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In the first part of this article, I clarify how we analyze students' mathematical reason- 
ing as acts of participation in the mathematical practices established by the classroom 
community. In doing so, I present episodes from a recently completed classroom 
teaching experiment that focused on statistics. Against the background of this analy- 
sis, I then broaden my focus in the final part of the article by developing the themes of 
change, diversity, and equity. 

In recent years, we have seen an increasing emphasis on the socially and culturally 
situated nature of mathematical activity. l k s  trend encompasses a range of theoret- 
ical positions that include sociocultural theory, discourse theory, and symbolic 
interactionism. There are, of course, significant differences among these various 
perspectives that have, at times, been the subject of intense debate. However, rather 
than highlight differences, I focus on a central notion that I believe cuts across these 
positions and serves to differentiate them from purely psychological perspec- 
tives-that of participation in communal practices. In developing this notion, I 
ground the discussion in my own and my colleagues' work in classrooms. My im- 
mediate goal is to clarify how we analyze students' mathematical reasoning as acts 
of participation in the mathematical practices established by the classroom commu- 
nity. In doing so, I present episodes from a recently completed classroom teaching 
experiment that focused on statistics. Against the background of this analysis, I 
then broaden my focus in the final part of the article by developing the themes of 
change, diversity, and equity. 

Requests for reprints should be sent to Paul Cobb, Vanderbilt University, Peabody College, Box 330, 
Nashville, TN 37203. E-mail: cobbP@ctrvax.vanderbilt.edu 



ORIENTATION: DEVELOPMENTAL RESEARCH AND 
THE CLASSROOM MICROCULTURE 

The type of research that my colleagues and I conduct involves classroom teaching 
experiments of up to 1 year in duration (cf. P. Cobb, in press; Confrey & Lachance, 
in press; Simon, in press; Yackel, 1995). In the course of these experiments, we 
both develop sequences of instructional activities and analyze students' mathemat- 
ical learning as it occurs in the social situation of the classroom. Research of this 
type falls under the general heading of developmental research (Gravemeijer, 
1994) in that it involves both instructional development and classroom-based re- 
search. It should, therefore, not be confused with either child development research 
or with research into the development of particular mathematical concepts. The ba- 
sic developmental research cycle is shown in Figure 1. The first aspect of the cycle 
involves developing instructional sequences as guided by a domain-specific in- 
structional theory. In our case, we draw on the theory of realistic mathematics edu- 
cation developed at the Freudenthal Institute (Gravemeijer, 1994; Streefland, 1991 ; 
Treffers, 1987). Gravemeijer has written extensively about the process of instruc- 
tional design in developmental research and clarifies that the designer initially con- 
ducts an anticipatory thought experiment. In doing so, the designer envisions how 
students' mathematical learning might proceed as the instructional sequence is en- 
acted in the classroom, thereby developing conjectures about both (a) possible tra- 
jectories for students' learning and (b) the means that might be used to support and 
organize that learning. It is important to stress that the conjectures are tentative and 
provisional, and they are tested and modified on a daily basis during the teaching 
experiment. These adaptations and revisions are informed by an ongoing analysis 
of classroom events, and it is here that the second aspect of the developmental re- 
search cycle-classroom-based analyses+omes to the fore. 

FIGURE 1 The developmental research cycle. 
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Interpretations of classroom events reflect suppositions and assumptions about 
learning, teaching, and mathematics as well as about the general relation between 
individual activity and communal processes. In my own case, for example, my col- 
leagues and I initially intended to analyze students' mathematical reasoning in 
purely psychological terms when we began working intensively in classrooms 12 
years ago. This is not to say that we ignored the role of social interaction in sup- 
porting mathematical learning. The classroom sessions in the first teaching experi- 
ment that we conducted, in fact, involved small-group work followed by 
whole-class discussions of students' mathematical interpretations and solutions. 
However, we treated social interaction and discourse as a catalyst for otherwise au- 
tonomous mathematical development and did not view them as influencing the 
products of learning-increasingly sophisticated mathematical ways of knowing. 

Incidents that occurred at the beginning of the first teaching experiment, which 
was conducted with 7-year-old students in a second-grade classroom in the United 
States, led us to question our sole reliance on an individualistic, psychological ori- 
entation. Briefly, the teacher with whom we collaborated expected her students to 
engage in genuine discussions in which they explained and justified their mathe- 
matical reasoning. However, as a consequence of their prior experiences in school, 
the students assumed that their role was to infer the responses that the teacher had 
in mind all along rather than to articulate their own interpretations. The teacher 
coped with this conflict between her own and the students' expectations by initiat- 
ing a process that we subsequently came to term the negotiation of classroom so- 
cial norms (P. Cobb, Yackel, & Wood, 1989). Examples of social norms that 
became explicit topics of discussion included explaining and justifying solutions, 
attempting to make sense of explanations given by others, indicating agreement or 
disagreement, and questioning alternatives in situations in which a conflict in in- 
terpretations had become apparent. In general, an analysis that focuses on social 
norms serves to delineate the classroom participation structure (Erickson, 1986; 
Lampert, 1990). These norms therefore constitute a crucial aspect of the classroom 
microculture that is continually regenerated by the teacher and students in the 
course of their ongoing interactions. 

As this brief summary makes clear, our interest in classroom social norms 
and, more generally, in the classroom microculture did not arise as an end in it- 
self. Instead, it emerged within the context of developmental research as we at- 
tempted to further our agenda of supporting students' mathematical learning in 
classrooms. It was within this context that we subsequently came to view one as- 
pect of our analysis of classroom social norms as inadequate. In particular, we 
came to realize that these norms are not specific to mathematics; rather, they ap- 
ply to any subject matter area. For example, one might hope that students would 
explain and justify their reasoning in science or history classes as well as in 
mathematics. We attempted to address this limitation by shifting our focus to 
normative aspects of students' activity that are specific to mathematics 
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(Lampert, 1990; Voigt, 1995; Yackel & Cobb, 1996). Examples of these 
so-called sociomathematical norms include what counts as a different mathemat- 
ical solution, a sophisticated mathematical solution, an efficient mathematical 
solution, and an acceptable mathematical explanation. 

As we have noted elsewhere (Yackel & Cobb, 1996), the analysis of 
sociomathematical norms has proven useful in helping us understand the process 
by which teachers can foster the development of intellectual autonomy in their 
classrooms. This issue is particularly significant to us, given that the development 
of student autonomy was an explicitly stated goal of our work in classrooms from 
the outset. However, we originally characterized intellectual autonomy in individ- 
ualistic terms and spoke of students' awareness of and willingness to draw on their 
own intellectual capabilities when making mathematical decisions and judgments 
(Kamii, 1985; Piaget, 1973). As part of the process of supporting the growth of au- 
tonomy, the teachers with whom we have worked initiated and guided the devel- 
opment of a community of validators in their classrooms, such that claims were 
established by means of mathematical argumentation rather than by appealing to 
the authority of the teacher or textbook. However, for this to occur, it was not suffi- 
cient for the students merely to learn that they should make a wide range of mathe- 
matical contributions. It was also essential that they become able to judge both 
when it was appropriate to make a mathematical contribution and what constituted 
an acceptable contribution. This required, among other things, that the students 
could judge what counted as a different mathematical solution, an insightful math- 
ematical solution, an efficient mathematical solution, and an acceptable mathe- 
matical explanation. However, these are precisely the types of judgments that are 
negotiated when establishing sociomathematical norms. We therefore conjectured 
that students develop specifically mathematical beliefs and values that enable 
them to act as increasingly autonomous members of classroom mathematical com- 
munities as they participate in the negotiation of sociomathematical norms 
(Yackel & Cobb, 1996). 

It is apparent from this account that we revised our conception of the most indi- 
vidualistic of notions-intellectual autonomy-as we worked in classrooms. At 
the outset, we defined autonomy in purely psychological terms as a characteristic 
of individual students' activity. However, as we developed the idea of 
sociomathematical norms, we came to view autonomy as a characteristic of an in- 
dividual's way of participating in a community. In particular, the development of 
autonomy can be viewed as synonymous with the gradual movement from rela- 
tively peripheral participation in classroom activities to more substantial participa- 
tion, in which students increasingly rely on their own judgments rather than on 
those of the teacher (cf. Forman, 1996; Lave & Wenger, 1991). The example of au- 
tonomy is paradigmatic in this regard in that it illustrates the general shift we have 
made in our theoretical orientation away from an initial psychological perspective 
toward what we call an emergentperspective (P. Cobb & Yackel, 1996). 
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Thus far, I have described two aspects of the classroom microculture that we 
have found useful to differentiate when conducting analyses that feed back to in- 
form the ongoing instructional development effort. Our motivation for teasing out 
a third aspect of the classroom microculture, classroom mathematical practices, 
stems directly from our concerns as instructional designers. Recall that the ap- 
proach we take to instructional design involves conducting an anticipatory thought 
experiment in the course of which the designer develops conjectures about the pos- 
sible course of students' mathematical learning. However, these conjectures can- 
not encompass the anticipated mathematical learning of each and every student in 
a class, given that there are significant qualitative differences in their mathematical 
reasoning at any point in time. Descriptions of planned instructional approaches 
written so as to imply that all students will reorganize their mathematical activity 
in particular ways at particular points in an instructional sequence are, at best, 
highly idealized. It is, however, feasible to view a hypothetical learning trajectory 
as consisting of conjectures about the collective mathematical development of the 
classroom community. This proposal, in turn, indicates the need for a theoretical 
construct that allows us to talk explicitly about collective mathematical develop- 
ment. The construct that my colleagues and I have found useful is that of class- 
room mathematical practices that are established by the classroom community. 
Described in these terms, a learning trajectory then consists of an envisioned se- 
quence of classroom mathematical practices together with conjectures about the 
means of supporting their evolution from prior practices. 

As an initial illustration to clarify the notion of a classroom mathematical prac- 
tice, consider the social norm of explaining and justifying interpretations. As I 
have noted, this and other social norms deal with facets of the classroom participa- 
tion structure that are not specific to mathematical activity. In contrast, the related 
sociomathematical norms for argumentation deal with criteria that the teacher and 
students establish in interaction for what counts as an acceptable mathematical ex- 
planation and justification. For example, a criterion that became established dur- 
ing a teaching experiment that focused on place-value numeration was that 
explanations had to be clear, in the sense that the teacher and other students could 
interpret them in terms of actions on numerical quantities rather than, for instance, 
in terms of the mere manipulation of digits (Bowers, Cobb, & McClain, in press). 
Because sociomathematical norms are concerned with the evolving criteria for 
mathematical activity and discourse, they are not specific to any particular mathe- 
matical idea. Thus, the criterion that mathematical explanations should be clear 
could apply to elementary arithmetical word problems or to discussions about rela- 
tively sophisticated mathematical ideas that involve proportional reasoning. 
Classroom mathematical practices, in contrast, focus on the taken-as-shared ways 
of reasoning, arguing, and symbolizing established while discussing particular 
mathematical ideas. Consequently, if sociomathematical norms are specific to 
mathematical activity, then mathematical practices are specific to particular math- 



ematical ideas. In the case of the teaching experiment that focused on place-value 
numeration, the analysis of mathematical practices focused on the specific argu- 
ments and ways of reasoning about quantities that the teacher and students treated 
as being clear and beyond further justification. In addition, the analysis described 
how each mathematical practice identified in this way emerged as a reorganization 
of prior practices, thereby providing an account of both the taken-as-shared under- 
standing of place-value numeration that eventually was established in this particu- 
lar classroom and the process by which it emerged. 

It is apparent from this illustration that analyses of classroom mathematical 
practices account for the emergence of what traditionally is called mathematical 
content in terms of successive reorganizations of communal processes. This ap- 
proach might seem controversial given that, in mathematics education, we typi- 
cally view the development of mathematical ideas and concepts as a matter of 
individual learning. Thus, although it is now common to acknowledge seemingly 
nonmathematical aspects of the classroom microculture such as social norms, we 
typically think in terms of individual students' learning when we address issues 
that relate directly to mathematical content. In addition, it might seem 
counterintuitive to speak of the mathematical learning of the classroom commu- 
nity given the diversity of individual students' reasoning at any point in time. To 
address these concerns, I present episodes from a recently completed teaching ex- 
periment that focused on statistics to illustrate how an analysis of classroom math- 
ematical practices characterizes changes in collective mathematical activity while 
taking into account the diversity in individual students' reasoning. 

BACKGROUND TO THE TEACHING EXPERIMENT 

The teaching experiment was carried out with 29 twelve-year-old students in a 
seventh-grade classroom in the United States and involved 34 lessons conducted 
over a 10-week period.' A member of the project staff served as the teacher for 
the first 21 classroom sessions, and two members of the research team shared 
the teaching responsibilities for the remaining 13 sessions. The overarching 
mathematical idea that served to orient our instructional design effort was that of 
distribution. We therefore wanted students to come to view data sets as entities 
that are distributed within a space of possible values (Hancock, in press; Konold, 
Pollatsek, Well, & Gagnon, 1996; Wilensky, 1997). Notions such as mean, 
mode, median, skewness, spread-outness, and relative frequency then would 
emerge as ways of describing how specific data sets are distributed within this 
space of values. Furthermore, in this approach, various statistical representations 

'Kay McClain, Koeno Graverneijer, Jose Cortina, Lynn Hodge, Maggie McGatha, Beth Petty, Carla 
Richards, Michelle Stephan, and I conducted the teaching experiment. 
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or inscriptions would emerge as different ways of structuring distributions. For 
example, students who use box plots flexibly to compare data sets are reasoning 
about distributions that they have structured multiplicatively. Viewed in this 
way, the development of increasingly sophisticated ways of structuring and or- 
ganizing data is inextricably bound up with the development of increasingly so- 
phisticated ways of inscribing data (Biehler, 1993; de Lange, van Reeuwijk, 
Burrill, & Romberg, 1993; Lehrer & Romberg, 1996). In general, this focus on 
distribution allowed us to frame our instructional intent as that of supporting the 
gradual emergence of a single, multifaceted mathematical notion rather than a 
collection of, at best, loosely related concepts and inscriptions. 

In preparation for the teaching experiment, we surveyed the relevant research 
literature and conducted a series of interviews and classroom performance assess- 
ments with seventh graders in the same school in which we planned to work. A 
broad distinction that emerged from these analyses was one between additive and 
multiplicative reasoning about data (cf. Hare1 & Confrey, 1994; Thompson, 1994). 
Briefly, the hallmark of additive reasoning about data is that students partition one 
or more data sets in ways appropriate to the question or issue at hand and then rea- 
son about the number of data points in the various parts of the data sets in 
part-whole terms. This can be contrasted with multiplicative reasoning about data, 
wherein students reason about the parts of a data set as proportions of the whole 
data set. Our goal for the learning of the classroom community was that reasoning 
about the distribution of data in multiplicative terms would become an established 
mathematical practice that was beyond justification. 

Thus far, in discussing distribution as a key mathematical idea and distinguish- 
ing between additive and multiplicative reasoning about data, I have focused on 
what is traditionally termed mathematical content. It is therefore important to 
stress that our instructional focus also had a process aspect in that we attempted to 
ensure that the instructional activities as realized in the classroom had the spirit of 
genuine data analyses from the outset. To this end, we developed instructional ac- 
tivities that involved univariate data sets and that involved either describing a sin- 
gle data set for a particular purpose or comparing two or more data sets to make a 
decision or judgment. The importance of attending to process as well as to content 
in statistics becomes apparent once we acknowledge that anticipation is at the 
heart of data analysis. Proficient analysts anticipate that certain ways of structuring 
and inscribing data might reveal trends, patterns, and anomalies that bear on the 
questions at hand. These anticipations, in turn, reflect a deep understanding of cen- 
tral statistical ideas. For example, a student who decides that it might be productive 
to inscribe data sets as box plots anticipates the possibility of structuring the data 
sets multiplicatively. Similarly, a student who decides to create a scatter plot does 
so to investigate the covariation of two sets of univariate measures. The challenge 
as we formulated it, therefore, was to transcend what Dewey (1980) called the di- 
chotomy between process and content by systematically supporting the emergence 
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of key statistical ideas while ensuring that the successive classroom mathematical 
practices that emerged in the course of the teaching experiment were commensura- 
ble with the activities of proficient data analysts. As Biehler and Steinbring (1991) 
noted, an exploratory or investigative orientation is not merely a means of support- 
ing learning but is instead central to data analysis and constitutes an instructional 
goal in its own right. 

The summary I have given of our instructional intent clarifies the potential end 
points of the learning trajectory that we envisioned for the classroom community. 
With regard to the starting points, the performance assessments that we conducted 
with seventh-grade students prior to the teaching experiment indicated that data 
analysis for them involved "doing something with the numbers," frequently by us- 
ing methods derived from their prior instructional experiences with statistics in 
school (McGatha, Cobb, & McClain, 1998). In other words, these students did not 
view data as measures of particular aspects or features of situations that were 
judged to be relevant when addressing a particular question or issue. An immedi- 
ate goal at the beginning of the teaching experiment, therefore, was to ensure that 
the first mathematical practices established in the classroom actually involved the 
analysis of data. In the approach that we took, the teacher talked through the data 
creation process with the students. This involved discussing the particular problem 
or question under investigation, clarifying its significance, delineating relevant as- 
pects of the situation that might be measured, and considering various ways of 
measuring them. The data the students were to analyze were then introduced as re- 
sulting from this process. We conjectured that, as a consequence of participating in 
such discussions, the data would have a history for the students such that it was 
grounded in the situation and reflected particular purposes and interests (cf. 
Latour, 1987; Lehrer & Romberg, 1996; Roth & McGinn, 1998). 

Beyond this general instructional strategy, we developed two computer-based 
minitools for the students to use as integral aspects of the instructional sequence.* 
Each minitool offered students several ways of structuring data. More important, 
these options do not correspond to a variety of conventional inscriptions as is typi- 
cally the case with commercially available data analysis tools. Instead, we drew on 
the research literature to identify the various ways in which students structure data 
when given the opportunity to conduct genuine analyses. Therefore, the tools were 
designed to fit with taken-as-shared ways of reasoning at particular points in the 
envisioned learning trajectory while serving as a means of supporting the reorgani- 
zation of that reasoning, The students used these minitools in 27 of the 34 class- 
room sessions. Typically, they worked at computers in pairs to conduct their 
analyses, and then the teacher organized a whole-class discussion using a com- 
puter projection system. I subsequently describe these two minitools when I pres- 

2Koeno Gravemeijer, Michiel Doorman, Janet Bowers, and I developed the two minitools. 



MATHEMATICAL DEVELOPMENT 1 3 

ent an analysis of two of the classroom mathematical practices that emerged 
during the teaching experiment. 

EMERGENCE OF THE FIRST MATHEMATICAL 
PRACTICE 

The first computer minitool was not introduced until the fifth classroom session. 
The whole-class discussions in the preceding four sessions typically involved a se- 
quence of separate reports in which different students described how they had com- 
pleted the instructional activities. Furthermore, students did not appear to adjust 
their explanations by taking into account the interpretations of the listening stu- 
dents, and the listening students rarely asked clarifying questions on their own ini- 
tiative. The classroom participation structure established at the beginning of the 
teaching experiment, therefore, delimited the possibility of developing a 
taken-as-shared basis for mathematical communication. It is also doubtful whether 
most of the students were actually analyzing data, in that the numbers they manipu- 
lated did not appear to signify measures of attributes of a situation about which a de- 
cision was to be made. The analyses that many students reported involved methods 
derived from their prior instructional experiences of doing statistics in sixth grade. 
For example, an appreciable number of the students initially calculated the mean of 
every data set irrespective of the question at hand. In general, the students' contri- 
butions to these initial whole-class discussions appeared to reflect their prior partic- 
ipation in the practices of traditional U.S. mathematics instruction. 

A shift in the quality of classroom discourse occurred in subsequent discussions 
when the students explained how they had used the first minitool to conduct their 
analyses. This minitool was designed to provide students with a means of ordering, 
partitioning, and otherwise organizing sets of up to 40 data points in a relatively 
immediate way. When data are entered into the minitool, each individual data 
point is inscribed as a horizontal bar, the length of which signifies the numeral 
value of the data point. The students could select the color of each bar to be either 
pink or green, enabling them to enter and compare two data sets. For example, Fig- 
ure 2 shows data generated to compare how long two different brands of batteries 
last. Each bar shows a single case, the life span of the tested batteries. The students 
could sort the data by size and by color. In addition, they could hide either data set 
and could also use what they called the value tool to find the value of any data point 
by dragging a vertical red bar along the horizontal axis. Furthermore, they could 
find the number of data points in any horizontal interval by using what they called 
the range tool. 

The initial data sets the students analyzed were chosen so that the measure- 
ments had a sense of linearity and, thus, lent themselves to inscription as horizontal 
bars (e.g., the bralung distance of cars, the length of time that batteries lasted, etc.). 
Nonetheless, the students spoke almost exclusively of "pinks" and "greens" during 
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FIGURE 2 The first computer minitool 

the first whole-class discussion in which the minitool was used and did not offer 
conclusions with respect to the question at hand. It therefore seemed that they were 
describing differences in two sets of numbers inscribed as colored bars rather than 
analyzing data. However, the teacher was able to initiate a shift in the discourse 
during this session such that the students began to speak about the bars as attributes 
of individual cases that had been measured. This shift continued during the second 
discussion conducted with the minitool, when the students explained how they had 
analyzed the data shown in Figure 2. The green bars showed the data for a brand of 
battery called "Always Ready," and the pink bars showed the data for a brand 
called "Tough Cell." The first student who gave an explanation directed the 
teacher to use the range tool to bound the 10 highest values (see Figure 2). 

Casey: And I was saying, see like there's 7 green that last longer. 
Teacher: OK, the greens are the Always Ready, so let's make sure we keep 

up with which set is which. OK? 
Casey: OK, the Always Ready are more consistent with the 7 right there, 

and then 7 of the Tough ones are like further back, I was just saying 
'cause like 7 out of ten of the greens were the longest, and like.. . 

Ken: Good point. 
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Janice: I understand. 
Teacher: You understand? OK, Janice, I'm not sure I do, so could you say it 

for me? 
Janice: She's saying that out of 10 of the batteries that lasted the longest, 7 

of them are green, and that's the most number, so the Always 
Ready batteries are better because more of those batteries lasted 
longer. 

Although Casey spoke of "the greens," her comment that they lasted longer sug- 
gests that each bar signified how long one of the batteries lasted. Janice certainly 
understood Casey's explanation in these terms, and in revoicing it, both stated an 
explicit conclusion ("the Always Ready batteries are better") and justified it by 
summarizing the results of Casey's analysis ("because more of those batteries 
lasted longer"). In doing so, she contributed to the gradual emergence of an initial 
practice of data analysis. 

As the episode continued, another student, James, challenged Casey's analy- 
sis by arguing that four of the pink bars (Tough Cell) were "almost in that area, 
and then if you put all those in you would have seven [rather than three pinks]." 
As James described features of the inscription, it is impossible to know whether 
the bars carried the significance of data for him. However, the teacher inter- 
preted his challenge as calling into question the way in which Casey had orga- 
nized the data. 

Teacher: So maybe, Casey, you can explain to us why you chose 10, that 
would be really helpful. 

Casey: All right, because there's 10 of the Always Ready and there's 10 of 
the Tough Cell, there's 20, and half of 20 is 10. 

Teacher: And why would it be helpful for us to know about the top 10, why 
did you choose that, why did you choose 10 instead of 12? 

Casey: Because I was trying to go with the half. 

Significantly, Casey's justification for the way she organized the data, and thus her 
method for comparing the two types of batteries, did not make reference to the 
question at hand, that of comparing the two brands. It is also noteworthy that, with 
the possible exception of James, none of the students asked her for such a justifica- 
tion. This issue of justifying analyses became increasingly explicit as the discus- 
sion continued. 

The next student to explain his reasoning, Brad, directed the teacher to place the 
value tool at 80 hr (see Figure 2). 

Brad: See, there's still green ones [Always Ready] behind 80, but all of 
the Tough Cell is above 80. I would rather have a consistent battery 
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that I know will get me over 80 hours than one that you just try to 
guess. 

Teacher: Why were you picking 80? 
Brad: Because most of the Tough Cell batteries are all over 80. 

Possibly as a consequence of the questions that the teacher had asked Casey, Brad 
justified the method he had used without prompting. Furthermore, in doing so, he 
interpreted a feature of the inscription ("There's still green ones behind 8 0 )  as in- 
dicating a difference in the two brands of batteries that he considered significant, 
namely, whether the batteries of a particular brand would last consistently at least 
80 hr. In this respect, his explanation involved a significant advance when com- 
pared with those that Casey and Janice had given. 

Later in the discussion, Jennifer compared Casey's and Brad's analyses di- 
rectly. 

Jennifer: Even though 7 of the 10 longest-lasting batteries are Always Ready 
ones, the two lowest are also Always Ready, and if you were using 
those batteries for something important, then you might end up 
with one of those bad batteries. 

Significantly, Jennifer justified her preference for the statistic that Brad used by fo- 
cusing on the pragmatic consequencesof the two analyses. The obligation ofjustify- 
ing particular ways of organizing the data with respect to the practical issue at hand 
gradually became taken-as-shared during theremainder of the session. For example, 
toward the end of the discussion, one of the students observed the following: 

Barry: The other thing is that I think you also need to know something 
about that or whatever you're using them [the batteries] for. 

Teacher: You bet. 
Barry: Like, if you're using them for something real important and you're 

only going to have like one or two batteries, then I think you need to 
go with the most constant thing. But if you're going like, "Oh well, 
I just have a lot of batteries here to use," then you need to have most 
of the highest. 

In making this comment, Barry explicitly clarified the situations in which the quali- 
ties of the two brands assessed by the two criteria (consistency vs. most of the high- 
est) would be relevant. 

It is important to note that, in the latter part of the discussion, 4 students volun- 
teered that they had changed their judgments as a consequence of others' argu- 
ments. For example, Sally explained: 
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Sally: When you first look at the chart that you gave us like, oh, Tough 
Cell has more, 'cause look at all the high ones and it didn't hardly 
have any low ones. But when you compare them, they're a whole 
lot closer than what you think. 

The chart that Sally referred to was a numerical table from which the students had 
entered the data into the minitool. Both Sally's comments and those of the other 3 
students indicate that they experienced the discussion as an investigation in the 
course of which they had developed insights into the issue at hand, that of the rela- 
tive merits of the two brands of batteries. In this respect, the discussion had the spirit 
of a genuine data analysis, even though the data sets were small and the methods the 
students proposed were relatively elementary. 

The characteristics of data sets that emerged as significant in this discussion 
and in the subsequent classroom sessions in which the first minitool was used in- 
cluded the range and maximum and minimum values, the number of data points 
above or below acertain value or within a specified interval, and the median and its 
relation to the mean. The arguments that the teacher and students developed as 
they reasoned with the minitool, however, were generally additive rather than 
multiplicative in nature. In the first sample episode, for example, Casey, Janice, 
and the teacher jointly developed an argument that focused on how many of the 10 
batteries that lasted the longest were of each brand. In doing so, they compared two 
data sets that they had structured in part-whole terms. This argument can be con- 
trasted with one that focuses on the proportion of each data set that is among the 10 
highest values. An argument of this type would involve comparing two data sets 
that have been structured multiplicatively. Crucially, such an argument is con- 
cerned with the relative amount of the data in each set that is above a certain value 
and, thus, with how each data set is distributed. Although additive reasoning is suf- 
ficient when comparing data sets with equal numbers of data points, the students 
failed to make arguments that involved reasoning about data proportionally when 
they experienced difficulties while comparing unequal data sets. This indicates 
that data sets were constituted in public classroom discourse as collections of data 
points rather than as distributions. The mathematical practice that emerged as the 
students used the first minitool might therefore be described as that of exploring 
qualitative characteristics of collections of data points. It is important to stress that 
these characteristics were treated as features of the situation from which the data 
were generated. For example, it was taken-as-shared in the sample episodes that 
the qualitative characteristic that the Tough Cell data were more "bunched up" in- 
dicated greater consistency. Participation in this first practice of data analysis 
therefore involved the fusion of inscriptions and the situations inscribed such that 
to use the minitool to structure data was to organize the inscribed situation (cf. 
Nemirovsky & Monk, in press). 
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EMERGENCE OF THE SECOND MATHEMATICAL 
PRACTICE 

The students first used the second of the two computer minitools during the 22nd 
session of the teaching experiment. This tool was designed to allow students to ana- 
lyze one or two data sets of up to 400 data points. Individual data points were in- 
scribed as dots located on a horizontal axis of values (see Figure 3). The tool pro- 
vides students with a variety of options for structuring data sets. The first, called 
"Create Your Own Groups," involved dragging vertical bars along the axis to parti- 
tion the data set into groups of points. The number of points in each group was 
shown on the screen and adjusted automatically as a bar was dragged along the axis. 
The remaining four options were: 

Partitioning the data into groups of a specified size (e.g., 10 data points in 
each group). 
Partitioning the data into groups with a specified interval width. 
Partitioning the data into two equal groups. 
Partitioning the data into four equal groups. 

The students also could hide the data, leaving only the axes and the vertical par- 
tition bars visible. 

45 48 50 53 55 58 60 63 65 68 70 

After Speed Trap 

- 0  . 
e... l 

o.... . . 
0 . 0  * o n  0 . 0 .  0. 0 .  . 
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FIGURE 3 The second computer rninitool 
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From the point of view of instructional design, the students' reasoning with this 
tool can be viewed as a progression from their activity with the first tool. For exam- 
ple, thedots at theend of the bars in the first tool, in effect, have been collapsed down 
onto the axis. The teacher, in fact, introduced the new line plot inscription by first 
showing a data set inscribed as horizontal bars, then removed the bars to leave only 
the dots, and finally transposed the dots onto the axis. In addition, theact ofpartition- 
ing a set of data points into groups also had a history in students' prior use of the first 
minitool. Our general instructional intent when designing the second minitool was 
to build on the students' participation in the first mathematical practice by support- 
ing the emergence of increasingly sophisticated ways of structuring data, particu- 
larly those that involvemultiplicative reasoning. It is for this reason that the palateof 
options offered by the minitool does not correspond to a range of conventional in- 
scriptions. Wedid, however, take intoaccounttheneed for studentseventually touse 
conventional inscriptions in powerful ways. In this regard, two of the five op- 
tions-fixed interval width and four equal groups-are precursors to two important 
types of conventional inscriptions, histograms and box plots, respectively. 

One of our initial concerns when the students began to use the second minitool 
was to ensure that the inscriptions did signify data sets that had been generated by 
measuring attributes of a situation rather than simply numbers on a line. As it tran- 
spired, the students' activity with this minitool did appear to involve reasoning 
with data from the outset. The practice of data analysis that emerged as the stu- 
dents used this tool can be illustrated by focusing on episodes from three 
whole-class discussions. In each of these discussions, two members of the project 
staff shared the teaching responsibilities. The first of these discussions occurred in 
the 26th classroom session and focused on the question of whether the introduction 
of a police speed trap in a zone with a 50 miles per hr speed limit had slowed down 
the traffic speed and thus reduced accidents. The data the students analyzed are 
shown in Figure 3. The bottom graph shows the speeds of 60 cars before the speed 
trap was introduced, and the top graph shows the speeds of 60 cars after the speed 
trap had been in use for some time. 

To begin the discussion, one of the teachers asked Janice to read the report she 
had written of her analysis. 

Janice: If you look at the graphs and look at them like hills, then for the be- 
fore group, the speeds are spread out and more than 55, and if you 
look at the after graph, then more people are bunched up close to 
the speed limit, which means that the majority of the people slowed 
down close to the speed limit. 

This was the first occasion in public classroom discourse in which a student de- 
scribed a data set in global, qualitative terms by referring to its shape. One of the 
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teachers legitimized Janice's interpretation and indicated that it was particularly 
valued by drawing the "hills" on the projected data. Both teachers then capitalized 
on Janice's contribution in the remainder of the discussion, treating other students' 
analyses as attempts to describe qualitative differences in the data sets in quantita- 
tive terms. For example, Karen explained that she had organized the data sets by us- 
ing a fixed interval width of 5. 

Karen: Like, on the first one [before the speed trap was introduced], most 
people are from 50 to 60, that's where most people were on the 
graph. 

One of the teachers checked whether other students agreed with her interpretation. 
Karen then continued: 

Karen: And then on the top one [after the speed trap was introduced], most 
people were between 50 and 55, because, um, lots of people slowed 
down . . . so like more people were between 50 and 55. 

The same teacher then recast Karen's analysis as a way of characterizing the global 
shift of which Janice had spoken. As a consequence of this revoicing, it gradually 
became taken-as-shared that the intent of an analysis was to identify global trends 
or patterns in data that were significant with respect to the issue under investigation. 
The history of this development can be traced to the first mathematical practice, in 
which, it will be recalled, the ways that collections of data points were organized 
had to be justified with respect to the question at hand. 

A second illustrative episode that serves to clarify the nature of the emerging 
mathematical practice occurred in the next classroom session. The students' 
charge was to evaluate a special diet program that was designed to reduce the cho- 
lesterol levels of people who are susceptible to heart problems. In developing the 
situation, one of the teachers and the students talked through the data creation pro- 
cess that involved measuring the cholesterol levels of 60 people before and after 
they had followed the dizt for 1 month. The data the students analyzed is shown in 
Figure 4. The bottom graph shows the cholesterol levels before the treatment, and 
the top graph shows the cholesterol levels after the treatment. 

The first pair of students to describe their analysis, Sally and Madeline, ex- 
plained that they had partitioned each data set into four groups of equal size. 
Throughout the discussion, the data were hidden so that only the axes and the parti- 
tion lines were visible (see Figure 5). Their argument was that, even though the 
ranges of the two data sets were the same, the range of the middle two groups (or 
quartiles) was lower after the treatment, indicating that the diet was successful in 
lowering cholesterol. This argument indicates that, for Sally and Madeline, the two 
graphs revealed a global difference in the way that the two sets of data were distrib- 
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FIGURE 5 The cholesterol data organized into four equal groups. 



uted. However, because the data were not visible, students had to infer how the 
data might be distributed from the graphs to understand their argument. Most had 
difficulty in doing so, and their analysis became the focus of a protracted ex- 
change. 

During their initial attempts to explain their reasoning, Madeline used the term 
"middle section" to refer to the middle two groups. One of the teachers asked the 
students if they knew what she meant by this term and subsequently established 
with them that, because one fourth of the data (or 15 data points) were in each 
group, half the data-or 30 data points-were in the middle section of each graph. 
Against this background, Valarie asked Sally and Madeline for clarification. 

Valarie: What exactly were you talking about, the middle thing I didn't un- 
derstand, I got everything else. 

Sally: The middle half. 
Madeline: There's four sections and we're talking about the two middle sec- 

tions. 
Sally: The middle half . . . the second and third fourths. 

Teacher 1 : Valarie, do you understand? 
Valarie: No, now I understand the middle thing, but I don't understand how 

they used it in the problem. 

In asking for further elaboration, Valarie indicated that, although she understood 
how Sally and Madeline had structured the data, she did not understand why they 
had done so. She therefore requested that they explain why the way that they had or- 
ganized the data was relevant to the question at hand-that of assessing the effec- 
tiveness of the diet program. Significantly, although Sally and Madeline previously 
had explained that the middle section was lower on the after-treatment graph, they 
had not spoken explicitly about global differences in the way that the two sets of 
data were distributed when they described the results of their analysis. 

As the discussion continued, James attempted to explain Sally and 
Madeline's reasoning, but he too spoke about groups or sections without inter- 
preting them in terms of global, qualitative differences in the data sets. Later, 
Casey echoed Valarie in asking Sally and Melissa why they had focused on the 
middle parts of the graphs. The questions that both girls asked appeared to re- 
flect the assumption that explanations should be interpretable in global, qualita- 
tive terms. In requesting clarification, they therefore contributed to the continual 
regeneration of data analysis as a practice that involved investigating trends or 
patterns in data that were considered relevant with regard to the issue at hand. In 
response to these questions, Sally and one of the teachers finally developed an 
explanation that made explicit reference to broad patterns in the way the data 
were distributed. They first established that the ranges of the two data sets were 
the same, and then Sally continued: 



Sally: The range is the same, but like the median is what is different, like 
the median right here [points to the after-treatment graph], it means 
these [data points] move lower in the bottom half closer to the bot- 
tom than in here [points to the before-treatment graph]. 

In this explanation, Sally attempted to clarify what the difference in the medians 
meant in terms of how the data were distributed. The teacher then capitalized on her 
contribution: 

Teacher 2: This is another way to think about it . . . so we agree that before and 
after they are in about the same place [places his hands on the high- 
est and lowest values of each distribution], they're in there some- 
where, the range is the same. So what you're trying to focus on is 
where between the lowest and the highest they are before and after. 
Are they all up at one end, or have they all moved down to the other 
end? 

In describing the intent of Sally and Madeline's analysis as that of investigating 
how the data were distributed, the teacher was attempting to orient other students' 
efforts to make sense of the graph. Although it is doubtful that all the students came 
to interpret these particular graphs in this way by the end of the episode, a third il- 
lustrative episode indicates that this interpretive stance did become taken-as-shared 
during subsequent classroom sessions. 

The third illustrative episode occurred a week later during the 30th classroom 
session. The students had compared two treatment protocols for AIDS patients by 
analyzing the T-cell counts of people who had received one of the two protocols. 
Their task was to assess whether a new experimental protocol in which 46 people 
had enrolled was more successful in raising T-cell counts than a standard protocol 
in which 186 people had enrolled. The data the students analyzed are shown in Fig- 
ure 6. The computer minitool was not used during the subsequent discussion. In- 
stead, the discussion focused on the reports that the students had written of their 
analyses. 

The inscription from the first report that was discussed showed global differ- 
ences in the way the two sets of data were distributed (see Figure 7). The students 
judged this report to be adequate and made a number of comments. 

Janice: I think it's an adequate way of showing the information because 
you can see where the ranges were and where the majority of the 
numbers were. 

David: What do you mean by majority of the numbers? 
Teacher 1 : David doesn't know what you mean by the majority of the num- 

bers. 
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FIGURE 6 The AIDS protocol data. 
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FIGURE 7 First analysis of the AIDS protocol data 



Janice: Where most of the numbers were. 
Teacher 1 : Sharon, can you help? 

Sharon: What she's talking about, I think what she's saying, like when you 
say where the majority of the numbers were, where the point is, like 
you see where it goes up. 

Teacher 1 : I do see where it goes up [indicates the "hill" on the lower diagram]. 
Sharon: Yeah, right in there, that's where the majority of it is. 

Teacher 1 : OK, David? 
David: The highest range of the numbers? 

Sharon: Yes. 
Teacher 1 : The highest range? 

Several 
students: No. 

Teacher 1 : Valarie. 
Valarie: Out of however many people were tested, that's where most of 

those people fitted in, in between that range. 
Teacher 1: [Pointing to lower and upper bounds of one of the "hills"] You 

mean this range here? 
Valarie: Yes. 

It is evident from this exchange that, when the students spoke about "the major- 
ity" or "most of the people," they were talking about data organized 
multiplicatively as qualitative proportions (P. Thompson, personal communica- 
tion, September 1997). Janice first had introduced the term "the majority" during 
the discussion of the speed trap data when she had described hills in the data. A 
concern with global patterns in the way that data are distributed, in fact, assumes 
that the data are structured multiplicatively. In describing hills, Janice was reason- 
ing about qualitative relative frequencies. However, this notion of the majority of 
the data did not become an explicit topic of conversation until the students ana- 
lyzed data sets with unequal numbers of data points. 

During the remainder of the discussion, the teachers attempted to guide the 
gradual refinement of the taken-as-shared notion of qualitative proportionality. 
For example, the third report discussed read as shown in Figure 8. One of the 
teachers clarified with the students during the subsequent exchange that the writ- 
ers of the report had chosen the statistic of the number of patients with T-cell 
counts above 525 because the majority of the data points in the old treatment 
were below this value, and the majority in the new treatment were above it. 
Thus, they had developed a method for describing a global difference in two dis- 
tributions. One of the students then suggested drawing graphs to show the re- 
sults of the analysis (see Figure 9). 

One of the teachers then made the following argument that reflected an additive 
interpretation of the graphs. 
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OLD PROGRAM 
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FIGURE 8 Third analysis of the AIDS protocol data 

FIGURE 9 Graphs developed from the third analysis of the AIDS protocol data 

Teacher 2: Could you just argue that this shows really convincingly that the 
old treatment was better, right, because there were 56 scores above 
525,56 people with T cell counts above 525, and here [points to the 
graph on the right] there's only 37 above, so the old one just had to 
be better, there's more people, I mean there's 19 more people in 
there, so that's the better one, surely. 

The initial arguments the students made when rejecting this claim involved reason- 
ing in terms of qualitative proportions. However, Ken made the following pro- 
posal: 

Ken: I've got a suggestion. I don't know how to do it [inaudible]. Is there 
a way to make 130 and 56 compare to the 9 and 37, I don't know 
how. 

Teacher 2: I'll tell you. How many of you have studied percentages? 

In the ensuing exchange, several students calculated the percentages of data 
points above the T-cell count of 525 in each distribution. As the discussion con- 
tinued, it seemed to be taken-as-shared that the results of these calculations pro- 
vided a way of describing global differences in the two distributions in 
quantitative terms. 
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In both the remainder of this session and in the final three sessions of the teach- 
ing experiment, discussions continued to focus on reasoning about data 
multiplicatively. Interviews conducted with the students shortly after the teaching 
experiment was completed indicate that most could readily interpret graphs of un- 
equal data sets organized into equal interval widths, an analogue of histograms, 
and into four equal groups, an analogue of box plots, in terms of global characteris- 
tics of distributions. The classroom mathematical practice that had emerged as 
they developed these competencies can be described as that of exploring qualita- 
tive characteristics of distributions. Participation in this practice involved reason- 
ing about data multiplicatively while using the computer minitool to identify 
global patterns and to describe them in quantitative terms. The transition from the 
first to the second mathematical practices involved a shift in the nature of discus- 
sions, such that the focus was on ways of organizing data that were relevant to the 
purpose at hand, rather on the practical decision or judgment per se. For example, 
during the discussion of the battery data, the students developed data-based argu- 
ments for why the batteries of one of the brands were superior. In contrast, the stu- 
dents agreed that the new treatment for AIDS patients was better than the standard 
treatment at the beginning of the discussion. The focus was instead on different 
ways of describing global differences in the two data sets. It might therefore be 
said that participation in the second mathematical practice involved analyzing data 
from a mathematical point of view. Taking this characterization of the second 
practice one step further, Konold et al. (1996) argued that a focus on the rate of oc- 
currence of some set of data values within a range of values is at the heart of what 
they termed a statistical perspective. As participation in the second practice in- 
volved a concern for the proportion of data within various ranges of values, the stu- 
dents appeared to be well on the way toward developing this statistical perspective. 

CHANGE 

My overall purpose in presenting the sample episodes has been to illustrate a theo- 
retical approach that involves analyzing the mathematical learning of the class- 
room community. The discussion of the two classroom mathematical practices 
documents how the taken-as-shared ways of reasoning and arguing about data 
changed in the course of the teaching experiments. It is important to stress that the 
account I have given does not focus on the mathematical development of any par- 
ticular student. Instead, I have been concerned with changes in public mathematical 
activity and discourse. As Voigt (1995) observed, the taken-as-shared meanings 
and understandings inherent in classroom mathematical practices constitute a se- 
mantic domain in their own right and should not be equated with an overlap in indi- 
vidual meanings. The latter focus is essentially individualistic in that it is concerned 
with a relation between the mathematical interpretations of individual members of 
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the classroom community. In contrast, the approach I have illustrated takes the 
cIassroom community itself rather than the individuals that compose it as the unit of 
analysis and delineates changes in collective meanings and practices. 

Turning now to clarify the general notion of a classroom mathematical practice, 
it should be apparent from the analysis of the sample episodes that the use of tools 
and symbols is integral to both the mathematical practices and the reasoning of the 
students who participate in them (cf. Dorfler, 1993; Kaput, 1991; Pea, 1993). For 
example, when the students explained their analyses of the battery data near the 
beginning of the teaching experiment, an act of moving the value tool or the range 
tool to a particular location was an act of structuring collections of data points. 
Similar comments can be made about the students' use of the second minitool. For 
example, when Janice spoke of hills in the speed trap data, she was describing the 
shape of data that had been inscribed as a line plot. The notion of data sets as distri- 
butions, rather than collections of data points, emerged and became 
taken-as-shared as she and the other students reasoned with line plots. In all likeli- 
hood, this central mathematical idea would not have arisen had data been inscribed 
differently. The analysis of the sample episodes is therefore consistent with the ba- 
sic Vygotskian insight that the tools students use profoundly influence both the 
process of mathematical development and its products, increasingly sophisticated 
mathematical ways of reasoning (Meira, 1995; Saxe, 1991 ; van Oers, 1996; 
Wertsch, 1994). 

A second aspect of classroom mathematical practices that complements the em- 
phasis on tool use is that of argumentation. Norms or standards of mathematical ar- 
gumentation were established relatively early in the teaching experiment. I can 
best substantiate this claim by following Krummheuer (1995) and Yackel (1997) 
in using Toulmin's (1969) scheme of conclusion, data, warrant, and backing. In 
this scheme, Toulmin referred to the support one might give for a conclusion as 
data. In the case of the analysis of the battery data, for example, a student might 
merely point to the two data sets and state the conclusion that one of the brands of 
batteries is superior. In doing so, the student treats the conclusion as a self-evident 
consequence of the data. If questioned, the student would be obliged to give a war- 
rant that explains why the data support the conclusion. For example, Casey justi- 
fied her conclusion that the Always Ready batteries were more consistent by 
explaining that she had focused on the 10 batteries that lasted the longest and noted 
that 7 of them were Always Ready batteries. In giving this warrant, Casey ex- 
plained how she had structured and interpreted the data sets. In Toulmin's scheme, 
the warrant can be questioned, and it is then necessary to give a backing that indi- 
cates why the warrant should be accepted as having authority. Casey was, in fact, 
challenged by the teacher, who asked her why she had chosen to focus on the 10 
batteries that lasted the longest. The backing that Casey gave, namely that 10 was 
half of the data set of 20 points, was delegitimized as the episode progressed. In- 
stead, it gradually became taken-as-shared in the remainder of this episode and in 
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subsequent sessions that a particular way of structuring data had to be justified by 
explaining why it was relevant to the question or issue at hand. The backing that 
Casey gave proved to be unacceptable because she did not explain why focusing 
on the 10 longest-lasting batteries was an appropriate way of comparing the two 
brands. In contrast, Brad's explanation that he wanted a battery that he knew 
would last at least 80 hr was accepted as giving authority to his approach of parti- 
tioning the data sets into values above and below 80 hr. 

The scheme of argumentation I have outlined is summarized in Figure 10. Be- 
cause this scheme also captures the structure of argumentation established when 
the students used the second minitool and participated in the second mathematical 
practice, it constitutes a sociomathematical norm that cuts across specific prac- 
tices. The distinction between argumentation as an aspect of the two practices con- 
cerns the nature of the data about which arguments were developed. Participation 
in the first mathematical practice involved developing arguments about collec- 
tions of data points, whereas, in the second practice, the arguments were about dis- 
tributions. The scheme of argumentation shown in Figure 10 is, in fact, quite 
general and applies to data analysis more broadly. This becomes apparent when we 
note that, in structuring and interpreting data, the students created methods that 

Conclusion 17-n 
Explain how the data 
have been structured 
and interpreted 

Explain why this way of 
structuring the data is 
appropriate with respect 
to the question at hand 

FIGURE 10 Scheme for argumentation that emerged during the teaching experiment. 
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Conclusion 

Warrant: 
Explain the statistics 

Backing: 
Explain why the statistics 
are appropriate with 
respect to the question at 

FIGURE 11 General scheme of argumentation for data analysis 

served the function of statistics. The compatibility between the general scheme of 
argumentation shown in Figure 1 1  and the norms for argumentation established 
during the teaching experiment indicates that the students were being inducted into 
what might be termed an authentic data analysis point of view. 

As Yackel (1997) demonstrated, Toulmin's (1969) scheme has important 
methodological implications for the analysis of classroom mathematical practices. 
To illustrate this point, recall that, when Janice first introduced the notion of hills 
in the data, she had to explain her interpretation. In doing so, she gave a warrant for 
her interpretation of the data sets as distributions rather than collections of data 
points. In contrast, the legitimacy of a hills interpretation was not questioned when 
the students discussed analyses of the AIDS protocol data. It is precisely this lack 
of a need for a warrant that serves to indicate that the interpretation of data sets as 
distributions was taken-as-shared (Yackel, 1997). In general, an analysis of the 
evolution of mathematical practices focuses as much on what no longer needs to be 
said and done as it does on what the teacher and students actually say and do. 

At the beginning of this article, I justified my focus on the learning of the class- 
room community by referring to the concerns and interests of developmental re- 
search. In doing so, I argued that the conjectures that instructional designers 



develop when formulating hypothetical learning trajectories are about the learning 
of the group rather than of any particular student. Viewed in these terms, an analy- 
sis of the evolution of classroom mathematical practices documents the actual 
learning trajectory of a classroom community. This, in turn, implies that the theo- 
retical notion of a classroom mathematical practice encompasses the two major as- 
pects of developmental research-instructional design and classroom-based 
analyses. Analyses of the type I have illustrated are therefore cast in such a way 
that they can readily feed back to inform the ongoing instructional design effort. In 
the case of the statistics teaching experiment, for example, we are currently collab- 
orating with a group of teachers to revise the instructional sequence. 

It should be clear from the sample analysis that an approach of this type takes 
what are traditionally called issues of mathematical content seriously. For exam- 
ple, the contrast between the two mathematical practices is characterized, at least 
in part, by the distinction between additive and multiplicative reasoning about 
data. However, this approach also calls into question the metaphor of mathematics 
as content. The content metaphor entails the notion that mathematics is placed i n  
the container of the curriculum, which then serves as the primary vehicle for mak- 
ing it accessible to students. In contrast, the approach I have illustrated character- 
izes what is traditionally called mathematical content in emergent terms. For 
example, the mathematical idea of distribution was seen to emerge as the collec- 
tive practices of the classroom community evolved. This theoretical orientation 
clearly involves a significant paradigm shift in how we think about both mathe- 
matics and the means by which we might support students' induction into its prac- 
tices. However, this approach does have the merit of being compatible with the 
view of mathematics as a socially and culturally situated activity (cf. Bauersfeld, 
1992; John-Steiner, 1995; Lave, 1993; Sfard, in press). 

This shift from the content metaphor to the emergence metaphor immediately 
brings issues of teachers' professional development to the fore. In this regard, it is 
important to observe that an analysis of the type that I have illustrated delineates a 
learning trajectory that culminates with overarching mathematical ideas that are 
the goal of an instructional sequence. The analysis therefore provides a justifica- 
tion for the instructional sequence that is cast in terms of (a) the collective develop- 
ment of particular mathematical ideas, and (b) the means of supporting that 
development. Such a justification, it should be noted, is not tied to specific instruc- 
tional activities. Instead, the instructional activities used in, for example, a teach- 
ing experiment, illustrate one concrete enactment of the sequence. My colleagues 
and I conjecture that sequences justified in this manner might constitute an impor- 
tant means of supporting the development of professional teaching communities. 
When a sequence is justified solely in terms of traditional experimental data, 
teachers know that the sequence proved effective elsewhere, but they do not have 
the opportunity to develop an understanding that would enable them to adapt the 
sequence to their own situations. In contrast, the type of justification derived from 



an analysis of classroom mathematical practices offers the possibility that teachers 
will be able to adapt, test, and modify the sequence in their own classrooms. 

This conjecture about the potential role of instructional sequences is consis- 
tent with the view of implementation as idea-driven adaptation. In addition, the 
conjecture finds support in Ball and Cohen's (1996) argument that re- 
search-based instructional sequences can constitute important resources for 
teachers' as well as students' learning (see also Gearhart et al., 1994). At the 
time of writing, my colleagues and I were just beginning to investigate the via- 
bility of this conjecture in collaboration with a group of teachers. Our overall 
goal is to support the development of a professional teaching community that 
learns from its collective experience by analyzing, adapting, testing, and refining 
pedagogical ideas and processes that have led to the improvement of students' 
mathematical learning in other settings. These communal norms and practices 
can be thought of as the envisioned end points of a pedagogical learning trajec- 
tory, in which we and the teachers are joint participants. Part of the challenge we 
currently are attempting to address is that of developing the means of enabling 
the teachers to reconstruct justifications for particular instructional sequences 
by, to some extent, living through the design process. 

In concluding this discussion of collective mathematical learning, it is worth 
noting that analyses that focus on communal mathematical practices in no way 
deny individual initiative and creativity. In the introductory section of this article, I 
discussed intellectual autonomy and argued that it can be viewed as a particular 
way of participating effectively in communal practice in which individuals rely on 
their own judgments. The main point of my argument was that, although we do not 
have to give up the notion of autonomy when we view individual reasoning as an 
act of participation in communal practices, we do need to reconceptualize it. A 
similar argument can be made about creativity. In the course of the seventh-grade 
teaching experiment, the students certainly made creative contributions. For ex- 
ample, we did not anticipate, when we designed the first computer minitool, that 
students would use the range tool to partition collections of data points. From our 
point of view, the first data analyses in which they used the range tool in this way 
were creative. Similarly, Janice's introduction of the hill metaphor to talk about 
global patterns in data was novel, as was Sally and Madeline's argument in which 
they focused on the middle section of data that had been structured into four equal 
groups. In the viewpoint I have outlined, these contributions are not seen as in- 
stances of the unbridled, purely individualistic creativity of the type that is some- 
times glorified in mathematics education. Instead, each contribution is viewed as 
an act of participating in and contributing to the evolution of communal mathemat- 
ical practices. More generally, creative acts cany with them the history of partici- 
pation in previously established practices (cf. Hicks, 1996; Shotter, 1995). Viewed 
in this way, creativity is social through and through. Rather than being characteris- 
tic of a purely individual act, it is characteristic of a relation between individual ac- 
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tivity and the communal practices in which the individual participates. This 
conceptualization is nondeterministic in that it does not in any way trivialize or 
denigrate students' creativity. It does, however, challenge romantic views of cre- 
ativity by locating it in a social context, one that teachers and students jointly con- 
stitute as they establish the practices in which they participate. 

DIVERSITY 

Thus far, in focusing on collective practices, I have emphasized the taken-as-shared 
ways of reasoning, arguing, and using tools that are established by a classroom 
community. It therefore is important to acknowledge that students participate in 
any particular mathematical practice in a variety of qualitatively different ways. 
Recall, for example, that a number of students had difficulty in understanding Sally 
and Madeline's reasoning when they explained that they had structured the choles- 
terol data into four equal groups. It appeared that, at that point in the teaching exper- 
iment, these students needed to know the actual location of individual data points to 
infer global patterns from graphs and, thus, reason multiplicatively about data sets 
as distributions. In contrast, Sally, Madeline, and a number of other students in- 
ferred global patterns in the distribution of the data directly from the graphs of four 
equal groups. In doing so, they seemed to structure data into quantitative rather than 
qualitative proportions. Consequently, whereas the first group of students inter- 
preted the graphs by reasoning from the data points to distributions, the second 
group of students reasoned directly about the distributions. There were, therefore, 
significant differences in the ways in which the two groups of students participated 
in the second mathematical practice. 

It might be thought that this diversity in students' thinking is specific to statistics, 
a domain that might appear to lend itself to alternative interpretations. Therefore, I 
should note that students also participated in classroom mathematical practices in  a 
variety of different ways in previous teaching experiments that focused on elemen- 
tary addition and subtraction (Gravemeijer, Cobb, Bowers, & Whitenack, in  press), 
place-value numeration (Bowers et al., in press), and linear measurement (McClain, 
Cobb, Gravemeijer, & Estes, in press; Stephan, 1998). The need to clarify the rela- 
tion between individual students' reasoning and the collective practices in which 
they participate is therefore a pressing one. As a first step, imagine as a thought ex- 
periment that we had interviewed not only the students in the teaching experiment 
classroom but also thosefrom another seventh-grade classroom in the same school. I 
have no doubt that, if we shuffled the video recordings of these interviews, the reader 
could almost unerringly identify from which classroom each student had come. It is 
precisely this contrast in the mathematical reasoning of two groups of students that is 
accounted for by their participation in the differing mathematical practices estab- 
lished in the two classrooms. 
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To continue the thought experiment, imagine now that we focus only on the stu- 
dents in the teaching experiment classroom. The contrast is then not between one 
group of students as compared to another; instead, what is being contrasted is the 
reasoning among students who have participated in the same classroom mathemat- 
ical practices. In focusing on differences in individual students' reasoning in this 
manner, we have adopted a psychological orientation of the type that is so promi- 
nent in mathematics education. This perspective is of value and complements a so- 
cial perspective by bringing the diversity of students' reasoning to the fore. 
However, it is, by itself, inadequate for the purposes of developmental research in 
that it also blinds us to the taken-as-shared basis for mathematical communication 
established by the classroom community. Were we to adopt only this perspective, 
we would, like the proverbial fish, be oblivious to the water of communal prac- 
tices. The challenge, therefore, is not that of choosing between social and psycho- 
logical perspectives on mathematical activity but, instead, to develop ways of 
coordinating the two perspectives. 

In the viewpoint that has emerged from my own and my colleagues' work in 
classrooms, the relation between the two perspectives is taken to be reflexive. This 
is an extremely strong relation and does not merely mean that individual students' 
reasoning and the practices in which they participate are interdependent. Instead, it 
implies that one literally does not exist without the other (Mehan &Wood, 1975). 
Thus, when adopting a psychological perspective, one analyzes individual stu- 
dents' reasoning as they participate in the practices of the classroom community. 
Conversely, when adopting a social perspective, one focuses on communal prac- 
tices that are continually generated by and do not exist apart from the activities of 
the participating individuals. The coordination at issue is therefore not that be- 
tween individual students and the classroom community viewed as separate, 
sharply defined entities. Instead, the coordination is between two alternative ways 
of looking at and making sense of what is going on in classrooms. In other words, 
we are coordinating different ways in which we can interpret classroom events. 
What, from one perspective, are seen as the norms and practices of a single class- 
room community is, from the other perspective, seen as the reasoning of a collec- 
tion of individuals who mutually adapt to each others' actions. Whitson (1997) 
emphasized this point when he proposed that we think of ourselves as viewing hu- 
man processes in the classroom, with the realization that these processes can be de- 
scribed in either social or psychological terms. In my view, both perspectives are 
relevant to the concerns and interests of classroom-based developmental research. 

I already have hinted at the fact that this theoretical orientation has grown out of 
and remains deeply rooted in our attempts to support students' mathematical de- 
velopment while working in classrooms. I can best illustrate the way in which the- 
ory is grounded in the reality of the classroom by returning to the statistics teaching 
experiment. As we have seen, the students frequently worked in pairs at the com- 
puters and then explained their analyses in a subsequent whole-class discussion. 
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While the students were working at the computers, the teacher and a second mem- 
ber of the project staff circulated around the classroom to gain a sense of the di- 
verse ways in which the students were organizing the data. Toward the end of the 
small-group work, the teacher and project staff member then conferred briefly to 
plan the whole-class discussion. In doing so, they routinely focused on the qualita- 
tive differences in students' analyses in order to develop conjectures about mathe- 
matically significant issues that might emerge as topics of conversation. The intent 
was to capitalize on the students' reasoning by identifying data analyses that, when 
compared and contrasted, might give rise to substantive mathematical discussions. 
The episodes I have presented from the seventh-grade teaching experiment exem- 
plify such discussions. In the first episode, for example, the issue of justifying the 
statistic used with respect to the question at hand emerged from the contrast be- 
tween Casey's and Brad's analyses. In the next episode that I presented, the two 
teachers decided to ask Janice to explain her hills metaphor at the beginning of a 
discussion because they conjectured that it might bring to the fore the issue of in- 
terpreting data in terms of qualitative proportions. In the final episode, the analyses 
of the AIDS protocol data that were discussed were sequenced so that an initial 
analysis that focused on hills in the data might provide the students with a point of 
reference when interpreting a subsequent analysis in which the two data sets were 
partitioned at a particular value. 

In this opportunistic approach to instructional planning, students' diverse ways 
of participating in communal practices are a key resource upon which the teacher 
attempts to capitalize. The mathematically significant issues that become topics of 
conversation emerge from this diversity with the teacher's guidance. In reorganiz- 
ing their thinking while participating in these discussions, students contribute to 
the evolution of the classroom mathematical practices. In the hands of a skillful 
teacher, the diversity in students' reasoning is, in many respects, the primary mo- 
tor of the collective mathematical learning of the classroom community. In the last 
analysis, it is this realization that convinces my colleagues and me of the need to 
coordinate a social perspective on communal practices with a psychological per- 
spective that takes into account the students' diverse ways of participating in them. 

As a final point, it is important to note that the viewpoint I have outlined has two 
major ethical implications. The first is that all students must have a way to partici- 
pate in the mathematical practices of the classroom community. In a very real 
sense, students who cannot participate in these practices are no longer members of 
the classroom community from a mathematical point of view. This situation is 
highly detrimental given that to learn is to participate in and contribute to the evo- 
lution of communal practices. Students who are excluded are deprived not merely 
of learning opportunities but of the very possibility of growing mathematically. 
One of our primary concerns when conducting a teaching experiment is therefore 
to ensure that all students are "in the game." To this end, we adjust the classroom 
participation structure, classroom discourse, and instructional activities on the ba- 
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sis of ongoing observations of individual students' activity. In doing so, we once 
again find ourselves coordinating psychological and social perspectives and con- 
tend that an approach of this type is necessary, if not sufficient, when addressing 
concerns of equity at the microlevel of classroom action and interaction. 

The second ethical implication is closely related to the first and concerns the 
view one takes of students whose ways of participating in particular classroom 
practices are less sophisticated than those of other students. For example, by the 
end of the statistics teaching experiment, the majority of the students routinely 
developed arguments by inferring global patterns directly from complex graphs 
of data they had not themselves analyzed. However, a number of students devel- 
oped arguments that indicated that they had interpreted the graphs in 
less-sophisticated ways. In the theoretical orientation I have presented, these dif- 
fering interpretations are not viewed as cognitive characteristics of the individ- 
ual students but as characteristics of their ways of participating in communal 
mathematical practices. In other words, the differences in the students' reason- 
ing are seen to be socially situated and to reflect the history of their prior partici- 
pation in particular practices. As a consequence, my colleagues and I do not take 
a cognitive deficit view of the students who made less sophisticated interpreta- 
tions. Instead, our reflections on the teaching experiment have focused on the 
evolving mathematical practices that constituted the immediate social situation 
of their mathematical development as well as on the nature of their participation 
in those practices. In doing so, we have treated academic success and failure in 
the classroom as neither a property of individual students nor a property of the 
instruction they receive. Instead, we have cast it as a relation between individual 
students and the practices that they and the teacher coconstruct in the course of 
their ongoing interactions. In the last analysis, the ethical dimension of this per- 
spective on success and failure in school is perhaps the most important reason 
for adopting a viewpoint that brings the diversity of students' reasoning to the 
fore while seeing that diversity as socially situated. 

EQUITY 

Throughout this article, I have focused on the issues of change and diversity as they 
relate to the concerns of instructional design at the classroom level. It therefore is 
important to acknowledge that the teaching experiment we conducted did not take 
place in a social vacuum. Instead, the classroom in which we worked was itself lo- 
cated within the sociopolitical setting of one particular school and community and 
ultimately within the activity system that constitutes schooling in the United States. 
At this broader level, the work of several scholars has made us aware that schooling 
involves a number of taken-for-granted policies and practices that foster inequity 
due to race, gender, class, and economic status (Apple, 1995; Zevenbergen, 1996). 
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Furthermore, as Lave (1996) observed, schooling as a social institution involves an 
inherent contradiction between the functions of universal socialization on the one 
hand and those of reproducing the unequal distribution of particular ways of know- 
ing as cultural capital on the other hand. It was, in fact, with these global, structural 
analyses of schooling in mind that I said that the theoretical orientation I have pre- 
sented is necessary but not sufficient when addressing issues of equity. My col- 
leagues and I have argued elsewhere that this viewpoint on classroom activities and 
events must itself be complemented by a strong sociocultural perspective that 
places the classroom in a broader sociopolitical context (P. Cobb & Yackel, 1996). 
I therefore anticipate further insights from sociocultural analyses that, although not 
necessarily specific to mathematics education, cast into sharp relief social policies 
and practices that foster inequity. 

At the more local level of the school and community in which we conducted the 
teaching experiment, the norms and practices established in the project classroom 
were potentially in  conflict with those that the students experienced throughout the 
remainder of the school day. Furthermore, the students came from a number of dif- 
ferent communities within the city in which the school was located and, therefore, 
had participated in a diverse range of out-of-school practices, some of which may 
have been inconsistent with the microculture established in the project classroom 
(cf. Ladson-Billings, 1995; Moll, 1997; Secada, 1992; Warren & Rosebery, 1995). 
In an initial attempt to address these concerns, two members of the project staff 
followed several of the students throughout the school day to develop an under- 
standing both of general school norms and of the groupings that had been consti- 
tuted within the student body. In addition, a member of the project staff has 
analyzed classroom interactions to identify possible inconsistencies between the 
classroom microculture and students' home cultures as well as to examine how the 
students perceived themselves and other members of groups within the classroom. 
The purpose of these explorations is to delineate issues whose investigations will 
contribute to our understanding of equity as it relates specifically to teaching and 
learning mathematics with understanding. 

In addition to these concerns that take us beyond the classroom, issues of equity 
come to the fore when we restrict our focus to instructional design. In the case of 
the seventh-grade teaching experiment, a question that we had to address was why 
statistics should be taught in school. Two general types of justifications can be 
found in  the literature. The first refers to developments in the discipline, many of 
which have been fueled by the use of computers as exploratory tools. The meta- 
phor that emerges from these justifications is that of students as apprentice re- 
search statisticians. A second type of justification refers to the increasingly 
prominent role of statistical reasoning in both work-related activities and informed 
citizenship. The emphasis in this rationale is on social utility, and the image that 
emerges for students' roles is as that of consumers of analysis techniques devel- 
oped by others. 
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In contrast to these two common rationales, we find a third justification to be far 
more compelling. Briefly, the increasing use of computers, not just within the dis- 
cipline but in society in general, has placed an increasing premium on quantitative 
reasoning in general and on statistical reasoning in particular. There is much talk 
of preparing students for the "information age" but without fully appreciating that 
the information in this new era is largely quantitative in nature. This shift has dra- 
matic implications for the discourse of public policy and, thus, for democratic par- 
ticipation and power (G. W. Cobb, 1997). It is already apparent that debates about 
public policy issues tend to involve reasoning with data. In this discourse, policy 
decisions are justified by presenting arguments based on the analysis of data. In 
many respects, this discourse is increasingly becoming the language of power in 
the public policy arena. Inability to participate in this discourse results in de facto 
disenfranchisement that spawns alienation from, and cynicism about, the political 
process. Cast in these terms, statistical literacy that involves reasoning with data in 
relatively sophisticated ways bears directly on both equity and participatory de- 
mocracy. The image that emerges for the students' role is then not that ofjunior re- 
search statistician or utilitarian consumer of standard techniques. Instead, it is of 
students as increasingly substantial participants in the discourse of public policy. 
The important competencies for this participation are those of developing and 
critiquing data-based arguments. 

I should stress that the rationale I have given for the importance of statistics in 
students' mathematics education is concerned with overall instructional goals. It 
does not in itself imply that a particular instructional approach such as one involv- 
ing investigations should be taken. Nonetheless, our decision to focus on the corn- 
petencies of developing and critiquing data-based arguments did lead us to make 
an important design decision when planning the teaching experiment. In particu- 
lar, we ruled out an open-ended project approach in which students investigate is- 
sues of personal interest by generating data and instead developed instructional 
activities in which the students analyzed data sets created by others. However, we 
also were aware that data do not speak for themselves but instead are the product of 
a sequence of interpretive decisions and judgments (Latour, 1987; Roth, 1997). 
For example, data embody assumptions both about which aspects of the situation 
under investigation are relevant with regard to the issue at hand and about how 
they should be measured. We therefore anticipated that the students would not ini- 
tially be able to "look through data to the situation from which they were gener- 
ated. It was for this reason that we developed the approach of talking through the 
data-creation process so that the data might have a history for the students. It is ap- 
parent from the sample episodes I have presented that this approach worked rea- 
sonably well. As the teaching experiment progressed, the students, in fact, 
assumed increasing responsibility for asking questions that related to the data cre- 
ation process. Furthermore, although most of the classroom discussions focused 
on analyses that the students had conducted, in the last few classroom sessions 
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they developed arguments on the basis of graphs created by others. In the course of 
this transition, the students were developing the very competencies that make in- 
creasingly substantial participation in public policy discourse possible. 

In terms of the broader literature on equity, the approach we have taken to sta- 
tistics instruction is broadly compatible with Delpit's (1988) admonition that stu- 
dents should be taught explicitly what she calls the culture ofpower. Our approach 
also makes contact with the equity pedagogy of Banks and Banks (1995), which 
aims to help students from diverse cultural backgrounds develop the ways of 
knowing needed to participate effectively within and maintain a just, democratic 
society. Thus, although we look for further inspiration from scholars whose work 
focuses on global, structural characteristics of schooling and society, we also con- 
tend that a concern for equity is critical when considering issues traditionally ad- 
dressed by mathematics educators. In particular, it is essential that we scrutinize 
the overall goals we have for students' mathematics education and examine 
whether they can be justified in terms of participation in a democratic society. I 
will be more satisfied if our work in the area of statistics can serve as a useful ex- 
ample in this respect. 
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