the following diagram (Figure 31) and explains that her switch will toggle 

back and forth between on and off—depending on where the room is currently with each 

press of the switch (Excerpt 43).   

 
Figure 31. Danielle’s new switch for room one 

Excerpt 43. Danielle’s rules for room one's new switch 

1 Danielle So, I would need to have a section for turning it on and then 
turning it off [Neil: okay, if that's what you so choose] (laughs) 
Alright. 

2 Danielle So, I'll just go with a classic switch [draws a light switch in the on 
position] and then [draws an arrow; writes "1" to the left of her 
first switch;] oh I messed that there [draws a second switch in the 
off position; adds on and off lightbulb above] 

3 Neil Okay. [Danielle: alright] So describe for me what you've drawn. 
4 Danielle Umm, so, if you hit the switch once, if it is on, it will turn off. 
5 Neil Okay. So, if we hit your switch right [hits switch] 
6 Danielle Okay. 
7 Neil So if I hit the switch again... 
8 Danielle [adds another arrow in the opposite direction and a 1 to the right of 

the second switch] It will turn back on again. 
9 Neil So, can we only hit the switch once?  
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10 Danielle Umm, no. [Neil: okay] You can hit it more than once... [gestures 
back and forth between her switches] (softly) back and forth 

11 Neil It will just keep going back and forth? [Danielle: yeah] 

In the Four Rooms activity, I ask each student who to get back to a prior state of 

the room after I come through and press the switch.  Danielle leverages how she 

answered this question (correctly noting that she would need to click the button nine 

times and that would work for any case) to help her design the new switch for Room Two 

(deterministic, grey scale).  In Line 2 of Excerpt 44, Danielle creates her switch (see 

Figure 32) based upon knowing that five clicks will get her from a black state to a white 

state.  While she initially confounds the number of clicks with the number of states, in 

checking that her button works (Lines 5 and 6), she is able to quickly rectify the issue.  

Excerpt 44. Danielle’s description of her new button for room two 

1 Neil Now, the switch breaks. (both laugh) [Danielle: alright] So, I need 
you to make a new switch, new set of rules, process to replace this 
switch [points to the screen] that no longer works. [Danielle: 
alright] So what would you do? 

2 Danielle Let's draw it in the correct order this time, we'll start off 
with...completely off [draws a light switch in the down/off position 
with a dark light bulb above] and then [draws a second light switch 
in the up/on position with a lit bulb above] completely on. [Draws 
a wedge shape with the narrow end towards the dark bulb and the 
wide end towards the lit bulb, with subdivisions] [Below the 
switches and wedge, she draws a series of "moons" to indicate the 
amount light through successive stages] Close enough. 

3 Neil So what are you drawing? 
4 Danielle Alright, so, completely off, completely black [taps the off switch] 

and then [adds numbers across the top] those are off, but okay, so 
completely black and for every single click you'll go slightly 
lighter and on the fifth click, it should be completely white. And 
then back again. 

5 Neil So, suppose that we start at completely off. [Danielle: okay] And 
you press your switch, or whatever, so go ahead and press your 
switch, your switch [points to her drawing] [Danielle: oh, that 
switch, okay] Yep, remember that one [points to switch on the 
computer screen] is broken. 
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6 Danielle Okay. So, (both laugh) alright so, press the switch once it should 
be three-quarters of the way black, [Neil: okay] And then [Neil: if 
you press your switch again] Press it again, half, half of it is dark. 
And then, again you get three-quarters of it is light, so a quarter is 
dark. And then the fifth time is, crap...Alright, hold on a sec, I 
missed one in here. [Adds another "moon" below her switch] five 
times, not four times [adds a new number 5 and changes the 
original 5 to a 6 above her switch] Okay, so there are six stages but 
five clicks. There we go. Alright 

7 Neil Okay. So, we're at the stage so...if you... 
8 Danielle Yeah so, if we hit one more time, then we'll it will be white. Okay 
9 Neil And if we hit one more time? 
10 Danielle Then we'll go back down this direction (getting darker) [Neil: 

okay] [Danielle draws left and right arrows below her "moons"] 
[Neil: okay] 

 
Figure 32. Danielle’s new switch for room two 
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Figure 33. Danielle’s sequence for room three 

 

As in Room Two, Danielle used the question of how to get back to the previous 

state the room was in to build her new switch.  In the case of Room Three, she wrote out 

the colors, using three hash marks to represent the black (light off) stages between each 

of the colors (see Figure 33).  The boxed hash marks denote the black state that is the 

beginning/end of the cycle.  Danielle initially struggled with the question of making a 

new button for Room Three; she even proposed that the new button should do a single 

color (i.e., behave like the button for Room One) (Line 2 of Excerpt 45).  The other issue 

at play here was her struggle to try to come up with something like computer code to 

make a new button for Room Three.  She did not seem to connect back to her previous 

two experiences making buttons.  However, once she got past that block (Line 15), she 

was much more confident in that her new button would work. 

Excerpt 45. Danielle’s new button for room three 

1 Neil Switch broke for Room Three. [Danielle: okay] I would like for 
you to make me a new switch. [Danielle: okay] So what would you 
do, [Danielle points to her paper] yep. if you need more paper, 
[Danielle: okay] feel free to use more paper. 

2 Danielle So, in making your new switch [Neil: yep] I would pick a single 
color and stick with it. 

3 Neil Nope, it has to do the exact same thing that Room Three does. 
[Danielle: okay] (both laugh) 

4 Danielle Alright, umm, what would you have me do? So, am I supposed to 
get back to color it was before? 
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5 Neil So, umm, there was this switch [Danielle: umm-hmm] that moved 
you through this cycle, right? [Danielle: umm-hmm] The switch 
broke, you're going to create me a new switch that would move me 
through this cycle. What would you do? 

6 Danielle I would make sure that the sequence is still in order [Neil: okay] 
Just an on/off switch. 

7 Neil So where would be the start? 
8 Danielle Probably with red. [Neil: are we starting in red] I have no idea 

where we're starting. 
9 Neil So, this is the room as was when you first encountered the room. 

[Danielle: okay] So we're starting in...[Danielle: Red.] But the 
room light was? [Danielle: black] So where did we start? 

10 Danielle Ohhhh, okay, we're staring back at the beginning, okay (Neil 
chuckles) 

11 Neil So if you start with black, then what should your button, your 
switch do? [Danielle: Turn it to red.] Okay. So how would you 
write that? In terms of, like a command, in this but-, this switch? 

12 Danielle Hmmmm, I don't know. Probably just substitute the little squiggles 
that I have for a "B" (for black) [Neil: okay] And then...just black, 
red, black orange, black, yellow... 

13 Neil So every time someone presses the switch, the switch knows to... 
14 Danielle To change to the next one in the sequence. 
15 Neil Okay. That's a command, right? [Danielle: yeah, right, computers] 

That's something [Danielle: (laughs) computers] that's okay. 
English sentences work well [Danielle: Yes, oh my gosh] (Neil 
laughs) Okay. 

16 Danielle Alright, so yeah, so it knows, the switch knows to go the next in 
the... 

17 Neil In the...? [Danielle: in the order] Okay. 

From Danielle’s clinical interview (Chapter 6: Students’ Meanings for 

Randomness), Danielle viewed randomness in two ways:  randomness as relating to 

where you know don’t know why the event happened and randomness as indicating that 

she cannot discern a pattern.  As she worked with Room Four, she brought up the notion 

of randomness early in her exploration (Excerpt 46): 

Excerpt 46. Danielle brings up randomness 

1 Danielle Is it randomized? 
2 Neil What do you mean by randomized? 
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3 Danielle Is there a pattern that I cannot discern without clicking it like 400 
times? 

In Line 3, Danielle reveals that her image of randomness being about not seeing a 

pattern to bear.  The search for a pattern drives her in the question for getting back to a 

room with dark blue light after the room was in pink light.  To tackle this question, 

Danielle begins to record the colors of the room as she clicks Room Four’s button.  Her 

goal for writing down the colors is to find a pattern that she could then use (Line 2 of 

Excerpt 47).  

Excerpt 47. Danielle’s quest for a pattern in room four 

1 Neil So what are you hoping to accomplish by writing out all of these 
colors? 

2 Danielle I'm hoping that by the time that I get to the color that I actually 
want, a pattern will start to form. [Neil: okay] Hoping; that's the 
goal. [Neil: hoping] [continues to click and record] (softly) I don't 
know what color to call that? [Neil: faded wine?] Close enough for 
me (both chuckle). [continues to click and record] I've run out of 
color options; I don't even know what to call all of these. Alright, 
hold on, I'm committed, (Neil laughs). [Neil: salmon or coral?] 
Coral. Patsy, that's my great aunt and she has a carpet that was that 
color (the color prior to coral). (Neil laughs) 

3 Neil So, let me pose this question to you: do you think it is possible to 
find the dark blue that came, that comes after the pink? 

4 Danielle Without knowing the pattern that it is following? 
5 Neil In Room Four. 
6 Danielle (softly) Can't. I'd say that it's possible but not probable in a single 

person's attention span. 
7 Neil (laughs) So, what if I had someone whose got the world's best 

attention? 
8 Danielle Eventually, yeah. [Neil: eventually?] At some point. 
9 Neil Now, for the other rooms, I asked you if your method would work 

no matter state you were in. [Danielle: mmm-hmm (agreement) 
and color] Would the same method work, so however clicks, say 
that it takes the person 500 clicks to get back to a blue, a dark blue 
after a pink.  Suppose that we have this salmon now [points to the 
screen and clicks] and now we have this light pink. Would it take 
another 500 clicks to get the salmon-light pink combo? 

10 Danielle Probably not. It might, there's a possibility. 
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11 Neil So do you think that you could, like does there a general method 
besides just clicking until you happen to be lucky? 

12 Danielle (laughs) Ummm, how, I don't, there may be, [Neil: maybe] may be 
a pattern but I think that clicking until you get lucky is probably 
the easier of the two options [Neil: okay] 

When tasked to come up with a new button for Room Four, Danielle brings 

another aspect of her meaning for randomness to bear:  chance.  In the clinical interview, 

Danielle explicitly connected the notion of chance with the notion of randomness, 

culminating in her indicating that the two were the same thing (see Excerpt 18 and 

Excerpt 19).  This aspect of her meaning for randomness appears in the rule that she gave 

to her new button as shown in Figure 34.   

 
Figure 34. Danielle’s new switch for room four 

Excerpt 48. Danielle discusses her switch for room four 

1 Neil So, guess what? [Danielle: hmmm] The switch broke. [Danielle: 
okay] I need you to make me a new switch for Room Four. 
[Danielle: okay] What would you, what would you have the switch 
do? 

2 Danielle (long pause) I don't know, pick a new color. 
3 Neil Does that just, so like here (Room Three's sequence) you had the 

switch move through sequence one at a time, right. [Danielle: no] 
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So here (Room Four), what would you have the switch do? You 
can use English sentences. 

4 Danielle (laughs) So, is this a switch? Can this be a smart switch? 
5 Neil What do you mean by a smart switch? 
6 Danielle Umm, so, of the range of colors that are available for the switch to 

turn on, there would be like an equal probability of them turning 
any of them on at any given point when we're clicking. 

7 Neil That is up to you, oh switch designer 
8 Danielle (laughs) Switch designer, hopefully I don't have a job like that in 

the near future. Umm, so [writes the phrase "For every switch there 
is an equal probability that any of the programmed colors could 
come next."] Hopefully I'm using this in the right phrase. 

9 Neil (reading) So for every switch there's an equal probability... that any 
of the programmed colors could come on the next...? 

10 Danielle On next 
11 Neil On next. So, by that you mean, for the phrase "for every switch" 

that means every time you press the switch? 
12 Danielle Yeah, every time you hit the switch, or flip the switch, [Neil: okay] 

or press a button 
13 Neil Okay. Do you think that will work? [Danielle: sure!] So, draw 

yourself a switch. 
14 Danielle Okay [draws a switch] 
15 Neil And your words there are now the, uh, code behind your button. 

[Danielle: hmmm-kay] So, if you press your switch, [Danielle: 
mmm-hmmm] So actually go ahead and press your switch; your 
switch [Danielle: this switch, okay] I'm going to make you, press 
your switch. What should happen? 

16 Danielle Umm, [draws an arrow from her switch, and an arc of dots] any of 
the colors can come up. 

17 Neil [Presses a button for Room 4] So, we got a new color. And if you 
press the switch again, what should happen? 

18 Danielle Any of the rest of the colors come on, including that one [Neil 
presses a button for Room Four], well the other one, but okay. 

19 Neil And if you press the switch again? 
20 Danielle Same thing. Okay. 

While I did not specifically probe what she mean by equal probability, I suspect 

that Danielle is adhering to the equiprobability heuristic (Fielding-Wells, 2014; Lecoutre 

et al., 1990); stated differently, she’s operating under the Principle of Ignorance (von 

Mises, 1981).  Given that she cannot discern a pattern, then the button behaves randomly, 

which would entail every color having the same potential to be called up on any click. 
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I asked Danielle to create some type of grouping of the Four Rooms.  Her first 

instinct was to order the rooms for least to most complex; One, Two, Three, and then 

Four.  As she continued to play around with groupings, she put Rooms One and Two 

together as they were both grey scale; she also grouped Rooms One and Three together as 

they both alternate a color/white with black (i.e., off/on).  She noted that she didn’t want 

to put Room Four with any of the other three, prompting me to ask her if she could see a 

way to put Rooms One, Two, and Three together while Four was a separate group.  As 

shown in Excerpt 49, Danielle views Rooms One through Three as all having patterns 

whereas Room Four has the hallmark of not allowing for a person to exert to control over 

the room.  That is to say, that Danielle noticed that an individual could choose what color 

to have lighting/darkening up Rooms One through Three, but not in Room Four.  

Excerpt 49. Danielle builds her categories for the processes in the four rooms 

1 Neil Is there a way that you could think about the three of them, Rooms 
One, Two and Three, being grouped together and Four off by 
itself? 

2 Danielle Yeah, that would be easier than trying to group this (Room Four) 
with any one of the other ones, just because, this one (Room Four) 
is something you can't control and you can't, like, guarantee that 
you fall in a color. Whereas these guys (Rooms One through 
Three) have like a distinguished pattern that you can follow, and it 
the button a certain number of times and you get the outcome that 
you're looking for. 

3 Neil So maybe that would be a good way to classify them. Of 
everything that you've said, that's the one you've sounded the most 
sure about. 

4 Danielle That, yeah. 
5 Neil So let's go ahead and write down our two classifications here. 
6 Neil [Danielle: Okay] on a piece of paper that you come up with. 

[Danielle: hmm-kay]. You can split the paper in half for now 
[Danielle: okay] with a, just draw a line, however you want. On 
one half, will be whatever category you want to call this (gestures 
to Rooms One through Three), [Danielle: okay] so you get to make 
up your own name [Danielle writes "Patterned"; Danielle: was I 
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supposed to write on this side] and you can come up with whatever 
name you want for this other category [Danielle writes 
"randomized"; Danielle: okay.] So, what are your names? 

7 Danielle [Neil: They are...] So, patterned and randomized. 
8 Neil Okay. So, in the Patterned category [Danielle: mmm-hmm] what 

are you looking for that makes some fit, that makes a process fit? 
In the patterned category? 

9 Danielle Dependability of [Neil: dependability of what?] Of the process of 
the outcome, pattern? I guess 

10 Neil Okay, so let's go ahead and write that. 
11 Danielle [Writes: dependability of sequence] Sequence was the word I was 

looking for 
12 Neil Sequence. So, the dependability of the, of sequence of...? 
13 Danielle Of, switches, clicks, [Neil: clicks, outcomes?] outcomes, yeah 

[adds of outcomes to her list] Okay. [Neil: okay] Okay, now what's 
supposed to do 

14 Neil So what about over here in your randomized? What types of things 
would you look for? 

15 Danielle The inability to predict it. 
16 Neil The inability to what? 
17 Danielle The inability to predict it, to find the sequence, I guess [Neil: okay]  
18 Neil So let's go ahead and write that down [Danielle writes inability to 

determine sequence] So, the inability to determine a sequence and 
you've got dependability of sequence which would mean that you 
would also be able to determine a sequence, right? [Danielle: 
mmm-hmm, yeah] Okay. Anything else that you would be looking 
for here in your patterned thing, besides dependability? 

19 Danielle (long pause) I'm not sure. 
20 Neil Do you have questions about the question or...? 
21 Danielle I'm trying to figure out how I'm supposed to answer that. 
22 Neil So think about classifications of plants. [Danielle: okay] Right, and 

when we, for different types plants, there are all of these different 
sort of things we look for [Danielle: mmm-hmm] that helps us 
classify them. That's sort of what you're doing here. [Danielle: like 
characteristics?] Characteristics. [Danielle: okay] So, 
characteristics of this particular set and, versus characteristics of 
this loner. 

23 Danielle (laughs) Alright, so, I guess, depending on which one you get, 
there's always a pattern between black and whatever other colors 
there are in there. Umm, so, like this one (Room Three), the 
characteristics would be alternating black and color, this one 
(Room Two) the characteristics would be fading from black to 
white, and this one (Room One) is just black and white. 
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24 Neil So what, are there any characteristics across all three that make 
them fit in this patterned category? 

25 Danielle Well, all of them have black in them and all of them have a certain 
number of clicks to get back to the original, whatever you want 
your original to be. [Neil: okay] So I guess the pattern is only so 
long 

26 Neil Okay. So that could be something. [Danielle writes "pattern is 
short and defined"] You gave a puzzled look there. 

27 Danielle I was trying to figure out how to actually write that down. Okay. 
So, the pattern is short and easy and defined. 

28 Neil Okay. What about over here in randomized? 
29 Danielle There is no discernable pattern [Neil: okay] so it is just whatever 

color happens to be turned on next which sucks for the person 
living in that room. 

Part of Danielle’s view of control is tied to her conceiving the processes in Rooms 

One, Two, and Three as being dependable in terms of outcomes (Lines 9-13).  At my 

prompting, Danielle attempts to come up with additional characteristics for her two 

categories.  At this point, all she adds is that the pattern is short and defined for her 

Patterned category.   

I then present Danielle with the five new processes from the More Processes 

activity.  Rather than labeling the sheets, Danielle added the sheet with each process to 

her two piles:  Patterned (containing Rooms One, Two, and Three) and Randomized 

(containing Room Four).  In discussing why she classified the Baking Soda and Vinegar 

process (deterministic) in her Patterned category (Excerpt 50), she brings up the notion 

that the activity can be repeated which she expresses as carrying out the experiment again 

and again recording that Patterned things are repeatable (Lines 5 and 9).  This suggests 

that Danielle has yet to conceive of repeating the process and repeating outcomes as two 

separate pieces.  Danielle wrestles with this distinction when asked to classify the Ping 

Pong ball lottery (stochastic) in Excerpt 51. 
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Excerpt 50. Danielle classifies the baking soda and vinegar process 

1 Neil Which category does this fit in of yours? 
2 Danielle Awww, that kind of question. Are we talking about, what we're 

actually doing or the reaction that's going to happen after you do 
this? 

3 Neil Pressing the switch, adding the baking soda to the vinegar, we got 
an end result, right? 

4 Danielle Ohhhh, okay, I see how you're doing that. Alright, then yeah, it 
would definitely be like a simple, like (points to her patterned pile) 

5 Danielle We can predict what will happen with this one (baking soda and 
vinegar) [Neil: but we can predict what happens] Yes, plus cause 
I've done this and it's fun (Neil laughs). So, yeah, this is 
predictable, repeatable experiment 

6 Neil So, predictable and repeatable. You've not had anywhere on your 
category list. 

7 Danielle No, we haven't. 
8 Neil So, should we add repeatable somewhere [Danielle: Probably] 

Where are you going to add repeatable? 
9 Danielle In the pattern area. [Neil: Okay]. Because if it is randomized, you 

can't exactly repeat it. [Neil: Okay] [Danielle writes "repeatable" as 
the third bullet to her Patterned category] Okay. 

Excerpt 51. Danielle classifies the lottery 

1 Danielle Well, I can't classify it in this (her Randomization pile) [Neil: 
Why?] Because I don't know the rest of what they're doing. Like I 
don't know if the teacher is going to add the ball back to the bag 
[Neil: they are only drawing out one] Just one? [Neil: just one] Just 
one. Okay. Hmm. Then in that case, then yes, I would classify it 
over here (the Randomization pile) because all of the Ping Pong 
balls are together, and each has an equal probability of being 
drawn. So, I can't predict which one is going to be drawn. 

2 Neil Suppose that the teacher does this Monday, and Tuesday, and 
Wednesday, and Thursday and Friday. Did she just repeat her 
process? 

3 Danielle (Hesitant) Yes. 
4 Neil So, that's repeated though, right (points to her Patterned category 

characteristics) 
5 Danielle It is repeated, but the outcome isn't... 
6 Neil But all you have on your list repeatable. 
7 Danielle But dependability. (Both laugh) That's not dependable. 
8 Neil What do you mean that's dependable. She is dependable in running 

this Ping Pong ball lottery. 
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9 Danielle But you're dependable in flipping your on switch off and on [Neil: 
Well] But the outcome isn't reliable. [Neil: ahhhh] Should I be 
writing that down too? 

10 Neil So maybe you need to uh, to rephrase. 
11 Danielle Rephrase repeatable? 
12 Neil What you rephrase is up to you at the moment. 
13 Danielle (laughs) Alright. [adds outcome behind repeatable in her Patterned 

list]  
14 Neil You're going to hate me [Danielle: (laughs) Yeah, you're, yeah] 

Are you ready? [Danielle: yeah] Repeatable outcome. (pointing to 
the series of three blacks from Room Four) Black.  

15 Danielle Damn it. (both laugh) Alright, umm, there's still not a pattern 
though [Neil: okay]  

16 Neil So, we can come back to this. 

At this point in time, Danielle has firmed up her listing of characteristics for her 

two categories (see Figure 35).  Patterned processes are dependable/predictable; short, 

defined, and repeatable; and have repeatable outcomes.  Randomized processes do not 

allow for her to determine a sequence/pattern.  While she did not list the notion that 

randomized processes do not allow her to make predictions, she constantly refers to this 

notion.  Danielle places both the Savings Account (deterministic) and Looking at Neil’s 

Shoes (deterministic) processes in her Patterned category.  In the case of the Saving 

Account, she recognized that there was a mathematical formula that would allow her to 

know exactly how much money would be in the account; this satisfied her condition of 

dependability.  Further she noted that the process of accruing 1% interest was being 

repeated, even if the same dollar amount was not.  While this would seemingly contradict 

her condition of repeatable outcomes, she noted that the dependability was key.  For 

looking at the color of Neil’s shoes, she noted that since my shoes weren’t changing 

between looks, there was a sense of dependability that made that process also fall into the 

Patterned category.  
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Figure 35. Danielle’s two categories 

When Danielle encounters the process of recording the total number of red cars 

going through an intersection (stochastic), she does something very surprising:  she 

makes a distinction between the actions of the car counters and the result of the total 

number of red cars.  In Excerpt 51, Danielle started wrestling with the process being 

repeated versus the outcomes being repeated.  In Excerpt 52, Danielle splits the process 

out from the result entirely (Lines 1-5).  Danielle stayed firmly rooted in her belief that 

the number of red vehicles could not be predicted.  I tested her commitment by bringing 

up her experiences with one of the rooms in Line 8.  She stayed with her placement of 

this process in her Randomized category, articulating that she could not predict 

everything and everyone (Lines 7, 11, and 13). 

Excerpt 52. Danielle classifies the number of red cars process 

1 Danielle Alright. So, us standing at the same time every day and recording 
the number, that's predictable but the total number of red vehicles 
may not be. Because that's it's a busy area. 

2 Neil So. Patterned or Randomized? 
3 Danielle Our actions are patterned, but  
4 Neil But our actions are patterned with the, uhh, Room Four switch. We 

keep hitting the switch. [Danielle: That is true.] Our teacher's 
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actions are patterned, she keeps running this Ping Pong ball lottery 
[Danielle: that's true] She's going to go broke soon too, right. 

5 Danielle Yeah, I want to be in her class before she goes bankrupt. So, like 
they are patterned, but the total number of red vehicles that go 
through the intersection is not. 

6 Neil How do you know? 
7 Danielle Because it is a busy area [Neil: okay] I can't predict everyone else's 

schedule that day [Neil: okay] 
8 Neil Could you predict what was going to be happening in Room Three 

before you started exploring Room Three? [Danielle: No.] But 
once you explored Room Three, could you then predict what was 
going to happen? [Danielle: yes, that is true] Okay. So, suppose 
that you start spending your Mondays, 2 to 4... 

9 Danielle I hope not. Alright, so I guess it is random until we find a pattern. 
But there'd still be like, like there would still be a pretty distinct 
section of people that just randomly go through Rural and Apache. 
I can't predict those. 

10 Neil So you're thinking about there's act... there might be two types of 
people  

11 Danielle Yeah, the people who go through there every day and the people 
who just happen to be going through there at that exact time. [Neil: 
gotcha]. Which would throw a kink in the pattern. 

12 Neil So.  Which category?  
13 Danielle I'm going to keep it in the randomized since I can't predict 

everything. [Neil: okay] 

Danielle’s images of deterministic and stochastic processes are tied up with her 

notion of randomness (i.e., can’t find a pattern) and the notion of dependability (i.e. 

predictability resulting from a pattern).  Danielle’s meaning for her Patterned category 

echoes Bonnie’s meaning: there’s a clear rule and we can determine what comes next.  

Both students’ meanings for a stochastic process are just the opposite of their 

deterministic meaning.  One way in which the two students differ is that Danielle began 

splitting the process steps off from the outcomes while Bonnie did not make such a step.  

Bonnie had moments where she implicitly referenced the idea of replicability; Danielle’s 

approach the number of red vehicles process highlighted the issues in replicability.  

Rather than closing the session, I gave Danielle the empty version of the grid shown in 
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Figure 36.  This intervention was intended to help a student flesh out key aspects of a 

stochastic process:  unfixed outcomes (lack of predictability in the short run), separating 

out the repetition of the process and outcomes (reproducibility vs. replicability) and the 

nature of the process’s rule.   

 
Figure 36 Danielle’s filled in intervention grid 

When she first saw the grid (Figure 36), Danielle remarked that she liked the clear 

or fuzzy rule column.  Thus, I elected to capitalize on her focus on that particular column.  

In Excerpt 53, I ask Danielle what she believes the phrase “clear rule” means.  She 

quickly brings to bear her notions of patterns and prediction (Lines 2-6).  This suggests 

that Danielle took the phrase “clear rule” and associated that with her own image of a 

process being dependable.  She quickly identifies all but one of the deterministic 
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processes as having a clear rule; she struggles a bit with whether or not looking at Neil’s 

shoes and recording the most prominent color has a clear rule or not (Line 12).  In Line 

13, I took her back through the activity of looking at the shoes in a variety of contexts, 

when she brings up the idea of not knowing the existence of a clear rule at the start of the 

process (Line 14).  I suspected that her past experiences with light switches, savings 

accounts, and mixing baking soda and vinegar together provided her meanings to 

assimilate those processes to, allowing her to fill in gaps.  However, her encountering a 

light switch such as in Room Three (rainbow colors alternating with black) in her past is 

doubtful.  Thus, I used Room Three as an initial site to ask her if we had to know a clear 

rule before carrying out the process (Line 15).  Danielle eventually arrives at the decision 

that we don’t have to know the clear rule prior to carrying out the process. 

Excerpt 53. Danielle wrestles with what makes a clear rule 

1 Neil What do you think is meant by the phrase "a clear rule"? 
2 Danielle If, I guess one that you can follow, so like a pattern 
3 Neil So a pattern or something...like, what about Barclays (savings 

account process)? It's not really a pattern? 
4 Danielle But it will, you can predict it 
5 Neil There's a formula 
6 Danielle Yeah [Neil: right] yeah 
7 Neil We can talk about the interest, or I don't know [Danielle: Or not] 

(both laugh) [Danielle: I just got out of that] But there's something 
can do there mathematically [Danielle: yeah] and that would be a 
clear rule [Danielle: mmm-hmm (agreement)]. So, thinking about 
all of our processes here, which ones have a clear rule? 

8 Danielle (pauses) I'd say, [Rooms] One, Two, Three 
9 Neil Let's go ahead and put a C 
10 Danielle [marks a C for Rooms One through Three, Baking Soda and 

Vinegar, and Savings Account] Okay. 
11 Neil I can't quite tell what you're staring at. Because you're like, you're 

staring at something, like you're, you're staring it down 
12 Danielle (laughs) I was staring down your shoes. [Neil: Okay] Like I, the 

rule of looking at your shoes is clear, but I can't guarantee, well 
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now I can because I saw all your shoes, but I can't guarantee what 
color your shoes are going to be. 

13 Neil So, if I'm teaching, what color are my shoes? [Danielle: black] If 
I'm in my office what color are my shoes? [Danielle: black] If I'm 
biking what color are my shoes? [Danielle: black, with slightly 
different colors] But we don't care about the other colors, we only 
care about the most prominent. 

14 Danielle (laughs) Alright, so, I guess...but I didn't know that when I started 
though. 

15 Neil But did you know that Room Three was going to have a clear rule 
when, before you got started? [Danielle: No] About for Room 
Two? Did you know that was going to have a clear rule? 

16 Danielle I hoped it would [Neil: you hoped] but no. 
17 Neil So do you have to know before we begin whether or not there's a 

clear rule? 
18 Danielle Nah, I guess you're right. 

After she labels all of the processes that she believes have clear rules, Danielle 

tackles the remaining three; Room Four, Ping Pong ball lottery, and counting red 

vehicles.  Just as she connected a clear rule to having a pattern, she made fuzzy rules as 

having no pattern (Excerpt 54).  For Danielle, being able to establish a pattern, even by 

talking to every driver (Line 8), is paramount for determining whether or not there is a 

clear rule.  Her being able to find a pattern is what will ensure that she sees that three 

hallmarks she came up with (Figure 35); especially, the defined, repeatable pattern and 

the dependability of the sequence of outcomes. 

Excerpt 54. Danielle describes fuzzy rules 

1 Neil So then that leaves Room Four, the [Danielle: Ping Pong] Ping 
Pong ball, 

2 Danielle and the red vehicles 
3 Neil as being fuzzy. [Danielle: mm-hmm (agreement)] What makes 

something fuzzy? 
4 Danielle No pattern 
5 Neil No Pattern. Is there a mathematical formula, like the Barclays, that 

we can do for the, uhh, Ping Pong ball lottery? 
6 Danielle There is. [Neil: There is?] I don't remember what it was, but yeah 

there is. [Neil: shakes head no] There isn't? [Neil: nope] I thought 



 

209 

you could...ahh, I guess you can calculate the likelihood [Neil: you 
can calculate probabilities and likelihoods] Yeah, but you can’t 
guarantee, okay. 

7 Neil And is, is there a clear rule for the, uhh, intersection?  
8 Danielle Not unless I talk to every single driver. 
9 Neil But even then, what about Sally from out of town who rents a car 

that happens to be red? 
10 Danielle Ahhh, no. I wouldn't be able to that one. 
11 Neil So there's no clear rule there? [Danielle: mm-nuh] But is there, 

what about Room Four? Is there a clear rule? [Danielle: No] But is 
there enough of something that we can carry out the process? 

12 Danielle Yeah. 

Excerpt 55. Danielle and fixed/unfixed outcomes 

1 Neil So, an outcome is what to you? 
2 Danielle An outcome? 
3 Neil The result of doing something? [Danielle: yeah] So all of these are 

processes, right? [Danielle: okay] Room One had the process of 
pressing the switch [Danielle: mmm-hmmm] we got a room color 
[Danielle: yeah]. So, what does it mean for something to be fixed? 

4 Danielle Guaranteed. The patterned (points to her Patterned process pile) 
5 Neil So which things have fixed outcomes [Danielle: those (points to 

her patterned pile)] Which things have unfixed outcomes 
[Danielle: those (points to her randomized pile)] So you can fill in 
that column, right? 

6 Danielle Yeah, super easy. So, a fixed outcome. I keep trying to put on the 
(refers to pen cap) [write F for Rooms One, Two, Three, Baking 
Soda and Vinegar, Savings Account, and Looking at Neil's shoes] 
Okay. 

7 Neil And for the unfixed. [Danielle: would be the other three] Now 
notice what lines up. Clear rules and fixed outcomes; fuzzy rules 
and unfixed outcomes [Danielle: mmm-hmm (agreement)]. So, 
notice that we can thing about these two things now as being 
linked together [Danielle: mmm-hmmm] 

From this point, I moved Danielle on to the notion of fixed and unfixed outcomes 

(Excerpt 55).  While Danielle seemed unsure of my initial question (Line 1), she did 

appear to agree with viewing an outcome as the result of doing something.  She takes the 

idea of a fixed outcome and refers to that outcome as being guaranteed.  This is in line 

with her viewing a deterministic process as having a dependable pattern.  Danielle 
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quickly labels all of the processes in her patterned pile as having fixed outcomes while 

the processes in her randomized pile get the unfixed label. 

While she was initial working through the Four Rooms and More Processes 

activities, Danielle used the word “repeatable”, eventually leading her to describe both 

the pattern as being repeatable and having repeatable outcomes.  In Line 1 of Excerpt 56, 

I highlighted that she had gotten repeated outcomes in a situation that she did not view as 

being dependable (Room Four) in attempt to help her make a distinction between 

repeating a process and repeating the outcomes.  Danielle initially describes replication 

drawing from what she has learned from her sciences courses:  replication is repeating a 

study and getting the same results (Line 8).  While she wants the results to be exactly the 

same, she eventually lets that aspect go for consistent results and lets reproducible take 

on getting the exact same results (Lines 10-12, 18-22).   

Excerpt 56. Danielle confronts replicable and reproducible 

1 Neil You've used the word repeatable [Danielle: yeah] but I've point out 
that we can repeat all of the processes, but then talked about 
outcomes being repeated. Then I pointed out that then we got 
repeated outcomes here (points to her list of colors from Room 
Four) [Danielle: mmm-hmm]. You've also talked about 
dependability, so like even though we had black repeated (in Room 
Four), the sequence wasn't dependable, there wasn't a pattern 
[Danielle: yeah] Now notice that nowhere in here (the intervention 
grid) I've really used the word pattern. 

2 Danielle Nah, I actually like replicable a lot better. 
3 Neil Okay. So, notice that there are two choices here: reproducible and 

replicable. [Danielle: mmm-hmmm] Have you ever heard those 
two terms before? [Danielle: yes] Where have you heard those 
terms before? 

4 Danielle Typically in my biology classes 
5 Neil Ahh, how do they use those words in biology? 
6 Danielle Umm, so if someone does a study of something, it has to be 

replicable. 
7 Neil What does that mean? 
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8 Danielle It means that if someone else goes out there and does the exact 
same thing, they should get the exact same outcome. 

9 Neil Exact same? 
10 Danielle Well, baring human err and plans...[Neil: exact same thing?] No. 
11 Neil Not exact but at least compatible, right [Danielle: yeah.] Right, so 

if you go and do a study. And I go out and take your methods and 
do the same study [Danielle: mmm-hmm] but say three years later, 
[side conversation on publishing time delay] and so if we replicate 
something, we're looking for what we say are consistent results 
[Danielle: mm-kay] but they don't have to be the same. 

12 Danielle Ahhh, 'kay.  
13 Neil What about reproducible? Where have you, might have heard that 

term before? 
14 Danielle The longer I stare at the word, the less it sounds familiar. So, you 

said that replicable is... 
15 Neil Repeat the methods and we get consistent results, or we hope we 

get consistent results 
16 Danielle Close enough to consistent, and then reproducible, dang 
17 Neil Have you ever heard of reproduction? Where have you heard the 

word reproduction before besides [Danielle: biology] biological 
reproduction? 

18 Danielle (laughs) Ummm, probably like, I don't know in the art industry I 
guess. [Neil: art?] 

19 Neil They make lots reproductions of famous reproductions of famous 
paintings. [Danielle: mm-hmm] There's a famous company who 
has made their living off of reproducible-ness. They're called 
Xerox. 

20 Danielle Oh! So, like, okay, so a copy. 
21 Neil So copy. [Danielle: mm-hmm] So something that is reproducible 

not only can be repeated but we get... 
22 Danielle The exact same thing. 
23 Neil The exact same thing. [Danielle: okay] So in this list of processes, 

which ones are reproducible and which ones are replicable?  
24 Danielle Okay. So then, basically, they follow the same. 
25 Neil So why do you think they would follow the same? 
26 Danielle These three (points to Room Four, Ping Pong ball lottery, Red 

Vehicles), I mean you follow the same process but you're not 
going to get the same outcome [Neil: ahh] So then they wouldn't 
be reproducible, they would have to replicable [Neil: Okay] 

27 Neil So let's go ahead and fill those in. Sorry, there’s a double r. 
28 Danielle No worries [writes Repl for the three stochastic processes] 
29 Neil Okay. So, the other ones would be?  
30 Danielle Reproducible 
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Excerpt 57. Danielle is introduced to the formal names deterministic and stochastic 

1 Neil Go ahead and use blue [Danielle: to give the black a rest] To give 
the black a rest but also to, put a blue dot in all of the ones that you 
think are actually going to be in the same category. 

2 Danielle [places a dot in Rooms One, Two, Three, Baking Soda and 
Vinegar, Savings Account, and Looking at Neil's shoes] 

3 Neil So notice that you've got the same ones that you sort of have to 
begin, right? [Danielle: mmm-hmm] Everything you put a blue dot 
in, is something that we call a deterministic process. 

4 Danielle I've heard of that word. Should I be writing that down? 
5 Neil Yeah; if you want to write it in all, you can; if you just want to 

write it in one, that's fine. So, when we say that something is 
deterministic, what do we mean by that phrase? 

6 Danielle You can reproduce it and it has a fixed outcome. [Neil: and?] And 
it's clearly defined through your rules. 

7 Neil Alright. So, in the other ones, the three that don't have blue dots, 
we call these stochastic. 

8 Danielle There's that word. [Adds red dots to Room Four, Ping Pong ball 
lottery, and Red Vehicles] 

9 Neil S T O [Danielle: thanks] C H A S T I C 
10 Danielle I thought it had an I in it for some reason. 
11 Neil You might be thinking of stoichiometry. 
12 Danielle That's what I was thinking of, okay. 
13 Neil Stochastic processes have fuzzy rules, unfixed outcomes, and are 

replicable. [Danielle: mmm-kay] 

Now that she has filed in the three columns, I introduced the formal names of 

deterministic and stochastic.  She connects the three columns to her past experiences with 

the term “deterministic”, especially the ideas of fixed outcomes, reproducible, and having 

a clear rule (Line 6 of Excerpt 57).  Danielle appeared to have taken the ideas of fixed 

outcomes and a clear rule as linking to her own patterned category for establishing a 

dependable pattern.  The lack of those two aspects (i.e., having a fuzzy rule and unfixed 

outcomes) she then linked with her randomized category.  At this moment, her image of 

reproducible as making copies fits within the dependableness of patterned processes.   

Teaching Experiment Session Two 
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Danielle’s second session focused on her exploring the Sequences applet while 

using a grid based upon the intervention that she saw at the end of the first session of the 

teaching experiment. Her filled out grid for this session appears in Figure 37.  As a 

whole, Danielle classified the fourteen process in a normatively correct way.   

Before engaging with the Sequences Applet, I asked Danielle to recap of the prior 

sessions (Excerpt 58).  I should note here that approximately two weeks had passed 

between the prior session the present session.  After looking at the blank intervention 

sheet (Figure 37), Danielle was able to recall the terms deterministic and stochastic and 

then provide explanations of those terms (lines 2–6 of Excerpt 58).  She highlighted that 

fixed outcomes always happened while unfixed outcomes could the result of a pattern 

that an individual might not understand or see (lines 9–11).  As she explained the ideas of 

unfixed/fixed outcomes, reproducible/replicable, and clear/fuzzy rules, she often brought 

up the situations she had worked through in the prior session.  Primarily, she brought up 

Room One as the fixed outcomes example for fixed outcomes pointing out that there 

would always be a black-white alternating pattern.  When a person couldn’t catch onto a 

pattern in the outcomes, Danielle described this as unfixed outcomes (lines 10–12).  She 

used the savings account situation as her example for both reproducible and clear rule.  

Danielle conveyed that reproducibility meant that a person could repeat the activity again 

and again, getting the same results (lines 14–18).  Since we could establish a formula for 

the savings account, that meant that there was a clear rule that we could use (line 24). 
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Figure 37. Danielle’s filled out grid for the sequence’s applet 

Excerpt 58. Danielle’s recap of deterministic and stochastic processes 

1 Neil So what were the two types? 
2 Danielle Deterministic and stochastic. 
3 Neil Yep. Do you remember what made a process a deterministic 

process? 
4 Danielle It was the rules, correct? It was mostly based on the rules or was it 

based on all three?  Yeah, it was based on all three. [Neil: okay] 
So, deterministic was clear rule, umm, reproducible, and then with 
a fixed outcome. 

5 Neil Okay. And the other category was? 
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6 Danielle Stochastic, which had fuzzy rules, and it was replaceable 
[misspeak?], and it was unfixed. 

7 Neil So, just as a recap, what is a fixed versus an unfixed outcome? Do 
you remember? 

8 Danielle Oh, vaguely. Umm, a fixed outcome was...it was always like, the 
outcome was always guaranteed. So, we'd, black white black 
white, [Neil: okay] 

9 Neil And the unfixed? 
10 Danielle The stochastic was the one where, oh man, it has been like two 

weeks, ummm, basically, you couldn't judge it, like you couldn't, 
ummm, catch on for the lack of a better word.  

11 Neil Okay. And what would you be catching on to? 
12 Danielle The pattern behind 
13 Neil How about reproducible versus replicable? 
14 Danielle So, if I remember correctly, reproducible was you can guarantee 

what would happen every single time, so after black there would 
be a white tile. And then replicable would be...words, ummm, 
replicable would be like you can get there eventually. I was trying 
to think of the last one, Room Four. 

15 Neil So, here you have the savings account as being marked as 
reproducible. [Danielle: mm-hmm] Would that fit with your 
description prior, that you just gave? 

16 Danielle (coughs) Excuse me 
17 Neil Do you remember we were putting the same amount of money 

[Danielle: yeah] at the same interest rate. 
18 Danielle Yeah, so reproducible means that you can do it all the way through 

from the beginning.  
19 Neil Here with Ping Pong balls we have replicable. 
20 Danielle So you can do the process, but the end result isn't the same [Neil: 

okay] Okay. 
21 Neil So reproducible the process and the end result are the same? 

[Danielle: Yeah] And replicable the process is the same but not the 
end result? 

22 Danielle Yeah, there we go, that's much better way then I was trying to 
explain it. 

23 Neil And what do we mean by a clear or fuzzy rule? 
24 Danielle So, now that I actually read these on the side, I'm going to stick 

with these two. Ummm, so like a clear rule would be, the bank, the 
saving account has like a formula you could follow. So, it's a 
formula you follow every single time and then a fuzzy rule would 
be like with the Ping Pong balls. You pull one out, but you don't 
pull any particular one out. So, there's like always a level of 
variability to it. So, it's not clear which one will come out next. 
[Neil: okay] as opposed to the other one. 
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For the unfixed outcomes, fuzzy rule, and replicability, Danielle used both Room 

Four and the Ping Pong Ball lottery as her examples.  Her conveyed image of 

replicability centers on the ability to imagine carrying out the process over and over 

again, but you won’t necessarily see the outcomes in the same way (Excerpt 58, lines 14, 

19–22).  However, Danielle’s image entails an anticipation that if she were to repeat a 

replicable process long enough, she could see particular event of interest (black followed 

by white; line 14).  I take her statements to indicate that Danielle is starting to develop a 

disposition to think in the long-run; that is, imagine processes running infinitely many 

times rather than focusing on immediate outcomes.   

After her recap, I had Danielle work with the Sequences Applet.  I presented 

Process One to Danielle.  After seeing the first three terms, Danielle was starting to look 

for a pattern.  After the next three terms, she felt confident that she understood the pattern 

(Excerpt 59, lines 1–3).  Danielle believed that the pattern was that each number was 

repeated that number of times (line 7).  However, when that pattern was broken, Danielle 

continued to search for a pattern that would allow for the single four (lines 7–15).   

Excerpt 59. Danielle looks for a pattern in process one 

1 Danielle (Neil clicks, 1) Okay. (Neil clicks, 2) Kay. (Neil clicks, 2). Alright. 
2 Neil I see you squinting at the screen. (Danielle laughs) What are you 

thinking at the moment? 
3 Danielle I'm trying to figure out how it is going to trick me this time. [Neil: 

kay. Are you ready?] Yeah. (Neil clicks, 3). Alright. (Neil clicks, 
3) I think I have a handle on it. Let's do one more (Neil clicks, 3). 
Okay, I think I know the pattern. 

4 Neil Are you sure? 
5 Danielle I'm never sure, but I'm pretty sure.  
6 Neil Shall we try another? What do you think the next one will be? 
7 Danielle I think that the next one will be four. (Neil clicks, 4). [Neil: And 

what do you think the next one will be?] I think three will be fours. 
(Neil clicks, 5) Dang it! (laughs) Okay. [Neil: So, one more?] Sure. 
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(Neil clicks, 5) Alright. (Neil clicks, 5). That screwed up my plans 
again, dang it. 

8 Neil How'd that screw up your plans? 
9 Danielle Alright, I was trying to find a pattern, so I figured since that was a 

four and that was five, then maybe it repeated the pattern back to 
one. So, if that was going to be the case, then there'd be two fives 
and then three sixes. 

10 Neil Okay. But how many fives are there? 
11 Danielle There are three fives, which means that did not work.  
12 Neil Okay. So, what do you think will happen next? 
13 Danielle I have no idea at this point [Neil: shall we find out?] Yeah. (Neil 

clicks, 5) Umm, kay. [Neil: Again?] yeah. (Neil clicks, 5)  
14 Neil So what are you thinking? 
15 Danielle I'm trying to figure out how the four plays into all of this. Because 

it was going well, 1 one, 2 twos, 3 threes, and then four happened 
and then that screwed me up (laughs). And now there's 5 fives, so 
far. [Neil: mmm-hmm]  So I'm just trying to figure out where the 
four plays into all of this. 

16 Neil What do you think you'll get next? [Danielle: Hopefully a six.] 
Shall we find out? [Danielle: sure] (Neil clicks, 6) 

17 Danielle Okay. Hmm. 
18 Neil So what do you think you're going to get after the six? 
19 Danielle I think a seven. 
20 Neil Why do you think a seven? 
21 Danielle Because...alright, so there's 3 threes, a four, and then 5 fives. So 

maybe there's a pattern then the next two will be sevens and then 
there will be 8 eights after that point. [Neil: shall we find out?] 
Sure. (Neil clicks, 7) Okay. (Neil clicks, 7) So, if that pattern is 
true, then the next one should be an eight. (Neil clicks, 7) Dang it. 

22 Neil Shall we try another one [Danielle: yeah] (Neil clicks, 7) 
23 Danielle So maybe the next three will be sevens and then there will be 

another eight. 
24 Neil So let's try this. (click) Seven. (click) Seven. (click) Seven. And 

then we should have an eight? [Danielle: yeah] (click, 8) 
25 Danielle Okay. 
26 Neil So then what should we have? 
27 Danielle A nnn....a nine. (Neil clicks, 9) Okay, there should be like 8 nines 

after that point. (Neil clicks, 10). Gosh darn it. Okay.  
28 Neil So what will come next? 
29 Danielle (long pause) I'm not sure. (Neil clicks, 11) So now it goes back to 

normal. 
30 Neil Goes back to normal? 
31 Danielle Maybe. Eight, nine, ten, well seven, eight, nine, ten, maybe. So, it's 

not really a predictable pattern that I can see. 
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Danielle’s search for a pattern in Process One involved some aspects of a 

positional pattern (Excerpt 59, lines 16–21).  At first, I thought that Danielle was 

imagining that the value repetition ran in sets of three:  the first term in a set does not get 

repeated, the following two terms would.  This would give Danielle the ability to explain 

the four.  However, she did not imagine the six being repeated (lines 18-19).  Rather, she 

appears to have reset her set of three with the six.  As I continued to add more terms, 

Danielle continued to look for some kind of pattern.   

As Danielle searched for a pattern, she did not think about the sheet nor the three 

aspects I had her recap.  I took her to mean in line 31 of Excerpt 59 that she did not see 

something that she could take as a clear rule.  Thus, after filling the applet’s grid, I 

directed her attention to the intervention sheet (Excerpt 60).  There are a couple of 

interesting points that happened at this time.  First, when discussing which kind of 

repetition (reproducible vs. replicable), Danielle focuses on just the outcomes being 

repeated (line 4).  With a couple of questions about the relationship between the repeated 

numbers, Danielle notes that the repeated numbers are all prime (lines 5–8).  Second, 

when I refocused her on type of repetition, Danielle was able to shift away from the 

outcomes being repeated (or not) to the process.  When she watched the process being 

repeated and observed getting the same values in the same order, she was able to bring 

together the aspects of primes with prior pattern to establish a rule (line 18).   

Excerpt 60.  Danielle classifies process one 

1 Neil Shall we fill in the whole grid? [Danielle: yeah] 
2 Danielle Yeah, that one's not a clear one. 
3 Neil So we don't have a clear rule at the moment [Danielle: no, that I 

know of] Do you think we're fixed or unfixed? [Danielle: I think 
it's unfixed] Okay. What type of repetition do we have here? 
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4 Danielle Well, at first it started off pretty good with like the number of each 
individual number following the numerical value. And then four 
happened and that screwed everything up. So, two, three, five, 
seven, eleven, and I don't know about thirteen, but those all follow 
the same 

5 Neil So keep in mind that we are limited to only 40 terms. [Danielle: 
okay, so it stops after that point?] Yep. So, we don't have any 
access beyond the 40th trial [Danielle: okay] But, you, you listed 
off two, three, five, seven, eleven, and thirteen [Danielle: yes] is 
there anything special about those numbers? 

6 Danielle The number of tiles they take up is there numerical value [Neil: 
mm-hmm, is there anything more, else special about them?] 
They're odd numbers, well, except for two. 

7 Neil Nine's an odd number. 
8 Danielle Hmmm, they're...[Neil: they're what] they're primes. [Neil: they're 

primes] Dang. I didn't think about prime numbers. 
9 Neil So let's come back though to this idea of the type of repetition 

thought. That's, this is about the process, right, not the pattern. 
[Danielle: mm-hmm, right] So what would we need to do to help 
you to decide whether this is reproducible or replicable? 

10 Danielle Do it again. [Neil: Alright, shall we do this again?] Sure. 
11 Neil So we'll start back at the first outcome. [Danielle: mmm-hmm] 

(Neil clicks through the process) 
12 Danielle Okay. Yeah, so it is following the same rule. 
13 Neil So are we reproducible or replicable? 
14 Danielle Reproducible [Neil: okay] 
15 Neil So do you think we're fixed outcomes or unfixed? 
16 Danielle Now that I know the pattern behind it, I think it is a fixed outcome. 
17 Neil Do you know the pattern? [Danielle: yes] So, fixed, okay let's go 

ahead and mark that. And if you know the pattern, would we have 
a clear or a fuzzy rule? [Danielle: Clear.] So, what's the pattern? 

18 Danielle Deterministic. No, the pattern, not the category. The pattern is, 
umm, so every number is repeated once, but prime numbers are 
repeated their numerical value. [Neil: Okay. Does that work as a 
rule?] Don't see why it wouldn't. 

Excerpt 61. Danielle pattern hunts with process two 

1 Neil First trail (clicks, C) [Danielle: okay] Second trial. (clicks, A) 
[Danielle: okay] (clicks, C) [Danielle: okay] (clicks, C) (clicks, C). 
[Danielle: Alright.] So, what's going through your mind? 

2 Danielle Well, a simple pattern so far, kind of crossed a list because no 
there's a whole bunch of C's. [Neil: okay] But so far I just see an A. 
So, there may be a pattern. (Neil clicks, G) Well, that screwed that 
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one up. (laughs) Aright. You've got this down to an art form (Neil 
laughs).  Alright (Neil clicks, G). Okay. (Neil clicks, A) Alright, 

Following Process One, I took Danielle through Process Two (DNA).  

Immediately, Danielle reverted to hunting for a pattern in the values (Excerpt 61).  

Curious, I asked Danielle if she was thinking about the attribute on the intervention sheet 

(Excerpt 62).  For Danielle, looking for a pattern was the key way that she could find a 

rule.  If she could find a rule to follow (a clear rule), then she could classify the process.  

The other attributes took a back seat to this aspect for her. 

Excerpt 62. Danielle describes how patterns fit with the sheet 

1 Neil Still looking for a pattern? [Danielle: yep] What about these three 
attributes here? [Danielle: So far?] hmm-mm (agreement) Are you 
thinking about them any, or just pattern? 

2 Danielle Well, I guess pattern plays into it for me. [Neil: okay] So if I can 
find a pattern it means that it automatically, there has to be rule 
that it follows [Neil: okay], if I can figure out the pattern. 

3 Neil Was there actually a pattern in that last one (Process One) or just a 
rule? A pattern is something that sort of repeats 

4 Danielle A rule. I guess that's true, but the rule pattern makes a pattern after 
a while. I guess my definition is slightly different. (laughs) 

5 Neil That's okay. We're just, I'm just trying to figure out what your 
meaning for the word pattern is. 

6 Danielle Alright, so, I guess a pattern is something that has a rule that I can 
follow. [Neil: okay] And so far, this one doesn't have one. [Neil: 
okay] (Neil clicks, T) Even less of one now. 

I shifted Danielle’s focus from looking for a pattern to trying to place the letters 

into a context.  After dropping a hint about biology and making a double helix, Danielle 

made the connection between the letters and a sequence of DNA nucleotides.  Given her 

proclivity to look for a pattern, I decided to frame the DNA sequence with in a context 

where investigating whether the process was reproducible or replicable could create 

perturbation in her thinking.  To do this, I framed the process as if the process lists off a 
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single person’s DNA sequence (Excerpt 63).  With this initial image, Danielle stated that 

the Process Two would have fixed outcomes, be reproducible, and have a clear rule (lines 

2–10).   

Excerpt 63. Danielle’s first classification of process two (single person’s DNA) 

1 Neil If this is a single person's DNA, and we're just reading off, do you 
think that is going to be fixed or unfixed in terms of what the next 
nucleotide is for this person? 

2 Danielle It would be fixed. 
3 Neil Fixed. Would the process of looking at the nucleotides be 

reproducible or replicable? 
4 Danielle Looking at the nucleotides, would be reproducible. 
5 Neil Okay. So, would we have a clear or fuzzy rule? 
6 Danielle It would be clear in that case. 
7 Neil Let's go ahead and mark that in. [Danielle: okay] So if this is a 

single person's DNA, we would have fixed outcomes, [Danielle: 
mmm-hmm] If we're reproducible, right? [Danielle: mmm-hmmm] 

8 Danielle And then clear rule, if you're just looking at it and trying to...(trails 
off) 

9 Neil So then what type of category would this be? 
10 Danielle It would be deterministic. [Neil: okay] 

Given that I had set Danielle up for a perturbation, I asked her how we could 

check whether Process Two as actually reproducible.  As I re-ran Process Two a term at a 

time, Danielle ran into an unexpected “T” (line 4 of Excerpt 64).  Of the three possible 

explanations that Danielle comes up with (human error, DNA changing, or not 

reproducible), Danielle focuses in on reproducibility/replicability (lines 7–10).   

Excerpt 64. Danielle wrestles process two 

1 Neil How could we check if they actually are reproducible? 
2 Danielle Sequence it again. [Neil: okay] (Neil clears the applet) [Neil: Are 

you ready?] 
3  [Neil provides the first several terms from the first time through 

Process Two: C A C C C C] 
4 Danielle Oh, that's right. (Neil clicks, C) Okay. (Neil clicks, A) (Neil clicks, 

T) Hmmm 
5 Neil What's the hmmm? 
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6 Danielle So, if they started from the same starting point, they messed up 
somewhere. Or the DNA changed. Or it's not reproducible and it's 
replicable. 

7 Neil So, fill in the whole shebang here [Danielle: I should have written 
that down, shouldn't have I] So, do you think that this is now still 
reproducible? Or maybe now not reproducible? 

8 Danielle No, I don't think that it's reproducible anymore because you didn't 
get the exact same result. 

9 Neil So maybe we're replicable. [Danielle: yeah] Why would we be 
replicable? 

10 Danielle Because you could still sequence the DNA in the same way, the 
process is the same but your outcomes different. 

With her image of process two now being replicable instead of reproducible, 

Danielle changes her original answers and reclassifies the process (Excerpt 65). 

Excerpt 65. Danielle re-classifies process two 

1 Danielle So, (looks at her answers) it means all my answers are different. 
2 Neil Why do you think that means all of your answers are different? 
3 Danielle Because if it is not, if it is not reproducible exactly, then your rule 

can't be as clear as you would like it to be. [Neil: ahh] And that 
would mean, that by definition your outcome wouldn't be the 
same, so you'd be unfixed. [Neil: okay] 

4 Neil Cause that's also what replicable is, right? [Danielle: mmm-hmm 
(agreement)] We can carry out the process, but we don't, by your 
own admission then the end results aren't the same. [Danielle: 
Yeah] So let's do that; let's go ahead and fix the rest. So, what 
would that mean for category? 

5 Danielle It would be stochastic.  
6 Neil So, I want you to think back on what you did with these three 

(Processes Zero through Two). [Danielle: Okay] With the first two, 
you were looking for a pattern. So, in the third you were looking 
for a pattern. [Danielle: mmm-hmmm (agreement)] But then I had 
you think about the type of repetition. [Danielle: okay] Notice that 
by investigating the type of repetition, rather than pattern hunting 
(Danielle chuckles), you were able to better identify. [Danielle: 
That's true, yes.] Okay, I want you to keep that mind. [Danielle: 
Alright]. 

After she finished re-classifying Process Two, I asked Danielle to think back 

through her activity in the first three processes.  When working with Process Three 
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(deterministic, 2n + 1), Danielle quickly saw a pattern that worked. However, after she 

had me fill the grid, then had me clear the applet and re-run Process Three.  Upon seeing 

the process work identically as the time before, she classified the process as being 

reproducible and quickly finished classifying Process Three.  For Process Four 

(deterministic, n2 / 100), Danielle acted in a similar manner:  she looked for a pattern 

(initially seeing the perfect squares, struggled for a bit on the dividing by 100) and then 

checked the process by having me reset the applet and re-running the process.  At this 

point, Danielle’s first instinct is to still look for a pattern, however, she is now using the 

notions of reproducibility/replicability to serve as a check on a pattern that she believes to 

be holding.  With Process Five (stochastic, standard normal distribution), Danielle 

encountered a situation where she could not discern a pattern within the first several 

terms as she could with Processes Three and Four (Excerpt 66).  As Danielle looks for a 

pattern, she is pre-disposed to try to find a formula like she did in Process Four.  

However, the appearance of a negative number (line 4) throws her for a loop.  When 

looking at the filled in applet (line 5), Danielle can’t find a pattern.  Given what that she 

needed a pattern first before she checked reproducibility/replication with the prior 

processes, I prompted her (line 6) to recall our discussion after Process Two.  Danielle 

expresses that she hopes that the values will not be repeated in the same order as that 

would indicate that the process is reproducible and would therefore have a rule (lines 9–

15).  After stating the Process Five is replicable, Danielle quickly categorizes the process 

as having unfixed outcomes and a fuzzy rule before declaring the process stochastic 

(lines 17–25). 
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Excerpt 66. Danielle classifies process five 

1 Neil So what are you thinking about? 
2 Danielle The last one was, there was a formula you could figure out after a 

while. I was trying to see if maybe there's something to work with 
these guys, but ...(Neil clicks, 0.61)...Hmm, I still don't see one 
though [Neil: okay] (Neil clicks, 0.2). Hmmm. 

3 Neil So what things are you thinking about as you're looking for 
whatever you're looking for? 

4 Danielle Alright, well, it starts off with a number greater than one, and then 
everyone after is less than one, but they aren't in any, particular 
direction. [Neil: okay, what do you mean by that?] And so, umm, 
it's not like a 1.22 and then 0.87 then 0.73, like they are switched. 
It's not a continuously smaller [Neil: so, we went down then up and 
then down] yeah. [Neil: and then down again] Yeah. [Neil: Okay. 
Rather than down up down up down up down up, or all down] Or 
just continuously, yeah, yeah. [Neil: okay] So, (Neil clicks, –0.14) 
Well now not all of them positive now. At least they had that going 
for them… 

5 Danielle …I still can't see like any correlation between them [Neil: okay] 
(Neil clicks, 1.2) Yeah, I don't see a pattern to any of these guys. 
[Neil: Shall we fill the gird] Yeah. A lot of them are similar, and a 
couple of them repeat. 

6 Neil Are you still looking for pattern? [Danielle: Trying to, but I don't 
see one] So you remember our conversation we had a little bit ago? 
[Danielle: Yes, I know (laughs)] So, what should we try to do? 

7 Danielle We should try to do it again. And hopefully I'll remember the first 
five or so (Neil points to scratch paper). [Neil: Do you have 
paper?] I do. Oh, hey! Look at that; that would be useful. (Danielle 
records several values.) Okay. 

8 Neil Alright. So, what are you hoping for when I press this run process 
once button? 

9 Danielle I'm hoping that they don't repeat. 
10 Neil And what's the thing that's being repeated? 
11 Danielle The numbers, like I hope they aren't repeated in the exact same 

order. 
12 Neil So, we shouldn't get a 1.22 in the first position? [Danielle: yes] 

What if you get a 1.22 in the second position? [Danielle: then I'd 
be okay with that] Okay. But if, what if you get a 1.22 in the first 
position? 

13 Danielle If I, I'm hoping that I don't get these guys in order as they are in the 
first six. [Neil: okay] Because that just, that would mean that they 
aren't not replicable, or not reproducible but replicable.  

14 Neil And if you do get the first, those six in order? 
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15 Danielle Then it means that it is reproducible, I just don't know the rule that 
it's following. [Neil: Okay. Shall we find out?] (Neil clicks, –0.7) 
Yay! [Neil: you're cheering] I am cheering (laughs) [Neil: shall we 
do the next one?] Sure. (Neil clicks,–0.02) Okay.  (Neil clicks,      
–1.55) Yeah, so it's not reproducible. [Neil: Are you sure?] Pretty 
sure. [Neil: Positive?] Yes [Neil: Shall we fill?] Yeah. Mostly 
these are negative this time, that's cool. So, it's not reproducible, 
which means it's replicable.  

16 Neil Okay. What does that mean for the type of repetition? 
17 Danielle Which means it's, the process is replicable, but the results are not 

going to be the same. (Marks the sheet) 
18 Neil So if we're replicable, what does that mean for your outcomes? 
19 Danielle Definitely unfixed. 
20 Neil Okay. What does that mean for your rule? 
21 Danielle It's fuzzy as far as I know. 
22 Neil Okay. Definitely not clear? 
23 Danielle No, definitely not clear. 
24 Neil So what does that means in terms of your process? 
25 Danielle That it would be stochastic not deterministic. 

 
Figure 38. Danielle’s record of process six values 

The success that Danielle had with Process Five carried over to Process Six 

(stochastic, standard die roll).  While I believe she still looked for a pattern to begin with, 

Danielle took steps that she had not previously done as quickly as she did:  she recorded 

the first set of values (see line 2 of Excerpt 67 and Figure 38) and she prompted me to fill 

then clear and redo Process Six (lines 2–4).   

Excerpt 67. Danielle classifies process six 

1 Neil Process six. Are you ready? [Danielle: yes] (Neil clicks, 3) 
[Danielle: okay] (Neil clicks, 2) [Danielle: Okay.] (Neil clicks, 6) 
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[Danielle: mmm-kay] You squinted your eye at that six. (Danielle 
laughs) What did the six do to you? 

2 Danielle It was there, it was, it existed. [Neil: okay] Okay (Neil clicks, 1) 
Okay, so 3 2 6 1, right [Neil: mmm-hmm (agreement)] (Danielle 
writes these values down) Okay. (Neil clicks, 1) Alright. [Neil: do 
you think you know what's going on?] Not a clue but I can check 
it. [Neil: You can check it? What are you going to check?] So, if 
you fill it in and then redo it. [Neil: So, fill in.] Okay. 

3 Neil So you want me to clear and re-run the process? [Danielle: Yes.] 
Alright. (Neil clicks, 3) 

4 Danielle Okay. (Neil clicks, 6) [Neil: shall we go again?] Yeah. (Neil clicks, 
3) Okay. (Neil clicks, 5) Alright. (Neil clicks, 1) 

5 Neil Shall we fill in? [Danielle: yeah] So what are you thinking about 
this process? 

6 Danielle Hmm, that it's, they aren't the same, so it's not reproducible. [Neil: 
what's not the same?] The end results, the values that actually 
appear [Neil: okay] So our results aren't the same [Neil: so, what 
type of repetition?] It's replicable. [Neil: okay. Are you sure?] No. 
[Neil: How can you convince yourself even more so?] Do it again. 
[Neil: Do it again? Okay. Are you ready?] Yep. (Neil clicks, 4) 
Okay (Neil clicks, 1) Yeah, so I'm sure (Neil fills the board). Cool. 
So, it is replicable again [Neil: okay] Unfixed outcome, because 
they weren't all the same, and then fuzzy rule because I still don't 
know what is going on. 

7 Neil …So what might be the rule here? 
8 Danielle Rolling a die. [Neil: is that a rule?] Yes, but you still can't 

reproduce it. [Neil: So, what type of rule is that?] Clear (unsure)... 
9 Neil Earlier you said that clear was a formula that we could follow but 

for fuzzy rules there was a level of what you called variability.  
10 Danielle I'm really glad that you write what I say down, because I wouldn't 

have remembered (both laugh). So, yeah, this would still be fuzzy 
because there is still this level of variability. [Neil: We can roll the 
die, right?] Yeah, we can't guarantee what it's going to land on, so 
it would still be fuzzy. [Neil: Okay. So, the process would be, in 
terms of category] Oh, uh, stochastic.  

As Danielle worked with Process Six, is was quickly able to determine that the 

process was not reproducible but replicable (line 6 of Excerpt 67).  Danielle did have 

some hesitation over whether the rule to Process Six was clear or fuzzy (line 8).  I believe 

that her hesitation was due to her image of rolling a die be a straightforward rule; she 

would know what to do.  Danielle appeared to have lost track of the relationship between 
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a clear rule and getting exact outcomes.  However, after I reminded her of what she had 

said earlier, Danielle was able to identify the fuzzy nature of rolling a die and classify 

Process Six as stochastic (lines 9-10). 

I then had Danielle work with Process Seven; the process that has both 

deterministic and stochastic aspects.  Once again, Danielle started hunting for a pattern as 

I carried out the process (lines 1-4 of Excerpt 68).  However, Danielle made a surprising 

move:  she began to write down the values in an effort to stop thinking about patterns 

(line 6).  Danielle appeared to realize that by focusing on whether the process was 

reproducible or replicable was both easier and more productive than trying to find a 

pattern from the start.  

Excerpt 68. Danielle explores process seven 

1 Neil Process Seven. First result (4) [Danielle: Okay] Second result (5) 
[Danielle: okay] (Neil clicks, 2) [Danielle: Alright (laughs)] (Neil 
clicks, 3) [Danielle: okay] (Neil clicks, 1) So what do you think is 
going on? 

2 Danielle Well, I thought I knew, but now I'm not sure. 
3 Neil So what did you think. 
4 Danielle So I thought it would be like 4, 5, 2, 3, 0, 1, but now there's a one 

there. So, I'm not too sure. [Neil: so, you're thinking about patterns 
again.] Yeah, it always come down patterns. Okay. So [Neil: 
Ready?] Yeah. (Neil clicks, 2) Okay. (Neil clicks, 3) Alright. (Neil 
clicks, 1) Hold on, let me write all these down. 

5 Neil So why do you want to write them down? 
6 Danielle Cause if I stop thinking about patterns, all I need to know is if it is 

reproducible or replicable. Which means I would technically need 
to know a couple of them to test that out. [Neil: okay] (Danielle 
records several values on her sheet.) Okay. Can we fill it and 
restart it?... 
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Figure 39. Danielle’s four records of process seven 

Danielle did not just write down the values for two times through Process Seven 

(Figure 39), she tracked four separate times through the process; three to convince herself 

to trust her intuitions (lines 1-7 of Excerpt 69) and a fourth at my request (lines 9-10). 

Excerpt 69. Danielle explores process seven’s repetition 

1 Neil Okay. So, I'll fill in. [Danielle: okay] Reset. Run the process the 
first time (1). [Danielle: okay] Second time (6). Third time (2). 
Fourth time (3). (Neil clicks, 4) (Neil clicks, 2) (Danielle records 
values on her paper) (Neil continues clicking, 6, 5) So what are 
you noticing? 

2 Danielle It is still one through six, but they are not the same. They are not 
identical. [Neil: they are not identical] mmm-Hmm. 

3 Neil So if we fill in...shall we do this again? [Danielle: Yes.] You seem 
a hesitant, like I'm (Danielle laughs) 

4 Danielle I can never be sure. [Neil: Can never be sure about what?] Whether 
I should just trust my gut instinct on this, or if I should just run this 
another time to be sure. [Neil: Well, what is it going to hurt run 
another time?] That's true. 

5 Neil So let's run this another time. [Danielle: Okay.] Are you ready? 
[Danielle: yeah] (Neil clicks, 6) 

6 Danielle Okay. (Neil clicks, 4) Yeah, so it is definitely different. [Neil: Are 
you sure?] yes. (Neil clicks, 2). (Neil clicks several times; 1, 1, 2) 
Yes, I'm sticking with my guns on this on. (laughs) 

7 Neil So write, go ahead and write down those numbers again. [Danielle: 
alright] I'll go one more that way...[Danielle: okay] Alright, we 
could fill in the rest right? [Danielle: mm-hmm (agreement)] We 
could run this again, right? Are you ready? [Danielle: yes] You 
seem very reluctant. [Danielle: yes] Why are you reluctant? 

8 Danielle Cause there's got to be like this nefarious plan... 
9 Neil No nefarious plan, I just want to make sure that, that you are very 

confident with (Danielle laughs) what you're claiming. [Danielle: 
okay] (Neil clicks, 3) 
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10 Danielle Okay. (Neil clicks, 6, 2) (Sighs) So there is a pattern. [Neil: What 
do you mean that there's a pattern?] Sort of...so, not the next two, 
but the third from now should be a two. (Neil clicks three times, 6, 
1, 2) Okay. (Neil fills the grid) So every third is a two. 

In line 10 of Excerpt 69 Danielle notices that every third outcome of Process 

Seven is a two.  This causes some issue for Danielle as she tried to fill in the worksheet 

(Figure 37) for Process Seven.  I believe that my response to Danielle’s question of the 

existence of middle options (line 2 of Excerpt 70) only clouded the issue at hand.  While I 

had tried to clarify, I believe that had I given her the option to generate her own middle 

categories, I would have gotten better insight into how she was thinking about process 

seven.  While Danielle was happy to pick both fixed and unfixed for outcomes (lines 9-

11), she did not attempt to pick both for the type of repetition (lines 1-8) nor for the type 

of rule (line 12).  Danielle saw both reproducible elements (line 4) and replicable 

elements (line 6).  However, Danielle deferred to replicability as she noted that the 

pattern of a two every third outcome was replicable (line 6).  Danielle’s thinking here is 

in line with thinking that something that is reproducible is inherently replicable:  

replicability is about repeating the process, reproducibility is repeating the process and 

getting the same results.  Danielle made use of the twos to establish the existence of fixed 

outcomes and a clear rule.  I suspect that the regularity of the twos had Danielle thinking 

along the same lines that von Mises encouraged for looking for a gambling system.  If an 

individual can find a gambling system, then he/she doesn’t need to worry about anything 

else to make a judgement about the process.  For making her final classification of 

Process Seven, Danielle went with a majority rules approach (lines 13-16).  I do wonder 
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what she would have come up with had I not forced her to choose between deterministic 

and stochastic, but rather if I let her create a new category. 

Excerpt 70. Danielle classifies process seven 

1 Neil So are we replicable or reproducible? Or something in between? 
2 Danielle Closer to something in between. So, every third is guaranteed to be 

a two, but the ones in between those are variable. [Neil: okay] Do 
we have a middle option? [Neil: no.] Hmmm [Neil: At least not in 
terms of these categories (deterministic/stochastic)] Okay. [Neil: 
here (the three columns) we can create some middle categories] 
Okay. 

3 Neil But in terms of our categories here, we're either deterministic or 
we're stochastic. [Danielle: Okay] But right now, let's wrestle with 
these. [Danielle: okay] So in type of repetition, are we reproducible 
or replicable? Or both? 

4 Danielle Well, we can reproduce that every third number is going to be two.  
5 Neil Does that hold for the rest? [Danielle: For all of them?] For the 

whole sequence?  
6 Danielle Yes. You're making me doubt my sanity though. (Both chuckle) 

Yeah, it looks like it [Neil: okay] But the numbers in between 
those you can't, you can replicate the process, so I guess you can't 
[Neil: but we can only reproduce on the third] Yeah. [Neil: okay] 
So, like you can replicate the pattern on every third is going to be a 
two. [Neil: okay] Does that count?  

7 Neil So what are you going to fill in the box? 
8 Danielle I would it call it replicable. [Neil: Okay] 
9 Neil So fixed or unfixed outcomes? 
10 Danielle The twos are fixed. But everything else isn't. [Neil: But do we have 

at least have something that is fixed?] mmm-hmmm (agreement)  
Would every third number being fixed count as being a fixed 
outcome? [Neil: You tell me. It's your turn to make a decision.] 
(laughs)  I don't like decision making. I'm not qualified for this. 
[Neil: yes, you are.] (laughs) Umm, 

11 Neil You can pick both. [Danielle: I'm allowed to pick both?] You're 
allowed to pick both in these (the three columns), you're not 
allowed to pick both in this (deterministic/stochastic column). 

12 Danielle Gotcha. I would say clear rule. [Neil: clear rule] yeah. Unfixed... 
13 Neil So in terms of category, what are we? 
14 Danielle What were the definitions between the two of them? 
15 Neil So, stochastic is unfixed, replicable, and fuzzy. All three have to be 

true. [Danielle: okay] Deterministic typically clear rules, typically 
reproducible, and fixed outcomes. 
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16 Danielle Alright, I'm going to go with two out of three, even technically 
either one is,...let's do deterministic. [Neil: okay] 

 
Figure 40. Danielle’s records for the remaining processes 

For all but one of the remaining six processes, Danielle’s approach was the same:  

write several terms from the first time through the process.  Then she would have me 

reset the applet and carry out the process again.  Each color in Figure 40 denotes a 

different process, starting with Process Eight and skipping only Process Nine 

(deterministic, always –6).  With the exception of Process Twelve (negative reciprocals 

of the natural numbers), Danielle had me carry out each process three times (Process 

Twelve was only twice).  Her focus became checking for reproducibility or replicability 

first.  Once she had established the type of repetition, she would know whether there 

were fixed or unfixed outcomes.  She could then work on finding a pattern or clear rule 

for only those processes that were reproducible and had fixed outcomes.  Danielle had 
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developed a litmus test for whether she should devote time to looking for a pattern.  

Danielle viewed deterministic processes as processes that have a reproducible 

pattern/clear rule.  For her, a stochastic processes had the hallmark of replicability and 

unfixed outcomes.  Her litmus test was checking for replicability, a substantial shift away 

from her original method of looking for a pattern.  At the start of the second session, I 

believe that Danielle’s meaning for stochastic process as tied more closely to the absence 

of a pattern than to unfixed outcomes and replicability.  However, by the end of the 

session, I believe that Danielle’s meaning had shifted to prioritize the notion of 

replicability of a stochastic process over that of a pattern.  Given the usefulness of her 

using her litmus test and having success, the notion of replicability appears to be a key 

component in developing a productive way of thinking about stochastic processes.   
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Chapter 9: Discussion and Conclusion 

In this final chapter, I will return to my research question in light of what I have 

learned about Bonnie’s and Danielle’s thinking about stochastic processes.  Additionally, 

I will discuss several limitations related to this research before proposing implications 

and future directions for research.  

Comparing Bonnie and Danielle 

The primary research question for this study is “What meanings for stochastic 

process do students develop during an instructional sequence based upon a hypothetical 

learning progression for thinking of distribution as describing the complete behavior of a 

stochastic process?”  In answering this question, I found some distinct differences in the 

meanings that I believe Bonnie and Danielle developed.   

For Bonnie, a stochastic process was any process that lacked any type of rule or 

pattern, being impossible to correctly guess what would happen next.  Her conveyed 

meaning for randomness as being without pattern was the driver behind her meaning for 

stochastic process.  When presented with a black-boxed process such was what she 

encountered with the Sequences applet, I believe that she thinks about the appearing 

sequence of outcomes and that the process is nothing more than the unveiling of those 

outcomes.  Her thoughts focus on the sequence and looking for a set rule or pattern that 

would allow her to state what outcome comes next.  When she cannot think up a set rule, 

then the sequence is random and so is the process of unveiling.  Bonnie’s way of thinking 

centers on the outcomes, not on the process itself and is evidenced by her pattern hunting.  

She is limited by her past experiences in looking for patterns.  Bonnie mainly focused on 
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arithmetic patterns and had trouble coordinating multiple patterns (e.g., Process 10—the 

shuffled Fibonacci Sequence). 

Danielle’s conveyed meaning shifted from centering on the lack of a pattern in the 

outcomes to looking at repeating the process the seeing if the outcomes are the same 

(values and order).  If I were to present Danielle with a new black-boxed process, I 

believe that her thinking would entail having me unveil several outcomes, which she 

would record, and then have be reset and unveil more outcomes.  She would then 

compare this second set to the prior set:  if she found that the outcomes where the same 

values, in the same positions/order (i.e., reproducibility), she would declare that the 

underlying process is deterministic; otherwise she would say the process is replicable and 

stochastic.  In Danielle’s thinking there is a process that is more than unveiling; there is 

something behind the unveiling that can be repeated.   

The thinking that Bonnie and Danielle employed led them to disagreements on 

only a few fronts; primary Processes One, Two, Seven, and Ten as shown in Table 12. 

For Process One, while both Bonnie’s and Danielle’s thinking revolved around pattern 

hunting, Bonnie was limited by her past experiences with primes.  With support in a 

follow up portion at the end of the second exploratory teaching interview, Bonnie was 

able to make use of recognizing primes to revise her initial classification of Process One.  

For Process Two, Danielle came up with two different classifications based upon her 

imagining two different situations.  I will discuss this more in the limitations section of 

the present chapter.  The disagreement on Process Seven is a result of my forcing 

Danielle to choose between the two classifications.  The disagreement on Process Ten 
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stems from their thinking.  Bonnie’s thinking about classifying a process as deterministic 

or stochastic came down to her identifying a pattern or set rule.  By the time Danielle saw 

this same process, her thinking revolved around whether the process was replicable or 

reproducible.  

Table 12. Bonnie and Danielle's Classifications of the Sequences Applet Processes 

Process Bonnie Danielle Intended 
Zero Set Rule Deterministic Deterministic 
One Random Deterministic Deterministic 
Two Random Deterministic, Stochastic Stochastic 
Three Set Rule Deterministic Deterministic 
Four Set Rule Deterministic Deterministic 
Five Random Stochastic Stochastic 
Six Random Stochastic Stochastic 
Seven Random & Set Rule Deterministic Non-stochastic 
Eight Set Rule Deterministic Deterministic 
Nine Set Rule Deterministic Deterministic 
Ten Random Deterministic Deterministic 
Eleven Random Stochastic Stochastic 
Twelve Set Rule Deterministic Deterministic 
Thirteen Random Stochastic Stochastic 

 
Bonnie and Danielle provide two cases for what meanings students can construct 

for stochastic process.  Both of them had a traditional introductory statistics class, 

focusing on procedures.  The curriculum at that time did not entail discussion of 

stochastic processes at all.  Bonnie demonstrates that without explicit supports to develop 

a productive meaning for stochastic process, the role of stochastic process is nearly, if not 

entirely, absent from a student’s thinking.  The focus is entirely on the outcomes and the 

sequence that the student happened to observe.  Danielle is a case where with support, a 

student could move away from only looking at a single set of trials of a process to 

comparing several sets of trials.  The thinking that Danielle has the seeds for thinking 
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about stochastic processes in a way that would support her in thinking about variation 

between collections (what others refer to as sample-to-sample variability):  carrying out 

say a dozen trials of the process creates a sample, the resetting and getting a new dozen 

trials creates a second sample.  Noticing the replicability of the process can then lead to 

questions of “how different are the samples?” and “why might the samples be different?”.  

Both questions, and particularly the second, have the potential to help a student such as 

Danielle to begin thinking about stochastic processes less tied to particular outcomes. 

A Third Participant’s Thinking 

Within both the description of Bonnie’s and Danielle’s work with the applets and 

their thinking, there is a third participant whose thinking evolved:  me.  At the onset of 

this work, my thinking about a stochastic [random] process was much more closely tied 

with my then meaning for randomness as sequence complexity.  At that point in time, I 

believe that the process was a necessary nuisance to create a sequence which I would 

then check for the appearance of randomness by checking for term-based patterns, 

gambling systems, and complexity.  However, through carrying out this research, my 

continued teaching of the concepts, and thinking through critiques, my thinking has 

evolved.  At present, my thinking for a stochastic process centers much more on how I 

imagine the process unfolding and randomness is more the necessary nuisance.   

In Chapter 4, I proposed an initial concept map for stochastic/random process (see 

Table 2) that held two top levels: first- and second-order stochastic processes.  The 

essential difference was that a first-order stochastic process deals with the generation of 

raw data while the second-order stochastic process dealt with the process generating raw 

but also the process of using a statistic to learn something about the data collection.  
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While I stand by this distinction, I now believe that there is further refinement needed 

around the first-order stochastic process.  At present, the first-order process conflates two 

elements in certain cases:  the generative process of a data value and the process of 

selecting a member of a population.  To illustrate this difference, consider the generative 

stochastic process of rolling any die that isn’t designed to return a fixed value.  The 

underlying process is the act of rolling the die and we can imagine that the fuzzy 

rule/inputs consist of the many factors we can imagine such as friction, force of the 

throw, the surface we’re rolling the die on, manufacturing imperfections, etc. The die 

stops rolling, the end of this trial of the process, and we record the outcome.  

Alternatively, we could imagine the generative process of a person’s height:  the process 

consists of various biological and environmental factors making up the fuzzy rule/inputs. 

At a particular moment in time, we “freeze” the generative process and record the 

person’s height.  However, in addition to thinking about the generative process behind 

the person’s height, we can also think about the selection process that led us to this 

person.  We might make a sampling frame and carry out a simple random sampling 

procedure to get this particular person.  Teasing apart the generative and selective aspects 

of a stochastic process should provide new opportunities to continue investigating 

students’ understandings of stochastic processes.  One place that such a teasing apart 

could bear fruit is in the notion of fixed versus random effects in regression models.  In 

my current thinking a “fixed effect” would be a case where I suppress any thought about 

the generative process behind the term and only go with the selective process.  However, 
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if I were to think about the factor as a “random effect”, I am now starting to bring both 

the selective and generative processes together.  

Implications-Concept Map 

Both Bonnie’s and Danielle’s meanings for stochastic process are missing from 

the original concept map for stochastic/random processes (Table 2).  Additionally, my 

recent thinking about generative and selective processes involved at the first-order 

stochastic process level is also missing.  Together, these have led me to develop a revised 

concept map as shown in Table 13.   

The first addition is the level of “Model Without a Pattern”.  This way of thinking 

about a stochastic process is what underpins Bonnie’s meaning.  In such a case, the 

individual views a stochastic process as any process for which a pattern cannot be found.  

While the individual will carry out several trials of the process, the individual does not 

think to start all over and re-carry out the process.  I suspect that such a meaning for 

stochastic process is irrevocably tied with the lack of a discernable pattern meaning for 

randomness (see Table 10). 

The second addition is the “Replicable Model” level to the concept map.  This 

particular way of thinking goes beyond chance models in that the student does not bring 

up statistical fairness.  However, this way of thinking does not quite reach the level of 

first-order stochastic model in that the individual does not engage in checking for the 

appearance of randomness.  Rather the individual focuses on whether the process can be 

repeated and if the outcomes are exactly the same (i.e., the process is reproducible) or if  
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Table 13. Revised Stochastic/Random Process Concept Map 

Second-Order Random Models 
The student imagines a method of generating values of a statistic of interest to answer a research 
question about a population.  In generating the values of the statistics, the student envisions a first-order 
random model to get data values necessary for the generation of the value the statistic. The student 
anticipates being able to repeat this larger process of generating values of the statistic indefinitely and 
that the values will not always be the same.  Adapted from (Liu & Thompson, 2002).  

First-Order Random Model 
The student imagines a method of generating values of a random variable of interest to answer a 
question about that random variable in some population.  The student’s image includes the carrying out 
the method infinitely many times and expecting variation in outcomes of each trial of the method.  The 
outcomes are values of the random variable and form the sequence that the student checks for 
randomness.  Adapted from (von Mises, 1981). 

Generative Process 
The student imagines a loosely defined mechanism 
that would result a datum at the conclusion of 
carrying out the process once. The student’s model 
might include various factors but might not 
proposes detailed operations on those factors.  For 
example, the student might discuss how parents’ 
height or age of the child impact the child’s height 
but not be able to give an explicit model. 

Selective Process 
The student imagines a way of picking members 
out of a population. The end result of the process 
is the selected object/living being and the values of 
whichever attributes he/she might be interested in. 

Replicable Model 
The student imagines a process that he/she can repeat for a set number of trials as well as anticipating 
that he/she can then carry out new iterations of these sets of trials.  The student’s image of process is 
such that the process will show replicability (repeating the process and getting like outcomes) but not 
reproducibility (repeating the process and getting the exact same outcomes).  This way of thinking 
allows the student to also identify whether the process will produce fixed or unfixed outcomes and have 
a clear or fuzzy rule.  

Chance Model 
The student imagines a method of generating values of the random variable, while the student could 
carry out an infinite number of times, the student does not feel the need to carry out any trials of the 
method in order to answer questions about the random variable.  The student is able to completely 
specify each and every outcome without running trials and the student assumes that each outcome has 
the same chance of occurring as every other outcome. Adapted from (von Mises, 1981; Weisberg, 2014). 

Model Without a Pattern 
The student imagines a process that does not follow any particular rule or pattern.  The student engages 
in pattern hunting to evaluate whether or not the process follows, but the student does not think to carry 
out the process with new iterations of different trials.  

Deterministic Model 
The student imagines a process where he/she anticipates what the result will be before carrying out the 
process.  Further, the student anticipates that if he/she carries out the process under identical conditions 
again and again, the result will be essentially the same each time.  

Null Model 
The student believes that there is no way to model the behavior of a random variable or statistic. 
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the outcomes are different (i.e., the process is replicable).  Given Danielle’s success, this 

particular meaning for stochastic process is both useful in the moment and productive.  

Danielle was able to use this meaning to have success in identifying which processes 

where deterministic or stochastic.  This meaning allowed her to bypass hunting for 

patterns by recognizing when such an activity would not be fruitful (i.e., finding 

replicable processes).  From an instructional point of view, this meaning is productive in 

that once a student has this meaning for a stochastic process, helping the student develop 

methods for checking the appearance of randomness that become integrated with this 

meaning will move the student up a level in the construct map. 

Given her responses, I believe that Bonnie is at the Model Without a Pattern level.  

Bonnie was able to operate successfully in her introductory statistics course with such a  

meaning and I suspect that if she were to take a second course, she would continue to 

have success with this meaning.  With her imagining that stochastic process is a process 

that does not have a set rule or pattern to the outcomes, her understanding of distribution 

will be limited.  I hypothesize that her meaning for distribution will be along the lines of 

the D.S. Moore definition (i.e., a  distribution is the domain and how often each value 

occurs).  While Moore might intend for students to understand “how often each value 

occurs” to refer to probability, I suspect students like Bonnie will interpret that phrase as 

being about absolute frequency.  Further, I suspect that given the primacy that the lack of 

a pattern has in Bonnie’s thinking, her image of distribution will not support her in using 

distributions to make claims about long-run behavior.  
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Danielle’s view of stochastic process as centering on the notion of replicability 

provides her with an escape from the tyranny of patterns.  While her thinking allowed her 

to check off the other two aspects (unfixed outcomes and fuzzy rule), I believe that the 

real potential of this way of thinking was untapped in this study.  I suspect that Danielle’s 

meaning for stochastic process offers the potential for spring boarding into investigating 

whether there is any kind of regularly to the process.  While she only looked at a few 

trials each time she checked for replicability, pushing her to look much larger sequences, 

with the assistance of data visualizations could help her start to see the emergent pattern 

of long-run behavior, that is to say, the distribution.   

One activity that could help Danielle here is to consider the selection of US adult 

and measure their heights in inches.  Figure 41 shows three moments: left-after carrying 

out the process eleven times; middle-after carrying out the process 111 times; right-after 

carrying out the process 10,111 times.  After the right panel (or even examining the graph 

while process continues to run), a conversation about what Danielle might notice about 

the graph could be had.  Then, Danielle could be asked what she think would happen if  

 
Figure 41. Three moments from a simulation 

we cleared out all of the data and started all over:  what would she anticipate seeing.  

Figure 42 shows two additional panels of carrying out the simulation another 10,111 

times. I suspect that Danielle would be able to argue that the sequences of data are not 

identical, but that there was some commonality.  Asking her what might be driving the 
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commonality could provide an opening to not only discuss distribution but also get 

Danielle to start thinking about a generative stochastic process. 

 
Figure 42. Two additional graphs from a simulation 

Limitations 

An important set of limitations revolves around the tasks that I used within the 

research.  My meanings for the ideas of randomness and stochastic process evolved over 

the course of the study.  However, the meanings that I had held at the start dictated how I 

originally conceived and then made the Four Rooms and Sequences applets and their 

tasks.  In particular, my meaning for randomness centered on examining a sequence of 

outcomes and checking whether there was term-based pattern, a gambling system and/or 

sufficient complexity.  Further, my meaning for stochastic process was much more tied 

up with my meaning for randomness.  Looking back, I would describe my meaning for 

stochastic process as anything process that would generate a sequence where I could 

check the boxes for no term-based pattern, no gambling system, and sufficiently complex 

descriptions.  The roles of unfixed outcomes, fuzzy rules, and replicability minor aspects 

pushed to the far edges of the stage by my meaning for randomness.  These meanings 

directly impacted the choices I made in the design of the underlying processes that I used 

for the rooms and the entire design of the Sequences Applet.   
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I originally designed the Four Rooms applet to serve as an introduction to the role 

of randomness and stochastic processes within the familiar context of using a light 

switch.  I intended for the prompt asking the student to describe how they would create a 

replacement button/switch for each of the four rooms as the opportunity for them to start 

making distinctions between different kinds of processes. However, the flashing lights of 

the four rooms and looking for patterns in those lights appears to support students in 

focusing on the outcomes of the generative processes rather than the processes 

themselves. 

The Sequences applet, as the very name implies, is a consequence of my sequence 

complexity meaning for randomness.  While I had planned for explicit details of the 

generative process to be absent, my design choices left the generative processes out in the 

cold.  Thus, I am limited in teasing apart Bonnie and Danielle’s thinking about the pattern 

of outcomes and what they actually conceived as the generative process.  There is one 

exception to this:  Danielle’s work with Process Two of the Sequences applet (see 

Excerpt 63, Excerpt 64, and Excerpt 65).  When Danielle recognized the outcomes as 

being nucleotides, she assimilated the partial sequence to her scheme for DNA 

sequencing.  I supported her assimilation and even prompted her to conceive of 

sequencing and reading out a single person’s DNA. She then used her understanding of 

this generative process to make decisions about fixed vs. unfixed outcomes, reproducible 

vs. replicable, and clear or fuzzy rules.  When I asked Danielle how we could check 

whether the sequence was reproducible, she went back to the generative process of 

sequencing the person’s DNA.  When I re-ran Process Two in the Sequences applet, the 
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values were not the same as what she originally saw.  Danielle game up with two tweaks 

to her original generative process:  that there was an error made in sequencing the DNA 

or that the DNA had changed.  Both of these options provided an unseized opportunity to 

dig into Danielle’s image of stochastic process within an outcome.  As I reflect upon this 

episode, I am curious as to how Danielle comment on a proposed process of selecting 

different individuals and recording the first nucleotide on the same chromosome.  With 

the remaining processes in the Sequence’s applet, I cannot separate either student’s 

thinking about the underlying generative process from the displayed sequence of 

outcomes. 

Future Directions 

There are several lessons that I and others can take away from this study.  First, 

the set of instructional activities and interventions do appear to support students in 

developing productive meanings for stochastic process.  The Four Rooms activity appears 

to support students in shifting away from the lower end of the randomness construct map 

(Table 10) and towards a meaning of the lack of a discernable pattern.  Additional work 

on developing activities to take students from the lack of a pattern meaning to the notion 

that randomness is an attribute of process is needed.  The Sequences Applet with the 

intervention that Danielle received supports students in developing the replicability image 

for stochastic process.  Marrying the sequences applet with instruction on checking for 

the appearance of randomness through term-based patterns, Kolmogorov’s Sequence 

Complexity, and von Mises’s Principle of the Impossibility of a Gambling System could 

provide students with experiences to help them develop a meaning consistent with a first-

order stochastic process.  
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Second, this study highlights that Statistics Education needs to take seriously the 

meanings that students bring with them for core concepts such as randomness and 

stochastic process.  All too often introductory statistics textbooks do not attend to 

students’ meanings for these concepts and in some cases, do not support students in 

developing any meaning.  For example, Agresti, Franklin, and Klingenberg (2017) state 

“Random is often thought to mean chaotic or haphazard, but randomness is an extremely 

powerful tool for obtaining good samples and conducting experiments” (pg. 12).  Later 

they present randomness as “randomly assigning subjects to treatments or randomly 

selecting people for a sample” (Agresti et al., 2017, p. 201).  In their discussion of 

random sampling, Agresti et al. allow for students to continue using the notions of 

haphazard or unplanned that Kaplan et al. (2009) as well as the notion of sampling by 

chance from Kaplan et al. (2014).  While Agresti et al. (2017) do discuss some stochastic 

processes in their until on probability (e.g., rolling dice), their emphasis is on the 

outcomes, not on the underlying process.  Figure 43 shows how these authors connect 

probability, randomness, and random phenomena (meaning outcomes); their next section 

heading is “Long-Run Behavior of Random Outcomes” (Agresti et al., 2017, p. 203). 

I proposed two secondary research questions as part of this study: 

• What impact do students’ meanings for randomness, random variable, and 

probability have on the development of their meaning for stochastic 

process during the instructional sequence? 

• What images of accumulation do students develop during the instructional 

sequence? 
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I did not investigate the students’ images of accumulation with any rigor.  At best, 

the students’ notions of accumulation are embedded in the various applets.  For example, 

the Sequences applet takes care of the accumulation by leaving a record, thus releasing 

the students from having to do that work.  While I did collect students’ responses about 

random variables and probability during the clinical interview portion (see the 

Appendix), I did not analyze that data for this dissertation.  However, I can answer the 

question of the impact of students’ meanings for randomness.  Absent the interventions 

Danielle received to get her to focus on replicability, unfixed outcomes, and fuzzy rules, 

a student’s meaning for randomness appears to be a major contributor to his/her meaning 

for a stochastic process.  Bonnie is an excellent example of this phenomenon.   

While there are some positive aspects (e.g., discussing probability as a long-run 

proportion), these authors do not attempt to problematize problematic meanings for 

randomness that students bring with them.  Nor do they successfully help students 

develop an image of stochastic processes; rather the support students on being focused on 

the outcomes.  I believe that the approach used by Agresti et al. supports students in 

engaging in pattern hunting behavior and at best, developing a meaning consistent with 

Bonnie’s for stochastic processes (the lack of a pattern).  

Lock, Lock, Lock Morgan, Lock and Lock (2017) present the concept of 

randomness to students in two ways:  as a way to prevent sampling bias and as the idea of 

uncertainty.  They provide students with a clear-cut caution (Figure 44) that students 

should not think of randomness as haphazard.  While this is improvement on Agresti et 

al. (2017), Lock et al. (2017) do not go on to discuss how students should think about 
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randomness outside of random sampling within the main part of their book.  While Lock 

et al. make use a simulation approach to teaching statistical inference, they do not discuss 

stochastic processes until Chapter P; their probability rules chapter located just before 

Appendix A.  “A process is random if its outcome is uncertain” (Lock et al., 2017, p. 

690, emphasis in original).  Again, I suspect that students using the Lock et al. book will 

develop a meaning for stochastic process consistent with the lack of a pattern.   

 
Figure 43. Agresti et al. (2017, pg. 201) relating probability, randomness, and 
random phenomena 
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Figure 44. A caution on how not to think about randomness (Lock, Lock, Lock 
Morgan, Lock, & Lock, 2017, p. 21) 

However, there is some hope for the activities in this study fitting in with at least 

one curriculum on the market.  The text Introduction to Statistical Investigations (Tintle 

et al., 2016) places an early emphasis on random processes.  In discussing the game show 

Let’s Make a Deal, these authors write “this game is an example of a random process: 

Although the outcome for an individual game is not known in advance, we expect to see 

a very predictable pattern in the results if you play this game many, many times” (Tintle 

et al., 2016, p. 10, emphasis in original).  After having the students play Let’s Make a 

Deal a number of times, the authors provide the following recap: 

A random process is one that can be repeated a very large number of times (in 

principle, forever) under identical conditions with the following property:  

Outcomes for any one instance cannot be known in advance, but the proportion of 

times that particular outcomes occur in the long run can be predicted. (Tintle et 

al., 2016, p. 13)  

This text appears to lay the groundwork for helping students develop a first-order random 

model meaning for stochastic process.  While Tintle et al. lay this foundation in their 

preliminaries chapter, in chapter one they shift to discussing chance models, consistent 

with how I have used this phrase in Table 13 (i.e., assuming statistical fairness).   



 

249 

Conceptualizing distribution as the long-run behavior of a process provides 

students with a powerful framework to reason probabilistically and to engage in statistical 

inference.  However, central to this conceptualization is the notion of stochastic process.  

Students must be able to imagine that stochastic/random process is one that can be 

repeated infinitely, be replicable but not reproducible, have unfixed outcomes, have a 

fuzzy rule, and the attribute of randomness (i.e., the minimization of bias and allowing 

for long-run predications). 
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APPENDIX A 
 

CLINICIAL INTERVIEW QUESTIONS 
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The following are example questions to be used during the initial clinical interview.  

Questions and tasks from and/or based on those in the literature have references listed. 

How would you explain "probability" to another person? (from N. J. Hatfield, 2016a, 

2016b) 

What comes to your mind when you hear the term "variable"? 

What comes to your mind when you hear the term "distribution"? 

a) Select all of the following situations that you believe match your meaning for 
"random".  

b) Tom and Harry are in the break room discussing what they thought about Star 
Wars: The Force Awakens. While describing what he liked about the movie, Tom 
said "Oh, did you know that Linda (a co-worker) is Lutheran?" Harry replied, 
"That's random." 

c) You're at home, someone knocks on your door and you don't know who it is. 
d) You and your two closest friends are trying to resolve who gets to choose what 

movie to see. One friend doesn't care but the other one and you both want to go 
see different movies. The neutral friend picks a number at random and the closest 
person wins. 

e) Nothing is ever random; there is always a reason that things occur. 
f) Everything is random. 
g) A sequence is random when you can't find a pattern to it; like the number pi. 
h) A sequence is random when you can't find a pattern, but you can use it predict 

something in the long-run. 
i) None of these match my meaning for "random".  

 
Which one of the following most closely matches your meaning for "probability"? 

a) Probability is the ratio (fraction) of how many ways you can get a particular 
outcome compared to the total number of outcomes. 

b) Probability is the likelihood that you have for observing some event. 
c) Probability is the long-run relative frequency of observing some event. 
d) Probability is the chance that you have for observing some event. 
e) Probability is how often you see some event occur in a set of observations. 

 
Suppose you toss a coin 20 times and get 19 heads and one tail. If you toss the coin one 
more time, what is the probability that coin will land heads?  
 
What is the probability that ASU will win its next football game against UA?  
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Explain as though to someone who does not know what "probability" means what the 
number "3/36" represents in the following statement: The probability of getting a 4 when 
you roll two dice and multiply their face values is 3/36. (from N. J. Hatfield, 2016a, 
2016b) 
 
Four machines designed to mimic a fair coin produced the given sequences. Select the 
machines that you believe model a fair coin correctly. 
Machine 1: H T H T H T H T H T H T H T H T H T H T 
Machine 2: H H H H H H H H H H T T T T T T T T T T 
Machine 3: H H T H H T H H T H H T H H T H H T H H 
Machine 4: H T T H H T T T T H T T H T T T T H T T  (from Green, 1987 as listed in 
Falk and Konold, 1994) 
 
How would you explain "chance" to another person? 
 
How would you explain the idea of "randomness"? 
 
Explain as though to someone who does not know what "probability" means what the 
number "1/12" represents in the following statement: The probability of getting a 4 when 
you roll two dice and multiply their face values is 1/12. 
 
What does it mean when a weather forecaster says that tomorrow there is a 70% chance 
of rain? What does the number, in this case 70%, tell you? How do they arrive at a 
specific number? (from Konold, 1989) 
 
Suppose the forecaster said that there was a 70% chance of rain tomorrow and, in fact, it 
didn't rain. What would you conclude about the statement that there was a 70% chance of 
rain? (from Konold, 1989) 
 
What do you think a random variable is? 
 

 
Using the Lotto Box answer the following question. Suppose you choose a ball from the 
box at random. What is the probability that the ball will have a number that is 5 or larger? 
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Which one of the following most closely matches your meaning for "chance"? 
a) Chance is the ratio (fraction) of how many ways you can get a particular outcome 

compared to the total number of outcomes. 
b) Chance is the long-run relative frequency of observing some event. 
c) Chance is how often you see some event occur in a set of observations. 
d) Chance is the likelihood that you have for observing some event. 
e) Chance is the probability that you have for observing some event. 

 
Suppose that a baby was just born in your local hospital. What is the probability that the 
baby is a girl?  Please explain your reasoning. 
 
What do you think is meant by the phrase "distribution of a random variable"? 
 
Explain as though to someone who does not know what "probability" means what the 
number "3/36" represents in the following statement: The probability of randomly 
selecting a US man, age 20-45, whose height is greater than 6ft is 3/36. 
 
How would you explain "likelihood" to another person? 
 
Which one of the following most closely matches your meaning for "likelihood"? 

a) Likelihood is the long-run relative frequency of observing some event. 
b) Likelihood is the probability that you have for observing some event. 
c) Likelihood is the chance that you have for observing some event. 
d) Likelihood is how often you see some event occur in a set of observations. 
e) Likelihood is the ratio (fraction) of how many ways you can get a particular 

outcome compared to the total number of outcomes. 
 
How would you explain "odds" to another person? 
 
Consider the words "probability", "chance", and "likelihood". Which of these words do 
you believe refer to the same idea? 
 
Suppose you hear someone state that among young adults (25 to 34 years old), the 
probability of a person having only a high school diploma is 0.31. 

A) Rank each of the following statements (1-lowest, 5-highest) based upon how 
useful the statement is for explaining the idea of probability in this context. 

a. A probability of 0.31 means that 31/100ths of the sampled young adults 
will only have a high school diploma. 

b. A probability of 0.31 means that we will have exactly 31 young adults 
who only have a high school diploma for every 100 young adults sampled. 

c. A probability of 0.31 means that 31% of the time we repeat the sampling 
process to select a young adult, we’ll observe a young adult who only has 
a high school diploma. 

d. A probability of 0.31 means that we have a 31% chance of selecting a 
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young adult who only has a high school diploma on the next trial of the 
sampling process. 

e. A probability of 0.31 means that out of 100 different categorizations of 
education levels, there are 31 that involve only a high school diploma. 

B) Explain your reasoning for your rankings. 
 
Imagine a game where you place the numbers 1 through 16 on slips of paper into a bag. 
You shake the bag and draw out one slip of paper. You then put a marker in the 
appropriate box that matches the number you drew out of the hat. You return the slip of 
paper to the bag and shake. You do this several times. 

 
Four students (Alex, Beryl, Cristobal, and Dora) played this game. Examine their game 
boards in turn and determine whether or not the student cheated (i.e., didn't follow the 
game rules).  For each student state whether or not the student cheated and explain how 
you decided.  (adapted from Batanero & Serrano, 1999) 
Alex 

 

Beryl 

 
Cristobal 

 

Dora 
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Select any of the following options that you believe exemplifies the concept of 
distribution in Statistics. You may select as many as you feel is appropriate. 
 

 

 

 

 

A distribution is a visual arrangement of 
data. 

The distribution of a variable tells us what 
values the variable takes and how often 
the variable takes these values. 

The distribution of a data set is a table, 
graph, or formula that provides the values 
of the observations and how often they 
occur. 

The entire collection. 

Any complete description of the behavior 
of a variable. 

 for all 

possible x of X. 
 
If none of these options exemplify the concept of distribution, please provide how you 
would explain this concept. 
 
 
Of the options you selected, which one do you feel is the closest/best match to how you 
think about distribution? Why? 
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