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Abstract 

 
 
 
The word “magnitude” often is used loosely. People sometimes use it to refer to a general sense 
of quantitative size. At other times they use it to speak about large differences in size, as in “an 
order of magnitude larger”. In this article we provide a conceptual analysis of the idea of 
magnitude to show that it has vastly different levels of meaning, and that these levels are 
characterized by particular schemes and ways of thinking about quantities and their measures. 
We also demonstrate that the construct “thinking with magnitudes” has a high likelihood of 
being an important research site for clarifying students’ successes and difficulties in algebra and 
higher mathematics. We contend that much of past research on numerical and quantitative 
reasoning is clarified by attending to levels of students’ ability to think with magnitudes.
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Introduction 

 Smith and Thompson (2007) made the case that students who become accustomed to 
reasoning quantitatively in elementary school would be positioned to understand algebra as a 
generalization of their reasoning. At the end, they briefly recapped Thompson and Saldanha’s 
(2003) explication of the notion of fraction as a scheme that entails a capacity to reason about 
reciprocal relationships of relative size (e.g., A is 3/7 as large as B if and only if B is 7/3 as large 
as A) and argued that this capacity is an important foundation for algebraic reasoning. In this 
article we clarify that a conception of reciprocal relationships of relative size between quantities 
is just the starting point for constructing meanings of number and quantity that are foundational 
to learning algebra and calculus. We describe mental operations that are involved in different 
levels of the development of a magnitude scheme, offer a new way to think about schemes and 
their development, discuss data involving high school teachers’ meanings for magnitude and 
relative magnitude, and explain why reasoning with magnitudes and relative magnitudes is 
important for learning higher mathematics. 

Concepts of Magnitude 

The idea of magnitude, at all levels, is grounded in the idea of a quantity’s size. A quantity, 
however, is not something in the world. It is a person’s conception of an object and an attribute 
of it, and a means by which to measure that attribute. Anyone’s understanding of a quantity’s 
size will be colored by his or her conception of the quantity being considered and by his or her 
understanding of how it might be measured (Thompson, 1993, 1994b, 1995, 2011). For example, 
110 high school geometry students were asked what they were measuring when they measured 
an angle; 42% of them said that they were measuring the angle’s area (Thompson, 2013, p. 73). 
Were these students to have really meant what they said, they would be forced to say that the 
two angles in Figure 1 have different measures because they “enclose” different areas. To these 
students, any reference to an angle’s magnitude would have little meaning because even when 
thinking of size, an angle would not have a unique size. In other words, the discussion here 
presumes, simply for convenience, that someone thinking of a quantity has made the significant 
intellectual achievement of conceiving it coherently. 

 
Figure 1. Two angles each with measure 1 radian but having different “sizes”. 

 There are five levels of meaning for a quantity’s magnitude that are largely 
undifferentiated in the research literature. They are: 

• A person has a sense of the extent of a quantity. She is capable of making perceptual 
judgments of whether Quantity A is larger or smaller than Quantity B. We will call this 
sense of magnitude Awareness of size. 
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• A person equates a quantity’s size and its measure, where “measure” means “number of 
units”. We call this sense of magnitude Measure magnitude. 

• A person conceives of the size of Quantity A relative to a unit B and they are both 
measured in a common unit. This meaning of magnitude is developed through the 
coordination of measurement and number schemes. We will call this sense of magnitude 
Steffe magnitude. It is characterized by the ability to think of size relative to a composite 
unit (a unit of units). 

• A person conceives of Quantity A measured in unit a as having a Steffe magnitude while 
at the same time conceiving of its unit a as having a Steffe magnitude. In addition, the 
person sees the pair (Steffe magnitude of A, Steffe magnitude of a) as exemplifying a 
relationship that is invariant with changes in a. We will call this sense of magnitude Wildi 
magnitude. 

• A person conceives of the Wildi magnitude of Quantity A in relation to the Wildi 
magnitude of Quantity B, and sees the relationship as invariant with respect to changes in 
in either or both the unit of B and the unit of A. We will call this sense of magnitude 
Relative magnitude. It is worth noting that high-level scientific reasoning that involves 
physical quantities typically involves conceiving of relative magnitudes. 

Measure Magnitude 

Thinking of size as a Measure magnitude entails an additive understanding of measure, and 
therefore of magnitude. A person conceiving of magnitude as measure does not distinguish the 
two. Something has a length of 12 feet, and the person conceiving of 12 feet conceives its length 
as containing 12 parts, each “one foot” in length. The parts have the same length, but only 
because if one part had a different length it would not be called “a foot”. A person thinking with 
Measure magnitude will likely think that a length stated as 13 feet is smaller than a length stated 
as 396.24 centimeters because 396.24 is larger than 13. The question of equivalence does not 
arise. In Steffe’s system, Measure magnitude involves two levels of units—a quantity taken as a 
measured whole and a conception of the quantity segmented into parts, each part taken 
nominally to be the same size and collectively taken to constitute the whole. 

Steffe Magnitude 

Thinking of size as a Steffe magnitude entails thinking of measurement multiplicatively and 
reciprocally. For Quantity B to be 7/3 as large as Quantity A means that B is 7 times as large as 
1/3 of A (Figure 1, left). Thinking of size as a Steffe magnitude also involves reciprocity of 
measured size. B being 7/3 times as large as A means that A is 3/7 as times as large as B (Figure 
1, right). B being 7/3 times as large as A gives a measure of B in units of A. A being 3/7 times as 
large as B gives a measure of A in units of B. In Steffe’s system, Steffe magnitude involves three 
levels of units—a unit in which both B and A are measured and B in units of A (or A in units of 
B). 
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Figure 2. Steffe magnitude entails reciprocal relationship of relative size. B measured in units of 

A is 7/3, which implies that A measured in units of B is 3/7 (and vice versa). 

Wildi Magnitude 

Thinking with Steffe magnitudes supports conceiving numerically of a quantity’s size relative to 
the size of its unit. But the size of the quantity’s unit, when thinking with Steffe magnitudes, is a 
Measure magnitude. Two advances can be made in thinking with Steffe magnitudes. The first is 
to conceive a quantity’s unit as having a Steffe magnitude, as opposed to a Measure magnitude, 
relative to a unit u. The second is to conceive the implications for the measure of B when its unit 
is re-expressed in another unit. When a person thinks of a quantity’s magnitude in this way, we 
will call it thinking with Wildi magnitudes. 
 We will use the notation  

m B( )b
 to represent the measure of quantity B in units of b and 

we will use  B  to represent the Wildi magnitude of B. If we conceive b as having a Steffe 
magnitude, and we think of a new unit b’ such that 

  
m b '( )b

= 3
4 , then we can conclude 

immediately (because of being able to think with Steffe magnitudes) that 
  
m b( )b '

= 4
3 , or that 

  
b = 4

3
b ' . Suppose that  

m B( )b
= k. Inside every one of k b-units (or part of a b-unit) is (4/3) b’-

units (or a proportional part of 4/3 of a b’-unit). This means that if  
m B( )b

= k , and if 

  
m b '( )b

= 3
4 , then 

  
m B( )b '

= 4
3

k . This line of reasoning is depicted in Figure 3. 

 
Figure 3. Relationship between measures under change of unit when thinking with Wildi 

magnitudes. 

In general, if  
m B( )b

= k  and   b ' = r b , then 
  
m B( )b '

= 1
r

m B( )b
. In words, this says that 

if a quantity B is measured in units of b, and the magnitude of b’ is r times as large as the 
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magnitude of b, then the measure of B in units of b’ is (1/r) times as large as the measure of B in 
units of b. 

Wildi (1991) defined the magnitude of a quantity Q as the measure of Q, with respect to a 
unit u, times the magnitude of u. We express this symbolically as  

Q = m Q( )u
u . It is important 

to understand that the magnitude of u is not a measure. It is the size of an object having the 
attribute that is being measured and that is taken to have one unit of that attribute. The American 
unit “foot”, in the not-too-distant past, was the length of a specific platinum bar held in 
Washington DC at the National Bureau of Standards. 

The power of Wildi’s definition is that it makes explicit the fact that the magnitude of a 
quantity is invariant with respect to a change of unit. If a quantity Q has a length of 22 inches, 
then , meaning that the magnitude of Q is 22 times as large as the magnitude of an 

inch, while at the same time , because a foot is 12 times as long as an inch.  

A person thinking that Q has a length of 22 inches with an image of having laid 22 inches 
alongside Q is thinking of the Measure magnitude of Q. A person thinking that Q has a length of 
22 inches with an image of the length of Q as being 22 times as long as the length of an inch is 
thinking of the Steffe magnitude of Q. A person who says that Q has a magnitude of 22 inches 
while understanding that the magnitude of Q will remain the same with a change of unit, and 
who anticipates how the measure of Q will change by knowing the relationship between units, is 
thinking of the Wildi magnitude of Q. When a person anticipates that any measurement of Q 
with respect to an appropriate unit can be expressed in any other appropriate unit by some 
conversion without changing Q’s magnitude, she possesses Wildi’s meaning of magnitude.  

The phrase “any other appropriate unit” hides a sophisticated understanding of the 
quantity in question and units in which it can be measured. It expresses a confidence that comes 
with having a scheme that anticipates such conversions for that quantity. For example, John’s 
height in feet is 6.17. A person who thinks with Wildi magnitudes, and who knows the 
appropriate relationships, can anticipate that John’s height can be measured in light years—and it 
will remain the same height. A light year is the distance light travels in a year. The speed of light 
is (approximately) 186,282 miles/sec, so a light year is 186,282×(the number of seconds in a 
year) miles.  This number of miles can be converted into a number of feet, the reciprocal of 
which gives the number of light years in one foot. Hence John’s height in light years is 6.17 
times as large as the magnitude of one foot expressed in light years. The confidence shown in 
expressing John’s height as a number of light years also entails a facility with quantitative, 
numerical, and arithmetical operations that are deeply rooted in (reflectively abstracted from) 
having reasoned many times about quantities in settings that require a change of units.  

We stress that when someone conceives of a quantity’s size as a Wildi magnitude that 
this is more than being able to convert from one unit to another. Thinking of a quantity’s size as 
a Wildi magnitude entails the anticipation that the quantity’s magnitude is invariant with any 
change in unit. Put another way, to think with Wildi magnitudes requires an operational scheme 
of meanings for the quantity in question, its size, how one measures it, and the formation of its 
unit. This scheme involves arithmetical operations (multiplication and division), quantitative 
operations (proportional correspondence), measure (as a multiplicative relationship between two 
quantities’ magnitudes), quotient (as a measure of relative size of measures), and fraction 
(hierarchical relationships of size). We will say more about schemes in the next section. We 
should also point out that we do not claim that a person who has a scheme for Wildi magnitudes 

Q = 22 inch

Q = 22
12

foot
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has the general ability to convert from one unit to another. One must understand the quantity 
under consideration and the meaning of its units. To think about the number of watts that is 
equivalent to 465 horsepower, one must understand the quantity power and its quantification. 

As an aside, we suspect that the US Congress’ 1976 effort to have the U.S. convert to the 
metric system (Wikepedia, 2013) failed largely because of the popular inability to think in terms 
of Wildi magnitudes (and perhaps even Steffe magnitudes). People were not proficient in 
converting among units, nor did not have imagistic benchmarks for metric units that allowed 
them to think intuitively about how large was some feature of an object when its measure was 
stated metrically. This is similar to students’ and teachers’ lack of imagistic benchmarks for 
directions associated with 1 radian from horizontal, 2 radians from horizontal and so on, despite 
having imagistic benchmarks for directions associated with angle measures given in terms of “π” 
(e.g., π/3, π/4, and π/2). 

Relative Magnitude 

We measure a quantity in relation to a unit. “Clearly, the unit must be of the same nature as the 
quantity being measured” (Wildi, 1991, p. 58). We measure an object’s weight by comparing it 
with a standard weight; we measure an amount of twist by comparing it with a standard amount 
of twist; we measure a light’s luminance by comparing it with a standard luminance. But we also 
measure quantities that are made by relating two quantities of different natures. We measure 
speed by relating a distance traveled and the amount of time required to travel that distance. We 
measure force by relating an object’s mass with its acceleration. As explained by Johnson (this 
volume) and Steffe (this volume), a quantity created by relating two quantities is called an 
intensive quantity. 

Upon traveling 62 miles in 2.7 hours, we do not divide 62 miles by 2.7 hours to see how 
many durations of length 2.7 hours are contained in 62 miles. Rather, we use the logic of 
proportional correspondence (Thompson, 1994b; Thompson & Thompson, 1994) to reason that, 
assuming a constant speed, 1 hour of driving (1/2.7 of 2.7 hours) will correspond to 22.96 miles 
(1/2.7 of 62 miles). In other words, division of measures determines the relative size of two 
measures. When driving at a constant speed such that in 2.7 hours one drives 62 miles, the 
number of miles driven will always be 22.96 times as large as the number of hours spent driving. 
We point out here that thinking of relative magnitude relies on being able to use distributed 
partitioning (Steffe & Olive, 2010). One must employ the reasoning that 1/n of m units is the 
same as m/n of one unit. 

The most rudimentary measure of an intensive quantity is to determine the relative size of 
its constituent quantity’s measures, as in the example of driving 62 miles in 2.7 hours. But what 
could we mean by the magnitude of an intensive quantity? We propose the term relative 
magnitude to convey the idea that the person conceiving an intensive quantity conceives of the 
constituent quantities as having Wildi magnitude. A person who conceives an intensive quantity 
as constituted by quantities having Wildi magnitude is positioned to see the relationship between 
quantities as being invariant with change of unit in either or both of its constituent quantities.  

A person who conceives distance and time as having Wildi magnitudes will understand 
that a car’s speed of 60 miles per hour is the same speed as when duration is measured in one 
second. The car will travel 1/3600 as far in one second as it will in one hour, because 

  
s = 1

3600
hr . Thus a speed of 60 miles per hour can be expressed as 60/3600 miles per 
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second. Similarly, a speed of 60 miles per hour can be expressed as  5280 ⋅60 3600  feet per 

second because 
  

ft = 1
5280

mi . The reasoning behind these conversions entails using reciprocal 

relationships of relative size (in relating the magnitude of one unit to the magnitude of another) 
and two applications of proportional correspondence (expressing relative size with respect to the 
first unit, then re-expressing relative size in terms that relate the measure relative to the second 
unit in terms of measure relative to the first).  
We will use the notation 

  
RelMag R,S( )r ,s

 to represent the relative magnitude of quantities R and 

S in the context of measuring R in units of r and measuring S in units of s. The general form of 
reasoning that supports re-expressing relative size so that it keeps relative magnitude invariant is 
summarized below.  

• 
  
m B( )b '

= 1
k

m B( )b
 when   b ' = k b  

• 
  
RelMag R,S( )r ,s

=
m R( )r

m S( )s

  

•   r ' = k r ,  s ' = j s   

• 

  

RelMag R,S( )r ',s '
=

m R( )r '

m S( )s '

=

1
k

m R( )r

1
j

m S( )s

= j
k

⎛
⎝⎜

⎞
⎠⎟

m R( )r

m S( )s

⎛

⎝
⎜

⎞

⎠
⎟ =

j
k

⎛
⎝⎜

⎞
⎠⎟

RelMag R,S( )r ,s
 

Thinking of an object B’s density as a relative magnitude of its mass and its volume involves 
seeing B’s mass and B’s volume as having Wildi magnitudes. Suppose B has a mass of 5 pounds 
(avoirdupois) and a volume of 27 cubic inches. Understood as Wildi magnitudes, we anticipate 
that 5 pounds and 27 cubic inches can each be re-expressed in any other appropriate unit without 
changing the relative magnitude of the B’s mass and volume. Because we understand that 
relative magnitude is measured by a quotient of measures, we know that

  
RelMag Bmass , Bvol( )lb,in3 =

m Bmass( )lb

m Bvol( )in3

= 5
27

. B’s density is 5/27 pounds per cubic inch. Suppose we 

are told that 
  

jib = 1
738

pound  and that 
  

jab = 1
15

in . First, we immediately conclude that 

  
jab3 = 1

15
⎛
⎝⎜

⎞
⎠⎟

3

in3 . We then go on to reason,  
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RelMag Bmass , Bvol( ) jib, jab3 =
m Bmass( ) jib

m Bvol( ) jab3

=

1
1 738( )m Bmass( )lb

1
1 153( )m Bvol( )in3

= 738
153

⎛
⎝⎜

⎞
⎠⎟

m Bmass( )lb

m Bvol( )in3

= 738
153

⎛
⎝⎜

⎞
⎠⎟

RelMag Bmass , Bvol( )lb,in3

= 738
153

⎛
⎝⎜

⎞
⎠⎟

5
27  

It is important to notice that a relative magnitude of 5/27 is a number that tells you that 
the magnitude of the relationship between Bmass and Bvol is 5/27 times as large as the magnitude 
of the relative magnitude of one pound and one cubic inch—the number of pounds is 5/27 times 
as large as the number of cubic inches. Similarly, the relative magnitude of Bmass and Bvol, when 
Bmass is measured in jibs and Bvol is measured in cubic jabs, is 0.04 times as large as the relative 
magnitude of one jib and one cubic jab—the number of jibs is 0.04 times as large as the number 
of cubic jabs. Moreover, a person reasoning with relative magnitudes, during the whole process, 
will not lose sight of the fact that B’s density is the same in either representation. B’s density is 
5/27 lb/in3 and it is 0.04 jibs/jab3. Both express the relative magnitude of B’s mass and B’s 
volume. 

It is clear to us that a requirement for anyone to think with relative magnitudes is that her 
scheme for Wildi magnitudes is operational. We say this because the scheme for Wildi 
magnitude, as exemplified in the discussion of B’s density, must be used on both Bmass and on 
Bvol—simultaneously. We suspect that it is through attempts to reason about relative magnitudes 
that the scheme for Wildi magnitudes actually becomes operational. 

As for practical examples of thinking with relative magnitude, we offer the situation 
below.  

In the United States, a car’s fuel efficiency is measured in miles traveled 
per gallon of gasoline consumed. In Europe, a car’s fuel efficiency is 
measured in liters of gasoline consumed per 100 kilometers traveled. 
Rachel’s Ford Focus gets 36 mi/gal on the highway. She took her car to 
France while studying at the Sorbonne and now wants to sell it (in France). 
How should she state her car’s fuel efficiency in a newspaper ad? 

As a research item we see it offering opportunities to probe these issues: 

• How do individuals think about the quantities involved? At what level of magnitude do 
they think of them? 
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• Do people think of fuel efficiency as a quantity? If so, do they see fuel efficiency as being 
invariant with change of units? 

• In what ways are individuals’ abilities to think with magnitudes related to their 
familiarity with unit conversions? Are advanced forms of thinking with magnitudes 
dependent on conversions only as matters of information? 

Comments on Magnitude and Relative Magnitude 

Our discussion of magnitude and relative magnitude started with the notion of magnitude as 
awareness of size, then as thinking of measure as magnitude, then thinking of size relative to a 
composite unit, then thinking of magnitude as an amount that is invariant with change in unit, 
then thinking of the magnitude of intensive quantities wherein the relationship between 
magnitudes remains invariant with changes in units. We suspect that there is a developmental 
trajectory lurking within these levels of meaning of “magnitude”, but not one that is spontaneous. 
In the United States, given its current state of mathematics education, the trajectory cannot even 
be called purposive. We see no attention given to the idea of magnitude and its development—
not within curriculum, within teacher education, and rarely within mathematics education 
research.  

We have a strong suspicion that thinking with magnitudes is highly related to students’ 
abilities to reason numerically, especially with fractions, and with numbers generically. We also 
suspect that children’s development of algebraic reasoning and calculus reasoning is strongly 
dependent upon their abilities to think with magnitudes. Higher levels of thinking with 
magnitudes involves reasoning with general relationships and general numbers, so students 
whose thinking is at the higher levels of magnitude will be able to ground their reasoning about 
algebra concretely within their understandings of magnitudes. We do not know this as a fact, 
because research on mathematics learning has not attended to issues of magnitude. It seems, to 
us, that this is a rich area for future research. Our intention here is to provide a framework for 
thinking about magnitudes that might support this research. 

We have used the phrase “thinking with magnitudes” repeatedly. It should now be clear 
that this phrase is ambiguous. A student whose meaning of magnitude is at any of these levels 
will think with the meanings of magnitude that he or she holds. The phrases “thinking with 
magnitudes” and “a quantity’s magnitude” can only have meaning when we are specific about 
the meanings of magnitude that we are attributing to particular persons in particular settings or 
when we are specific about the meanings we are attributing to an epistemic student who we take 
as having those meanings. Thus, “thinking with magnitudes”, by itself, can mean no more than 
that students employ their meanings of magnitudes in their thinking. 

Magnitude Schemes 

Having spoken of schemes repeatedly we feel obliged to say what we mean by a scheme and to 
speak to the matter of how schemes develop.  
 Cobb and Glasersfeld (1983) and Glasersfeld (1995, 1998) proposed that, to Piaget, a 
scheme was a three-part mental structure: a condition that would trigger a scheme, an action or 
system of actions, and an anticipation of what the action should produce. We believe that Cobb 
and Glasersfeld said less than they meant, as their wording suggests that a scheme is like a 
condition-response pair. This interpretation fits better with Piaget called a schema of action 
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(Piaget, 1968, p. 11; Piaget & Inhelder, 1969, p. 4). Piaget spoke of a child’s sucking schema, for 
example.4 Having worked with Glasersfeld over many years, and having used the concept of 
scheme with Glasersfeld to describe organizations of complex thought processes, we offer an 
elaboration of Glasersfeld’s definition that we believe makes its explanatory power more 
evident. 

Piaget’s use of “scheme” often was quite utilitarian. It allowed him to speak of mental 
organizations that supported flexible thinking and reasoning without having to specify the 
contents of those organizations, and he spoke of schemes at different levels of sophistication 
without elaborating their contents. Montangero and Maurice-Naville (1997, p. 155) supplied a 
compendium of Piaget’s various uses of “scheme”. We quote it in its entirety. Years in brackets 
are the year of the original French publication.  

1) “We shall apply the term ‘action schemata’ to whatever, in an action, can thus be transposed, 
generalized, or differentiated from one situate to another: in other words, whatever is in 
common between various repetitions or superpositions of the same actions” (Biology and 
Knowledge, [1967], p. 7). 

2)  “A scheme is the structure or the organization of actions which is transferred or generalized 
when this action is repeated in similar or analogous circumstances” (The Psychology of the 
Child, [1966] 1969, p. 11, footnote not translated in the English version) 

3) “These patterns [schemes] being none other than the whole gamut of actions capable of 
[being actively repeated]” (The Psychology of Intelligence, [1948] 1950, p. 8). 

4) “The system, composed of determined and completed movements and perceptions, reveals 
the dual character of being structured (hence of itself structuring the perception or 
comprehension) and of constituting itself from the outset inasmuch as it is a totality” (The 
Origins of Intelligence in Children, [1936] 1977, p. 417. 

5) [Schemes are] organized totalities whose internal elements are mutually implied (The Origins 
of Intelligence in Children, [1936] 1977, p. 445). 

6) “The scheme of an action is neither perceptible (one perceives a particular action, but not its 
scheme) nor directly introspectible, and we do not become conscious of its implications 
except by repeating the action and comparing its successive results” (Mathematical 
Epistemology and Psychology, [1961] 1966, p. 235). 

 
 We must remind ourselves that by “action” Piaget meant “all movement, all thought, or 
all emotions that responds to a need” (Piaget, 1968, p. 6). As such, we see immediately that the 
organizations of which Piaget spoke in these six definitions of scheme are mental organizations. 
Schemes are organizations of mental activity that express themselves in behavior, from which 
we, as observers, discern meanings and ways of thinking. Scheme is a theoretical construct that 
we impute to individuals to explain their behavior. 

                                                
4 We agree with Montangero and Maurice-Naville (1997, p. 154) when they say that Piaget made 
a strong distinction between the ideas of schema and scheme. A schema is much simpler than a 
scheme, having an organization that supports stimulus-response behaviors. 
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 To capture the complexity of thinking with magnitudes (or the complexity of thinking of 
constant rate of change, derivative, integral, function, and so on) we are forced to expand Cobb 
and Glasersfeld’s definition of scheme. We define a scheme as an organization of actions, 
operations, images, or schemes—which can have many entry points that trigger action—and 
anticipations of outcomes of the organization’s activity. 

Thompson (1994c, 1996) explained the vital role that imagery plays in Piaget’s meaning 
of scheme and its development. Thompson characterized an image as 

By “image” I mean much more than a mental picture. Rather, I mean 
“image” as the kind of knowledge that enables one to walk into a room full 
of old friends and expect to know how events will unfold. An image is 
constituted by coordinated fragments of experience from kinesthesia, 
proprioception, smell, touch, taste, vision, or hearing. It seems essential 
also to include the possibility that images entail fragments of past affective 
experiences, such as fearing, enjoying, or puzzling, and fragments of past 
cognitive experiences, such as judging, deciding, inferring, or imagining5. 
Images are less well delineated than are schemes of actions or operations 
(Cobb & von Glasersfeld, 1983). They are more akin to figural knowledge 
(Johnson, 1987; Thompson, 1985) and metaphor (Goldenberg, 1988). A 
person’s images can be drawn from many sources, and hence they tend to 
be highly idiosyncratic. (Thompson, 1994c, pp. 229-230) 

Thompson (1994c) went on to explain the ways in which the notion of image is intertwined with 
Piaget’s concept of scheme and of mental operation. He pointed out three levels of imagery in 
Piaget’s work. The first level of imagery is when a child engages in deferred imitation. Deferred 
imitation is when a child acts the imitated behavior to have an image of it. The second level of 
imagery is an image of a desired state and actions that can attain it, but the actions and image are 
intermingled, so it is easy for the child to “lose his image” when his present situation obstructs 
acting in a way he intended. The third level of imagery is operative. 

[This is an image] that is dynamic and mobile in character … entirely 
concerned with the transformations of the object. … [The image] is no 
longer a necessary aid to thought, for the actions which it represents are 
henceforth independent of their physical realization and consist only of 
transformations grouped in free, transitive and reversible combination … In 
short, the image is now no more than a symbol of an operation, an imitative 
symbol like its precursors, but one which is constantly outpaced by the 
dynamics of the transformations. Its sole function is now to express certain 
momentary states occurring in the course of such transformations by way 
of references or symbolic allusions.” (Piaget, 1967, p. 296) 

Our reason for dwelling on Piaget’s notion of image is because, in developing a scheme, a 
student must develop images of having reasoned in particular ways, meaning she must develop 
recollections of “momentary states” in having reasoned. Students “construct stable 

                                                
5 Tom Kieren and Susan Pirie (Kieren, 1988; Kieren & Pirie, 1990; Kieren & Pirie, 1991; Pirie & 
Kieren, 1991) make it evident that the act of imagining can itself inform our images. 
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understandings by repeatedly constructing them anew” (Thompson, 2013, p. 61). To construct a 
scheme, students must repetitively engage in the reasoning that will become solidified in that 
scheme in order to have occasions to develop the imagery that supports it (Cooper, 1991; Harel, 
2008a, 2008b, 2013). It seems trite to say so, but we are compelled to point out that for students 
to develop schemes for reasoning with magnitudes, they must attempt to reason with magnitudes 
and about magnitudes. 

Piaget was aware that there are types of organizations of mental activity that exemplify 
schemes at their highest level. These are schemes that support flexible, innovative, creative 
thinking by making connections among meanings and ways of thinking that are typical of high 
forms of thought. He called these organizations groupings. Groupings of mental actions are 
characterized by the properties of 

• Composition (two actions within the grouping can be carried out in thought as one 
action) 

• Associativity (chains of actions within the grouping can be restructured mentally) 
• Reversibility (initial states of actions can be viewed in retrospect in relation to 

their consequences) 
 What we have characterized as “thinking with relative magnitudes” might be better 
characterized as a grouping. It constitutes an organization of meanings and ways of thinking that, 
within their domain, form a complex, closed, and operational system in which students can 
compose actions flexibly and keep in mind the different parts of their reasoning process. We 
suspect that Piaget might have disagreed with our use of “grouping”. His intent was to describe 
huge cognitive organizations, like a concept of space. We nevertheless believe that it is useful to 
distinguish between the vastly different levels of sophistication of, for example, a counting 
scheme and a relative magnitude scheme and we propose to use the term grouping to distinguish 
the highest levels. We are not wed to this usage of grouping. But we think “scheme” is used too 
commonly without differentiating among vastly different levels of cognitive behavior. 

Understandings, Meanings, and Ways of Thinking 

In our prior discussion of thinking with magnitudes we used the words “understanding”, 
“meaning”, and “way of thinking” advisedly. With our definition of scheme and description of 
the role of imagery in schemes, we can be more precise about our use of these affiliated terms. 
 In the past, Thompson used “to understand” in a Piagetian tradition—as to assimilate to a 
scheme (Skemp, 1961, 1979; Thompson, 2013; Thompson & Saldanha, 2003). Thus, an 
understanding was always what a person understood. It was non-judgmental regarding 
correctness or appropriateness of the person’s understanding. Likewise, Harel (2008a, 2008b, 
2008c) introduced the phrase “way of understanding” to distinguish between “understand” as 
conveying a judgment that a person has a normatively correct understanding of a mathematical 
idea and “way of understanding” as the system of meanings that person used to understand a 
situation, an inscription, or a mathematical utterance. While the two usages had the same 
intent—to emphasize that mathematics is personal, and even “standard” mathematics rests upon 
personal meanings that are negotiated within a community—they were not completely aligned. 
As a result of recent collaborations, Harel and Thompson have developed a system for 
addressing issues of understanding, meaning, and ways of thinking that they hope lends 
coherence to the use of these terms (Table 1). 
  
 



Thompson, Carlson, Byerley, Hatfield  Thinking with Magnitudes 

 -13- 

Table 1 

Definitions of understanding, meaning, and ways of thinking. (Thompson & Harel, in 
preparation; Thompson, Harel, & Thomas, in contract) 

Construct Definition 
Understanding (in the moment) Cognitive state resulting from an assimilation 

Meaning (in the moment) 

 
The space of implications existing at the moment of 
understanding 
 

Understanding (stable) Cognitive state resulting from an assimilation to a scheme 

Meaning (stable) 

 
The space of implications that results from having 
assimilated to a scheme. The scheme is the meaning.  
What Harel previously called Way of Understanding 

Way of Thinking 
 
Habitual anticipation of specific meanings or ways of 
thinking in reasoning 

 
This system for the use of “understanding”, “meaning” and “way of thinking” continues 

Harel’s and Thompson’s quest to decouple “understand” and “correct understanding”. They do 
this by resting their system on the idea of assimilation. They rely on Piaget’s characterization of 
assimilation as, in effect, giving meaning. 

Assimilating an object to a scheme involves giving one or several meanings 
to this object, and it is this conferring of meanings that implies a more or 
less complete system of inferences, even when it is simply a question of 
verifying a fact. In short, we could say that an assimilation is an association 
accompanied by inference. (Johnckheere, Mandelbrot, & Piaget, 1958, p. 
59) as translated by (Montangero & Maurice-Naville, 1997, p. 72) 

Table 1’s first entry (Understanding in the moment) describes a person who has an understanding 
of something said, written, or done in the moment of understanding it. Technically, all 
understandings are understandings-in-the-moment. Some understandings, however, might be a 
state that the person has struggled to attain at that moment through functional accommodations to 
existing schemes (Steffe, 1991), and is easily lost once the person’s attention moves on. This 
type of understanding is typical when a person is making sense of an idea for the first time. The 
meaning of an understanding is the space of implications that the current understanding 
mobilizes—actions or schemes that the current understanding implies, that the current 
understanding brings to mind with little effort.6 An understanding is stable if it is the result of an 
assimilation to a scheme. A scheme, being stable, then constitutes the space of implications 
resulting from the person’s assimilation of anything to it. The scheme is the meaning of the 
understanding that the person constructs in the moment. As an aside, schemes provide the “way” 

                                                
6 Recall that one of Piaget’s definitions of scheme was (p. 10 of this paper), “[Schemes are] 
organized totalities whose internal elements are mutually implied.” 
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in Harel’s “way of understanding”. Finally, Harel and Thompson characterize  “way of thinking” 
as when a person has developed a pattern for utilizing specific meanings or ways of thinking in 
reasoning about particular ideas. 
 Thus, a scheme for magnitudes is a meaning for magnitudes. The five meanings of 
magnitude we listed earlier are schemes. A person who understands a situation as involving 
magnitudes has assimilated the situation to a scheme for magnitudes. The use of a relative 
magnitude scheme routinely in dealing with situations that a person sees as involving relative 
magnitudes shows that the person has a way of thinking with relative magnitudes. The ability to 
explain what a relative magnitude is shows that the person has a way of thinking about relative 
magnitudes. 

Comments on the Development of Schemes 

We hope that our characterization of levels of meaning of “magnitude” conveys the large number 
of moving parts in even mid-level ways of thinking about magnitude. The question now is, “How 
might students develop these ways of thinking?” In the current age of learning progressions we 
can anticipate advice like this. Children must 

• Learn about size and become skilled at comparing sizes 
• Learn to measure 
• Learn to change a unit of measure 
• Learn to divide measures 
• Learn to change units of measures, then divide 

 While the above is certainly a caricature of learning progressions, it also captures the 
common idea (which harkens from the days of Gagné, 1977) that students must attain a certain 
level of proficiency with prerequisite skills before they can master subsequent skills.7 It also fits 
the goal that every item be unidimensional by those who use Rasch or IRT models to assess 
students’ level in a progression—that it assesses behavior that is too simple to be the expression 
of a scheme. Instead of thinking in terms of learning progressions and unidimensional items to 
assess students’ placement in them, we think of scheme development in terms of the formation of 
learning clouds. We will use proportionality as an example. 
 Our approach is to give an evolutionary view on the progression of proportional 
reasoning in learners over ages 6 to 18. We hesitate to use the word “progression” in this context 
because of the image it often conveys of one thing happening after another—a progression in 
steps. Instead, we hope to convey an image of parallel developments of ways of thinking that are 
always in interaction and yet which constitute the span of those curricular concepts that compose 
proportional reasoning. We speak of any one way of thinking that we take as foundational for a 
particular curricular concept as also participating in the activity of other curricular concepts and 
ways of thinking. The result is an ensemble of meanings and ways of thinking such that, at every 
moment in the child’s development of proportional reasoning, any two aspects of proportional 
reasoning entails some common ways of thinking while at the same time involving ways of 
thinking that are unique to themselves—whence the idea of a developmental cloud.  

We describe, for example, ways of thinking about multiplicative comparisons that 
underlie the curricular concepts constant rate of change and measurement (thus explicating how, 

                                                
7 We hasten to point out that the work on learning progressions by Rich Lehrer and Leona 
Schauble (Lehrer, 2013) departs dramatically from this description. 



Thompson, Carlson, Byerley, Hatfield  Thinking with Magnitudes 

 -15- 

as curricular concepts, they are related) and how they each involve ways of thinking that are 
unique (thus explicating how, as curricular concepts, they differ). We, as observers of students’ 
thinking, anticipate that the distinction between ways of thinking that are highly similar yet 
distinct often is inherited from earlier ways of thinking that evolved tightly with concrete 
situations that children made meaningful. Covariation, for example, has partial roots in double 
counting—the coordination of two counting sequences (e.g., computing 6+5 by counting 7 (is 1), 
8 (is 2), and so on). 

 
Figure 4. The Proportionality “Cloud”: Aspects of Proportional Reasoning 

Proportionality has many aspects. Each entails ways of thinking about quantities, relationships 
among quantities, and relationships among ways of thinking. As a result, proportional reasoning 
appears in various guises in different contexts and different levels of sophistication. It is also 
worth noting that these ways of thinking are involved in service to each other and that they do 
not align with conventional categorizations of curricular topics.  

Another concern with the use of “progression” is that its common meaning often 
constrains one to speak of one idea at a time, in isolation of others. But we must consider, for 
example, multiplication as a conceptual site for exercising ways of thinking that underlie related 
curricular ideas like measurement, fraction, division, and constant rate of change. To do that, we 
focus on the evolution of ways of thinking that are at the foundation of a particular curricular 
concept while simultaneously pointing out how these ways of thinking participate in other 
curricular concepts. Our aim for this approach to explicating a curricular concept’s progression is 
to provide a platform for talking about how a teacher can focus on one idea while simultaneously 
incorporating and building upon related ideas. 

We accept the cloud metaphor as a way to think of scheme development for all major 
mathematical ideas. Thus, we see the development of schemes for magnitude, function, variable, 
rate of change, derivative, integral, differential equation, and so on as all having the character of 
learning clouds. Two challenges come with this metaphor: (1) making it precise through models 
of individual students’ learning, and (2) developing a methodology for profiling the state of a 
student’s cloud. The latter will be especially challenging. Students will have some ways of 
thinking that are more or less advanced than others, which will impact the development of other 
parts of the cloud that interact with it and with which it interacts. Also, the patterns of cloud 
formation will vary across students. Some students will be more advanced in one area and less 
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advanced in others in comparison to other students, which will produce different patterns of 
functioning. 

One final note: Our descriptions of ways of thinking that participate in other ways of 
thinking (e.g., ways of thinking about partitioning that participate in ways of thinking about 
measuring) are not about natural cognitive development. We take as axiomatic that students’ 
experiences in instruction both facilitate and constrain their opportunities to think about 
particular ideas and how they are related. 

Middle and High School Mathematics Teachers’ Understandings of Magnitude 

While writing this paper, and becoming clearer in our own thinking about the nature and 
significance of reasoning with magnitudes, we decided to collect data on individual’s 
understandings of magnitude. We piloted early versions of items in Figure 5 with 114 
undergraduate mathematics students. Results from the pilot were that college mathematics 
students reason about magnitudes very poorly. After revising the items and rubrics for scoring 
them based on the pilot, we gave the items in Figure 5 to 112 middle and high school 
mathematics teachers who participated in summer MSP workshops in the Midwest (60) and the 
Southwest (62). We surveyed middle and high school teachers’ thinking about magnitude to get 
a sense of opportunities that students might have for thinking about magnitudes. Our 
presumption is that teachers provide a gateway to students’ futures, so understanding teachers’ 
capabilities can give a more complete understanding of students’ opportunities to learn. 

Our intention was to devise items that would reveal aspects of teachers’ understandings 
of magnitude and their disposition to think with magnitudes. At the time we wrote the items we 
had not clarified the issue of relative magnitude, so our items focused on Wildi magnitudes. 
Questions 1 and 2 focused on converting a measure in one unit to a measure in another given a 
relationship between the units. We constructed Question 3 with enough information that teachers 
could estimate the relative magnitudes of changes in x and y by physically measuring ∆y in units 
of ∆x (exact measure was 2.5).  
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Figure 5. Items given to 112 middle and high school mathematics teachers. 

We designed Question 1 so that it would be about length, but not about length 
straightforwardly. We gave information about the length’s measure in one unit (Nerds) and a 
relationship between Nerds and a new unit having 3/4 the magnitude of a Nerd. We wanted to 
see if teachers would reason that if ||Rap|| = 3/4||Nerd||, then inside each Nerd is 4/3 Raps. 
Question 2 is identical to Question 1 with the exception that the new unit is larger than the 
original unit, the units (liters and gallons) and their sizes are commonly known but are not about 
length, and the original measure is represented with a letter instead of a numeral. The intended 
reasoning for Question 2 was twofold: (1) that ||gal||=(189/50)||liter|| implies that a gallon is 
larger than a liter, so the number of gallons must be smaller than the number of liters to have the 
same magnitude, and (2) that ||gal||=(189/50)||liter|| implies that ||liter||=(50/189)||gallon||, and 
therefore m liters would have the same magnitude as (50/189)m gallons. Questions 1 and 2 are 
very much like the well-known Student-Professor problem wherein subjects are told to write an 
equation to represent the relationship between a college’s number of professors and number of 
students after they are told, “There are seven students for every professor” (Clement, Lochhead, 
& Monk, 1981; Clement, Lochhead, & Soloway, 1979; Rosnick & Clement, 1980; Wollman, 
1983, 1986). A major difference between Questions 1 and 2 and Student-Professor problems is 

1) In Nerdland they measure lengths in Nerds. The highlighted arc measured in Nerds 
is 12 Nerds. In Rapland they measure lengths in Raps. One Rap is 3/4 the length of 
one Nerd. What is the measure of the highlighted arc in Raps?  

  

2) A container has a volume of m liters. One gallon is 189/50 times as large as one 
liter. What is the container’s volume in gallons? Explain. 

3) Part A. The graph of a linear function y = mx + b is given below. x and y are in the 
same scale. What is the numerical value of m? Explain your reasoning briefly. 
(The graph was much larger.) 

   

Part B. What would be the numerical value of m if the y-axis were re-scaled so 
that the distance between 0 and 1 is 2 times as large as the original? 
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that our questions are about measures whereas Student-Professor questions are cardinalities of 
sets. 

Question 3 is somewhat novel in comparison to Questions 1 and 2. We omitted markings 
on the axes while asking for a numerical value of m purposely to see whether teachers would 
actually compare the magnitudes of changes by comparing the lengths of the segments that 
represent them. We also anticipated that some teachers would think of the relative size of the two 
segments and not the relative magnitude of the quantities they represent. We therefore included a 
Part B that asked about the numerical value of m in the context of changing the scale of the y-
axis. The value of m will not change, but if one is thinking about the triangle as invariant with 
change of scale, then one could think that the value of m is either doubled or halved. Our intent 
for Question 3 was to see if teachers understand slope as the relative magnitude of changes in 
two quantities and to see whether they took the segments representing changes as their objects of 
thought or took the segments as representations of magnitudes. 

Each question had a rubric for coding responses to it. The rubrics put a response at one of 
four levels. Level 0 responses displayed a deep disconnect with the ideas involved. Level 1 
responses were incorrect but showed evidence of struggling with the idea of units’ magnitudes. 
Level 3 responses showed evidence of valid thinking, but after a false start. Correct responses 
without any attempt to convey reasoning were also put at Level 3. Level 4 responses displayed 
coherent understandings and ways of thinking about the underlying ideas. Figure 6 shows 
examples of responses at Levels 0, 1, 3, and 4 for Question 2. 
 
Question 2: A container has a volume of m liters. One gallon is 189/50 times as large as one liter. 
What is the container’s volume in gallons? Explain. 
Question 2 Level 0 

 
Question 2 Level 1 
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Question 2 Level 3 

 
Question 2 Level 4 

 
Figure 6. Examples of response levels for Question 2. 

Table 2, Table 3, and Table 4 are also organized to show teachers’ undergraduate major. Math 
means that a teacher received a B.S. or a B.A. in mathematics (25; only a few received a B.A. 
degree). MathEd means that a teacher received a B.S. or a B.A.E. in secondary mathematics 
education (36), which in terms of mathematics background is often similar to a B.A. in 
mathematics. Other means that a teacher received a degree in an area other than mathematics or 
math education but was teaching mathematics. Four teachers are listed as ND, which means that 
we do not have information on their degree. 

We restricted our analysis of Question 3 to teachers who are actively teaching 
mathematics in a high school. Twelve (12) of 112 teachers taught in middle school exclusively. 
The rest taught high school. 
 

Table 2 
Rows are levels of Question 1 Level 
Columns are levels of Major 

 Cell Entries: Count (Percent of Column Total) 

 
Math 

MathE
d ND Other total 

LV0 2 1 1 9 13 

 
(8) (2.8) (25) (19.1) (11.6) 

LV1 12 15 3 14 44 

 
(48) (41.7) (75) (29.8) (39.3) 

LV3 3 4 0 4 11 

 
(12) (11.1) (0) (8.5) (9.8) 

LV4 8 16 0 20 44 

 
(32) (44.4) (0) (42.6) (39.3) 

total 25 36 4 47 112 

 
(100) (100) (100) (100) (100) 

Table 3 
Rows are levels of Question 2 Level 
Columns are levels of Major 

  Cell Entries: Count (Percent of Column 
Total) 

 
Math MathEd ND Other total 

LV0 5 3 3 10 21 

 
(20) (8.3) (75) (21.3) (18.8) 

LV1 14 22 1 23 60 

 
(56) (61.1) (25) (48.9) (53.6) 

LV3 5 4 0 12 21 

 
(20) (11.1) (0) (25.5) (18.8) 

LV4 1 7 0 2 10 

 
(4) (19.4) (0) (4.3) (8.9) 

total 25 36 4 47 112 

 
(100) (100) (100) (100) (100) 
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Table 2 shows levels of responses to Question 1 (Nerds and Raps). Approximately 50% of the 
responses were at Level 0 or Level 1 and 50% of the responses were at Level 3 or Level 4 (there 
was no Level 2). Responses at Level 0 and Level 1 showed no awareness of issues of magnitude. 
The most common response lower-level response was that 12 Nerds is the same as 9 Raps, which 
means they multiplied (3/4) and 12 and were not constrained by the thought that, since a Rap is 
smaller than a Nerd, it would require more Raps than Nerds to measure the same length. Table 1 
also shows that teachers with a mathematics degree were less likely to give a high-level response 
than were teachers without a mathematics degree. 
 Table 3 shows that teachers in general were more than twice as likely to give a low-level 
response to Question 2 (72%) than a high-level response (28%). Table 3 also shows that this is 
true even for mathematics and mathematics education majors (though less so for math 
education). 
 The assignment of levels to responses for Question 3 is more complicated because of the 
question being in two parts. We coded Parts A and B independently, then combined the two into 
a leveled response. For Part A, we coded responses as Low-Level (LLA), Formulaic (FORM), 
Symbolic (SYM), Numerical Value between 2 and 3 but with no explanation (NV), and 
Numerical Value between 2 and 3 with a valid explanation (NVEX). FORM responses gave a 
formula for computing slope, like ∆y/∆x or   ( y2 − y1) (x2 − x1) . SYM responses solved for m 
symbolically, as in   m = ( y − b) x . NV responses gave a value of m between 2 and 3 but without 
an explanation. Numerical responses outside this range were coded LLA. No LLA numerical 
responses contained a valid explanation of where the number came from. Finally, NVEX 
responses gave a value for m between 2 and 3 and explained that the length of the vertical 
displacement was some number of times as large as the horizontal displacement (usually 
accompanied by tick marks on the segments). 
 For Part B (change of scale), we coded responses as Low-Level (LLB), Triangle 
Invariant (TI), Interpretation Issues (II), and Same Value (SV). LLB responses included 
statements like “I don’t know” or statements that we could not interpret with any coherence (e.g., 
“x = 0, x = 2, y = 0, y = 2”). A TI response indicated that the teacher imagined the triangle 
staying the same while the scale changed (thus an answer of “double” or “half”). An answer of 
“double” indicated that the teacher thought that the value represented by the interval [0,1] on the 
y-axis doubled, and hence the value of m doubled. An answer of “half” indicated that the teacher 
thought that the y-coordinates of the vertical displacement’s endpoints were halved, thus the 
value of m is halved. II responses indicated that the teacher was aware that an answer to Part B 
depended upon whether “y-axis rescaled” meant that only the y-axis is rescaled or both the y-axis 
and segment representing vertical displacement are rescaled. 
 Table 4 shows the assignment of levels to (Part A, Part B) response pairs. It shows that 
Part A responses were weighted more heavily than Part B responses. Indeed, an LLA response 
trumped all Part B responses. For example, “Same value” for Part B in the context of a Low-
Level response to Part A meant only that the persons LLA response did not change. 
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Table 4 
Columns are levels of Question 3 Part A. Rows are levels of Question 3 Part B. Cell entries are 
the level assigned that pair of responses. 

 Part A (Columns) 

Part B (Rows) Low-Level 
(LLA) 

Formulaic  
(FORM) 

Symbolic 
(SYM) 

Numerical  
Value (NV) 

NV and Explain 
(NVEX) 

Low-Level (LLB) 0 1 1 1 2 
Triangle Invariant (TI) 0 1 1 2 3 
Interpretation Issues (II) 0 2 2 3 3 
Same Value (SV) 0 2 2 3 4 

 
 Table 5 shows the results for Question 3. Of 100 high school mathematics teachers, 55% 
were at Level 2 or lower (61% if we count “no answer” among the lower levels), with minor 
differences among math, math ed, and other majors. We have received some criticism for not 
giving more credit to FORM and SYM responses. Our reply is that the item was intended to see 
whether teachers saw the triangle’s vertical and horizontal sides as having magnitudes and that 
their formulaic or symbolic response suggests to us that the idea of magnitude is not something 
these teachers would emphasize in their teaching. Also, we have received criticism that our 
statement of re-scaling the y-axis is ambiguous. Our reply is that it is ambiguous only when one 
fails to think that the vertical and horizontal segments, as segments, connect points having 
coordinates that are dependent upon the axes. Also, the statement was not ambiguous to teachers 
who readily responded that the new value of m would be “half” or “double” its original value. It 
was not ambiguous to them because there evidently was no question in their mind as to the fact 
that the triangle was given, as opposed to being emergent from the conventions of graphing and 
the meaning of function. 

Table 5 
Rows are levels of Question 3 Level 

 Columns are levels of Major 
  Restricted to: High School Teacher 
  Cell Entries: Count (Percent of Column Total) 

 
Math MathEd ND Other total 

LV0 5 6 0 9 20 

 
(20) (16.7) (0) (25.7) (20) 

LV1 6 7 2 3 18 

 
(24) (19.4) (50) (8.6) (18) 

LV2 5 3 1 8 17 

 
(20) (8.3) (25) (22.9) (17) 

LV3 9 18 0 10 37 

 
(36) (50) (0) (28.6) (37) 

LV4 0 1 0 1 2 

 
(0) (2.8) (0) (2.9) (2) 

NoAns 0 1 1 4 6 

 
(0) (2.8) (25) (11.4) (6) 

total 25 36 4 35 100 

 
(100) (100) (100) (100) (100) 
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 Results to Questions 1-3 suggest to us that the majority of teachers in this sample are not, 
by and large, capable of bringing the idea of magnitude into their mathematical instruction even 
were they inclined to do so. We find this troubling, for two reasons. First, it suggests that the 
mathematics that teachers teach is not about generalized numbers. It is consistent with 
mathematics instruction that is about what to do with symbols. Second, when the idea of 
magnitude is suppressed or ignored in mathematics, then mathematics cannot be “a tool for 
science” as scientists would hope. Without an understanding of magnitude, mathematics is 
useless for a student’s scientific understandings. At the same time we should say that we have 
criticized science education itself for ignoring the issues of quantity, unit, and magnitude 
(Thompson, 1994a, 2011, 2012). 
 Results in Table 5 are important also because of their implications for students’ 
preparation for calculus. Slope understood as an index of “slantiness” or simply as a formula is 
inadequate to support understanding constant and average rate of change in a way that prepares 
students for calculus. Slope as a quotient of changes, where the quotient gives the relative 
magnitude of changes in two variables, is essential for understanding rate of change in calculus, 
especially when the changes are infinitesimal. When students’ teachers are poorly positioned to 
think about quotient as a measure of relative magnitude, students, too, are poorly positioned to 
also learn to think of quotient as a measure of relative magnitude. Our experience teaching 
calculus at ASU is that students indeed enter calculus classes with very poor understandings of 
quotient and rate of change (Byerley, Hatfield, & Thompson, 2012). 

Conclusion 

We began with an explication of levels of meaning of “a quantity’s magnitude” and the mental 
operations entailed by those meanings. We discussed five levels of meaning of magnitude that 
are largely unarticulated in the research literature.8 They are: Awareness of size, Measure 
magnitude (magnitude and additive measure are the same thing), Steffe magnitude (size in 
relation to a composite unit together with reciprocity of size), Wildi magnitude (magnitude is 
invariant with change of unit), and Relative magnitude (relative size is invariant with change of 
unit in either or both quantities).  

We characterized each meaning as a scheme of meanings and ways of thinking that 
builds on prior meanings of magnitude and that incorporates ever more sophisticated meanings 
of size as an invariant property of a quantity’s magnitude. We also addressed the general notion 
of a scheme, and characterized the development of schemes as the formation of a learning cloud 
where many forms of thinking participate in each other’s operation and in each other’s 
development. This way of thinking about the development of meaning and ways of thinking 
conflicts strongly with current thinking about learning progressions and learning trajectories. 
Finally, we examined data from 112 mathematics teachers regarding their understandings of 
magnitude as it relates to changes of unit and to slope as a measure of relative magnitude, 
concluding that the teachers in this sample are poorly prepared to support students’ learning 
about magnitudes and to support students’ thinking with magnitudes. 
                                                
8 Steffe has encouraged us to use the word “stages” instead of “levels”. The idea of a level is 
weaker than that of a stage. To say that a scheme is at a particular stage in its development means 
that there has a substantial reorganization among existing schemes and the construction of new 
schemes that supersede them. While we agree that our levels of meaning for magnitude probably 
constitute stages, we would like to see empirical investigations of this claim before making it. 
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 Our hypothesis is that thinking at a high level with magnitudes and relative magnitudes 
produces an understanding of quantity that is very important for understanding physical 
quantities in science and that produces an understanding of generalized number that is important 
for understanding algebra and calculus. We suspect that a developed ability to reason with 
magnitudes and relative magnitudes “frees” students to focus on operational invariances in their 
reasoning. Put another way, we suspect that with a developed ability to reason with magnitudes 
students will be less likely to trip over numbers and their representations when dealing with 
sophisticated mathematical ideas. 
  We hope that readers see the framework we’ve offered here as profitable for future 
research. There are definite steps that need to be taken if it is indeed to be used profitably. The 
field must: 

• Agree that, however we define it, the idea of magnitude is important for mathematics 
teaching and learning. 

• Agree on what we mean that someone is thinking with magnitudes at some level. 
• Agree on criteria for saying that a student’s “magnitude thinking” is at a certain level. 

 While awaiting these agreements, or perhaps spurring them, the field must also attend to 
the theoretical foundation for understanding thinking with magnitudes and teaching and learning 
it. Specifically, the field must: 

• Perform conceptual analyses of related mathematical ideas to see where thinking with 
magnitudes might play an important role. For example, conceiving of time as a 
magnitude might be important for conceiving of smooth continuous variation. 

• Investigate what difference a student’s or a teacher’s level of thinking with magnitudes 
makes for learning or teaching other mathematical ways of thinking. 

• Investigate ties between understanding science concepts and mathematical concepts that 
exist or could be profitably exploited for the benefit of each. 

  

References 

Byerley, C., Hatfield, N., & Thompson, P. W. (2012). Calculus student understandings of 
division and rate. In Proceedings of the 15th Annual Conference on Research in 
Undergraduate Mathematics Education, pp. 358-363). Portland, OR: MAA/SIGMAA on 
RUME. Retrieved from http://bit.ly/Ztgu4h. 

Clement, J., Lochhead, J., & Monk, G. S. (1981). Translation difficulties in learning 
mathematics. American Mathematical Monthly, 88, 286–290. 

Clement, J., Lochhead, J., & Soloway, E. (1979). Translating between symbol systems:  Isolating 
a common difficulty in solving algebra word problems. 

Cobb, P., & Glasersfeld, E. v. (1983). Piaget's scheme and constructivism. Genetic 
Epistemology, 13, 9–15. 

Cooper, R. G. (1991). The role of mathematical transformations and practice in mathematical 
development. In L. P. Steffe (Ed.), Epistemological foundations of mathematical 
experience (pp. 102–123). New York: Springer-Verlag.  

Gagné, R. M. (1977). The conditions of learning. New York: Holt, Rinehart & Winston. 
Glasersfeld, E. v. (1995). Radical constructivism: A way of knowing and learning, Studies in 

mathematics education. London: Falmer Press. 



Thompson, Carlson, Byerley, Hatfield  Thinking with Magnitudes 

 -24- 

Glasersfeld, E. v. (1998). Scheme theory as a key to the learning paradox. Paper presented at the 
15th Advanced Course, Archives Jean Piaget, Geneva.  

Goldenberg, E. P. (1988). Mathematics, metaphors, and human factors:  Mathematical, technical, 
and pedagogical challenges in the educational use of graphical representation of 
functions. Journal of Mathematical Behavior, 7, 135–173. 

Harel, G. (2008a). DNR perspective on mathematics curriculum and instruction, Part I: focus on 
proving. ZDM: The International Journal on Mathematics Education, 40, 487-500. doi: 
10.1007/s11858-008-0104-1 

Harel, G. (2008b). DNR perspective on mathematics curriculum and instruction, Part II: with 
reference to teacher’s knowledge base. ZDM: The International Journal on Mathematics 
Education, 40, 893-907. doi: 10.1007/s11858-008-0146-4 

Harel, G. (2008c). What is mathematics? A pedagogical answer to a philosophical question. In 
R. B. Gold & R. Simons (Eds.), Current Issues in the Philosophy of Mathematics From 
the Perspective of Mathematicians (pp. 265-290). Washington, DC: Mathematical 
Association of America.  

Harel, G. (2013). Intellectual need. In K. Leatham (Ed.), Vital directions for research in 
mathematics education (pp. 119-151). New York: Springer.  

Johnckheere, A., Mandelbrot, B. B., & Piaget, J. (1958). La lecture de l'expérience [Observation 
and decoding of reality]. Paris: P. U. F. 

Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and 
reason. Chicago, IL: University of Chicago Press. 

Lehrer, R. (2013). A learning progression emerges in a trading zone of professional community 
and identity. In R. Mayes & L. L. Hatfield (Eds.), Quantitative reasoning in mathematics 
and science education: Papers from an international STEM research symposium, 
WISDOMe Monographs (Vol. 3, pp. 173-186). Laramie, WY: University of Wyoming.  

Montangero, J., & Maurice-Naville, D. (1997). Piaget or the advance of knowledge (A. Curnu-
Wells, Trans.). Mahwah, NJ: Lawrence Erlbaum. 

Piaget, J. (1967). The child’s concept of space. New York: W. W. Norton. 
Piaget, J. (1968). Six psychological studies. New York: Vintage Books. 
Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York: Basic Books. 
Rosnick, P., & Clement, J. (1980). Learning without understanding: The effect of tutoring 

strategies on algebra misconceptions. Journal of Mathematical Behavior, 3, 3–27. 
Skemp, R. (1961). Reflective intelligence and mathematics. The British Journal of Educational 

Psychology, 31, 44–55. 
Skemp, R. (1979). Intelligence, learning, and action. New York: John Wiley & Sons. 
Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic 

reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early 
grades (pp. 95-132). New York: Erlbaum.  

Steffe, L. P. (1991). The learning paradox. In L. P. Steffe (Ed.), Epistemological foundations of 
mathematical experience (pp. 26–44). New York: Springer-Verlag.  

Steffe, L. P., & Olive, J. (2010). Children's fraction knowledge. New York: Springer. 
Thompson, P. W. (1985). Experience, problem solving, and learning mathematics:  

Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and 
learning mathematical problem solving:  Multiple research perspectives (pp. 189–243). 
Hillsdale, NJ: Erlbaum. Retrieved from http://bit.ly/11YT49w. 



Thompson, Carlson, Byerley, Hatfield  Thinking with Magnitudes 

 -25- 

Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. 
Educational Studies in Mathematics, 25, 165–208. 

Thompson, P. W. (1994a). Bridges between mathematics and science education. Paper presented 
at the Research blueprint for science education conference, New Orleans, LA. 
Conference Paper 

Thompson, P. W. (1994b). The development of the concept of speed and its relationship to 
concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative 
reasoning in the learning of mathematics (pp. 179–234). Albany, NY: SUNY Press.  

Thompson, P. W. (1994c). Images of rate and operational understanding of the Fundamental 
Theorem of Calculus. Educational Studies in Mathematics, 26, 229–274. Retrieved from 
http://www.jstor.org/stable/3482785. 

Thompson, P. W. (1995). Notation, convention, and quantity in elementary mathematics. In J. 
Sowder & B. Schapelle (Eds.), Providing a foundation for teaching middle school 
mathematics (pp. 199–221). Albany, NY: SUNY Press.  

Thompson, P. W. (1996). Imagery and the development of mathematical reasoning. In L. P. 
Steffe, P. Nesher, P. Cobb, G. A. Goldin & B. Greer (Eds.), Theories of mathematical 
learning (pp. 267-283). Hillsdale, NJ: Erlbaum.  

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, 
S. Chamberlain & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education, WISDOMe Monographs (Vol. 1, pp. 33-57). 
Laramie, WY: University of Wyoming. Retrieved from http://bit.ly/15II27f. 

Thompson, P. W. (2012). Advances in research on quantitative reasoning. In R. Mayes, R. 
Bonillia, L. L. Hatfield & S. Belbase (Eds.), Quantitative reasoning: Current state of 
understanding, WISDOMe Monographs (Vol. 2, pp. 143-148). Laramie, WY: University 
of Wyoming. Retrieved from http://bit.ly/13FomiX. 

Thompson, P. W. (2013). In the absence of meaning. In K. Leatham (Ed.), Vital directions for 
research in mathematics education (pp. 57-93). New York: Springer. Retrieved from 
http://bit.ly/Ztg3Hm. 

Thompson, P. W., & Harel, G. (in preparation). Standards of understanding. 
Thompson, P. W., Harel, G., & Thomas, M. O. J. (in contract). Teaching and learning calculus 

from middle grades through college, Interweaving Mathematics Pedagogy and Content 
for Teaching (Vol. 1). London: Routledge. 

Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. 
Kilpatrick, G. Martin & D. Schifter (Eds.), Research companion to the Principles and 
Standards for School Mathematics (pp. 95-114). Reston, VA: National Council of 
Teachers of Mathematics.  

Thompson, P. W., & Thompson, A. G. (1994). Talking about rates conceptually, Part I: A 
teacher's struggle. Journal for Research in Mathematics Education, 25, 279–303. 

Wikepedia. (2013, 9 July) Metrication in the United States.  Retrieved July 7, 2013, from 
http://en.wikipedia.org/wiki/Metrication_in_the_United_States 

Wildi, T. (1991). Units and conversions: A handbook for engineers and scientists. New York: 
IEEE Press. 

Wollman, W. (1983). Determining the sources of error in a translation from sentence to equation. 
Journal for Research in Mathematics Education, 14, 169–181. 

Wollman, W. (1986). From words to equations:  A meaning-based approach for novices. 
 


