Two Dual Assertions: The First on
Learning and the Second on Teaching
(or Vice Versa)

Guershon Harel

1. INTRODUCTION. Ways of thinking are students’ apparatuses for filtering and
interpreting what we intend to teach them. In this paper, they are distinguished
from ways of understanding. A way of understanding is the meaning(s) students
have for a specific concept. For example, students may understand the “derivative
of a function” as the slope of a line tangent to the graph of a function, as the best
linear approximation to a function near a point, etc., but they may understand it
superficially (e.g., “derivative is nx"~! for x"”) or even incorrectly (e.g., “deriva-
tive is the quotient (f(x + A) — f(x))/h”).

I begin by showing how students’ ways of thinking impact their ways of
understanding mathematical concepts. Following this, I will suggest that even
though ways of thinking are difficult to relinquish, they are not unalterable; how
students come to understand mathematical content influences the quality of their
ways of thinking.

2. UBIQUITOUS FAULTY WAYS OF THINKING

2.1 Symbolic Reasoning. In linear algebra, students learn that the solution set of a
linear system is invariant under row operations on the augmented matrix of the
system, as is the rowspace of a matrix under row operations on the matrix. We
observed students extend these facts to conclude, and persistently hold, that the
column space of a matrix is invariant under row operations on the matrix. How did
these students form this misconception despite the fact they had never heard such
a statement from their teacher or read it in any textbook? These students, we
found, possessed a habit of mind [S]—a way of thinking, that is—of arriving at
conclusions on the basis of association alone, without examining their meaning and
truth. In some cases, this habit of mind leads not only to an incorrect
statement—which, as in this case, can be refuted by a counterexample—but to
nonsense reasoning, as in the following episode (taken from [8]): In response to the
question, “Why is a homogeneous system AX = 0 consistent?”, Hugh, a student in
a linear algebra class, said:

Take x; A, +x,A4, + - +x,A, = 0 [the A;s are the columns of A]. We
want to find x; and we have some values x,,...,x, and 4, 4,,..., 4,, by
moving the known values [the x;s and A;s; apparently, thinking of the former
as free variables] to the other side of the equation, we can solve [for] x,. This
is the same for x,,...,x,. Hence, this demonstrates that a homogeneous
system has solution: x; = (x, 4, + x;A4; + -+ +x,4,)/A;.

When asked what dividing by A, means, Hugh replied: “It is just this is over this
[pointing to his fractional expression]. It is just like one over x.”
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I call this way of thinking, symbolic reasoning. In using it, one treats symbols as
if they possess a life of their own and manipulates them without examining their
meaning. In linear algebra, symbolic reasoning manifests itself in the “vectors-as-
numbers” misconception, for, as we have seen in Hugh’s response, students treat
vectors as if they were numbers. With some students this misconception is
apparent, with others it is concealed, as in the following episode: In response to
the problem, “M, N, K, R,V are linearly dependent. If M and N are removed,
would K, R, and V' be dependent?”, Sam said:

The remaining vectors are linearly dependent although we eliminate M and
N, it’s the same as we multiply M and N with zero. For example: K = aR +
bV + O0M + ON, a, b # 0. This is because linearly dependent means that any
element in a group is a linear combination of the others.

Sam’s reasoning behind this seemingly incomprehensible answer was this: For
him (as for some of his classmates), “dependence” was not a set-wise property, but
a property of a single vector. Namely, to him, “a vector is dependent” if it is a
linear combination of other vectors and so “a set of vectors is dependent” if each
vector in the set is a linear combination of the others. Based on the problem
information, he therefore assumed that K = xR + yV + zM + vN. Removing M
and N meant to him replacing them by zeros in the latter equality. But to do so, he
felt he had to compensate for the “quantity” loss of zM + vN by readjusting the
coefficients x and y into new coefficients a and b—just as if all the symbols
represented real numbers.

The key point of these observations is that Hugh’s and Sam’s understanding of
basic concepts were governed by their ways of thinking, the most apparent of
which is symbolic reasoning.

Against this devastating reasoning, I point now (to avoid puzzlement about the
meaning of the term “symbolic reasoning”) to a different, essential, practice of
symbolic reasoning. The definition of symbolic reasoning I gave earlier may have
evoked with the reader a different image from the one revealed in Hugh’s and
Sam’s responses. For, relative to the reader’s practice of mathematics, it is not
uncommon that symbols are treated as if they possess a life of their own, and,
accordingly, are manipulated without (necessarily) examining their meaning.

Historically, this practice of symbolic reasoning played a significant role in the
development of mathematics. For example, during the nineteenth century an
enormous amount of work was done in differential and difference calculus using a
technique called “operational method”, a method whose results are obtained by
symbol manipulations without understanding their meaning, and in many cases in
violation of well established mathematical rules. (See, for example, how the
Euler-MacLaurin summation formula for approximating integrals by sums was
derived in [6].) It is only with the aid of functional analysis, which emerged early in
the twentieth century, that mathematicians were able to justify many of the
operational method techniques. Another, better known, example is the reconstruc-
tion of calculus into real analysis at the beginning of the nineteenth century, which
commenced with Fourier’s “symbolic solution” to the Flow of Heat problem.
Fourier reduced this problem to the problem of expressing an even function as an
infinite sum of cosines, without attending the meaning of infinite summation of
functions. His solution led to observations that seemed at the time inconsistent
with “regular” behavior of functions. This, in turn, led to thorough investigations
into the assumptions of calculus and inspection of its structure, whereby the entire
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calculus was reconstructed into a new mathematical field, which now is called
analysis.

2.2 Justification By Virtue of Authority. Another common way of thinking, which
in its extreme manifestation is as harmful as symbolic reasoning, is students’ total
acceptance of mathematical assertions on the sole basis of a statement appearing
in their textbook or uttered by their teacher. Simply put, students lack the basic
intellectual curiosity of wondering why a stated assertion is true. This
behavior—broadly discussed in [8]—is hardly surprising, for current mathematics
curricula emphasize facts rather than reasons for facts.

2.3 Lack of Multiple Ways of Understanding. That a concept can be understood
in different ways, it should be understood in different ways, and it is advantageous
to change ways of understanding of a concept while attempting to solve a problem,
are ways of thinking commonly absent from most students’ repertoire of reasoning.
The impact of this deficiency is particularly apparent in linear algebra, which,
more than any other lower-division mathematics course, requires the formation of
different ways of conceptual understanding. One must understand, for example,
that problems about systems of linear equations are equivalent to problems about
matrices, which, in turn, are equivalent to problems about linear transformations.
Students who are not equipped with these ways of thinking are doomed to
encounter difficulties. A simple, yet indicative, example is students’ difficulty in
adopting different ways of multiplying matrices (e.g., (AB)*® = L(B®) AD,
(AB)y = L(A4);B;), or AB = ¥, AVB;)) once they have learned the standard
definition, (AB), ; = X,(A4;)(BY),.

2.4 Lack of Effective Concept Images. A way of understanding a concept is part of
one’s “concept image”: a mental network consisting of what the person knows
about the concept (e.g., analogies to other concepts, examples and nonexamples,
etc.). The notion of “concept image” (according to [11]) is distinguished from that
of “concept definition”: a verbal statement, appearing in a textbook or presented
by the teacher, that accurately describes the concept in a non-circular way.
Concept images, or “elaborated structures” as cognitive scientists call them, have
proved to have profound effects on memory and comprehension [3]. A student with
an effective concept image is one who can communicate its corresponding concept
definition in her or his own words, can think about it in general terms, can connect
it to other concepts, and can, as a result, remember its meaning for an extended
period of time [7].

What sort of concept images do students build in their linear algebra courses?
Tables 1 and 2 present slightly edited results of a survey of 25 students, 1-3
semesters after they had completed a differential-equations-and-linear-algebra
course followed by a linear algebra course. Their average grades were, respectively,
3.05 and 2.91, on the grade-scale of A =4, B=3,C=2,and D = 1.

These results suggest that students do not build effective concept images;
rather, they place their full reliance on concept definitions, by memorizing them
verbatim. They manage to remember concept definitions until the final exam is
over but are unable to retain them for an extended period of time. Once the
concept definitions are forgotten, students are unable to retrieve or rebuild them
on their own.

The observations I discussed in this section are consistent with a well estab-
lished observation that students’ background knowledge—the sum of what they

1998] TWO DUAL ASSERTIONS 499



TaBLE 1. Percentage Distribution of Students’ Responses

Question | Answers — Correct Incorrect None
Independence
Can 3 vectors in R? be independent? 48 52 0
Suggest 3 independent vectors in R>, 52 36 12
Define “linear independence”. 28 68 4
Span
Suggest a set that spans R°. 68 16 16
Define “The span of a set of vectors”. 36 58 6
Vector Space
Give an example of a subspace. 16 60 24
Fundamental Theorem
rank(A,y7) = 3. Find nullity (A). 32 52 16
Matrix Transformations
Are matrix transformations linear? 44 24 32
What relation exists between CS(A4) and Im (A4)? 20 16 64

TABLE 2. Sample of Students’ Responses to Questions in Table 1

Concept Responses

Independence 1. Dependence is when there is some sort of
equation where ax; + yx, + 6x3 = 1or Q.
2. Dependence is when row reducing the
arbitrary numbers are ¢; = ¢, = -+ =¢, = 0.
3. Independence is when there aren’t zero divisors.

Vector Space 1. Vector space: [ 01 ] ; Subspace: [ 0]
and Subspace 10 1
2. The set of integers is a vector space. The set
of even integers is a subspace.
3. Vector space: x =0,y =0,z = 0;
Subspace: x +y = 0.
Fundamental Column space is equal to the dimensionality
Theorem of the space the image is projected in.
Matrix A matrix transformation is linear if you have
Transformation one to one transformation.

know—is a chief factor influencing their learning [1]. This general
observation—labeled BKI (Background Knowledge Impact)—“assumes near ax-
iomatic status in cognitive science” [10]. Unfortunately, it is usually interpreted
narrowly; namely, that students’ knowledge of one concept influences their learn-
ing of another concept that is logically dependent on it. But as teachers, we know
that the BKI observation applies even when concepts are logically independent.
For example, we expect students’ knowledge of metric spaces to influence their
learning of topology, despite the fact that the latter is logically independent of the
former. We so expect, because we understand that to learn a mathematical idea
students need more than factual knowledge. In this section I tried to show that
they need, in particular, appropriate ways of thinking. Thus, the observed impact
of the presence of faulty ways of thinking and the absence of essential ones on
conceptual understanding gives a pedagogically important meaning to the BKI
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observation, namely: Ways of thinking impact ways of understanding. This is the root
of the often heard, but seldom appreciated, phrase, “students construct their own
knowledge”.

3. THE NECESSITY PRINCIPLE: AN ORGANIZING PRINCIPLE FOR TEACH-
ING. Students feel intellectually aimless in mathematics courses, because we
usually fail to present them with a clear intellectual purpose. In this section I
present a pedagogical principle, called the Necessity Principle, by which students
learn that concepts are not introduced arbitrarily but with reasons—reasons they
understand and appreciate—whereby they become (or at least feel as if they were)
partners in knowledge development. When we implemented the Necessity Princi-
ple consistently—that is, locally, in teaching specific concepts, and globally,
throughout the entire course—along with a mode of teaching that combines small
group discussion, team projects, whole-class discussion, individual learning, use of
technology, and lecturing, we observed positive results: Students showed adequate
understanding of the material they learned and gradually abandoned faulty ways of
thinking and acquired instead adequate ones. I suggest, therefore, that the dual
assertion—ways of understanding impact ways of thinking—may be equally valid.

Before I state the Necessity Principle, let us consider the following example: A
current, widely used, elementary linear algebra textbook introduces the concept of
“independence” with the statement:

So far we have defined a mathematical system called a real vector space and
noted some of its properties . ... [In what follows], we show that each vector
space V' studied here has a set composed of a finite number of vectors that
completely describe V. It should be noted that, in general, there is more than
one such set describing V. We now turn to a formulation of these ideas.

Following this, the text defines “span” and “dependence” and gives illustrative
examples for each. The entire presentation appears clear and accurate. Despite
this, its effectiveness is in doubt. Specifically, one should ask: Can a lesson that is
based on this presentation convince a regular student in a standard elementary
linear algebra course of the need for the concept of “independence” to solve a
problem? True, the text’s introductory statement indicates the “problem” it
intends to solve; namely, to establish that each vector space V' studied in the book
has a set composed of a finite number of vectors that completely describe V. But,
is our student likely to view this as a problem? Can he or she in this stage of the
course understand its importance? Can he or she see how “independence” con-
tributes to its solution? In other words, what is our student’s intellectual need—as
opposed to social or economic need—in learning the concept of “independence”?
There is nothing in this presentation that arouses such a need with our student.

“Intellectual need” is an expression of a natural human behavior: When we
encounter a situation that is incompatible with, or presents a problem that is
unsolvable by our existing knowledge, we are likely to search for a resolution or a
solution and construct, as a result, new knowledge. Such knowledge is meaningful
to the person who constructs it, because it is a product of personal need and
connects to prior experience. This human phenomenon is the basis for what I call
the Necessity Principle.

The Necessity Principle: Students are most likely to learn when they see a need for
what we intend fo teach them, where by “need” is meant intellectual need, as
opposed to social or economic need.
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In concrete instructional terms, the Necessity Principle translates into three steps:

1. Recognize what constitutes an intellectual need for a particular population
of students, relative to the concept to be learned.

2. Present the students with a problem that corresponds to their intellectual
need, and from whose solution the concept can be elicited.

3. Help students elicit the concept from the problem solution.

Geometric demonstrations and applications in other fields should not be con-
fused with the Necessity Principle. While the former are excellent tools to help
students solidify concepts they have already learned, the latter aims at laying the
ground for the concepts students are yet to learn.

The following examples demonstrate the general idea, definitely not the com-
plete instructional plan, of the preceding three steps:

One way to introduce the pivotal cluster of concepts, “linear combination”,
“dependence”, and “independence”, in accordance with the Necessity Principle is
to use one of the historical roots of linear algebra: systems of linear equations.
Students entering their first course in linear algebra are familiar with system of
equations and understand their importance (in solving word problems, for exam-
ple). They can be brought—as our experience suggests—to appreciate the fact
that in some cases we cannot or do not want to solve a given system AX = b, and
yet we need to determine whether it has a solution or whether its solution is
unique. We pose these Existence and Uniqueness problems early in our matrix-ori-
ented course—before we mention any of the above concepts—to focus students’
attention on a definite goal. Because we strongly emphasize—in fact define—
matrix multiplication via the relation MN® = ¥ (N®). MY, it is not uncommon
that a few students give a correct response to the Existence problem. Namely, if b
can somehow be expressed as b =x, AD + x,A® + --- +x, A", then AX =b
has a solution. Of course, students seldom give such a clean answer, but with the
teacher’s help, the class as a whole understands why the suggested relation
between b and the columns of A merits attention and, therefore, deserves a name
—*“linear combination”.

Building on this understanding, we help students elicit the concepts of “depen-
dence” and “independence” from the solution to the Uniqueness problem. To
avoid unnecessary complications—something we learned from experience—we
first pose this problem with a homogeneous system AX = 0. Students are now
prepared to see that the relations “one of the columns of A is a linear combina-
tion of the other columns” and its negation solve the Uniqueness problem. Once
this is achieved, new concepts are born, and names are assigned to them: “linear
dependence” and “linear independence”, respectively.

In a similar manner, we introduce the concept of “determinant” as a technique
for solving characteristic equations; we elicit the concept of “orthogonal projec-
tion” from the need to find an approximate solution (i.e., a least-squares solution)
to an inconsistent system; we develop the proof of the Jordan Theorem, from
beginning to end, in the context of solving linear systems of differential equations
—a need students well recognize.

3.1 What Constitutes Intellectual Need? How would teachers find out what consti-
tutes intellectual need for a particular population of students? Answer: They must
understand their students’ ways of thinking. That said, I now characterize three
forms of intellectual need: need for computation, need for formalization, and
need for elegance. It is beyond the scope of this paper to address the psychological
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roots of these needs. In what follows, I elaborate on the first, briefly discuss the
second, and mention only that the third is what we associate with mathematical
beauty, efficiency, and abstraction.

Need for Computation. The preceding examples of how to introduce a new
concept in accordance with the Necessity Principle involve obtaining numeric
values (exact or approximate) for unknowns or determining conditions for existence
and uniqueness of solutions to linear systems. The intellectual need that such
problems evoke with students I call need for computation. In more general terms,
problems that involve computation of objects that are concrete to students or
involve determination of properties of such objects are said to satisfy the need for
computation. It is motivationally a powerful need in that students get highly
engaged in the problems and understand and appreciate the concepts elicited from
their solution. In our teaching experiments in linear algebra—a subject particularly
amenable to this need—we attempted not only to elicit specific concepts but also
to enhance students’ reasoning skills, as the following examples demonstrate.

¢ Spatial Visualization

Students are not educated to use spatial visualization, and they lack rudimen-
tary knowledge of 2- and 3-dimensional analytic geometry. Our goal was to develop
our students’ spatial visualization by having them witness its power in analyzing
and conjecturing assertions. The problems we assign students to achieve thls goal
belong to the computational need category:

2x+3y+6z2=0
—4x+Ty+9z=0"
Are u and v dependent or independent? Justify your answer geometri-

cally.

M) u=[120]"and v=1[5 % 7]' are solutions to {21‘:23:2;2% Are
these equations dependent or independent? Justify your answer geo-
metrically.

2. Lora and Tony computed the projection matrix from a certain R” onto a
specified subspace V' by using the formula P = W(W'W)~'W*' (W is a
matrix whose columns form a basis for V). Lora chose a matrix W, to
substitute for W, while Tony chose W,.

(a) Do you expect Lora and Tony’s projection matrices to be the same?

(b) Propose a 4-dimensional subspace V of R®. Use MATLAB to compute
P with five different bases of V. )

(¢) Use your geometric intuition to explain your answers to (a) and (b) and
to state a general conjecture.

(d) Prove your conjecture algebraically.

1. (@) u = [u; u, us]" and v = [v; v, v;]* are solutions to {

¢ Proof Production

The pedagogical benefits of the following sample of problems are similar to
those of construction problems in Euclidean geometry. By solving such problems,
students apply definitions and theorems they have learned and as a result sharpen
their proof skills.

1. The outputs of the vectors a =[0120], b=[41 -26]", c=[3101],
=[0 1 —2 0] under a matrix transformation A are, respectively,
a=[-1121], Bp=[15 -26), y=[1123], 6=[1 -2 —1 3]~
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Construct A. Is there only one such matrix transformation? Change just
one of the input vectors and just one of the output vectors in the original
data so one can definitely construct more than one such matrix transfor-
mation. Change just one of the input vectors and just one of the output
vectors of the original data so that it is impossible to construct such a
matrix transformation.

2. A,B,C, D, E are vectors in R®. A, B,C are independent, D = —4A4 +
3B, and E =12B — 13C. Let W=[A B C D E] and let R = rref(W).
Construct R.

Beyond their value of enhancing students’ understanding of specific concepts
(e.g., “linearity” in the first problem), these construction problems (from the
computational need category) proved particularly effective in fostering students’
ability to produce proofs. For the very actions students emiploy to construct an
object involve justification. The requirement to justify is by default in that students
need to convince themselves that they have successfully produced the expected
outcome; the need to justity is inherent in the task.

Need for Formalization. Students may be satisfied with their intuitive explanation

of why limn_,w% = 0, which typically is something to the effect: “limn_,m% =0

because the larger n gets the closer % is to 0 . A teacher preparing students for
the e — N definition of limit might proceed, upon hearing this explanation, by
writing it on the board along with the graphs of f(n) = ;11_ and g(n) = —1. Then
the teacher may point out to the students that based on their own justification one

can rightly argue limn_,w% = —1, because, by their own words, “the larger n gets

1. , . .
the closer — is to —1”. This exchange usually results—as our experience suggests

n
—in a sort of a conflict with the students, whereby they see a need to modify their
conception of limit.

This is an example of a need for formalization. 1t is, I presume, less robust and
effective than the need for computation, because it requires an adequate level of
mathematical maturity, which beginning students usually lack. I am referring to
students’ lack of appreciation for the need to justify assertions with strong visual or
kinesthetic interpretations, such as those appropriate to the Intermediate Value
Theorem (IVT) and the Extreme Value Theorem (EVT). While it is not hard to
show students the power of these theorems for applications, it is not always easy to
convince them of the need to prove them. We applied an experimental treatment
to this problem, where we assigned an additional purpose to the proofs of these
theorems. Namely, not just showing the assertions are true—that was unnecessary
to the students—but also testing the formalization of intuitive notions, such as
those of “limit”, “continuity”, and “there are no gaps on the real line.” So, if the
class can, for example, prove the IVT, which we all believe, by using “only” the
€ — & definitions of limit, the formal definition of continuity, and the completeness
axiom, then we can be certain that we have been successful in formalizing the
corresponding intuitive notions.

In summary, based on my own observations, I conjecture that the need for
computation is the most robust and effective with beginning students. The need for
formalization is, developmentally, more subtle, and even more so the need
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for elegance, because they require a higher level of mathematical maturity.
Accordingly, a gradual refinement of students’ intellectual need should proceed in
this order: from the need for computation to the need for formalization to the
need for elegance.

3.2 Some Observations. I conclude this section with a few observations about the
effect of the teaching approach I have just described.

Two consecutive teaching experiments in linear algebra (hereafter, LAa and
LADb) were taught by the same teacher and had similar populations of students,
and in both we intended to adhere to the Necessity Principle. But we were less
successful implementing the Necessity Principle in LAa than in LAb. For example,
the idea of introducing “independence” as a concept “needed” to answer the
Uniqueness Question occurred to us only in LAb; in LLAa, it was introduced in the
usual way. In comparing students’ achievements across the two experiments, we
found differences in favor of LAb. Particularly, fewer misconceptions occurred in
LAD than in LAa. For example, the “naive negation” misconception (i.e., “linear
independence of a set” means one vector in the set is not a linear combination of
the other vectors in the set) rarely occurred in LADb but was frequent in LAa. This
observation suggests that when students have a clear purpose for a concept, they are
unlikely to misunderstand its meaning.

In the LAa experiment, we followed the “common wisdom” of commencing the
course with the definition of vector space, and, as it is commonly presented, we
“abstracted” its axioms from the properties of various structures, including R". We
found that this approach is inadequate for beginning students, who have yet to
witness the benefits of axiomatization. In particular, we found that no abstraction
of the specific structures really takes place with these students, and they continue
to think in terms of vectors in R"—the only vectors they recognize as mathemati-
cal objects. Consequently, they equate the vector-space axioms with the properties
of vector addition and scalar multiplication in R". But, because they view the latter
as self-evident facts that merit no special attention, they fail to comprehend the
meaning of the vector-space axioms and of the basic properties derived from them.
For example, when asked to reproduce the meaning of the statement, “For any 4
in a vector space V, (—1)4 = —A” only a few LAa students did so successfully.
The decisive majority of the students viewed this statement as much-ado-about-
nothing, as one of the students put it: “Of course negative one times A is negative
A, what is there to prove?” This observation suggests that when students do not
have a clear purpose for a concept, even when the concept is presented clearly, they are
likely to misunderstand its meaning. .

One of the most positive results of our teaching experiments is that students’
use of symbolic reasoning, justification by virtue of authority, and the like gradually
diminished as they developed alternative, mathematically adequate modes of
justification [8]. We attribute this change to the fact that students acquired
conceptual tools to analyze situations and solve problems. In linear algebra
teaching experiments, for example, row reduction was such a conceptual tool. Our
students were assigned numerous problems on the structure of the reduced row
echelon form and the meanings and implications of row reduction in questions of
existence and uniqueness of solutions and in questions of independence and span.
We let students work their way through the problems, justifying and rejustifying
assertions they use. It was only at the end of an instructional unit that the teacher
summarized the relevant key theorems and provided a coherent structure for what
was learned. To solidify students’ image of these theorems, we concluded each

1998] TWO DUAL ASSERTIONS 505



instructional unit with a set of review problems in which the students applied the
newly formulated theorems. It is our judgment that this effort yielded fruitful
outcomes: Because row reduction is a simple computational tool that students
could easily understand, and, more importantly, because they repeatedly witnessed
its power in solving problems, they successfully internalized it as a problem-solving
heuristic. It became for them a dominant method of thinking about linear algebra
problems, and, most importantly, it replaced the faulty ways of justification they
previously possessed.

3.3 A Concluding Remark. A well documented observation in the cognitive sci-
ence literature is that once a way of thinking is established as a behavior, it
becomes tenacious and extremely difficult to relinquish [3]. The implication of this
finding is that the seeds for good ways of thinking must be laid early on in students’
mathematical experience—in elementary and secondary education. Students’
mathematical education in these levels accounts for the presence (absence) of the
undesirable (desirable) ways of thinking I have discussed here. Beginning in
elementary school, students learn to add and subtract multidigit numbers without
understanding the concept of place value [4], and they perform operations on
fractions meaninglessly [10]. They continue to use symbolic reasoning in their
secondary school years and fail, as result, to learn rudimentary ideas, such as what
it means to solve an equation [12].

Our experience suggests, however, that—with effort—ways of thinking can be
altered. Our teaching approach was guided by the Necessity Principle. To imple-
ment this principle successfully, we learned that one must set high, yet realistic,
expectations from students, and must make students accept responsibility for
learning. The mode of teaching that fits the Necessity Principle approach is—as I
have said in [7]—a combination of small group discussion, team projects, whole-
class discussion, individual learning, use of technology, and lecturing (yes, lectur-
ing). There must be balance among these modes of teaching—a balance that each
teacher has to develop individually. I recommend this combination of modes of
teaching rather than dogmatic devotion to one single mode, nowadays either the
mode of lecturing or the mode of cooperative learning.

We often hear the phrase, “students must not be passwe receivers of informa-
tion but active participants in knowledge construction”. The Necessity Principle
pours hard content into this otherwise trivial declaration. It suggests in concrete
terms how to make students active learners, and how—speaking metaphorically
—to transfer definitions and theorems from the ownership of the text and teacher
to the ownership of the students.

The Necessity Principle has its roots in the Piagetian theory of learning and is
consistent with the current theory of Problématique put forth by French mathe-
matics educators [2]. According to the latter, for example,

. pupils’ learning depends on their recognition and re-construction of
problems as being their own... . A problem is a problem for a student only if
she or he takes the respon51b111ty for the validity of its solution. This transfer
of the responsibility for truth from teacher to pupils’ must occur in order to
allow the construction of meaning. [2, p. 259]
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