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CHAPTER 18 

RESEARCHING MATHEMATICAL MEANINGS FOR TEACHING1,2 

Patrick W. Thompson, Arizona State University 
 

Teachers’ mathematical knowledge for teaching is a central focus of 
recent research on teaching mathematics. At the same time, research on 
mathematical knowledge for teaching has focused largely on teachers’ 
declarative knowledge, which is difficult to link to teachers’ decisions and 
actions in the context of teaching or planning to teach. Much of current 
research on assessing mathematical knowledge for teaching seeks 
correlates between declarative knowledge and successful teaching instead 
of looking for reasons for teachers’ decisions and actions. This distinction 
is important when the goal is to use assessments diagnostically, to design 
interventions meant to affect teachers’ instructional decisions and actions. 
In this chapter I argue in principle and by example that a focus on 
teachers’ mathematical meanings for teaching mathematics is both 
important and potentially productive regarding the improvement of 
teachers’ teaching, which I take as necessary for the improvement of 
students’ mathematical learning. I also outline a method for developing 
items and instruments that focus on teachers’ mathematical meanings for 
teaching mathematics. I then examine how we can link research and 
assessment more intimately than simply using the results of each in the 
activities of the other. 

Research on mathematical knowledge for teaching (MKT) has the goal of trying to find 
relationships among the mathematics that teachers know, their instruction, and students’ 
learning. The underlying assumption seems to be that if we find these relationships, and if 
we then help teachers obtain the appropriate knowledge, they will be positioned to teach 
better and support better student learning. This conceptualization of research on MKT 
seems quite plausible—until we ask, “What do we mean that a teacher knows something? 
How can a teacher knowing something help a student know it, too?” Answers to these 
questions will reveal the importance of being clear about what we presume we are 
assessing when we assess teachers’ MKT and about why we even care to assess it. 

What is knowledge and why do we care? 

Mason and Spence (1999) analyzed historical uses of “knowledge” and quickly 
determined that knowing is much more useful for thinking about teaching and learning 
than is knowledge. Knowing connotes activities of a knower, while knowledge connotes 
facts—justified true beliefs. They argued that thinking about teachers’ knowledge leads 
us to separate knowers from what they know, which has the consequence of separating, in 
our thinking, what teachers know from their thinking, deciding, and acting. Mason and 
Spence urged us to think instead about teachers’ acts of knowing, which brings us closer 
to describing sources of teachers’ actions and decisions. Within their acts of knowing 
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Mason and Spence distinguished two broad kinds: knowing about (knowing-that, 
knowing-how, knowing-why) and knowing-to—“active knowledge which is present in 
the moment when it is required” (Mason & Spence, 1999, p. 135). 

Mason’s and Spence’s stance on knowledge versus knowing is in line with 
Glasersfeld’s explanations that to interpret Piaget’s concept of knowledge we need to 
think quite differently about knowledge than as justified true belief. He explained that we 
need to understand Piaget’s use of knowledge as connoting the dynamic, adaptive, and 
organized functioning of an organism’s neural system—and as having reference only 
within the organism’s experience (Glasersfeld, 1978, 1981, 1985). Put another way, 
“knowledge” and “knowing” are the same concept in Piaget’s genetic epistemology. As I 
will explain in later sections, knowing-to, as described by Mason and Spence, can be 
characterized more expansively by appealing to Piaget’s notion that a scheme is a 
meaning—an organization of actions, images, and other meanings. Thus, one knows-to 
act in a particular way in a particular context because the actions implied by one’s 
understanding of a context are in the scheme to which you assimilated the context. In this 
regard, I hasten to add that Piaget had an expansive meaning of action, as “all movement, 
all thought, all emotion that responds to a need” (Piaget, 1968, p. 6). Thus, when Piaget 
spoke of schemes, he had in mind organizations of mental and affective activity whose 
contents could be highly nuanced and could contain several layers of structure. 

Hill and Ball’s Learning Mathematics for Teaching (LMT) project demonstrated 
that there is a correlational link between K-8 mathematics teachers’ mathematical 
knowledge for teaching as measured by their LMT instrument and the mathematical 
quality of teachers’ instruction (MQI) as measured by their MQI instrument 
(Charalambous & Hill, 2012; Hill, 2011; Hill, Blunk et al., 2008; Hill & Charalambous, 
2012). At the same time, Schilling, Blunk and Hill (2007) point out that they tacitly 
assumed in developing the LMT assessment that knowledge held by teachers, specifically 
their knowledge of content and students (KCS), was declarative.  

When we began developing items in this domain [KCS], 
we hypothesized that teachers’ knowledge of students 
existed separately from their mathematical knowledge and 
reasoning ability. We thought of such knowledge as 
“declarative,” or factual knowledge teachers have of 
student learning. Results from these validation studies, 
however, suggest that this “knowledge” may actually 
contain both elements of mathematical reasoning and 
knowledge of students and their mathematical trajectories. 
(Schilling, et al., 2007, p. 121) 

The approach to investigating teachers’ MKT that I describe in this chapter builds 
from Schilling et al.’s observation that our understanding of MKT can be broadened 
profitably by shifting our focus from teachers’ (declarative) mathematical knowledge, to 
focus instead on teachers’ mathematical meanings. This shift is essentially from a 
philosophically mainstream view of knowledge as justified, true belief and about things 
external to the knower to a Piagetian perspective in which meaning and knowledge are 
largely synonymous, and both are grounded in the knower’s schemes.  
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This shift allows us to move, for example, from asking what teachers know about 
equations to what teachers mean by an equation. Compare Teacher 1’s and Teacher 2’s 
meanings of algebraic equations.  

Teacher 1 thinks that any mathematical statement that contains an equal sign is an 
equation. Upon seeing an algebraic equation Teacher 1 thinks “do the same thing to both 
sides to keep the equation balanced”, thinks that a solution is the number in the final step 
that produces a statement like “x = (number)”, and has the goal of reaching the final step. 
Teacher 1 also feels confused about differences among equations and identities, and 
between equations and functions. Teacher 1 thinks they should all be called equations 
because they all contain an equal sign.  

Teacher 2 thinks that an algebraic equation is a statement of equality together with 
the question, “For what values of the variable(s) will this statement be true?” Teacher 2 
has the goal of answering that question, and thinks to put the equation into an equivalent 
form that she can solve by inspection. Teacher (2) thinks of a “step” as applying an 
equivalence-preserving transformation to one or both sides of the equation so that it is 
closer to being solvable by inspection.3 Teacher 2 has no difficulty distinguishing 
between equations and functions and between equations and identities. To Teacher 2, a 
function is a statement about a relationship between two quantities’ values. An identity is 
an equation that is true for all values in the equation’s domain. Teacher 2 realizes that all 
statements with an equal sign could be called “equations”. However, she realizes also that 
to do so, the general meaning of an equation would have to be that an equation represents 
its solution set and that she would therefore need to define functions as sets of ordered 
pairs—ideas that she feels are too general for her students. 

Both teachers could exhibit similar performances in answering questions about 
equations and procedures for solving them. Their different meanings, however, would 
provide different potentialities regarding what they say to students about equations and 
equation solving.  

The mathematical knowledge that matters most for teachers resides in the 
mathematical meanings they hold. Teachers’ mathematical meanings constitute their 
images of the mathematics they teach and intend that students have. Teachers’ 
mathematical meanings guide their instructional decisions and actions (Thompson, 2013). 
Dewey (1910) said as much when he elaborated the connection between thinking and 
meaning: “That thinking both employs and expands notions, conceptions, is then simply 
saying that in inference and judgment we use meanings, and that this use also corrects 
and widens them” (Dewey, 1910, p. 125). Dewey also alerted us to the dangers of being 
vague about our central constructs.  

Vagueness disguises the unconscious mixing together of 
different meanings, and facilitates the substitution of one 
meaning for another, and covers up the failure to have any 
precise meaning at all. (Dewey, 1910, p. 130) 

Vagueness in our meaning of knowledge becomes especially problematic when we 
set out to assess it. We place ourselves in the uncomfortable position of defining 
knowledge, or types of it, in the same way that many psychologists use the idea of 
operational definition to define intelligence—intelligence is defined to be what 
intelligence tests assess. Bridgman, who originated the method of operational definition, 
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roundly criticized using a measure of a construct to define that construct: “Without doubt 
it is possible to apply the procedure suggested here, but I believe that the situation seldom 
arises which one would be content to treat finally by any such method as this” (Bridgman, 
1955, Chapter 1, Kindle Locations 507-508). Without explication, the word “knowledge” 
becomes a primitive term in research on mathematical knowledge for teaching, open to 
any interpretation that a person can pack into it. 

I will not try to explicate what others might mean by knowledge in discussing what 
teachers know and how what they know is related to what they do. To do so would take 
us into a morass of philosophical disputes, such as knowledge versus belief (Thompson, 
1992) and constructivism versus realism (Glasersfeld, 1992; Howe & Berv, 2000; 
Phillips, 2000; Suchting, 1992)—disputes that turn out to be immaterial for the purpose 
of improving mathematics teaching. Instead, I will argue here, as I have argued elsewhere 
(Thompson, 2013), that a focus on teachers’ mathematical meanings, as opposed to their 
mathematical knowledge, offers a fruitful approach to uncovering important sources of 
teachers’ instructional decisions and actions and provides useful guidance for designing 
teachers’ professional development. 

In this chapter I make two proposals. The first is that a focus on teachers’ 
mathematical meanings, in line with Mason and Spence’s focus on knowing-to, is more 
productive for understanding and improving teachers’ instruction than is a focus on 
mathematical knowledge. With meaning defined appropriately, a focus on meanings 
positions us to help teachers focus on creating instruction that helps students develop 
productive meanings. The second proposal is a means to gain insight into mathematical 
meanings teachers have. To do this requires a theory of meaning as well as a set of 
techniques that can be used at scale for creating useful models of teachers’ mathematical 
meanings—models that provide guidance in designing mathematics teachers’ 
professional development that helps them to help their students create coherent 
mathematical meanings. 

Finally, an example might give further clarity to the distinction between knowledge 
and meaning. Suppose a child lays three meter sticks end to end, and then is given a 
fourth meter stick to lay down. Upon putting it down, we ask, “How much did you add to 
the total length?” (“A meter.”) The child knows that he added a meter. But what did it 
mean to him? Did he mean that he added one more stick called “a meter”? Or did he 
mean that he added a meter in length that is constituted by centimeters, which in turn are 
constituted by millimeters, which in turn are constituted by (and so on). Understanding 
what people mean gives more insight into their thinking than does understanding what 
they believe to be true. 

EXAMPLES OF INVESTIGATING TEACHERS’ MEANINGS 

Two examples will set the stage for discussing the idea of meaning, mathematical 
meanings for teaching, and how one might assess them. They are drawn from 
Mathematical Meanings for Teaching secondary mathematics (MMTsm), a 43-item 
diagnostic instrument designed for use in mathematics professional development.4,5 
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Example 1: Meanings of “over” 

We noticed that English speakers often speak of average speed as “Distance over time” 
and represent it with a symbolic expression like d/t. However, what “over” means to 
persons saying this was unclear to us. Are they speaking of a spatial arrangement of 
symbols? Or are they thinking that two things happened concurrently—something moved 
and some amount of time elapsed.  

We designed an item (Figure 1) to see the extent to which teachers distinguish or 
confound “over” as meaning spatial arrangement of symbols versus “over” as meaning 
that two events happened or are happening concurrently. The difference in these 
meanings can reflect an importance difference regarding what teachers intend that 
students understand from their instruction of average rate of change. If teachers intend to 
convey only a spatial arrangement of symbols, then their utterances are about marks as 
written and are not about what students should understand about variables varying or 
about the meaning of quotient within a context. 

A college science textbook contains this statement about a function f that gives a bacterial 
culture’s mass at moments in time. 
 
The change in the culture’s mass over the time period ∆x is 4 grams. 
 
Part A. What does the word “over” mean in this statement? 
 
Part B. Express the textbook’s statement symbolically. 

Figure 1. An item to investigate teachers’ meanings of “over”. © 2014 Arizona Board of 
Regents. Used with permission. 

The purpose of Part A in Figure 1 was to have teachers commit to a meaning of 
“over” in a context where, when interpreted normatively, it means “during”. The purpose 
of Part B was to give teachers an opportunity to show how they interpreted the context in 
which “over” occurred while expressing it symbolically. Since the statement is about a 
change in mass, the symbolic representation of it should reflect a change in mass that 
happened as time passed from one moment in time to another. Since the function f gives 
the culture’s mass at moments in time, and since the change in time is represented by 
“∆x”, one representation of the change in mass would be f (x + Δx)− f (x) = 4  or 
f (x0 + Δx)− f (x0 ) = 4 , where x0  refers to a specific moment in time. 

Figure 2 contains one teacher’s response to Parts A and B. In Part A, the teacher 
said that “over” means “during”, but went on to say that you also can think of “over” as 
meaning a ratio. This teacher’s Part B response shows more than that “over” brings to 
mind a spatial arrangement of symbols. It reveals two additional issues: (1) the teacher 
defined “f(x)” in terms of an expression  in which “x” does not appear, and (2) used “f(x)” 
to represent a rate of change even though the text stated that “the function f gives the 
culture’s mass at moments in time”.6  
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One Teacher’s Part A response This teacher’s Part B response 
Figure 2. A teacher's responses to questions in Figure 1. 

We designed a scoring rubric to capture the range of meanings we discerned from 
responses given in summer 2013 by 96 high school mathematics teachers in the midwest 
and southwest United States. Table 1 and Table 2 show gradations among levels of 
responses to Parts A and B, respectively. We put any response equivalent to “during” at 
the highest level for Part A of Figure 1, and any response like “ f (x + Δx)− f (x) = 4 ” or 
“
  
mt2

− mt1
= 4  where   t2 − t1 = Δx ” at the highest level for Part B. While a method for 

creating rubrics that focus on meanings is discussed in a later section, for now it is worth 
pointing out that though this item’s design emerged from being attentive to teachers’ and 
students’ meanings in prior research and in our daily work with teachers, the rubrics for 
scoring responses to Figure 1 emerged from analyzing teachers’ responses to the item 
itself. When distinguishing between levels of responses, we continually asked, “How 
might a student interpret what the teacher produced? How productive would it be for 
students’ development of coherent meanings were a teacher to express what he or she 
did?” 

Table 1. Rubric for scoring Figure 1, Part A. © 2014 Arizona Board of Regents. Used 
with permission. 
A3: Teacher said “during”, or otherwise referred to the culture’s mass in relation to a passage of time.  
A2: Any of the following: 

• The teacher conveyed “during” but represented the time interval using a symbol other than ∆x. 
• The teacher described “over” as meaning an amount of time. 

A1: The teacher conveyed that “over” means division, regardless of saying anything else. 
A0: Any of the following: 

• The teacher wrote “I don’t know.”  
• The scorer cannot interpret what the teacher meant by “over”. 
• The teacher’s response is not described by any of levels A1 to A3.  

Table 2. Rubric for scoring Figure 1, Part B. © 2014 Arizona Board of Regents. Used 
with permission. 
B4: The teacher represented a difference in the mass of a culture at different moments in time, with the 

resulting difference being 4. If the teacher used a variable other than “m” or “y” to stand for mass instead 
of using f(x), or a variable other than x to represent elapsed time, the letter must be defined. 

B3: Any of the following: 
• The teacher wrote a statement like ∆m=4 or ∆y=4. 
• The teacher represented a difference of masses that equals 4 using a letter other than m or y to 

represent mass, and said that their variable represents mass. In addition, the teacher did not represent a 
time interval. 

B2: Teacher’s response contains a combination of ∆m=4 and ∆m/∆x = 4. 
B1: The teacher wrote a quotient showing the change in mass divided by the change in time is equal to 4 (with 

or without a unit), or some algebraically equivalent statement.  
B0b: The teacher’s response conveys division but the response is not described by level B1. 
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B0a Any of the following: 
• The teacher wrote “I don’t know”  
• The scorer cannot interpret the teacher’s response. 
• The teacher’s response is not described by any of Levels B0b to B3. 

In subsequent tables I share results of our scoring for Figure 1 to illustrate how a 
focus on teachers’ meanings can provide useful information about their thinking. Table 3 
summarizes teachers’ responses to Part A. Sixty-one percent (61%) of responses were 
assigned Levels A3 or A2—teachers spoke of “over” in a way that suggested something 
happening during a passage of time. Thirty-two percent (32%) were assigned Level A1—
they specifically mentioned that “over” meant division or ratio in the statement about a 
change of mass over a time interval. Table 3 also breaks down responses by teachers’ 
undergraduate major. “Math” points to teachers who received a B.Sc. in mathematics; 
“Math Ed” points to teachers who received a B.Sc. or B.A. in secondary mathematics 
education; “Other” is any other undergraduate degree.  Fifty-nine percent (59%) of Math 
majors, 53% of Math Ed majors, and 73% of Other majors answered at Levels A3 or A2.  

Table 3. High school mathematics teachers' responses to Figure 1, Part A (n = 96). 
A-Level Math MathEd Other total 

A3 11 15 16 42 

A2 5 4 8 17 

A1 9 14 8 31 
A0 1 3 1 5 

No Ans 1 0 0 1 

total 27 36 33 96 

Table 4 shows the classification of teachers’ symbolic representations of the entire 
statement. Three percent (3%) of responses were at Level B4; 5% of responses were at 
Level B3, 60% percent of responses were at Level 1 or Level B0b, and 26% were placed 
at Level B0a. Responses at levels B1 and B0b contained a quotient or the equivalent of a 
quotient (e.g., ∆m = 4∆x). Figure 3 shows four examples of Level B0a responses. The 
first two responses in Figure 3 are by teachers holding a degree in mathematics; the 
second two are by teachers holding a degree in mathematics education. 

Table 4. High school mathematics teachers' responses to Figure 1, Part B (n = 96). 
B-Level Math MathEd Other total 

B4 0 2 1 3 

B3 1 2 2 5 

B2 2 0 0 2 
B1 10 13 11 34 

B0b 7 11 6 24 

B0a 5 8 12 25 
No Ans 2 0 1 3 

total 27 36 33 96 
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B.Sc. Math 

 
B.Sc. Math 

 
B.Sc. Math Ed 

 
B.A. Math Ed 

Figure 3. Examples of Level B0a responses. 

Table 3 shows the majority of teachers responding at a high level regarding a 
meaning of “over” while Table 4 shows the majority of teachers responding at a low level 
regarding a representation of the entire statement—representing it with a quotient or with 
a wholly inappropriate response. Table 5 examines the relationship between teachers’ 
responses to Parts A and B. One-hundred percent (100%) of teachers who responded at a 
low level (A0 or A1) for Part A scored at a low level (B0a, B0b, B1, or B2) for Part B. 
Moreover, 51 of 59 teachers (86%) who scored at a high level for Part A (A2 or A3) 
scored at a low level for Part B (B0a, B0b, B1, or B2). This suggests strongly that the 
phrase “change in mass over change in time” triggered a variety of meanings among 
teachers, most of which were unlike the meaning that the culture’s mass changed by 
some amount while elapsed time changed by some amount. 

Table 5. Relationship between teachers’ responses to Part A and to Part B of Figure 1 (n 
= 96). 

 
B4 B3 B2 B1 B0b B0a No Ans total 

A3 2 4 2 12 4 17 1 42 

A2 1 1 0 4 3 7 1 17 
A1 0 0 0 17 14 0 0 31 

A0 0 0 0 1 3 1 0 5 

No Ans 0 0 0 0 0 0 1 1 
total 3 5 2 34 24 25 3 96 

It is worthwhile to unpack two implications of what we learned from this item. The 
first regards mathematical modeling—teachers understanding situations described 
verbally and describing their understandings symbolically. The second regards what 
teachers might convey to students unthinkingly about fractions.7 

Modeling. In this item, the textbook’s statement is read normatively as being about 
a change in mass that happened during a change in time. That such a large percentage of 
teachers associated the statement fundamentally with a ratio suggests that they did not 
interpret the statement in terms of the quantities involved (a difference of masses and a 
difference of times) and a relationship between them (concurrence). This raises the 
possibility that teachers’ meanings for the quantities and relationships that any rate of 
change entails are muddled when they teach the idea of rate of change or model situations 
that involve a rate of change. Put another way, “over” meaning a spatial arrangement of 
symbols is in line with “more means addition, less means subtraction, of means 
multiplication”—meanings that muddle young children’s thinking when solving 
arithmetic word problems. 

What teachers convey to students about fractions. Teachers should be alert to how 
students interpret “a/b”. We would hope they attend to whether their students assimilate 
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“a/b” just as two numbers separated by a slash mark or that they also assimilate it to a 
scheme that relates the value of a, the value of b, and their relative size. This second 
meaning can be expressed as “a/b is a number m which tells you that a is m times as large 
as b”.8 The second meaning of “a/b” is the meaning of quotient, and is related tightly to 
past research on ratio-as-measure (Lobato & Thanheiser, 2000; Simon & Blume, 1994). 
Teachers who read “a/b” as “a over b” and for whom “over” implies a spatial 
arrangement seem unlikely to worry about whether students are developing the quotient 
meaning of “a/b”. Cameron Byerley is investigating the viability of this claim.  

Example 2: An item to investigate teachers’ meanings for slope 

We often see teachers teach the idea of slope simply as a computation, expressed as “rise 
over run” or “the change in y divided by the change in x.” We also often see it taught as a 
property of a triangle drawn against a graph. These are unproductive meanings for 
students to have. They only work to answer the question, “What is the slope?” It is 
important for students to understand that the idea of slope is tightly bound to the idea of 
relative size of changes in two quantities, which then ties the idea of slope to the idea of 
constant rate of change. It is also important for students to understand that a graph’s slope 
is independent of axes’ scales and independent of the coordinate system in which the 
graph is made.9 

With the above in mind, we designed the item in Figure 4 to probe teachers’ 
meanings of slope in regard to relative size of changes and to issues of axes’ scales. Part 
A requests a numerical value for m even though the coordinate system’s axes are sans 
numbers. If you see the line segments as representing amounts of change in x and y, and 
if you understand the quotient ∆y/∆x as the measure of ∆y in units of ∆x, then you can 
decide to estimate the numerical value of m simply by physically measuring ∆y using ∆x 
as a unit. The change in y is 2.5 times as large as the change in x, so m = 2.5.10  

 
Figure 4. An item to investigate teachers’ meanings of slope. © 2014 Arizona Board of 
Regents. Used with permission. 

We included Part B to see whether teachers thought of the line’s slope as being a 
property of the triangle itself instead of as a relative size of changes that the horizontal 
and vertical segments represent. When the y-axis is enlarged by a factor of 2, and 
remembering that the graph represents the relationship between values of x and values of 
y, the value of m remains the same because the change in y that the vertical segment 
represents does not change. Interviews with students and teachers convinced us that if 
someone’s meaning for slope is a property of a triangle, then he or she will say either that 

Part A. There are two quantities P and Q whose values vary. The 
measure of P is y and the measure of Q is x. y and x are related 
so that y = mx + b. The graph of their relationship is given 
below, with x and y in the same scale. What is the numerical 
value of m?  

Part B. What would be the numerical value of m if the y-axis were 
changed so that the distance between 0 and 1 is 2 times as large 
as the original? 
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the slope will be twice as large (if imagining that the triangle stretches) or half as large (if 
imagining that the y-axis is rescaled but the triangle remains the same). 

Table 6 shows responses from the group of 96 high school mathematics teachers 
mentioned in the prior example. Rows describe responses to Part A. Close Num means a 
numerical estimate from 2 to 3. Far Num means a numerical estimate less than 2 or 
greater than 3. Diff Quot means a response like “∆y/∆x” or “  y2 − y1( ) x2 − x1( ) ”. Other 

responses included “y/x”, “P/Q”, and “ m = y − b( ) x ”. Columns describe responses to 
Part B. 

Table 6. Teachers’ responses to Part A and Part B of Figure 4. (n = 96) 
  Part B Response 
 

 
Same Double Half Other No Ans total 

Pa
rt

 A
 R

es
po

ns
e Close Num 2 30 15 3 0 50 

Far Num 1 4 2 1 0 8 

Diff Quot 4 10 6 1 1 22 

Other 6 3 0 1 3 13 
No Ans 0 0 0 0 3 3 

total 13 47 23 6 7 96 

Table 6 shows that 52% of the teachers gave a numerical approximation that was 
close to 2.5. Many of them showed work that suggested measuring ∆y in units of ∆x. 
However, 90% (45/50) of these teachers who gave a close approximation for Part A 
answered either “double” or “half” to Part B. This suggests that though they understood 
slope to be about relative size, they compared side-lengths of a triangle and not what 
those lengths represented. Teachers answering Part A with a number outside the “close” 
range seemed to give numerical values as an index of the line’s perceptual “slantiness”. 
These responses did not contain work to suggest that the teacher measured the length of 
one segment in terms of the length of the other. Teachers who gave a symbolic response 
(Difference Quotient or Other) to Part A had the highest percentage of “same” on Part B. 
We suspect that this was because they focused on symbolic formulas, which they could 
think of as remaining the same regardless of how, or whether, they interpreted the graph. 
The results in Table 6 suggest that a large percentage of these 96 teachers thought that 
“slope” meant a property of a triangle drawn against a graph that either reflects the 
relative size of its legs or that is associated with a computational formula. 

TEACHERS’ MATHEMATICAL MEANINGS 

The items in the previous section share a trait: they were designed to elicit teachers’ 
interpretations of a statement or setting about an idea that recurs in mathematics teaching, 
and then to elicit implications in teachers’ thinking that their interpretations held. This 
design strategy is rooted in a theory of meaning that is based on Piaget’s notion of 
assimilation to a scheme. In this section I will unpack the idea of assimilation and explain 
its connection to assessing teachers’ mathematical meanings for teaching mathematics. 

A sense of absorption is commonly associated with assimilate. Object A is 
assimilated to Object B when A is transformed to become part of B. As Piaget famously 
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stated in elaborating his meaning of assimilation, “A rabbit that eats a cabbage doesn't 
become cabbage; it's the cabbage that becomes rabbit—that's assimilation. It's the same 
thing at the psychological level. Whatever a stimulus is, it is integrated with internal 
structures” (Bringuier, 1980, p. 42). By this Piaget meant that a person experiences the 
structures that are activated through assimilation, not the stimulus that an observer views 
as separate from the experiencer. To illustrate this distinction, suppose that a person, deep 
in thought, rounds a corner on the streets of Chicago and looks up at what we call the 
Willis Tower and sees the Empire State Building, recalling the dinner he had in it. This 
person assimilated the Empire State Building—despite it being 1286 kilometers away. 
His experience was that he saw the Empire State Building, even if he eventually 
corrected himself by realizing that he was in Chicago, not New York.11 

Another way to understand assimilation in Piaget’s theory is to think of meanings 
that come to a person’s mind upon encountering a situation. What looks like absorption 
(taking in the situation) actually is the person’s imbuement of meaning to the situation.  

Assimilating an object to a scheme involves giving one or 
several meanings to this object, and it is this conferring of 
meanings that implies a more or less complete system of 
inferences, even when it is simply a question of verifying a 
fact. In short, we could say that an assimilation is an 
association accompanied by inference. (Johnckheere, 
Mandelbrot, & Piaget, 1958, p. 59) as quoted in 
(Montangero & Maurice-Naville, 1997, p. 72). 

Johnckheere et al.’s reference to “a more or less compete system of inferences” was 
their way to talk about the implicative nature of meanings. A person’s meaning in a 
situation is what comes to mind immediately together with what is ready to come to mind 
next. The implicative nature of meanings is at the heart of Piaget’s notion of scheme 
(Piaget & Garcia, 1991). Thompson and Harel captured this in their system for 
differentiating among various forms of understanding (Table 7).  

Table 7. Thompson and Harel’s definitions of understanding, meaning, and way of 
thinking. (Thompson, Carlson et al., 2014)  

Construct Definition 
Understanding (in the moment) Cognitive state resulting from an assimilation 

Meaning (in the moment) The space of implications existing at the moment of understanding 

Understanding (stable) Cognitive state resulting from an assimilation to a scheme 

Meaning (stable) The space of implications that results from having assimilated to a 
scheme. The scheme is the meaning.  What Harel previously called 
Way of Understanding 

Way of Thinking Habitual anticipation of specific meanings or ways of thinking in 
reasoning 

Understanding in the moment addresses what a person understands of something 
said, written, or done in the moment of understanding it. All understandings are 
understandings-in-the-moment. Some understandings might be a state that the person has 
struggled to attain at that moment through functional accommodations of existing 
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schemes (Steffe, 1991). This is an understanding that can be easily lost once the person’s 
attention moves on and is typical of when a person makes sense of an idea for the first 
time. The meaning of an understanding is the space of implications that the current 
understanding mobilizes—actions, operations, or schemes that the person’s current 
understanding suggests.12 An understanding is stable if it is the result of an assimilation 
to a scheme. A scheme, being stable, then constitutes the space of implications resulting 
from the person’s assimilation of anything to it.13 The scheme is the meaning of the 
understanding that the person constructs in the moment. As an aside, schemes provide the 
“way” in Harel’s “way of understanding” (Harel, 2013). Finally, Harel and Thompson 
characterize  “way of thinking” as a person having developed a pattern for utilizing 
specific meanings or ways of thinking in reasoning about particular ideas. 

The previous section’s examples were designed to gain insight into aspects of 
teachers’ meanings. The first example examined their meanings of “over” as revealed in 
their linguistic and mathematical descriptions of two events’ concurrence. The second 
example examined their meanings of slope. In neither example can we say that we 
determined teachers’ meanings. The best we can say is that we gained insight into their 
meanings. Since meanings are schemes (“implications of an understanding”), their 
boundaries and connections with other meanings are often subtle and sensitive to context. 
Thus, diagnoses of teachers’ meanings to support the design of professional development 
require a battery of items that reveal broader schemes, or clear indicators of limited 
meanings, among a body of related mathematical ideas. I address this issue in the next 
section. 

ASSESSING TEACHERS’ MATHEMATICAL MEANINGS FOR TEACHING 

To assess teachers’ mathematical meanings for teaching requires that the assessment 
designers have a theory of the meanings they intend to assess. Assessment designers must 
say what they will take to constitute productive and less productive meanings for students’ 
learning regarding a mathematical idea—and an explanation of why one is more 
productive than another. Productive meanings are propaedeutic (preparing the student for 
future learning) and they lend coherence to the meanings students already have. 

A theory of meanings-to-be-assessed should also draw from research on meanings 
that prove to be problematic when students have them. For example, research on students’ 
understandings of fractions shows that “a out of b” as a meaning for a/b is highly 
detrimental for students’ later mathematical learning (Carpenter, Coburn et al., 1976; 
Norton & Wilkins, 2009; Thompson & Saldanha, 2003; Torbeyns, Schneider et al., 2014; 
Vinner, Hershkowitz, & Bruckheimer, 1981). Teachers who have unproductive meanings 
can easily convey them to students unthinkingly (Izsák, 2012; Thompson, 2013), so it is 
essential to create assessment items that give teachers the opportunity to display 
unproductive meanings as well as productive ones. The next section illustrates the 
process for designing such items in the context of the concepts of variation and 
covariation. 

Continuous Variation and Covariation 

It is well established that students profit by thinking that values of variables vary 
continuously on a connected subset of the real numbers (Castillo-Garsow, 2010; Confrey, 
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1994; Confrey & Smith, 1995; Thompson, 1994a). The idea that variables’ values vary 
continuously is the basis for thinking covariationally, which is an essential component of 
understanding functions, graphs, and relationships (Carlson, Jacobs et al., 2002; 
Thompson, 1994c).  

To assess teachers’ meanings for continuous variation and covariation, we must 
first say precisely what we mean by “understanding continuous variation” and 
“understanding continuous covariation” and how teachers’ thinking might be at different 
levels regarding them. Table 8 and Table 9 are a culmination of prior research on students’ 
understandings of variables, functions, and rate of change (Carlson, et al., 2002; Castillo-
Garsow, 2010; Confrey, 1992; Confrey & Smith, 1995; Saldanha & Thompson, 1998; 
Thompson & Thompson, 1996; Thompson, 1994a, 2011; Thompson & Thompson, 1994).  

Table 8 describes different levels at which someone could think of a variable’s 
value varying. The two highest levels of thinking are about a meaning of variation that 
creates continuous intervals. The distinction between the two levels is that a person 
thinking at the highest level has a recursive anticipation that any variation can be refined 
(Thompson, 2011, p. 47).  A person at the second level (“chunky”) envisions variation 
over an interval in fixed increments without the accompanying image that variation 
happens within each increment, as if laying rulers end-to-end. The lower three levels 
capture thinking about variation as an act of replacement—the individual thinks of a 
variable’s value as something that is substituted for the letter.  

Table 8. Meanings of continuous variation behind the MMTsm. 

Meanings of Continuous Variation 
Level  Description 

Smooth Continuous 
Variation 

The individual thinks of variation of a variable’s value as the variable’s 
magnitude increasing in bits while anticipating simultaneously that within each 
bit the variable’s value varies smoothly.  

Chunky Continuous 
Variation 

The individual thinks of variation of a variable’s magnitude as increasing by 
intervals of a fixed size. The individual imagines, for example, the variable’s 
value varying from 0 to 1, from 1 to 2, from 2 to 3 to (and so on). Values 
between 0 and 1, between 1 and 2, between 2 and 3 “come along” by virtue of 
each being part of a chunk, but the quantity does not have them as a value in the 
same way it has 0, 1, 2, etc. as values.  
Chunky continuous variation is not just thinking that increases happen in whole 
number amounts. Thinking of a variable’s value going from 0 to 0.25, 0.25 to 
0.5, 0.5 to 0.75, and so on (while thinking that entailed intervals “come along”) 
is just as much thinking with chunky continuous variation as is thinking of 
increases from 0 to 1, 1 to 2, and so on. 

Discrete 
Variation 

The individual thinks of a variable as taking specific values. The individual sees 
the variable’s value changing from a to b by taking values    a1,a2 ,…,an , but does 

not envision the variable taking any value between   ai  and ai+1 . 
No Variation 
(NV) 

The individual envisions a variable as having a fixed value. It could have a 
different fixed value, but that would be simply to envision another scenario. 

Variable as Letter  
(VL) 

A variable is a letter. It has nothing to do with variation. 

Table 9 imports the meanings of continous variation (Table 8) into meanings of 
covariation. Table 9 could be expanded to account for the possibility that an individual 
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conceives of two variables having different kinds of variation, but in practice this has not 
been workable. 

 
Table 9. Meanings of continuous covariation behind the MMTsm. 

Meanings of Continuous Covariation 
Level  Description 

Smooth Continuous 
Covariation (SCC) 

The individual envisions changes in one variable’s value in relation to changes 
in another variable’s value where variables vary smoothly and continuously. 

Chunky Continuous 
Covariation (CCC) 

The individual envisions chunky continuous variation in one variable’s value in 
relation to chunky continuous variation in another variable’s value. 

Coordination of Values 
(CV) 

The individual coordinates the values of one variable with values of another 
variable with the anticipation of creating a discrete collection of pairs x, f (x)( ) . 

Pre-coordination of 
Values (PCV) 

The individual envisions two variables’ values varying together but 
asynchronously (one variable changes, then the second variable changes, then 
the first, etc.). The individual does not anticipate creating pairs of values. 

Variation but No 
Coordination (VNC) 

The individual has no image of variables varying together. The individual 
focuses on one or another variable’s variation with no coordination of values. 

Figure 5 shows the fourth version of one of several items that we designed to assess 
teachers’ meanings of covariation. The highest level of reasoning we anticipated is this: If 
you imagine the ball bobbing, and if you coordinate small changes in displacement in a 
direction with small changes in total distance, you will realize that the two changes are 
always the same magnitude but possibly in different directions. Thus, the graph’s slope 
will be ±1 over any interval in which the ball’s displacement changes without changing 
direction. 

We designed the item in Figure 5 purposely to exclude considerations of the ball’s 
speed and its elapsed time. Our intention was to create a situation that forced teachers to 
conceptualize both quantities in the covariation. Our reason for this was that teacher 
interviews in the early stages of the item’s development convinced us, in line with prior 
research, that teachers could envision an event happening in time without actually 
conceptualizing time as a quantity. 
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Figure 5. Version 4 of an item to assess covariational reasoning. © 2014 Arizona Board 
of Regents. Used with permission. 

Table 10 summarizes responses from 111 high school mathematics teachers in the 
midwest United States who took the Summer 2012 version of the MMTsm. It is split into 
two groups—responses that involved some description of variation (n = 17) and 
responses that contained no description of variation (n = 94). Only 10 responses (9%) 
spoke of displacement and total distance covarying. 

Table 10. Responses by high school mathematics teachers in Summer 2012 to the item in 
Figure 5. (n = 111) 
Response Freq 

1. Covaried distance and displacement 10 
2. Coordinated distance and displacement 3 
3. Varied total distance, mentioned displacement, but no covariation 3 
4. Varied displacement, mentioned total distance, but no covariation 1 
5. Used physical situation wrongly to explain the graph 22 
6. Used graph to describe the ball's behavior 29 
7. Measuring distance implies a linear graph 16 
8. Other 27 

The item in Figure 5 was extremely difficult to score, for two reasons. First, 
teachers often used poor grammar and vague language. Second, surprising to us, most 
teachers explained the graph in ways having nothing to do with the quantities involved 
and their variation. Instead, many teachers took the graph as given and tried to use its 
properties to explain the situation (Figure 6). Other teachers tried to explain the graph in 
terms of what happens when a ball bobs up and down (Figure 7). Yet other teachers tried 
to explain the graph in terms of an overarching theme (Figure 8). Finally, many teachers 
mentioned time in their responses to Figure 5. 

A ball is hanging by a 10-foot rubber cord from a board that is 20 feet above the ground. The ball is 
given a hard push downward and left free to bob up and down. The following graph represents the 
ball’s displacement from its resting point in relation to its total distance traveled after having been 
pushed. 

  
Why is the graph of Displacement from Rest versus Total Distance made of straight segments 
instead of being a smooth curve? 
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Figure 6. Example of a response that explains the ball's movement based on properties of 
the graph. 

 
Figure 7. Example of response that uses physical situation to explain the graph in Figure 
5. 

 
Figure 8. Example of response that explains the graph in Figure 5 in terms of the theme 
that distance is a linear measurement. 

These non-covariational responses led us to add categories of “thematic thinking” 
(categories 5 and 7 in Table 10), “shape thinking” (category 6 in Table 10), and “non-
responsive” to our theoretical framework. We added these categories in order to capture 
ways of thinking that teachers exhibited in response to an item that is ostensibly about 
covariation, but which elicits responses having nothing to do with covariation. We also 
modified the item to alert teachers explicitly that they should not incorporate time into 
their explanations. 

Our difficulty in developing a scoring rubric for version 4 of this item (Figure 5) led 
us to create a multiple-choice version (Figure 9), where the options were worded to 
reflect the kinds of thinking we detected in teachers responses to Figure 5. We anticipated 
that we would see an increase in responses aligned with smooth continuous covariation 
(option d) simply because teachers might see that it is the most reasonable explanation 
even though it might not occur to them spontaneously. Indeed, we thought it entirely 
possible that most teachers would recognize option d as the response they should select.  

Option a reflects thematic thinking (TT). Option b reflects chunky covariational 
thinking (CCC). Option c reflects coordination of variations (CV). Option e reflects shape 
thinking (ST)—using properties of the graph to describe properties of the situation. We 
were unable to include an option that would reflect pre-coordination ways of thinking, 
largely because our descriptions were too long. We included Part B as a second 
opportunity for teachers to express shape thinking, or to recognize the inappropriateness 
of the student’s shape thinking, but we do not yet have data on Part B. 
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Figure 9. Version 10 of item in Figure 5. © 2014 Arizona Board of Regents. Used with 
permission. 

Table 11 shows responses from 96 high school mathematics teachers who took the 
Summer 2013 version of the MMTsm (which did not include Part B). It shows that we 
were correct to anticipate a higher rate of responses aligned with smooth and chunky 
continuous covariation. But, since 67% of responses were other than d, our concern was 
unfounded that making the item multiple-choice would “give away” what we considered 
the most appropriate response. Also, Table 11 shows that no teacher selected option e 
(shape thinking). This was our motive for including Part B. We are collecting data on 
Part B with 200 high school mathematics teachers in Summer 2014. Interviews with 
teachers, and trials with senior mathematics majors, suggest to us that Part B will elicit 
shape thinking among teachers who are prone to think this way. 

A ball is hanging by a 10-foot rubber cord from a board that is 20 feet above the ground. The ball is 
given a sharp push downward and is left free to bob up and down.  

The graph on the left represents the ball’s displacement from its resting point in relation to its time 
elapsed since being pushed. The graph on the right is the ball’s displacement from its resting point 
in relation to its total distance traveled since being pushed. 

   
Part A. Why is the graph of Displacement from Rest versus Total Distance made of straight 
segments? 

Select the best answer.  
a. Distance, which is a linear measurement, must be represented with a straight segment. 
b. A change of one in displacement corresponds to a change of one in total distance.  
c. The ball’s displacement in either direction is correlated with changes in total distance. 
d. Any small change in displacement in a direction is the same magnitude as the change in 

total distance.  
e. The graph represents the motion of the ball. The graph is made of line segments, 

demonstrating that the ball travels in a linear fashion. 
Part B. A student said, “The graph on the right shows that the ball’s speed is constant between 

about 1 and 2.5 seconds.” Is the student’s statement true? Explain. 
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Table 11. Responses to Figure 9 (version 10 of the item in Figure 5) by 96 high school 
mathematics teachers in Summer 2013. 

Response Math MathEd Other total 
d (SCC) 7 12 11 30 

b (CCC) 9 12 8 29 

c (CV) 5 7 4 16 

a (TT) 4 4 8 16 
I Don’t Know 0 1 0 1 

No Ans 1 0 2 3 

No Time 1 0 0 1 
total 27 36 33 96 

I mentioned that a teacher’s response to a single item is insufficient to gain insight 
into the boundaries and connections within his or her meanings—that to do this requires 
multiple items that involve aspects of a meaning in different settings. My final example is 
of a variation item (Figure 10) given in a context where the question is not about 
variation or covariation directly. Rather, it addresses the seeming contradiction described 
by Chazan (1993) that many students worldwide experience while studying algebra: Why 
do we call “x” a variable in equations like 3x + 7 = 12 when it stands for just one 
number? 

 
Figure 10. Item to investigate teachers' conceptions of variation in equations. © 2014 
Arizona Board of Regents. Used with permission 

The conundrum that this item raises is an artifact of the way many teachers and 
textbooks speak of equations. They convey to students that equations have a particular 
form (formula on one side, number on the other) and that they are triggers for a special 
collection of activities that should end when you get a letter on one side of an equal sign 
and a number on the other. Thus, students learn that the letter in the equation you start 
with stands for the number(s) your equation-solving activities end with. The meaning that 
a variable in an equation stands only for a solution is highly debilitating for students’ 
making meaning of related ideas. For example, in y = mx + b students must distinguish 
between x and y as variables (in the sense that we envision their values varying) and m 
and b as constants (meaning, they can have different values, but we envision any value of 
m and b being fixed while values of x and y vary). Also, the meaning that a variable in an 
equation stands just for a solution is incoherent with solving equations graphically. If a 
solution is the only possible value of x in 3x + 7 = 12, then any graph we draw would 
have only the point  5 3,12( )  on it. Later in their study of mathematics, students must 
think of both m and x as variables in y = mx + b and that the two together create a surface 

In a lesson on linear equations, Darren, a student in Mrs. Bryant’s class, asked, 
“Mrs. Bryant, why do they call x a variable in 3x + 7 = 12 when x can be only 
one number? Didn’t you say that a letter that stands for just one number is a 
constant?” 
 
How would you respond? 
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whose cross-sections are lines. Thus, our intention for the item in Figure 10 was to see 
the extent to which teachers hold meanings that would support students’ thinking “in an 
equation, x stands for the equation’s solutions”.  

Table 12 displays the rubric we developed for scoring responses to Darren’s 
question. Level 4 responses conveyed the message that you can think of the value of x 
varying in magnitude just as in non-equation settings. Level 3 responses conveyed the 
message that x can have different values, but the values are substituted for x.14 Level 2 
responses separated the meaning of variables into two categories – a meaning for 
variables used in functions and a meaning for variables used in equations. Level 1 
responses agreed with Darren’s interpretation—that in equations, a letter in an equation 
stands only for its solutions. 

Table 12. Rubric for scoring teachers' responses to Darren's question in Figure 10. 
© 2014 Arizona Board of Regents. Used with permission. 
Level 4 The teacher conveyed that the value of x varies in the sense of varying values or of a 

magnitude growing larger, and conveyed that a solution to the equation is a value of x that 
makes the statement 3x + 7 = 12 true.  

Level 3 The teacher conveyed a sense that we substitute values for x (including “x can be any 
number” or “x can be many numbers”), and that we are looking for the number or numbers 
that make the statement 3x + 7 = 12 true.  

Level 2 The teacher conveyed that x could be used in more than one way. For instance, when x is in 
equations, it stands just for a solution, but when it is in something like y = 3x + 7, x can vary 
(or, it can stand for any number).  

Level 1 A Level 1 response conveys that x represents a single value (possibly not until we solve for 
it). Responses at this level support the idea that x does not vary, or at most that the value of x 
changes depending on the value on the right hand side of the equal sign. 

Level 0 Any of the following: 
• Scorer cannot interpret the teacher’s response. 
• The teacher wrote “I don’t know” or equivalent. 
• The teacher addressed the question with incoherent reasoning.  
• The teacher stated that a variable is just a letter, and makes no further statements that 

fit in a higher level. 
• The teacher’s response does not fit into Levels 1 to 4. 

Table 13 displays our scoring of 96 high school mathematics teachers in Summer 
2013 using the rubric in Table 12. I include teachers’ initial major to show that responses’ 
levels were largely independent of major. It shows that only 13% of these teachers 
resolved the conundrum at the highest two levels, that 22% said that the meaning of x 
depends on whether it occurs in an equation or in a function, while 57% essentially 
agreed with Darren that x is a constant in the equation 3x + 7 = 12. Level 1 included 
responses like, “Yes, x stands for only one number in 3x + 7 = 12. But it would stand for 
a different number in 3x + 7 = 14.” 

Table 13. High school mathematics teachers' responses to Figure 10 in Summer 2013. 
(n = 96) 

 
Math MathEd Other total 

Level 4 1 1 2 4 
Level 3 2 3 3 8 

Level 2 4 9 8 21 
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Level 1 18 20 17 55 

Level 0 1 3 3 7 
No Ans 1 0 0 1 

total 27 36 33 96 

Table 14 examines the relationship between teachers’ responses to Bouncing Ball 
and to Darren’s question. Responses to neither item are predictive of responses to the 
other. We see this as an artifact of two things: (1) We created an over-estimate of 
teachers’ covariational thinking by making the Figure 9 item multiple-choice, and (2) the 
Figure 10 item, for many teachers, triggered an “equation” scheme in which the idea of 
variable is isolated from the idea of variation. In either case, our recommendation to these 
teachers’ professional development leaders was that they work with teachers to build 
meanings of variation and covariation so that they are coherent across the topics of 
functions and equations. 

Table 14. Relationship between responses to items in Figure 9 and Figure 10. (n = 96) 
  Bouncing Ball  
 

 

d 
(SCC) 

b 
(CCV) 

c  
(CV) 

a  
(TT) Other total 

x 
va

rie
s 

Level 4 1 0 2 0 1 4 

Level 3 5 2 1 0 0 8 

Level 2 9 6 3 3 0 21 

Level 1 11 21 9 11 3 55 
Level 0 3 1 0 2 1 7 

No Ans 0 0 1 0 0 1 
 total 29 28 16 16 5 96 

An Item’s Focus 

Results from assessing teachers’ meanings for “over” (Figure 1), their covariational 
reasoning (Figure 9), and their meanings for variation (Figure 10) highlight an issue that 
will be faced in designing any assessment of meaning. It is that a meaning can never be 
isolated in teachers’ responses to an item—teachers often activate many meanings when 
interpreting an item. For example, in the “over” item (Figure 1), many teachers 
incorporated their meanings of function and their meanings for ratio into their responses. 
In the Bouncing Ball item (Figure 9), even though we designed it to focus on covariation, 
teachers saw two graphs, which certainly activated their schemes for graphs. Also, the 
item describes a ball bobbing on a rubber cord; teachers certainly envisioned its behavior 
idiosyncratically. Teachers also thought of a variety of quantities, some of which turned 
out to be immaterial to the question—such as that the ball bounces in time and with a 
velocity. In the “x varies” item (Figure 10), the question is about variables and constants, 
but in the context of discussing an equation. Teachers certainly activated their meanings 
for equations as well as their meanings for “constant” and “variable”.15  

Thus, in devising a scoring rubric one must identify the rubric’s focus. In the “over” 
item, we chose to ignore aspects of responses that revealed problematic meanings for 
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function notation and for rate of change—simply because not all teachers thought to use 
function notation or to mention rate of change in their responses. For most items, we 
chose to ignore arithmetic errors because the items’ foci were on something that was 
immaterial to correct calculations. The idea of focus in designing and scoring an item is 
tantamount to deciding to which aspects of teachers responses you will attend, which also 
entails the willingness to ignore other aspects of teacher’s thinking that are revealed in 
their responses, no matter how interesting those revelations are. 

METHODOLOGICAL ISSUES IN ASSESSING TEACHERS’ MATHEMATICAL 
MEANINGS FOR TEACHING MATHEMATICS 

Our overall method for developing the MMTsm resembles the methods used by Hestenes 
and colleagues to create the Force Concept Inventory (FCI, Hestenes, Wells, & 
Swackhamer, 1992; Savinainen & Scott, 2002) and by Carlson and colleagues to create 
the Precalculus Concept Assessment (PCA, Carlson, Oehrtman, & Engelke, 2010): (1) 
Create a draft item, interview teachers (in-service and pre-service) using the draft item. A 
panel of four mathematicians and six mathematics educators also reviewed draft items at 
multiple stages of item development. In interviews, we looked for whether teachers 
interpret the item as being about what we intended. We also looked for whether the item 
elicits the genre of responses we hoped (e.g., we do not want teachers to think that we 
simply want them to produce an answer as if to a routine question); (2) Revise the item; 
interview again if the revision is significant; (3) Administer the collection of items to a 
large sample of teachers. Analyze teachers’ responses in terms of the meanings and ways 
of thinking they reveal; (4) Retire unusable items; (5) Interview teachers regarding 
responses that are ambiguous with regard to meaning in cases where it is important to 
settle the ambiguity; (6) Revise remaining items according to what we learned from 
teachers’ responses, being always alert to opportunities to make multiple-choice options 
that teachers are likely to find appealing according to the meaning they hold; (7) 
Administer the set of revised items to a large sample of teachers; (8) Devise scoring 
rubrics and training materials for scoring open-ended items; revise items only when 
absolutely necessary.  

Though the overall method described above resembles the development of the FCI 
and PCA, our focus on assessing teachers’ meanings rather than performance introduced 
many new issues. In this section I share issues to which we found ourselves attending 
methodically in our attempts to assess teachers’ mathematical meanings for teaching. 
They can be grouped into three themes: (1) item design, (2) rubrics for scoring, and (3) 
aggregating data. Though it is these three themes I will expand, a general comment to 
frame them might be helpful. You will profit by approaching the task of designing items 
to assess mathematical meanings much like you would a design experiment (Brown, 
1992; Cobb, Confrey et al., 2003). The difference between a design experiment and what 
I outline in this section is that within the cycle of design-evaluate-redesign you will have 
mini-cycles with the same structure, and you will maintain a more intimate dialectic 
between design and theory throughout the design and refinement process. 
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Designing items 

The foremost characteristic of meanings is that they are invoked in an act of 
interpretation. An item to assess teachers’ mathematical meanings must therefore be 
designed so that teachers reveal something about their interpretation of it. Ideally, it will 
invite teachers to think that the meanings that come to their minds in understanding the 
item are the ones that the item writers want them to share. Second, an item must have a 
focus—a meaning that you deem important enough to merit devoting one or more of a 
relatively small number of items to it. Third, the collection of meanings you assess must 
form a coherent background for the assessment itself. The collection must address the 
body of ideas that comprise the conceptual skeleton of the elementary, middle, or 
secondary curriculum for which teachers taking the assessment are responsible. These 
three considerations undergird the design of individual items. 

Start with meanings that matter to students, both positively and negatively.  

Research on teachers’ and students’ mathematical understandings and thinking often 
provides inspiration for items, as do ways of thinking by teachers and by students that 
you notice in your everyday interactions with them. Research on students’ or teachers’ 
performance that emphasizes correct responses is usually unhelpful. Research that reveals 
sources of students’ productive and unproductive meanings and ways of thinking are 
more useful. For example, APOS theory (Arnon, Cottril et al., 2014; Dubinsky & 
McDonald, 2001) describes students’ difficulties with the idea of function as a mapping 
of the function’s domain onto its image. The idea that a function maps a set of values A to 
a set of values B entails thinking that the function is evaluated at every element of A, and 
that every value of the function is an element of the set B. One might get at teachers’ 
thinking regarding the idea of mapping a set to a set by asking something like Figure 

11.16 

Part (a) asks what the expression 
  
f 0.5,1.5⎡⎣ ⎤⎦( )  might mean, not what it does mean. 

It asks teachers to make a meaning for the expression even if they’ve never seen this 
notation. The purpose would be to see whether teachers could think about what it might 
mean to have an interval of numbers instead of a single number as input to a function. 
Part (b) gives teachers an opportunity to express whatever meaning they expressed in Part 
(a) more concretely. This could reveal that they have an intuitive scheme for mapping a 

The graph of a function h is shown to the 
right. The expression  represents 
all real numbers from 0.5 to 1.5, 
inclusive. (a) What might the expression 

 mean? (b) According to 

your meaning, what is ? 

Figure 11. Potential item to probe teachers' meaning for function as mapping. 
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set that they cannot articulate, or it could reveal that their verbal formulation of a 
meaning for 

  
f 0.5,1.5⎡⎣ ⎤⎦( )  is not grounded in a scheme of actions and operations. 

Leverage the implicative nature of meanings. 

To leverage the implicative nature of meanings, one asks for a teacher’s response and 
then follows up with a question to reveal what the teacher’s response implies for him or 
her. Examples of this strategy appear earlier in the chapter. 

Raise issues of conflicting meanings that often arise, or that a teacher should 
anticipate, in students’ thinking. 

The research literature on students’ understandings of important mathematical ideas is a 
rich source for items that probe teachers’ meanings. For example, it is well known that 
students often interpret graphs that show a function’s rate of change as if the graph is of 
the function itself, such as mistaking a speed-time graph for a distance-time graph (Monk, 
1992; Monk & Nemirovsky, 1994; Oehrtman, Carlson, & Thompson, 2008). A common 
explanation is that students did not pay attention to the axes’ labels. We included an item 
on the MMTsm that showed a graph that represented the rate of change of a bacterial 
culture’s mass relative to elapsed time since the measurements began, with axes clearly 
labeled “g/hr” and “hr”. We asked, “Over what time intervals is the culture’s mass 
increasing?” On the next page we presented the same graph with one point highlighted, 
and asked teachers to explain what the point represented. Then we asked teachers 
whether they would like to change their answer to the first part. Some teachers responded 
to the first part as if the graph showed the culture’s mass, not its rate of change, 
interpreted the point correctly, and then changed their answer to Part A. These teachers 
had not attended to the axes labels and changed their response when their attention was 
drawn to them. Other teachers interpreted the graph as if about mass, interpreted the point 
as if about a rate of change, and left their answer to the first part the same. For these 
teachers, their original interpretation of the graph was stable. We interpret this as 
suggesting that, to these teachers, graphs are about amounts. It is also consistent with a 
form of reasoning about graphs that I mentioned earlier—shape thinking. We cannot be 
certain of either hypothesis without follow-up interviews, but these teachers’ original 
interpretation was certainly resistant to perturbation. 

Request symbolic responses sparingly.  

Teachers often use symbolism idiomatically—the expression itself has meaning to them, 
but the meaning of the whole does not derive from meanings of its parts. Request 
symbolic responses only when it is important to see how teachers express their meanings 
symbolically and only in cases where you have another window to the meaning they 
think they are expressing. 

Decide early on an item’s focus.  

Since meanings are schemes, an item can invoke multiple meanings in the person 
responding to it. See the discussion of focus on page 454. 
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Pilot items early and often  

It is essential that you conduct interviews on as many items as your resources allow. Of 
course, we all operate with limited resources so you must decide strategically on which 
items you will interview. It is also useful to share items with mathematicians with whom 
you’ve established a working relationship. It is imperative that you also share your 
rationale for the item and what you hope teachers will reveal in their responses. 

Scoring responses and refining items 

Our method for developing scoring rubrics and for refining items is inspired by the work 
of Wilson and Draney at the UC Berkeley Evaluation and Research (BEAR) Center 
(Kennedy & Wilson, 2007; Wilson & Sloane, 2000). That work focuses on creating 
construct maps and progress variables that form the basis of instruments that use a 
developmental perspective on students’ learning to assess students’ progress—to evaluate 
learning progressions. BEAR assessments are given on multiple occasions to track 
students’ progress over large periods of time in learning a body of interrelated ideas and 
ways of thinking.  

MMTsm items, however, do not come with models for the development of 
meanings they assess. Teachers are not first-time learners of these ideas. Rather, in many 
instances they developed unproductive meanings as students, and then spent years 
learning to cope with mathematics instruction that they were unprepared to understand—
developing ways to satisfy demands to perform without having a basis in meaning. 
Moreover, experienced teachers, over time, often develop curricular meanings that 
overlay meanings they already possessed. As a result, it is rare that we can place teachers’ 
meanings on a developmental scale regarding progress in learning an idea. Our approach 
instead became to design rubrics to reflect levels of productive meaning—where 
“productive” is judged by the criterion of how useful a meaning would be for students’ 
future mathematical learning were a teacher to convey it to them. Levels of productive 
meaning do not form a progression in the sense that we envision teachers going through 
lower levels to reach higher levels. But the levels do impose order on teachers’ responses 
on a scale that is relevant to teaching the idea being assessed, and we may expect 
responses by teachers who are involved in professional development to attain higher 
levels when responding to an item on successive occasions. 

It is essential that each free-response item have a scoring rubric. Your assessment 
will be unusable outside your project without scoring rubrics.   

As mentioned above, our method for developing scoring rubrics derives from the 
work of Wilson and Draney. It has five phases that describe the scoring of items which 
have gone through the development phase of interviews and small-scale piloting and for 
which you now have a large number of responses. 

Phase 1: Grounded theory. In the first phase you approach responses with the open 
attitude espoused by Strauss and Corbin (1998), but the “openness” is theoretical. Attend 
to how well you can make sense of teachers’ responses using the theory of meaning 
behind the item. In this phase we sometimes made major changes to an item and placed 
the item in the pool awaiting further development without trying to score responses, or 
we discarded the item altogether. With some items we found that we could make sense of 
teachers’ responses if we modified its theory of meaning. In other cases, we made minor 
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changes to the item to use in later testing, but proceeded to analyze responses to the 
current item as given to teachers. 

Phase 2: Group responses. When an item elicits responses that you feel give 
insights into teachers’ meanings or ways of thinking, you then proceed to group 
responses by levels of productive meaning. In this case, “meaning” is the researcher’s 
attribution of meanings and ways of thinking that would explain why a teacher wrote 
what he or she wrote. Our team found it useful to conduct these analyses individually 
with subsets of responses to an item and then report our analyses to the team for 
discussion. Lengthy discussions of individual responses, over time, will increase the 
overall coherence of the scoring scheme for all responses. I hasten to add that it will often 
happen that you cannot describe a group of responses in terms of meanings that teachers 
might have had. But you may still be able to describe a group of responses in terms of 
meanings that you envision students might construct were teachers to say in class what 
they said in their responses to the item. 

Phase 3: Codify your criteria for grouping responses. It is in the third phase that 
you begin to have something that resembles a scoring rubric for an item. Your aim will 
be that the criteria’s descriptions allow a scorer to place any response at a particular level. 
Sometimes a teacher’s response will fit two levels. In this case the scoring rubric must 
say whether to place the response at the higher or lower level. The response in Figure 2 
(meaning of “over”) is an example of this. The teacher said that “over” means “during” 
and the teacher said that “over” means a ratio. We decided to state clearly that responses 
like this should go at the lower level. 

Phase 4: Small scale inter-scorer trials. The rubric is ready to be “stress tested” 
after it has reached its first stable state. Select a small random sample of responses (we 
used samples of size 10) and have several team members score them independently 
according to the rubric. Team discussions of scoring discrepancies often lead to further 
revisions of the rubric during the discussion. When consensus has been reached on a 
rubric it is ready for inter-scorer agreement testing. 

Phase 5: Inter-scorer agreement and scoring all responses. For efficiency we 
combined the scoring of all responses with scoring for inter-scorer agreement. We had 
112 responses to score on each item of the MMTsm. Two team members each scored 66 
responses, 46 that were unique to a scorer and 20 that were common to the two scorers.17 
Scorers scored their respective responses independently, entering scores in a spreadsheet. 
The team discussed discrepancies between scores on common responses. Some 
discrepancies were accepted as unavoidable error, which left the rubric intact. Other 
discrepancies pointed to problems with the rubric that, upon revision, eliminated the 
discrepancy. If we changed a level’s description, each scorer revisited responses unique 
to his response set whose scores might be affected by the rubric’s revisions. 

It should be obvious that the method for developing a scoring rubric described here 
is an exercise in reflecting abstraction (Piaget, 2001). The shifts from Phase 1 to Phase 5 
reflect the team members’ progressive thematization of their thinking about the responses 
that an item elicits from teachers. A scoring rubric, in its final form, therefore reflects a 
scheme that the rubric designers built by continually reflecting on their actions of making 
sense of teachers’ responses. 
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Aggregating data 

Our goal for the MMTsm, from the outset, was to create an instrument whose results 
could inform teachers and their professional development leaders about areas in which 
teachers might work to strengthen their mathematical meanings for teaching and areas in 
which they have productive meanings. The issue of aggregating data, then, is really the 
issue of how to report results in a way that helps teachers improve their mathematics 
teaching and helps professional developers design an evidence-based intervention. Each 
item is rich in the information it provides about teachers’ meanings. But results cannot be 
reported item-by-item. We also faced the problem that one mix of meanings on a set of 
related items can have very different implications for teaching and for professional 
development than another mix of meanings. 

We are facing the issue of data aggregation as of this writing, and at this moment I 
cannot offer a solution. We hope that the data we’ve collected and scored are amenable to 
a variant of the BEAR assessment system, a system that was designed for tracking 
students’ progress within a learning progression. But it is not clear to me that it even 
makes sense to look for structure among levels of productive mathematical meanings in 
responses to MMTsm items. Lower levels of a scoring rubric tend to be about 
unproductive meanings teachers might convey to students instead of about meanings they 
have. 

For professional development projects currently using the MMTsm, we will report 
very simple profiles for individual teachers—scaled level scores for groups of items 
within the MMTsm item categories along with brief statements about what scores in 
different ranges mean regarding mathematical meanings for teaching that concept area. 
We have no illusions that this will be especially meaningful to teachers except to alert 
them that there might be something they should work on. However, we expect this 
information to be very helpful to leaders of the teachers’ professional development 
projects. Project teams attend an 18-hour workshop on the MMTsm, its design, and on 
using the rubrics so score teachers’ responses. The workshop, and the rubrics’ supporting 
materials, also goes into great detail about implications for student learning that we 
foresee responses at the different levels having. It is this aspect of the MMTsm that we 
see having the greatest potential impact—alerting professional development leaders about 
the mathematical meanings they will be attempting to affect in their projects and why 
affecting them is important. 

Two large projects are using the MMTsm as a measure of their yearlong projects’ 
impact on teachers’ mathematical meanings for teaching secondary mathematics. Their 
use of the MMTsm will allow us to inquire into two questions: (1) Can we be confident 
that gains on the MMTsm actually reflect higher quality and more coherent meanings? 
(2) Is it possible for teachers’ scores to go down over the period of a year, and if so, why? 
Both questions require qualitative methods that we hope will yield results that triangulate 
with what we think teachers’ responses to the MMTsm tell us. 

CONNECTING ASSESSMENTS OF MATHEMATICAL MEANINGS TO 
CLASSROOM INSTRUCTION 

I discuss the idea of teaching as a form of conversation in (Thompson, 2013), and explain 
how successful conversation relies in principle on participants’ conscious attention to 
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their and others’ meanings. I cannot repeat that discussion here. One point, however, 
deserves repeating. Teachers convey meanings to students in the sense that students strive 
to understand what their teacher wants them to do or to understand, building meanings in 
the process. This happens regardless of whether teachers are aware of the meanings they 
possess, and it happens regardless of the coherence of the teacher’s meanings. A 
teacher’s aim should be that the meanings students build from instruction are meanings 
worth having for a lifetime. Teachers’ instruction should support students in creating 
coherent meanings of the mathematics the teacher is teaching, and those meanings should 
lay a foundation for students’ future learning. Attention to teachers’ mathematical 
meanings for teaching mathematics will support this broad goal. 

Having high quality, coherent meanings is an essential aspect of high quality 
instruction. But it is only a piece of high quality instruction. Other factors will affect 
whether teachers convey productive mathematical meanings to their students. 

• The teacher has meanings. Is the teacher aware of them? Is the teacher oriented to 
conveying them to students?  

• Does the teacher reflect on activities and problems that might give students an 
occasion to transform their current meanings into desired meanings? 

• Does the teacher care about the meanings students construct from what he or she 
does and says, and convey that care to students? Is the teacher oriented to notice 
students’ meanings, and adjust instruction accordingly? 

CONCLUSION 

In this chapter I argued in principle and by example that a focus on teachers’ 
mathematical meanings for teaching mathematics is both important and potentially 
productive regarding the improvement of teachers’ teaching, which I take as necessary 
for the improvement of students’ mathematical learning. I also outlined a method for 
developing items and instruments that focus on teachers’ mathematical meanings for 
teaching mathematics. In this concluding section, I will speak about how we can link 
research and assessment more intimately than simply using the results of each in the 
activities of the other. 

Assessment as a context and source for research  

While developing the MMTsm, we often found that existing research was inadequate to 
guide an item’s design or to make sense of teachers’ responses. For example, in designing 
items to investigate teachers’ meanings for function we discovered that function notation 
is a far more complex notion for teachers than existing research on function suggests 
(Musgrave & Thompson, 2014; Yoon, Hatfield, & Thompson, 2014). This led to function 
notation becoming one of the identified areas in which we attended to teachers’ meanings, 
which in turn has led to an expansion of our understanding of the conceptual 
requirements for students and teachers to use functions as models of dynamic situations. 
We anticipate that these developments will lead to new directions in research on students’ 
and teachers’ understandings of function. 

More broadly, a focus on creating items that assess teachers’ meanings will reveal 
lacunae in past research related to that those meanings, largely because you will need to 
address issues of teachers’ and students’ thinking that past research finessed. When this 
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happens, you can both address the issue within your overall scheme for the assessment’s 
design while simultaneously putting it on your and others’ agendas for future research.  

Finally, we are now planning proposals to use the MMTsm to draw national and 
international comparisons—not as a horse race among groups, but to investigate whether 
differences among teachers’ mathematical meanings for teaching might be a partial 
explanation for differences among nations’ mathematics education outcomes. 

Research as source for assessment 

I mentioned that research on students’ and teachers’ mathematical thinking often 
provides inspiration for deciding upon the areas that your assessment will cover and for 
items to include in it. There is, however, another important way in which we can leverage 
the conduct of research on mathematical thinking, especially qualitative research, to 
inform future assessments. In doing qualitative research on students’ or teachers’ 
mathematical thinking, one is attentive to nuances in individuals’ thinking that point to 
understandings, meanings, or ways of thinking that might prove explanatory with regard 
to why it is reasonable, from the individuals’ perspectives, that they do what they did. If 
researchers were to think also about the prevalence of any of these as possible 
explanations of phenomena that have already been witnessed broadly, they would have 
the beginning of an assessment focus. If in addition they were to fine-tune their tasks so 
that they could be given outside of interviews, and responses could be scored with that 
focus, they would have early drafts of assessment items. 

Striving for common measures 

While writing this chapter, the MMTsm team and I struggled with the question of what to 
include as examples of items that focus on teachers’ mathematical meanings for teaching. 
We were reluctant to include actual MMTsm items, for the simple reason that if we 
amortize the amount spent by the National Science Foundation across items and scoring 
rubrics, each item and its rubric cost, on average, over $35,000. These items are not easy 
to create. I could have used discarded items, and they would have served the purpose of 
this chapter.  

We decided collectively that I should use actual items and include our data on them, 
for three reasons. The first reason is that most people with whom we shared results are 
truly surprised by them—they were unaware of teachers’ difficulties with mathematical 
meanings that they thought were largely unproblematic. We decided that it is important 
that the mathematics education community realize the depth of a problem that has gone 
largely unnoticed. The second reason that we decided to include actual items and data on 
them is to encourage others to use them, or the MMTsm in its entirety, in their research. 
It is only through the use of common measures that research results are comparable, and 
the use of common measures also supports the development of common conceptions of 
what is being measured. The third reason for including actual items and their data is that 
they are better than the discarded items, and we wanted to share the best items we could 
in hopes that they would inspire others to create even better ones. 
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NOTES 

                                                
1 Research reported in this article was supported by NSF Grant No. MSP-1050595. Any 
recommendations or conclusions stated here are the author's and do not necessarily 
reflect official positions of the NSF. 
2 I thank John Mason, David Kirshner, Lyn English, Marilyn Carlson, Mark Wilson, 
Karen Draney, and Cameron Byerley for their thoughtful comments and suggestions on 
earlier drafts. 
3 This narrative also assumes that the teacher has a rich meaning of “equivalence-
preserving transformation”. 
4 MMTsm team members are Stacy Musgrave, Ioanna Mamona, Cameron Byerley, Neil 
Hatfield, Hyunkyoung Yoon, Surani Joshua, Ben Whitmire, Mark Wilson, Karen Draney, 
Perman Gochyyev, Diah Wihardini, Dong Hoon Lee, and JinHo Kim. 
5 The MMTsm assesses teachers’ mathematical meanings in the areas of variation and 
covariation, function (definition, notation, and modeling), frames of reference, magnitude, 
proportionality, rate of change, and structure. 
6 A later section discusses general issues of method. One of the issues is that of “focus”. 
Teachers’ responses often tell you far more about their thinking than an item was 
designed to tap. What you decide to ignore in teachers’ responses to a particular item is 
as important as what you decide to look for. 
7 My use of “convey” is not the same as “transmit”. A meaning that a teacher conveys to 
a student is the meaning the student constructs in attempting to understand what the 
teacher meant. 
8 This is precisely the meaning of division stated in the Grade 5 mathematics textbook 
published by the Japan Ministry of Education (2008). 
9 The graph of y = 3x + 2 has a constant slope of 3 even when graphed in a polar 
coordinate system or in a log-log coordinate system—and its graph does not appear to be 
a line in either one. 
10 The graph in the actual item was much larger than it appears here, making physical 
measurement quite easy. 
11 I am indebted to Les Steffe for this example. 
12 I use the word “space” instead of “set” because meanings do have structure. Actions 
imply other actions by creating conditions for further action. The structure of a person’s 
meaning arises from the structure of the interconnections among actions, images, and 
schemes that constitute it in that person’s reality. 
13 One of Piaget’s definitions of scheme was, “[Schemes are] organized totalities [of 
actions and operations] whose internal elements are mutually implied” (Piaget, 1952, p. 
405) 
14 One reviewer of this chapter suggested that what we have as Level 3 in Table 12 
should be the highest level. I respectfully disagree. Students and teachers who have the 
meaning of variables in equations as described in Level 4 see greater coherence among 
ideas of functions, graphs, equations, and solutions to an equation. In effect, they will see 
an equation’s solution set S as S = x ∈D f (x) = c{ } , where D is a function’s domain and 
c is in the function’s image. To think of values of x in D that make the statement true, one 
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must envision the possibility of all values of x in D, which is what the meaning of 
continous variation described here affords. 
15 For example, some teachers declared “x” is a variable by virtue of being a letter, and 
that only specific numbers, represented with numerals, are constants. 
16 This is item is not on the MMTsm. 
17 The solution to 2x + 20 = 112 is 46. 
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